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ARTICLE INFO ABSTRACT

Keywords: Intelligence is polygenic, highly heritable, and predicts wide-ranging life outcomes. Here, we meta-analysed the
Polygenie score predictive validity of polygenic scores for intelligence based on the largest available genome-wide association

Genomics study (or GWAS; Savage et al., 2018) for tested, phenotypic intelligence to date. Across 32 estimates from 9
haveais independent samples, which all came from WEIRD countries and were of European ancestry (Njoial = 452,864),
Sstematic review our meta-analytic estimate for the association between polygenic and phenotypic intelligence was p = 0.245 (p

< .001, 95 % CI = 0.184-0.307), an effect of medium size. The meta-analytic estimate varied across samples,

studies, and phenotypic measures of intelligence, and even after accounting for these moderators, polygenic

score predictions remained significantly heterogenous. Our findings support claims that polygenic predictions of

intelligence benefit and advance research but their utility in other contexts is yet to be demonstrated.

1. Introduction scores accounted for less than 1 % of variance in phenotypic intelligence

in independent samples (Table $1). Two further intelligence GWAS with

Intelligence ~ the ability to learn, reason, and solve problems - _samples >250,000, published in 2018, yielded stronger polygenic score
strongly predicts life outcomes relating to education, occupation, and _predictions, ranging from 4.37% (Davies et al., 2018) to 4.81 % (Savagehealth and wellbeing (Strenze, 2007; Deary, 2012). Twin and family et al., 2018). The most predictive GWAS on intelligence to date (Savage

studies have shown that about half of people’s differences in intelligence __ et al., 2018) combined eight samples, which were also included in the
can be attributed to their genetic differences, with the heritability of eight previous intelligence GWAS (see Fig. 1), along with seven new

intelligence increasing across the lifespan from infancy, to childhood, to _samples (Nrotal = 269,867). The corresponding polygenic score, here-
adolescence, and adulthood (Haworth et al., 2010; Plomin & Deary, after 191g, accounted for 4.81 % of variance in phenotypic intelligence
2015; Polderman et al., 2015). Heritability denotes the proportion of across four independent population cohorts, with the GWAS’ SNP her-

individual differences in a phenotypic trait that can be attributed to _itability estimate, which represents the theoretical upper bound of the

people’s inherited genetic differences. In the wake of the DNA revolu- _polygenic score prediction, at 19 % (Savage et al., 2018).

tion, it has become possible to identify some of the DNA variants that The discrepancy between polygenic score predictions, SNP herita-

likely drive the heritability of intelligence using genome-wide associa-___ility, and twin heritability is known as the ‘missing heritability gap’

tion studies (GWAS; Plomin & von Stumm, 2018). GWAS signal the (Manolioet al., 20095 Plomin& von Stumm, 2018). This gap is expectedstrength with which DNA variants across the genome ~ so-called single-___ to narrow in the future when larger discovery samples become available,

nucleotide polymorphisms (SNPs) - are associated with phenotypic enabling more powerful GWAS that identify more of the DNA variants,

traits of interest. Trait-associated DNA variants can then be aggregated _including rare ones, that drive the heritability of intelligence (Plomin &

into polygenic scores that index a person’s genetic propensity for that von Stumm, 2018; Young, 2019). For example, a GWAS for years spent

trait. To date, nine GWASofintelligence have been published, reporting _ in full-time education (Lee et al., 2018; N ~ 1.1million) produced
polygenic score predictions of phenotypic intelligence in independent _polygenic scores that predicted 14.8 % of the variance in school per-

samples (Fig. 1). formance and 9.9 % of the variance in intelligence (Allegrini et al

Seven GWAS, published between 2008 and 2017, included discovery 2019). The latter estimate is twice as high as the prediction from the

samples of between 7000 and 112,000 participants (Table $2). The IQzo1g polygenic scores (Savage et al., 2018). Developments in whole

mean weighted prediction estimates of the corresponding polygenic _genome-sequencing and genomic structural equation modelling may
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also be key in resolving missing heritability (Grotzinger et al., 2019: (Howe et al., 2022; Okbay et al., 2022; Plomin & von Stumm, 2022),

Wainschtein et al., 2022). Here, we report results from meta-analysis and meta-regression models
that evaluated the prediction from polygenic scores based on SavageP polygs rs

1.1. IQoo1g ~ the tool for the job or a tool in need of honing? et al.'s (2018) GWAS for phenotypic intelligence IQz013 and explored
effects of factors which may moderate this prediction. Savage ct al.'s

Applications of polygenic scores for intelligence are hotly debated, _ (2018) GWAS’ summary statistics enabled the most predictive polygenic
Proponents argue that polygenie scores could (a) help to identify chil, S08 for intelligence to date and are likely to influence research in this
dren who might benefit from additional learning support early in life, 24 until even more powerful polygenic scores for intelligence become
before problems have manifested; (b) enable parents to make informed available (Martschenko et al., 2024; von Stumm and Plomin, 2021).
choices about their children’s development and support needs; (c) Evaluating 1Q201¢ polygenic scores’ performance across samples is key
inform equitable policymaking in education by explicating the potential 8certaining whether and how polygenic prediction of intelligence
benefits of personalising learning; and (d) inform future research Ca” benefitscience and society. Finding consistent and meaningful effect
through discerning environmental effects that can be interpreted as ‘12S across samples would suggest that IQzo1g is a valuable tool for
causal from those that are due to genetic and environmental con. 'eSea"ch, for example in differentiating genetic and environmental
founding (cf. ‘genetic nuture’; Asbury et al., 2021; Harden, 2021; von Pathways of influence (e.g., Wertz et al., 2023). Sizeable, consistent
Stumm & Plomin, 2021; Wang et al., 2021; Wertz et al., 2019). Oppo- _ Prediction estimatesmay also recommend IQ2018 for use alongside other
nents argue that the modest effect sizes of polygenic score predictions ‘0018 in applied settings, like helping to identify children with learning
for behavioural and psychological traits render them useless for effec- _‘‘ifficulties. Such uses would corroborate calls for developing safe-
tively identifying and supporting children’s differential learning needs __8¥@"ing guidelines for applied use of polygenic prediction (Lewis &
(Dale, et al., 2020; Howe et al., 2022; Morris, et al., 2020). This argu. CCeN, 2021). By contrast, inconsistent, weak predictions would suggest
ment gathers weight when comparing polygenic and environmental that polygenic scores for intelligence are~ at least at present— unlikely
predictors of children's cognitive development, because environments _© be useful tools in research or elsewhere.
(e.g., household chaos or families’ socioeconomic status) offer, at pre- ;

sent, stronger prediction effect sizes for developmental outcomes, even 2-2 Open practices statement
after controlling for the prediction of polygenic scores (e.g., von Stumm ; .

et al., 2020; von Stumm et al., 2023). Another reason why DNA-based We analysed data that we extracted from published articles; requests
predictions of intelligence are reluctantly received is their potential to access the primary data should be directed to the corresponding au-
enable discrimination and exclusion for genetic reasons. This risk is thors of the relevant publication/s. Our analysis scripts are openly
exacerbated by the common misperception that inherited genetic dif, *Vailable at hips://osf.io/63zmr/, and our data are reported in
ferences ‘determine’ individuals’ traits and behaviours. DNA-based Table $4.
predictions are, in fact, probabilistic: they are predictions, rather than

causal explanations for individual differences in phenotypic develop-

ment (Plomin & von Stumm, 2022).

