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ABSTRACT

Objective: A prerequisite of any psychological instrument used to
compare individuals from different groups is measurement invari-
ance (MI). It indicates that the test measures the same psycho-
logical constructs regardless of the particular grouping variable of
the test-taker. Our purpose was to evaluate the MI across sex, age
groups and educational levels in the recently adapted Estonian
version of the Wechsler Adult Intelligence Scale – Third Edition
(WAIS-III).
Method: We analysed the Estonian standardization sample of
WAIS-III (N¼ 770) with confirmatory factor analysis (CFA) to estab-
lish the best baseline factor model for further analysis. Multi-
group confirmatory factor analysis (MG-CFA) was applied to evalu-
ate MI of the test and, granted this, mean differences across sex,
age groups and educational levels.
Results: CFA supported the four-factor model. The test demon-
strated partial MI across sexes; latent mean comparisons showed
that men had a significantly higher mean score on the Perceptual
Organization factor. Partial MI also held across age groups and, as
expected, older groups had significantly lower means than
younger age groups. The analyses across the educational levels
failed to prove the MI as the metric invariance was not tenable.
Discussion: The results of this study provide evidence that the
structural model underlying the Estonian adaption of WAIS-III is
partially invariant across sex and age groups, hence the test func-
tions same manner across these groups. Estonian WAIS-III was not
invariant across the educational levels, which may indicate that
the measure has a different structure or meaning to different edu-
cational groups.
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Psychological tests are used to measure a wide range of psychological variables for

scientific purposes, but also to make practical decisions about individuals (Gregory,

2014). It is thus crucial that differences in test scores between people or groups are

attributable to differences in the (underlying) properties that the particular test is
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developed to measure rather than something else (Borsboom, 2006). One of the fields

that often rely on comparing test scores across groups is neuropsychology.

Measurement invariance

A prerequisite of any psychological instrument used to compare individuals from dif-

ferent groups (e.g., gender, age, educational level, health conditions) is measurement

invariance (MI), which suggests that the test measures the same psychological con-

structs regardless of the particular grouping variable of the test-taker (Wicherts, 2016).

MI is essential to establish not only for testing mean differences across groups, but

also for comparing relations of the constructs with other variables across the groups

(Putnick & Bornstein, 2016). It is only after establishing the MI that the interpretations

of group comparisons are meaningful. Hence, the MI is among the central testing con-

cepts in psychological, clinical and developmental sciences and an obligatory feature

of any psychological measure (Putnick & Bornstein, 2016).

One of the most widely used methods to test for MI is multi-group confirmatory

factor analysis (MG-CFA) (Milfont & Fischer, 2010; Putnick & Bornstein, 2016). In the

confirmatory factor analysis (CFA) framework, observed indicators (e.g., items or subt-

ests) which have been selected to measure an underlying construct are set to load on

a latent factor that represent this ostensible construct. In a group comparison context,

each indicator must relate to that latent variable in the same way across all the groups

(Meredith, 1993). The guidelines (Milfont & Fischer, 2010; Putnick & Bornstein, 2016;

Van de Schoot et al., 2012) describe four steps for the assessment of MI with MG-CFA,

which are based on J€oreskog’s theoretical strategy (J€oreskog 1971, J€oreskog et al.,

1993). The first step is evaluating the configural invariance, which involves testing

whether the constructs have the same patterns of factor loadings across groups;

essentially, if the same factors emerge in all groups. If configural invariance is tenable,

the next step is to evaluate the metric (also known as weak) invariance, which means

the equivalence of the items’ loadings on the factors so that each item contributes to

its latent variable to a similar degree across groups.

If the metric invariance is supported, the third step is to evaluate the scalar (strong)

invariance, which tests the equivalence of the items’ intercepts. This form of invariance

ensures that the latent variable differences across groups are reflected in all indicators,

proportionally to their factor loadings. If scalar MI is not met, then the observed group

differences in scale scores are to some extent driven by the individual indicators of

the latent trait rather than their shared variance (i.e., variance ostensibly due to the

latent trait). This form of invariance is most commonly violated (e.g., M~ottus et al.,

2015) and is also known as differential item functioning (Osterlind & Everson, 2009).

The final step is to evaluate the residual (strict) invariance, which tests the equivalence

of the residuals of the metric and the scalar invariant items. This form of invariance

ensures that the latent variables are measured with the same degree of internal con-

sistency (sometimes taken for reliability) across the groups.

Between every step, the differences between more restricted models (e.g., with

loadings constrained equal across groups) and less restricted models (e.g., with load-

ings freely estimated in both groups) are examined. If the fit of the more restricted
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but more parsimonious model is significantly worse than that of the less parsimonious

model, the tenability of the particular invariance step is not supported. As previous

research has shown that full MI in all four steps is rarely supported in practice, Byrne

et al. (1989) introduced the partial measurement concept. This means that some viola-

tions of invariance are accepted by releasing the across-groups-equality constraints on

one or more loadings or intercepts, or both. It is suggested that more than half of the

items of the instrument should have invariant parameters across groups for meaning-

ful comparisons to be possible (Steenkamp & Baumgartner, 1998; Vandenberg &

Lance, 2000).

Wechsler intelligence scales

The Wechsler Intelligence Scales, adapted to many countries, are among the most

widely used intelligence tests in scientific research as well as in clinical practice. The

Wechsler Adult Intelligence Scales (WAIS), Wechsler Intelligence Scales for Children

(WISC), Wechsler Preschool and Primary Scale of Intelligence (WPPSI) and Wechsler

Abbreviated Scale of Intelligence (WASI) have gone through several updates to incorp-

orate theoretical advances in intelligence conceptualizations as well as advances in

psychometrics, neuropsychology and cognitive neuroscience (Coalson et al., 2010). The

WAIS and WPPSI are in their fourth edition and WISC in its fifth edition, whereas WASI

has had two editions. Essentially, these tests are the golden standard of intelligence

measurement. In the current study, we focused on the Wechsler Adult Intelligence

Scale – Third Edition (WAIS-III; Wechsler, 1997), the only Wechsler scale adapted to

Estonia yet.

The WAIS-III had many updates compared to its preceding editions. One of the

most important updates was the addition of new subtests, which provide reliable

scores for four cognitive domains – Verbal Comprehension, Perceptual Organization,

Working Memory and Processing Speed – in addition to the general IQ scores. The

intended four-factor structure was indeed confirmed by CFA for the original US ver-

sion of WAIS-III (Psychological Corporation, 2002; Tulsky & Price, 2003), although stud-

ies have also discussed the merits of two- and three-factor models (Kaufman et al.,

2001; Ward et al., 2000) or the hierarchical models based on the Cattell–Horn–Carroll

(CHC) theory (Golay & Lecerf, 2011). Several studies have demonstrated the robustness

of the four-factor structure, including a re-analysis of original US data (Deary 2001) as

well as the Canadian adaptation (Bowden et al., 2008) and adaptations into other lan-

guages (Egeland et al., 2009; Gr�egoire, 2004). Although a more recent edition of WAIS

has been published (WAIS-IV; Wechsler, 2008), it has maintained the similar structure

of four domains; this allows researchers and practitioners alike to compare the results

from two WAIS editions.

It has become a common practice to thoroughly evaluate the psychometric proper-

ties such as the reliability and validity of updated or adapted tests, so as to make sure

that the interpretation of results remains valid. Wicherts (2016) also highlights the

need to test the MI of the scales across commonly assessed groups, especially when

adapting tests or collecting appropriate normative data. However, MI tests based on

CFA often fail in commonly used neurocognitive batteries (Wicherts, 2016). For
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example, some studies have failed to show MI in the scales across ethnics groups,

while others have only been able to demonstrate partial MI (Dolan, Roorda &

Wicherts, 2004; Wicherts & Dolan, 2010). Also, measurements across sex, age groups or

normal vs clinical samples have been non-invariant or only partially invariant (Chen

and Zhu, 2012; Dolan et al., 2006; Niileksela et al., 2013). Such inconclusive results

highlight the need for further invariance studies, because they show that the scores of

these tests may often be differentially affected by some population groupings and not

only by the latent cognitive abilities that the tests have been developed to measure.