Polygenic prediction of psychological traits is rapidly progressing
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Fig. 1. Polygenic score predictions for phenotypic intelligence across nine GWAS of intelligence (From left to right: Butcher et al., 2008; Davies et al., 2011;

Benyamin et al., 2014; Davies et al., 2015; Davies et al., 2016; Sniekers et al., 2017; Trampush et al., 2017; Davies et al., 2018; Savage et al., 2018).

GWAS’ year of publication, first author, and discovery sample size are shown along the x-axis. Bars indicate the weighted mean proportion of variance (R2) in
phenotypic intelligence accounted for by the respective GWAS’ polygenic scores. Error bars reflect 95 % Cls. Grey circles reflect the highest polygenic score pre-

diction estimate per independent sample and phenotypic intelligence measure, as reported in the respective GWAS publication. Circle size indicates independent

sample sizes. For a full breakdown of prediction estimates, measures, and discovery and independent sample sizes for the eight GWAS, see Table $1 (Benyamin et al.,

2014; Butcher, Davis, Craig and Plomin, 2008; Davies et al., 2015; Davies et al., 2016; Davies et al., 2011; Sniekers et al., 2017; Trampush et al., 2017).
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2. Methods Table 1

Publications included in current meta-analysis.

2.1. Reporting Publication ‘Sample N ‘Age range (years)
a . .

coepa) avons Ajnakina et al. (2022) ELSA 5,088 50-77We report our meta-analysisin compliance with Nosek et al.’s (2015) Allegtini et al. (2019) TEDS 7,026 12.16
‘Transparency and Openness Promotion (TOP) guidelines, Appelbaum Ferraro et al. (2022) EU-GEI 1,263 18-64
et al.’s (2018) Meta-Analytic Reporting Standards (MARS) and Page Geng et al, (2021) FPRUB 518 18-75
et al.'s (2021) Preferred Reporting Items for Systematic Reviews and me etal. (2019) me ‘epaee Be a
Meta-Analyses (PRISMA, see also Moher et al., 2015; Shamseer et al., shochien cea (024 ps 2780 09.90-6.41
2015). The project is pre-registered with the Open Science Framework Mitchell et al. (2022) BLTS 2,335 15.7-28.9
(https://osf.io/63zmr/). Selzam et al. (2019) TEDS 3,138 11-12

Tsapanou et al, (2023) RAN-CR 168 217
2.2. Search strategy Yap et al, (2021) AAB 1,591 21.6737

In order of appearance: ELSA = English Longitudinal Study of Aging; TEDS =

Our systematic review identified 11 publications eligible for inclu- Twins Early Development Study; EU-GEI = European Network of National
sion, reporting k = 32 prediction estimates across n = 9 independent Schizophrenia Networks Studying Gene-Environment Interactions Project;
samples (Nios) — 452,864). We identified 1703 potentially relevant FPRUB = Faculty of Psychology at Ruhr University Bochum sample; IMAGEN=
publications by gathering all citations that Savage et al.’s (2018) GWAS ‘maging Genetics Consortium; UKB = UK Biobank; BLTS = Brisbane Longitu-
ann : ee dinal Twin study; RAN-CR = Reference Ability Neural Network and Cognitiveof intelligence had garnered between its publication in June 2018 and : ction pi

: ‘ Reserve studies; AB = Australian Autism Biobank. N refers to the samples fromMay 2023, when we conducted our searches (i.e., forward snowballing). which reported estimate was drawn and not the full cohort size.We focused exclusively on Savage et al.’s (2018) GWAS since it yielded

the most predictive polygenic scores to date, and subsumed several of |
. : : aes 2.4, Data extracticthe discovery samples used in previous GWAS (see Fig. 1). We identified extraction

1708 publicati ing Google Scholar (789 citations),Webof Sci . io: .Publications, using Google Scholar(789 citations), Web of Science We coded and extracted the following data from the eligible publi-(458 citations), and Scopus (456 citations). After exporting these cita- . . . . ° .
: : : : cations: i) measure of intelligence used (i.e., the name of psychometric

tions to an Endnote 20 library and manually removing 949 duplicates, * ee sonics
a . a test); ii) sample age/ age range; iii) sample sex distribution; iv) samplewe screened the remaining 754 unique entries (Fig. S1). a . . . “ -

ethnicity; v) sample nationality; vi) reported estimate; vii) reported p-

2.3. Screening value; vif) reported standard error; x) reported estimate type (e-.,%
R°); and x) statistical analysis conducted (e.g., regression, correlation).

_ . . All coded andextracteddata ted either within the main textWe screened these 754 publications using Rayyan ~ an online tool, oe ee Cat wees TeParted emer within ie main tex
. . . or supplementary information (SI) of the retained publications; in one

designed to support systematic, traceable, reproducible literature oe ites : °
‘ ; , , case, data detailing adult participants’ age were obtained by contacting

screening for single-authored or collaborative reviews (Ouzzani et al., nn ran , va
. : : . . the original studies’ authors (Yap et al., 2021; details in Table $4).2016). We included only published, peer-reviewed journal articles

reporting original statistical estimates for 1Q201g polygenic predictions

of phenotypic intelligence, as assessed by validated, reliable psycho- 2-5. Data harmonisation
metric intelligence tests, (e.g., Wechsler Intelligence Scale for Children ; ; ; ;
4th Edition; Wechsler, 2003). This latter criterion, which all identified Where possible, we extracted estimates as correlation coefficients (k
publications met, ensured that included estimates were truly compara- = 5) or beta regression coefficients (k = 17) from models with no other
ble (ie., not apples vs. oranges; Harrer et al., 2021). covariates besides age, sex, and principal components (PCs; to adjust for

The first and second authors independently double-screened 10% of Population stratification). Meta-analysing regression betas can be
the publications’ abstracts (n — 76), which were selected using the Problematic, when predictors’ covariates are inter-correlated (Roth
random number generator function (=RANDBETWEEN(1754)) in et al., 2018). However, this issue does not apply here because the

Microsoft Excel (Microsoft Corporation, 2018). Interrater agreement _Polygenic score covariates of age, sex, and PCs are independent of each
was 97.37 % (n = 74) and the 2.63 % (n = 2) cases of conflict were _°ther (S1). Where publications reported estimates asR? values (k = 10),
resolved through discussion and recorded in Rayan (Ouzzani ct al, We transformed these into correlation coefficients using an online effect
2016). Because interrater agreement was >95 %, the first author single-__Siz@ converter (https://www.escal.site; Table $4). We then transformed
screened all remaining abstracts, of which 38 passed screening. For __ lll coefficients to Fisher's Z, in line with meta-analysis modelling con-
these, full text articles were downloaded. A further 27 publications were _Ventions (Alexancler et al., 1989).
excluded during coding and data extraction because they did not meet

our inclusion criteria (Table $3). Table 1 details all publications that 2.6. Meta-analysis

were retained for our meta-analysis (all data extracted from these pub-

lications are available at htips://osf.io/63zmr/). We conducted a multi-level random effects meta-analysis (MREM) to

We note that the UK Biobank samples that were analysed by Lictal. generate a pooled association estimate and to assess the presence,

(2020, N=427,306) and Savage et al. (2018, N=195,653) overlap _ extent, and source of heterogeneity between the studies’ reported esti-
partially. However, we deemed these samples to be sufficiently different mates. A nested design was appropriate to control for non-independence

to warrant including both for three reasons. First, the two studies in the data. Seven estimates were extracted from three publications

selected different subsets of participants from UK Biobank, which using different subsets of the TEDS sample (Allegrini et al., 2019;

differed in their characteristics (e.g., ancestry, relatedness, age, and age Malanchini et al., 2021 and Selzam et al., 2019), and twenty-nine esti-

range). Second, Li et al. (2020) and Savage et al. (2018) included other, mates were extracted from eight publications. Of these eight publica-

non-overlapping samples (N = 231,653 and N = 74,214, respectively). _ tions, three reported separate estimates for different age groups
Third, thestudies reported distinct prediction estimates (Li etal. (2020): (Ajnakina et al., 20225 Allegrini et al., 2019; Yap et al., 2021); four for
r = 0.288, R? = 8.3 %; Savage et al. (2018): r = 0.221, R? = 4.8%). __ different psychometric tests (Ajnakina et al., 2022; Ferraro et al., 20225
Further, Li et al.'s (2020) reported effect size is close to the median value Gen¢ et al., 2021; Yap et al., 2021); and three for different factors of

ofour meta-analytic estimate, which was adjusted for nestedness at the _ intelligence (Ajnakina et al., 2022; Geng et al., 2021; Malanchini et al
level of samples. 2021; Mitchell et al., 2022).
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Our MREM had three levels: i) participant-level variance; ii) within-

sample variance, and iii) between-sample variance. The third level in

multi-level meta-analyses is often specified as publication, but here we

specified the third level as sample, because this better captured the os-

source and extent of nestedness in our meta-analysis (Harrer et al., <
2019). We used the R Studio package metafor (R Core Team, 2019; Zoa-
Viechtbauer, 2010) to model our data. We created figures using metafor 3
and the wesanderson colour palette (Ram & Wickham, 2018). The 5

function rma.mv() within metafor returns a pooled association estimate, Bos- 4
weighted by estimate sample size (Table $4), and calculates Q and 6” 2 3
statistics to assess heterogeneity. We used the metafor companion 2 02-

package dmetar (Harrer et al., 2019) to generate /” statistics. While the Q 8 4
statistic indicates whether there is significant heterogeneity ot
(Huedo-Medina et al., 2006), it cannot identify its source. We calculated

P statistics for each level in the model to estimate the proportion of
heterogeneity attributable to each. A higher I statistic at the oo
between-sample level (iii) than at level (i) and (ii), for instance, would a (b) fluid (c) crystallised (d) verbal (e) non-verbal (f) memory
indicate that most of the observed heterogeneity resulted from system- intelligence domain

atic differences between the independent samples. An /* statistic of >50 Austraia * Europe * USA
% at any level indicates substantial heterogeneity at that level

(Huedo-Medina et al., 2006). The o” statistics in a multi-level meta-- Fig. 2. Polygenic score prediction estimates across samples’ countries of origin
analysis replaces the 7 statistic in a one-level random effects and intelligence domains.

meta-analysis (Farrer et al., 2019). That is, o? statistics provide a Correlation coefficients are shown after data harmonisation but before Fisher's
measure of within- and between-cluster variance which, unlike B sta- z-transformation. The bubble sizes index sample sizes; the bubble colours index
tistics, is not sensitive to meta-analytic sample size. We ran ANOVAs to. —-S@mPles’ nationality.
compare model fits after restricting variance within- and

between-samples to zero in tum. domains of intelligence, including general intelligence or g (k = 13);
fluid intelligence (k = 2); crystallised intelligence (k = 2); verbal intel-

2.7, Meta-regression ligence (k = 6); non-verbal intelligence (k = 5); and memory (k = 4)
(Table $4).

Next, we conducted a meta-regression to explore effects of method-

ological variable/s that might explain heterogeneity observed in our 3-2. Multi-level meta-analysis
meta-analysis. Using metafor, we built a model including the domain of

intelligence assessed, samples’ mean age at the time of phenotypic All included estimates showed significant, positive associations be-

assessment, samples’ age range at phenotypic assessment, and samples’ _Ween 1Qao18 polygenic scores and phenotypic intelligence, ranging from
nationality. Continuous moderators were centred to facilitate inter- 9-090 to 0.600 after Fisher's z-transformation (Fig. 2). Our multi-level

preting the intercept. Table $4 and Models 1a-2d (see SI) detail the levels. Meta-analysis returned a pooled prediction estimate of p = 0.245 (p
within these moderators. < .001, 95 % CI = 0.184-0.307), indicating a positive association of

medium effect size (Funder & Ozer, 2019; Figs. 3, 4, Table $6).

2.8. Risk of publication bias The Qstatistic of 593.95 (p < .001) reflected significant heteroge-
neity between estimates (Table $6). The F statistics suggested that less

We tested for evidence of publication bias in three ways. First, we than half of the observed heterogeneity occurred between samples
examined funnel plots to gauge the direction and extent of deviation of fevets = 44.9 %), just over half was within samples ey = 52.5 %),
each reported estimate from the pooled estimate, before and after con. 4nd a much smaller proportion at the participant level (Ievetn = 2.6 %).
trolling for the moderators outlined above. Second, we performed The estimated variance between samples was o” = 0,005 and that within
Egger’s regression test using estimates’ standard errors in a single  S4mples was 6” = 0.006. ANOVAs indicated significant heterogeneity at
moderator meta-regression to assess (a)symmetry in the distribution of __both the between- (p = .002) and within-sample levels (p < .001). Sig-
our included estimates. Third, we conducted a p-curve analysis, which __‘Mificant heterogeneity at both levels indicates possible moderating ef-
visualises the proportion of estimates that passed different p-thresholds. fects of between-sample differences (e.g., samples’ age/age range,
A clustering of low p-values (ie., p ~ 0.01) indicates that the effect Samples’ nationality) and within-sample differences (e.g.,the domain ofunder investigation is truly significant. A clustering of highp-values (i.e., Phenotypic intelligence investigated in distinct publications using the
Pp ~ 0.05) is suggestive of selective reporting (i-e., p-hacking). same sample, Table $4).