The Wechsler scales are regularly used to compare gender or educational groups

for research purposes, healthy controls and patients in clinical psychology, neuro-

psychology, rehabilitation services or forensic contexts, and to compare client groups

in educational and counselling services. These are just some of the many applications

of the scales. Therefore, establishing the MI of adapted norms across these groups is

particularly important (Chen et al., 2015; Millsap & Kwok, 2004; Wicherts, 2016). And

yet, Wicherts (2016) claimed that the importance of MI may be under-appreciated and

it should be routine procedure for assessing the adequacy of norms in neurocogni-

tive measures.

In response to this, our aim was to evaluate the MI across sex, age and educational

levels in the recently adapted Estonian version of Wechsler Adult Intelligence Scale –

Third Edition (WAIS-III; Wechsler, in press). Several MI studies have focused on MI

across sex - perhaps the most common population grouping - and have found WAIS-

III to be partially invariant, because results did not support the full metric (Dolan et al.,

2006) or scalar invariance (Van der Sluis et al., 2006). This means that there were sex

differences on subtests that could not be explained by sex differences on the relevant

domain scores of WAIS-III - the ostensible latent traits underlying cognitive perform-

ance in specific subtests. For example, Arithmetic and Information showed larger sex

differences in favour of males, controlling for the factor loadings of these tests on

their domains. It means that the differences between males and females were larger

than would be expected on the basis of any potential sex differences on the corre-

sponding latent traits. On the other hand, Chen and colleagues (2015) reported invari-

ance across genders with WISC-IV. It could indicate that sex differences of the

measured constructs are most pronounced in young adulthood (Lynn & Irwing, 2004),

but it also confirms the need to study invariance with different test versions

and contexts.

MI across age is also critical for attempts to establish how age is associated with

cognitive ability and its changes. Testing MI can assure that the underlying structure

of the specific test is stable across a range of ages. Although the Wechsler tests have

not originally been developed according to a specific underlying theory, it is some-

what surprising that the replicated four-factor structure may be invariant even across

a wide age range (Bowden et al., 2006; Taub et al., 2004).

The level of education, another major dimension of population stratification, is also

an important variable for the MI assessment. A strong association between intelligence

test performance and educational levels is established in many studies (Strenze, 2007).

However, if the cognitive measures are not invariant with respect to educational

attainment, then the subtests might show bias for specific groups; in other words, the
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differences may be driven by some subtests rather than a general intelligence per se.

There have been contradictory results regarding the MI across educational level.

Tommasi et al. (2015) studied the Italian standardization sample of WAIS-R and con-

cluded that the MI was tenable, whereas Abad et al. (2016) found partial metric MI for

the Spanish WAIS-IV: three subtests (Matrix Reasoning, Coding and Letter-Number-

Sequencing) showed lower loadings as the educational level increased, whereas scalar

invariance and strict invariance were supported. These results indicate that the com-

parability of test results between educational groups cannot be taken for granted –

more research is needed.

The current study begins with identifying the factor structure of the Estonian adap-

tation of WAIS-III to specify the basic model for MI. As no Estonian WAIS-III factor ana-

lysis had been published earlier, we could, for the first time, compare the factor

structure of an Estonian WAIS to that of the test’s original version and to those of

other adaptations such as French (Gr�egoire, 2004), Norwegian (Egeland et al., 2009)

and Canadian (Saklofske et al., 2000), among others. Our aim was to evaluate the fac-

tor models that have been tested most frequently in previous research. Among these,

the intended four-factor model has been particularly well established for WAIS-III

(Psychological Corporation, 2002; Tulsky & Price, 2003), hence, our hypothesis was that

a similar four-factor solution will be confirmed in the Estonian data. Subsequently, MI

across gender, age groups and educational levels was tested. Where the MI was sup-

ported to a sufficient degree across these groups, it enabled us to compare their

mean scores.