The Egger’s regression test did not suggest publication bias (r =

3, Results -1.127, p = .503; SI, Model 3), although the funnel plot showed a
slightly asymmetric distribution (Fig. $3, pane A). Our p-curve analysis

3.1. Descriptive statistics indicated that included estimates were truly significant (full p-curve: Z
= -31.73, p < .001, half p-curve: Z = -30.73, p < .001), and that

Eleven publications met our inclusion criteria, which included k=32 _¢Vidential value was neither inadequate nor absent (full p-curve Z =
estimates across nine independent samples, ranging in size fromN=168 _23-85,p = .999, half p-curveZ = 25.14,p= .999) (Fig, $2, Table $5). Itis
to N = 427,306 individuals (Nioai_452,864; Table $2, Fig. 2). Allsam- therefore unlikely that p-hacking influenced the distribution of the
ples were recruited from WEIRD countries (Western, Educated, Indus- included estimates. Instead, itis likely that the observed heterogeneity
trialised, Rich, and Democratic) and comprised participants of European _ 4” be attributed to between- and within-sample differences, which we
ancestry. Participants were between 2 and 77 years old at the time of __ tested in our meta-regression.
intelligence assessment, with 96.8 % of participants being adults (aged

18 years or over), and 3.2 % being children (under 18 years of age).

‘Across publications, polygenic score predictions were reported for six
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Estimate Fisher's z, [95% Cl]
Ferraro et al. (2023).2 — : 0.09 [0.04, 0.15]
Geng et al. (2021).2 a 0.10 [0.02, 0.19]
Geng et al. (2021).9 se: 0.13 [0.04, 0.22]

Selzam et al. (2019).1 HH : 0.14 [0.10, 0.17]
Geng et al. (2021).3 os! 0.14 [0.06, 0.23]
Geng et al. (2021).5 1! 0.14 (0.06, 0.23]

Genget al. (2021).4 Hs! 0.14 (0.06, 0.23]Geng et al. (2021).8 — 0.16 [0.07, 0.24]
Ferraro et al. (2023).1 a 0.16 [0.11, 0.22]
Yapet al. (2021).2 a 0.17 (0.12, 0.23]
Ajnakina et al. (2022).2 — 0.19 [0.15, 0.24]
Geng et al. (2021).7 — 0.21 (0.12, 0.29]

Geng et al. (2021).6 —o 0.21 (0.13, 0.30]
Allegrini et al. (2019).1 HH 0.22 (0.20, 0.25]
Geng et al. (2021).1 — 0.23 [0.14, 0.31]
Lett et al. (2021) a 0.23 (0.18, 0.28]

Yap et al. (2021).1 ——+— 0.24 (0.14, 0.35]
Mitchell et al. (2022).3 ee 0.25 (0.21, 0.29]
Tsapanou et al. (2023) —— 0.25 [0.10, 0.40]
Malanchini et al. (2021).3 aH 0.26 (0.22, 0.29]
Selzam et al. (2019).2 HH 0.27 (0.23, 0.30]
Allegrini et al. (2019).2 MH 0.27 (0.25, 0.30]
Mitchell et al. (2022).2 HH 0.29 [0.25, 0.33]
Liet al. (2021) io. 0.30 (0.29, 0.30]
Mitchell et al. (2022).1 to 0.30 (0.26, 0.34]

Ajnakina et al. (2022).1 ae 0.30 [0.25, 0.34]
Malanchini et al. (2021).2 DH 0.31 (0.27, 0.35]
Ajnakina et al. (2022).3, pe 0.32 [0.27, 0.37]

Malanchini et al. (2021).1 DoH 0.32 (0.28, 0.36]

Ajnakina et al. (2022).6 : oe 0.40 [0.35, 0.45]
Ajnakina et al. (2022).4 : mH 0.50 [0.45, 0.54]
Ajnakina et al. (2022).5 7 HH 0.60 (0.56, 0.65]
RE Model —=> 0.25 (0.18, 0.31]

01 0 O01 02 03 04 05 06 O7 08

Fisher's Z coefficient

Fig. 3. Forest plot for meta-analysis of IQzo1s polygenic predictions of phenotypic intelligence.

Correlation coefficients are shown after data harmonisation and Fisher's Z-transformation. Squares represent individual estimates, square size indexes sample size,

and horizontal bars indicate 95 % CIs. Included estimates are ordered by effect size (i.e., Fisher's Z). The ‘Estimate’ column shows the publication from where the

estimate was coded (cf. Table $4 for estimate and publication details). Diamond and dotted line indicate pooled effect size with 95 % CI. Estimates falling to the right

of the solid vertical line represent positive associations between IQzo1s and phenotypic intelligence.

3.3. Multi-level regression points for general intelligence (p < .001), and 4.92 1Q points for verbal

intelligence (p = .029) in European participants. Sample age range at the

We next built single-moderator multi-level meta-regression models__ time of assessment approached but did not pass the threshold for sig-

testing for moderating effects of sample mean age at phenotypic nificance (p = .066).

assessment, sample age range at phenotypic assessment, sample na- The funnel plot for our meta-regression (Fig. $3, pane B) shows a

tionality, and the intelligence domain (SI, Models 2a-d). Only intelli _ more symmetrical distribution than that for our meta-analysis (Fig. $3,
gence domain (SI, Model 2a) and sample age range (SI, Model 2b) _pane A), indicating that our moderators accounted for some of the

proved significant, and so these were included in our final Model 2 (see _ heterogeneity. The Q statistic was 259.25 (p < .001), a reduction in
SI), with general intelligence (g) (vs the five other intelligence domains) _heterogeneity by 56 % compared to the model without moderators. The
as the reference group. The meta-regression’s pooled estimate for gen- [statistics for our meta-regression model indicated that, of this

eral intelligence was p = 0.237 (p < .001, 95 % CI = 0.176-0.298), _remaining heterogeneity, half occurred between samples (Ifeve13= 49.46equivalent to an effect of medium size (Funder & Ozer, 2019, Table 2, %), just under half within samples (eye2 = 45.51 %), and Heyes = 5 % at
Fig. $4). the participant level. The estimated variance between and within sam-

1Q2018 predicted verbal intelligence significantly more strongly than _ ples was o” = 0.003 (p = .002 and p < .001, respectively). Thus, the
general intelligence (g, the reference domain, see Table 2). However, no _ intelligence domain tested explained some of the heterogeneity
significant differences in the strengths of associations were seen between _ observed in our meta-analysis, but significant unexplained heterogene-
general intelligence and the other intelligence domains. Assuming a _ity remained, suggesting moderating effects of other factors not explored

normal distribution of IQ with a mean of 100 and a SD of 15,aone-SD _ here.
increase in IQzoig polygenic scores equated to an increase of 3.56 IQ
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contributes to boosting its heritability relative to that of other intelli-

gence domains (Mascie-Taylor, 1989; Plomin & Deary, 2015). Not

finding significant differences in polygenic score predictions for do-

mains other than verbal intelligence suggests that IQz01g is too blunt a

ozs predictor to fully discriminate between domain-specific cognitive fac-
= tors. Future GWAS targeting specific intelligence domains separately

z could help discern genetically intelligence factors at the domain level (i.
2 e., second stratum of the Cattell-Horn-Carroll hierarchical model;
3 r McGrew, 2009), which may be key to creating profiles of cognitive
5 onal a strengths and weaknesses in applied settings, for example for clinical
3 a diagnoses or personalising education (Procopio et al., 2022). Although
£ Fa we modelled moderator effects and our meta-analytic sample comprised
° ae only WEIRD populations, significant heterogeneity remained, suggest-

a ing that other, untested factors may have caused the observed differ-

a ences in prediction estimates. Here, insufficient data were available to
0224 a explore other potentially moderating factors like sex, socio-economic

status, country of origin, or educational background, which were asso-

Savage otal Meta-cinalytic ciated with individual differences in intelligence test scores in previous
(2018) estimate studies (e.g., Alves etal.,2016; Jianget al.,2020; Pinto& Kiihnel, 2020;'Qooig estimate Ritchie & Tucker-Drob, 2018; Weiss & Sallofske, 2020). Future research

Fig. 4. Polygenic score predictions of phenotypic intelligence comparing Sav must prioritise elucidating the sources of residual heterogeneity of
age et al.’s (2018) estimate and the pooled estimate from the present meta. polygenic score predictions of intelligence before IQ201g can be

analysis. considered ready for application at the individual level in non-research
Error bars reflect 95 % CIs. Dot size reflects sample size. contexts (e.g., policymaking, clinical practice, personalising education).

Our second finding was that IQz01¢ predictions of intelligence have

only been tested and reported for European ancestry samples fromTable 2
. . . .

WEIRD countries, confirming that there is a persistent Eurocentric biasMultilevel
meta-regression estimates for IQzo1s polygenic prediction of behavioural genetic and genomic research (Mills & Rahal, 2019;phenotypic intelligence,gable$4), Arguably due to practical, financial, and ethical issues, only a

estimate p-value 95% Clower 95 % Clapper quarter of the world’s population is represented by the samples included
Intercept (g) 0.237 <0,001*** 0.176 0.298 in GWAS thus far (Martin et al., 2019). Polygenic scores from European

Caystallised intelligence 0.026 0.685 ~0.156 0.104 ancestry GWAS discovery samples predict phenotypic outcomes more

Fra intelligence oe ate wea a strongly in independent samples of European than of mixed or non-
Non-verbal intelligence 0.001 0.985 0.081 0.083 European ancestry, with the lowest estimates reported for African
Verbal intelligence 0.091 0.029* 0.010 0.172 ancestry samples (e.g., Duncan et al., 2019; Ruan et al., 2022), There is
Sample age range =0.002 0.066 =0.004 0.000 likely also a difference in polygenic score prediction strengths for in-

The reference group (intercept) is the meta-regression coefficient for IQane __telligence between ancestries, suggesting that IQ201s cannot be directly
polygenic score prediction of general intelligence in European ancestry partic. €xtended to predicting phenotypic traits in mixed or non-European
ipants. ***p < .001; * p < .05. ancestry populations (Henrich et al., 2010). Our meta-analysis un-

derscores the necessity of efforts to address the Eurocentric bias in ge-

4. Discussion nomics, some of which are already underway but have yet to come to
fruition (Mills & Rahal, 2019).

4.1. Contributions and implications Our third contribution concerns the ‘missing heritability gap”
(Manolio et al., 2009; Plomin & von Stumm, 2018), Our meta-analytic

Our findings make three main contributions to the debate sur- _&stimate suggests that 1Q2018 accounts for approximately 6 % of vari-
rounding the utility of polygenic scores for intelligence in research, ance in intelligence across domains~ slightly higher than the 4.81 % of
practice, and policy. variance in general intelligence that it explained across independent

First, IQz01g predicted phenotypic intelligence with medium effect samples in Savage et al.’s (2018) original GWAS. However, our estimate
size (p = 0.245), which approximates the pooled estimate reported in _ falls far below both the GWAS" SNP heritability estimate for intelligence
the original GWAS (i.e., a weighted mean correlation of r= 0.219) and__—f 19 % (i.e., the upper bound of the polygenic score prediction; Savage
thus, substantiated the robustness of IQz919°s overall prediction across _t al», 2018) and the twin and family study heritability estimate for in-
independent samples. The effect size of our meta-analytic estimate can _telligence of about 50 % (Haworth et al., 2010; Polderman et al., 2015).
be interpreted as having explanatory and practical use (Funder & Ozer, ThUS, IQ2018 likely only captures a fraction of the inherited DNA variants
2019) but it does not allow for meaningful statements about individuals underpinning the heritability of intelligence. We note that our meta-
(ottus, 2022). Our pooled estimate varied across studies; there was analysis did not compare between- and within-family polygenic score
significant heterogeneity both within and between independent sam- _Prediction estimates. Because between-family polygenic score pre-
ples. The moderators included in our models accounted for over half this _‘lictions are confounded by gene-environment correlations, they tend to
heterogeneity. Specifically, polygenic score predictions varied by be higher than within-family estimates (e.g., comparing dizygotic twins;
domain of intelligence assessed, being significantly stronger for verbal‘ S¢lzam et al., 2019). Within-family polygenic score prediction effects for
intelligence than for general intelligence (g). Translated into IQ point Cognitive traits are, on average, about half the size of those between
effect sizes, a Standard Deviation increase in polygenic scores was __ families,a difference that is largely attributable to environmental factors
associated with gains of 3.6 1Q points in general intelligence, and of __(€.8., families’ socioeconomic status; Okbay et al., 2022; Selzam et al
almost 5 IQ points — a third of a Standard Deviation in 1Q - in verbal 20193 Wertz et al., 2023). It is therefore likely that only halfof our meta-
intelligence. Verbal intelligence shows more assortative mating (~0.50) analytic 1Qzo18 prediction estimate reflects potential causal genetic ef-
than general (~0.40) or non-verbal intelligence (~0.30), which likely _ fects on intelligence that are independent of the environment. IQ2018

polygenic scores may be a useful tool for research seeking to pinpoint

6



FAR. Oxley et al. Intelligence 107 (2024) 101871

environmental influences on intelligence that are independent of genetic Acknowledgements

confounding without the need to collect data from twins or other family

design studies. However, as long as their prediction for intelligence is This work was supported by a Nuffield Foundation grant awarded to

weaker than and confounded by environmental factors (Protzko et al, SvS (EDO/44110). SvS supported by fellowships from the Jacobs

2013; Ritchie & Tucker-Drob, 2018; Selzam et al., 2019), IQz01g poly- Foundation (2022-2027) and the Paris Institute of Advanced Study

genic scores are of limited practical use in applied settings, such as (2023-2024) during the writing of this article. KW was supported by a

personalising education in schools. PhD Scholarship (2021-2024) from the Department of Education at the