Method

Sample

We analysed the Estonian standardization sample of WAIS-III, which was stratified by

age, gender and educational level following the same exclusion criteria used by the

original WAIS-III standardization (Psychological Corporation, 2002). The final sample

consisted of 770 subjects (341 males, 429 females) and its composition was adjusted

to the theoretical percentages based on the Estonian census data (the final compos-

ition plan was renewed during data collection in 2014). All participants gave written

informed consent to take part in the study and did not receive any compensation.

Ethical approval was granted by the Ethic Review Committee on Human Research,

University of Tartu, Estonia.

The mean age of males was 41.04 years (SD¼ 19.83) and the mean age of females

was 48.42 years (SD¼ 22.39); this difference was medium in size and statistically signifi-

cant, t(768) ¼ �4.78, p < .001, Cohen’s d ¼ .349. Among male participants, 31.7% had

basic education, 54.5% had secondary or vocational education and 13.8% had higher

education, whereas among females 25.9% had basic education, 49.7% had secondary

or vocational education and 24.5% had higher education. The proportions of educa-

tional levels across gender groups were significantly different, v2(2, N¼ 769) ¼ 14.12,

p < .001. The effect size (Cramer’s V ¼ .095) for this analysis can be considered small

to medium (Cohen, 1988).

THE CLINICAL NEUROPSYCHOLOGIST 5



For the purpose of sufficiently sized age groups for MI analyses, we divided the

sample to three groups: 16–29 years (N¼ 242), 30–54 years (N¼ 252) and 55–89 years

(N¼ 276). Educational levels of the youngest age group (16–29 years) were the follow-

ing: 52.5% had basic education, 36.4% secondary or vocational education and 11.2%

higher education. The proportions for educational levels of age group 30–54 years

were the following: 15.9% had basic education, 60.7% had secondary or vocational

education and 23.4% had higher education. The educational levels of age groups

55–89 years were: 18.8% basic education, 57.2% secondary or vocational education

and 23.4% higher education. The proportions of educational levels across age groups

were significantly different, v
2 (4, N¼ 769) ¼ 101.87, p < .001. The effect size

(Cramer’s V ¼ .182) for this analysis can be considered medium to large (Cohen, 1988).

For the MI analysis across educational levels, we limited the sample by age, because

we assumed that the younger participants might be still in process of attaining educa-

tion and the oldest participants’ opportunities for education may have been somewhat

restricted. Indeed, an analysis of variance (ANOVA) revealed a significant effect of the

age group on educational attainment, F(10, 759) ¼ 23.9, p < .001 with full sample.

Post hoc analyses showed significant mean educational level differences for age

groups 16–17 and 18–19 (p < .001). In the age range of 20–89, the effect of age was

not significant according to the ANOVA, F(2, 660) ¼ 1.083, p ¼ .339 (effect size partial

g2
¼ .003). The final sample for analyses across educational levels was 663 participants

in the age range of 20–89, which can be considered more homogeneous on mean

educational level. During the norming studies, we distinguished several educational

levels, but for this study, we composed three larger educational groups – basic level

(basic and primary school, up to 9 years of education; N¼ 122), secondary level (sec-

ondary and vocational education, 10–12 years of education; N¼ 389) and higher level

(higher education, 13–20 years of education; N¼ 152). The mean ages of groups with

basic, secondary and higher educational levels were 50.7 years, 48.7 years and

51.2 years, respectively.

The rest of the analyses (across genders and across age groups) were performed

using the full sample.

Measures

The standardization of WAIS-III in Estonia was completed in 2019 (Wechsler, in press).

The WAIS-III contains 14 subtests, which provide a Full Scale IQ, a Verbal IQ and a

Performance IQ. It also provides four index score factors: Verbal Comprehension

(Vocabulary, Similarities, Information, Comprehension subtests), Perceptual

Organization (Picture Completion, Block Design, Matrix Reasoning), Working Memory

(Arithmetic, Digit Span, Letter-Number Sequencing), and Processing Speed (Digit

Symbol – Coding, Symbol Search). The normative data for subtests was developed

using the inferential norming method (Zhu & Chen, 2011).