University of York. The data reported in this study are available in the

4.2. Limitations Open Science Framework at hittps://osf.io/63zmr/.

The key limitations of our meta-analyses stem from the extant Appendix A. Supplementary data
research literature on polygenic predictions of intelligence. First, dis-

entangling gene-environment interplay in intelligence was not possible Supplementary data to this article can be found online at hittps://doi
because the publications that met our inclusion criteria reported be- org/10.1016/j.intell.2024.101871.
tween- but not within-family estimates. We therefore could not empir-

ically discern the variance that is likely due to direct, causal genetic _References
influences from the variance resulting from gene-environment correla-

tions (e.g., polygenic score correlations with the rearing environment; —_ajnakina, O., Murray, R., Steptoe, A., & Cadar, D. (2022). The long-term effects ofa
see Selzam et al., 2019; Okbay et al., 2022). Second, several publications polygenetic predisposition to general cognition on healthy cognitive ageing:
. , . . Evidence from the English longitudinal study of ageing. Psychological Medicine, 1-9.
in our meta-analysis reported only a single estimate for samples https://doi.org/10.1017/s0033291721004827
comprising individuals of wide ranges of ages. Although intelligence is alexander, R. A., & Scozzaro, M. J. (1989). Statistical and empirical examination of the
known to be differentially heritable across the lifespan (Haworth et al., chi-square test for homogeneity of correlations in meta-analysis. Psychological
2010; Plomin & Deary, 2015), there was insufficient data to compare Bulletin, 106(2), 329-331. hitps://doi.org/10.1037/0033-2909.106.2.329

st _& Deary, 2015), the n comps Allegrini, A. G., Selzam, S., Rimfeld, K., von Stumm, S., Pingault, J. B., & Plomin, R.
1Q2018’s predictive validity at different life stages (e.g., childhood, (2019). Genomic prediction of cognitive traits in childhood and adolescence.
adolescence, adulthood). Since twin studies have shown that intelli- Molecular Psychiatry, 24(6), 819-827. htps://doi.org/10.1038/s41380-019-0394-4

in i it i W h et . Alves, A., Martins, A., & Almeida, L. S. (2016). Interactions between sex, socioeconomicgence becomes increasingly heritable with age (Haworth et al., 2010; level, and Children’s cognitive performance. Psychological Reports, 118(2), 471-486.
Plomin & Deary, 2015), we might hypothesise that IQ201g predictions https://doi.org/10.1177/0033294116639428
are stronger in older individuals ~ another potential source of the het- Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M.

erogeneity in polygenic score predictions of intelligence. (2018). Journal article reporting standards for quantitative research in psychology:
‘The APA publications and communications board task force report. American
Psychologist, 73(1),3. https://doi.org/10.1037/amp00001915. Conclusion Asbury, K., MeBride, T., & Rimfeld, K. (2021). Genetics and early intervention. Early

intervention Foundation,

. ao Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., &We found that polygenic scores for intelligence — IQ2018, based on Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and
Savage et al.’s (2018) GWAS - predicted phenotypic intelligence with associated with FNBPIL. Molecular Psychiatry, 19(2), 253-258. hi\ps://<oi.org

medium effect size across 32 estimates from nine independent samples. 10.1038/mp.2012.18.

Or ti lytic estimate of p = 245 (~R2 = 6%) het Butcher,L. M., Davis, O. S., Craig, I. W., & Plomin, R. (2008). Genome-wide quantitative‘ur
meta-analytic estimate of p = .24s = 0%) was heterogenous trait locus association scan of general cognitive ability using pooled DNA and 500K

across studies. Substantial heterogeneity remained after adjusting for a single nucleotide polymorphism microarrays. Genes, Brain and Behavior, 7(4),
priori identified moderators (e.g., intelligence domain), suggesting that 435-446. hitps://doi.org/10.1111/j.1601-183X.2007.00368.x

th ‘ d fact ffect I dicti We ude that Dale, P. S., von Stumm, S., Selzam, S., & Hayiou-Thomas, M. E. (2020). Does the
ro er, oval served factors al y Q20re Pre . for ne e th se kin at inclusion ofa genome-wide polygenic score improve early risk prediction for laterIQ2018 polygenic scores may be useful tools for research seeking to language and literacy delay? Journal of Speech, Language, and Hearing Research, 63
identify the influence of specific environmental factors on intelligence, (©), 1467-1478. https://doi.org/10.1044/2020_JSLHR-19-0016

independent of genetic confounding. At the same time, our findings offer _P#vies: G-» Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, s.,, . ens 0 Deary, I. J. (2015). Genetic contributions to variation in general cognitive function:
little support for claims of the imminent practical value of IQ2018 poly- A meta-analysis of genome-wide association studies in the CHARGE consortium (N=
genic scores in policymaking, clinical practice, or parenting and per- 53 949). Molecular Psychiatry, 20(2), 183-192. hntips://doi.org/10.1038,

sonalising education. Such practical value may, however, be realised in mp.2014.188
« ee . . Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D.,the future, if summary statistics from GWAS with larger discovery Deary, I. J. (2018). Study of 300,486 individuals identifies 148 independent genetic

samples for differentiated cognitive phenotypes enable creating more loci influencing general cognitive function. Nature Communications, 9, 2098. )i\p

powerful polygenic scores. In this case, safeguarding will be needed to dol.org/10.1038/s41467-018-04362-
7 nan ae Davies, G., Marioni, R. E., Liewald, D. C., Hill,W. D., Hagenaars, S. P., Harris, S. E.,ensure

the ethical use of DNA-based predictions for intelligence and Deary, I. J. (2016). Genome-wide association study of cognitive functions andother phenotypes, to maximise their benefits and minimise their risks. educational attainment in UK biobank (N= 112 151). Molecular Psychiatry, 21(6),
758-767. https://doi.org/10.1038/mp.2016.45

. . shag Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., ... Deary, I. J.
CRediT authorship contribution statement (2011). Genome-wide association studies establish that human intelligence is highly

heritable and polygenic. Molecular Psychiatry, 16(10), 996-1005. https://doi.org,

Florence A.R. Oxley: Writing - original draft, Methodology, 10.1038/mp.2011.85

Investigation, Formal analysis, Data curation, Conceptualization. Kirsty Pes!J.ee rtelgenes. ‘Annual Reviewof Psychology, 63, 453-482, hisps://doWilding: Writing - review & editing, Validation, Methodology. Sophie —_uncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., Peterson, R., &
von Stumm: Writing — review & editing, Validation, Supervision, Domingue, B. (2019). Analysis of polygenic risk score usage and performance in

Methodology, Funding acquisition, Conceptualization. diverse human Populations Nauue Communications, 10(3328). https://doi.org,
Ferraro, L., Quattrone, D., La Barbera, D., La Cascia, C., Morgan, C., Kirkbride, J., &

Declaration of competing interest Velthorst, E. (2022). First-episode psychosis patients who deteriorated in the
premorbid period do not have higher polygenic risk scores than others: A cluster

analysis of EU-GEI data. Schizophrenia Bulletin, 49(1), 218-227. hitps://doi.orgNone. 10.1093/schbul/sbacl00

Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research:

Data availability Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2),
156-168, https://doi.org/10.1177/2515245919847202