The Estonian adaptation of WAIS-III has mostly acceptable to excellent internal con-

sistency statistics that is comparable with the original version (Psychological

Corporation, 2002). The average reliability coefficients (Cronbach’s alphas) across 11

age groups were .97 for Full Scale IQ, .96 for Verbal IQ and .92 for Performance IQ.
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Statistical analyses

The analyses were based on raw subtest scores. The Object Assembly subtest was not

included, because it is an optional subtest often left unanalyzed in previous studies

(e.g. Bowden et al., 2006; Egeland et al., 2009; Gr�egoire, 2004; Tulsky & Price, 2003),

whereas one of our aims was to compare our results with previous research.

Confirmatory factor analyses to select the best baseline model

We applied the confirmatory factor analysis to the data to identify the factorial struc-

ture of the Estonian WAIS-III. We tested nine models that have been studied in prior

research with the original scale (Psychological Corporation, 2002) and previous adapta-

tions (Egeland et al., 2009; Gr�egoire, 2004; Tulsky & Price, 2003). As newer editions of

Wechsler’s scales have been also analysed according to the CHC framework (McGrew,

2009), we tested models based on that as well. We compared the goodness-of-fit sta-

tistics for the following models:

1. Model 1: A one-factor model that includes one general g-factor underlying all of

the 13 subtests.

2. Model 2: A two-factor model, which corresponds to the traditional organization of

the Wechsler scales into a Verbal and Performance scale (Verbal IQ¼ seven verbal

subtests, Performance IQ¼ six performance subtests).

3. Model 3: A four-factor model as suggested in the Technical Manual of the original

WAIS-III version (Psychological Corporation, 2002). The factors are Verbal

Comprehension (VC¼ Vocabulary, Similarities, Information, Comprehension),

Perceptual Organization (PO¼ Picture Completion, Matrix Reasoning, Block Design,

Picture Arrangement), Working Memory (WM¼Arithmetic, Digit Span, Letter-

Number Sequencing) and Processing Speed (PS¼Coding, Symbol Search).

4. Model 3a: A four-factor model where Arithmetic loads on the VC factor instead of

the WM factor, as proposed by Egeland et al. (2009); the factors were allowed

to correlate.

5. Model 3b: A four-factor model where Arithmetic is allowed to load on both the

VC and the WM factors, as suggested by Egeland et al. (2009) and Tulsky and

Price (2003); the factors were allowed to correlate.

6. Model 4: A hierarchical model with four first-order factors (same as in Model 3a)

but with a second-order general factor.

7. Model 4a: A hierarchical model with four first-order and a second-order general

factor, but with Arithmetic allowed to load on both the VC and the WM factors

(similarly as in Model 3b).

8. Model 5: A model based on the CHC framework with five first-order factors and a

second-order general factor g. The factors are crystallized intelligence factor

(Gc¼ Vocabulary, Similarities, Information, Comprehension), visual processing fac-

tor (Gv¼ Picture Completion, Block Design, Picture Arrangement), fluid reasoning

factor (Gf¼Matrix Reasoning, Arithmetic), short-term memory factor (Gsm¼Digit

Span and Letter-Number Sequencing) and processing speed factor (Gs¼Coding,

Symbol Search).
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9. Model 5a: A model based on the CHC framework with five first-order factors and

a second-order general factor g as Model 5, but the Arithmetic is allowed to load

on both the Gf and the Gsm factors.

Following the goodness-of-fit indices were considered when evaluating the fit of

the factor model: the chi-square (v2), the comparative fit index (CFI), the

Tucker� Lewis fit index (TLI), the root mean square error of approximation (RMSEA)

and the 90% confidence interval for RMSEA. A good model should have CFI � .95, TLI

� .95, RMSEA � .06, an inferior limit of the 90% RMSEA confidence interval � .08, and

an acceptable model should have CFI and TLI � .90 and RMSEA � .08 (Browne &

Cudeck, 1993; Hu & Bentler, 2009). The models were identified by fixing the variance

of latent variables at unity.

Invariance analyses

MG-CFA was applied to test for MI based on a set of nested models (Milfont & Fischer,

2010; Putnick & Bornstein, 2016; Van de Schoot et al., 2012):

1. The baseline configural invariance model, with loadings and intercepts free to

vary across specific grouping variables, but the same factorial pattern was speci-

fied for each group; means were constrained equal.