Geng, E., Schliiter, C., Fraenz, C., Arning, L., Metzen, D., Nguyen, H. P., ...Ocklenburg, S.Our data and code are available at https://osf.io/63zmr/. (2021). Polygenic scores for cognitive abilities and their association with different

7



FAR. Oxley et al. Intelligence 107 (2024) 101871

aspects of general intelligence—A deep phenotyping approach. Molecular from genome-wide association analyses in 3 million individuals. Nature Genetics, 54,
Neurobiology, 58(8), 4145-4156. https://<oi.org/10.1007/s12035-021-02398-7 437-449, https://doi.org/10.1038/s41588-022-01016-2

Grotzinger,A. D., Rhemtulla, M., de Vlaming, R., Ritchie, . J., Mallard,T. T., Hill, W. D., Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan ~ A webTucker-Drob, E. M. (2019). Genomie structural equation modelling provides and mobile app for systematic reviews. Systematic Reviews, 5(210). htips://doi.org

insights into the multivariate genetic architecture of complex traits. Nature Human 10.1186/s13643-016-0384-4

Behavior, 3, 513-525. https://doi.org/10.1038/s41562-019-0566-x Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron,I., Hoffmann, T. C., Mulrow, C. D.,Harden, K. P. (2021). The genetic lottery: Why DNA matters for social equality. Princeton etal. (2021). The PRISMA 2020 statement:An updated guideline for reportingUniversity Press. systematic reviews. British Medical Journal, 372(71), 1-9. htips://doi.org/10.1136Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D. D. (2019). dmetar: Companion R bmj.n71

Package For The Guide "Doing Meta-Analysis in R’. R package version 0.1.0. Pinto, C., & Kiihnel, A. (2020). The Role of Education by Intelligence Testing. https://doi

ttp://dmetar. protectlab.org org/10.13140/RG.2.2.25010.22725

Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2021). Doing Meta-analysis with Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special

R: A hands-on guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. findings. Molecular Psychiatry, 20(1), 98-108. https://doi.org/10.1038,

ttps://bookdown.org/MathiasHarrer/Doing Meta Analysis in R/. mp.2014.105
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., De Geus, C., Van Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews

Beijsterveldt, C. E. M., & Plomin, R. (2010). The heritability of general cognitive Genetics, 19(3), 148-159. https://dloi.org/10.1038/nrg.2017.104
ability increases linearly from childhood to young adulthood. Molecular Psychiatry, Plomin, R., & von Stumm, S. (2022). Polygenie scores: Prediction versus explanation.

15, 1112-1120, https://doi.org/10.1038/mp.2009.55 Molecular Psychiatry, 27, 49-52. https://doi.org/10.1038/s41380-021-01348-y
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The __-Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A.,

Behavioral and Brain Sciences, 33(2-3), 61-83. https://doi.org/10.1017, Visscger, P. M., & Posthuman, D. (2015). Meta-analysis of the heritability of human
80140525X0999152X traits based on fifty years of twin studies. Nature Genetics, 47(7), 702-709. https:

Howe, L. J., Nivard, M. G., Morris,T. T., Hansen, A. F., Rasheed, H., & Cho,Y. (2022). doi.org/10.1038/ng 3285Giannelis, A. (2022). Within-sibship genome-wide association analyses decrease bias __Procopio, F., Zhou, Q., Wang, Z., Gidziela, A., Rimfeld, K., Malanchini, M., & Plomin, R.
in estimates of direct genetic effects. Nature Genetics, 54, 581-592. https://<oi.org (2022). The genetics of specific cognitive abilities. Intelligence, 95, Article 101689.
0.1038/s41588-022-01062-7 https://doi.org/10.1016/j.intell.2022.101689

Huedo-Medina, T. B., Sénchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Protzko, J., Aronson, J., & Blair, C. (2013). How to make a Young child smarter.
Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Perspectives on Psychological Science, 8(1), 25-40. hittps://doi.org/10.1177,

‘Methods, 11(2), 193-206. htips://doi.org/10.1037/1082-989X.11.2.193 1745691612462585
Jiang, R., Calhoun, V. D., Fan, L., Zuo, N., Jung, R., Qi, S., ...Sui, J. (2020). Gender R Core Team, (2019). R: A language and environment for statistical computing. Vienna,

differences in connectome-based predictions of individualized intelligence quotient Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

and sub-domain scores. Cerebral Cortex, 30(3), 888-900. hitips://<loi.org/10.1093, Ram, K., & Wickham, H. (2018). wesanderson: A Wes Anderson Palette Generator. R
cercor/bhz134 package version 0.3.6. https://CRAN.R-project.org/package—wesanderson,

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., ...Cesarini, D. Ritchie, S. J., & Tucker-Drob, E. M. (2018). How much does education improve
(2018). Gene discovery and polygenic prediction from a genome-wide association intelligence? A meta-analysis. Psychological Science, 29(8), 1358-1369. hitps://doi.

study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 0rg/10.1177/0956797618774253

1112-1121. https://doi.org/10.1038/41588-018-0147-3 Roth, P. L., Le, H., Oh, I. S., Van Iddekinge, C. H., & Bobko, P. (2018). Using betaLett, T. A., Vogel, B. O., Ripke, S., Wackerhagen, C., Erk, S., Awasthi,S., ...Desrivieres, S. coefficients to impute missing correlations in meta-analysis research: Reasons for
(2019). Cortical surfaces mediate the relationship between polygenic scores for caution. Journal of Applied Psychology, 103(6), 644. htps://doi.org/10.1037,
intelligence and general intelligence. Cerebral Cortex, 30(4), 2708-2719. hitps://doi aplo000293
org/10.1093/cercor/bhz270 Ruan,Y., Lin, Y.-F, Feng, Y.-C. A., Chen, C.-Y., Lam, M., Guo, Z., ... Ge, T. (2022).Lewis, A. C. F., & Green, R. C. (2021). Polygenic risk scores in the clinic: New Improving polygenic prediction in ancestrally diverse populations. Nature Genetics,

perspectives needed on familiar ethical issues. Genome Medicine, 13(14). hitps://doi 54, 573-580. https://doi.org/10.1038/s41588-022-01054-7
org/10.1186/s13073-021-00829-7 Savage, J. E., Jansen, P.R., Stringer, S., Watanabe, K., Bryois,J., De Leeuw, C. A.,Li, L., Pang, S., Zeng, L., Giildener, U., & Schunkert, H. (2020). Genetically determined Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867

intelligence and coronary artery disease risk. Clinical Research in Cardiology, 110(2), individuals identifies new genetic and functional links to intelligence. Nature

211-219, https://doi.org/10.1007 /s00392-020-01721-x Genetics, 50(7), 912-919. hittps://doi.org/10.1038/s41588-018-0152-6
Malanchini,M., Rimfeld, K., Gidziela,A., Cheesman, R., Allegrini,A. G., Shakeshaft, N., Selzam, S., Ritchie,S. J., Pingault, J.-B., Reynolds, C. A., O'Reilly,P. F., & Plomin, R.Plomin, R. (2021). Pathfinder: A gamified measure to integrate general cognitive (2019). Comparing within- and between-family polygenic score prediction. The

ability into the biological, medical, and behavioural sciences. Molecular Psychiatry, American Journal of Human Genetics, 105(2), 351-363. hittps://doi.org/10.1016,

26(12), 7823-7837. https://doi.org/10.1038/s41380-021-01300-0 ajhg.2019.06.006
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M.,

Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-

461(7265), 747-753. hittps://doi.org/10.1038/nature08494 analysis protocols (PRISMA-P) 2015: Elaboration and explanation. British Medical

Martin, A. R., Kanai, M., Kamatani,Y., Okada, Y., Neale, B., & Daly, M.J. (2019). Clinical Journal, 349, Article g7647. hittps://doi.org/10.1136/bm).g7647use of current polygenic risk scores may exacerbate health disparities. Nature Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R., Krapohl, E.,

Geneties, 51, 584-591. https://doi.org/10.1038/s41588-019-0379-x Posthuma, D. (2017). Genome-wide association meta-analysis of 78,308 individuals
Martschenko, D. 0., Matthews, L. J., & Sabatello, M. (2024). Social and behavioral identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7),

genomics: What does it mean for pediatrics? The Journal of Pediatrics, 264, Article 1107-1112, https://doi.org/10.1038/ng.3869

113735. https://doi.org/10.1016/}.jpeds.2023.113735 Strenze, T. (2007). Intelligence and socioeconomic success: A meta-analytic review of
Mascie-Taylor, C. G. N. (1989). Spouse similarity for 1Q and personality and longitudinal research. Intelligence, 35(5), 401-442. https://doi.org/10.1016/)

convergence. Behaviour Genetics, 19, 223-227. intell.2006.09.004
McGrew, K. S, (2009). CHC theory and the human cognitive abilities project: Standingon _—_von Stumm, S., Kandaswamy, R., & Maxwell, J. (2023). Gene-environment interplay in

the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), early life cognitive development. Intelligence, 98, Article 101748. htips://<oi.org

1-10. https://doi.org/10.1016/j.intell.2008,08.004 10.1016/j.intell.2023.101748

Microsoft Corporation. (2018). Microsoft Excel. Retrieved from https:/ office. microsoft von Stumm, S., & Plomin, R. (2021). Using DNA to predict intelligence. Intelligence, 86,

com/excel, Article 101530. https://doi.org/10.1016/j.intell.2021.101530
Mills, M. C., & Rahal, C. (2019).A scientometric review of genome-wide association von Stumm,S.,Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K., Dale, P. S., &studies. Nature Communications, 2, 9. https://doi.org/10.1038/s42003-018-0261-x Plomin, R. (2020). Predicting educational achievement from genomic measures andMitchell,B. L., Hansell,N. K., MeAloney,K.,Martin,N. G., Wright, M. J., Renteria, M. E., socioeconomic status. Developmental Science, 23(3), Article e12925. doi:10.1111& Grasby, K. L. (2022). Polygenic influences associated with adolescent cognitive dese.12925.

skills. Intelligence, 94, Article 101680. hittps://doi.org/10.1016/j.intell.2022, 101680 Trampush, J. W., Yang, M. L. Z., Yu, J., Knowles, E., Davies,G., Liewald, D. C.,Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., & Lenez, T. (2017). GWAS meta-analysis reveals novel loci and genetic correlates for

Stewart, L. A. (2015). Preferred reporting items for systematic review and meta- general cognitive function: A report from the COGENT consortium. Molecular

analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1-9. Psychiatry, 22(3), 336-345. https://doi.org/10.1038/mp.2016.244
ttps://doi.org/10.1186/2046-4053-4-1 Tsapanou, A., Mourtzi, N., Gu, Y., Habeck, C., Belsky, D. W., & Stern, Y. (2023).

Morris, T. T., Davies, N. M., & Smith, G. D. (2020). Can education be personalised using Polygenic indices for cognition in healthy aging; the role of brain measures.
pupils’ genetic data? elife, 9, Article €49962. htips://doi.org/10.7554/eLile.49962 Neuroimage: Reports, 3(1), 100153. hitps://<ioi.org/10.1016/j.ynirp.2022.100153

Mittus, R. (2022). What correlations mean for individual people: A tutorial for Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package.
researchers, studentsand the public. PersonalityScience, 3. https://doi.org/10.5964 Journal of Statistical Software, 36(3), 1-48. htips://doi.org/10.18637 /jss.v036.i03ps.7467

Wainschtein, P., Jain, D., Zheng, Z., Aslibekyan, S., Becker, D., Bi, W., ...Visscher, P.M,Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., (2022). Assessing the contribution of rare variants to complex trait heritability from
Yarkoni, T. (2015). Promoting an open research culture. Science, 348(6242), whole-genome sequence data. Nature Genetics, 54(3), 263-273. hittps://doi.org

1422-1425. https://doi.org/10.1126/science.aab2374 10.1038/s41588-021-00997-7

Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S.M., ...Young, A. I Wang, B., Baldwin, J. R., Schoeler, T., Cheesman, R., Barkhuizen, W., Dudbridge, F., &
(2022). Polygenie prediction of educational attainment within and between families Pingault, J. (2021). Robust genetic nurture effects on education: A systematic review

8



FAR. Oxley et al. Intelligence 107 (2024) 101871

and meta-analysis based on 38,654 families across 8 cohorts. American Journal of Wertz, J., Moffitt, T. E., Arseneault, L., Barnes, J. C., Boivin, M., Corcoran, D. L.,

‘Human Genetics, 108(9), 1780-1791. htips://doi.org/10.1016/j.ajhg.2021.07.010 Caspi, A. (2023). Genetic associations with parental investment from conception to

Weehsler, D. (2003). Wechsler intelligence scale for children ~ Fourth edition (WISC-IV). wealth inheritance in six cohorts. NatureHuman Behaviour, 7(8), 1388-1401.Texas, PsychCorp: San Antonia, https://doi.org/10.1038/s41562-023-01618-5

Weiss, L. G., & Saklofske, D. H. (2020). Mediators of 1Q test score differences across racial Yap, C. X., Alvares, G. A., Henders, A. K., Lin, T., Wallace, L., Farrelly, A., ...Lawson, L.
and ethnic groups: The case for environmental and social justice. Personality and (2021). Analysis of common genetic variation and rare CNVs in the Australian

Individual Differences, 161, Article 109962. hittps://doi.org/10.1016/) autism biobank. Molecular Autism, 12(1). https://doi.org/10.1186/s13229-020.
paid. 2020,109962 0407-5

Wertz, J., Moffitt, T. E., Agnew-Blais,J., Arseneault, L., Belsky, D. W., Corcoran, D. L., Young, A. 1. (2019). Solving the missing heritability problem. PLoS Genetics, 15(6),Caspi,A. (2019). Using DNA from mothers and children to study parental investment Article €1008222. hitps://doi.org/10.1371 /journal.pgen.1008222in children’s educational attainment. Child Development, 91(5), 1745-1761. hips
doi.org/10.1111 /edev.13329

9