2. The metric invariance model, with loading constrained to be equal across specific

grouping variables; means were constrained equal.

3. The scalar invariance model, with factor loadings and intercepts constrained to be

equal across grouping variables.

4. The strict invariance model, with factor loadings, intercepts and residual variances

constrained to be equal across grouping variables.

The difference between CFIs (DCFI) of invariance models was estimated for testing

the MI. Cheung and Rensvold (2002) propose that the DCFI is one of the best indices

to test MI, because it is unaffected by sample size and model complexity, unlike the

chi-square difference (Dv2) test. A value of DCFI (more constrained model minus less

constrained model) smaller than or equal to �.002 indicates that the null hypothesis

of invariance should not be rejected (Meade et al., 2008).

All the statistical analyses were conducted using the R Statistical software (R Core

Team, 2018); for confirmatory factor analysis the lavaan package (Rosseel, 2012)

was used.

Results

Confirmatory factor analysis of Estonian WAIS-III

We tested Models 1 to 5a as single group models to choose the most appropriate

baseline model for further MI analysis.

A correlated four-factor model (Model 3) provided the best overall fit to the data,

when we compared it with one- or two-factor models (Table 2). However, as the

RMSEA was .070, we modified the model further. Modification indices indicated that
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the model would improve if the Arithmetic subtest would load on the VC factor

instead of the WM factor (Model 3a), but the fit indices did not improve. Again, based

on the modification indices and previous research, we allowed the Arithmetic subtest

to load both on the VC and the WM factors. The fit indices of this model (Model 3 b)

showed improvement (Table 1).

Next, we also tested hierarchical models with four first-order factors (VC, PO, WM,

PS) and one second-order factor (g); these are Models 4 and 4a. Fit indices of the hier-

archical models showed no improvement compared to the first-order models (Models

3 and 3 b); again allowing the Arithmetic subtest to load both the VC and the WM fac-

tors resulted in a better fit.

Comparing the first-order Model 3 b to the hierarchical Model 4a, the fit indices

were better for the first-order model. As it is also a longstanding tradition to favour

simpler models over a more complex model (Bollen & Long, 1993), we decided to use

the Model 3 b in further MI analyses. Path diagram with the standardized factor load-

ings and covariances between factors are shown in Supplemental material.

MI across sex

Table 2 shows the means and standard deviations of the subtest scores and composite

scores for males and females. Effect sizes (Cohen’s d) are calculated as the differences

between the means for males and females divided by their pooled standard deviation.

According to Cohen’s (1988) recommendations, effect sizes .20 can be interpreted as

small, .50 as medium and .80 as large.

Fit indices for MI testing between males and females are shown in Table 3. The

configural invariance was satisfied, with CFI (> .95) and RMSEA (< .06) indicating a

reasonable fit. The metric invariance was also tenable as the equality of subtest load-

ings did not result in a significant degradation of model fit (DCFI < .002). However,

constraining intercepts equal (for scalar invariance) did yield a significant degradation

of model fit (DCFI ¼ .014). We examined the modification indices of the model and

sequentially released intercept constraints according to the suggestions from Yoon

and Kim (2014). We retested the model until the model degradation criterion was

achieved (Table 3). Sequentially releasing equality of intercepts for Information (Model

3a), Arithmetic (Model 3 b) and Coding subtests (Model 3c) resulted in an acceptable

difference between Model 3c and Model 2 (DCFI � .002). We discontinued the analysis

Table 1. Fit indices for tested confirmatory factor analysis models.

Model v2 df CFI TLI RMSEA 90% C.I. RMSEA

1. One g factor 1812.994 65 .752 .703 .188 .180 � .195
2. Two factors 897.277 64 .882 .856 .131 .123 � .138
3. Four factors 277.576 59 .969 .959 .070 .061 � .078
3a. Four factors – Arithmetic loading on VC factor 270.759 59 .970 .960 .068 .060 � .077
3b. Four-factor model – Arithmetic split on VC and WM factors 172.240 58 .984 .978 .051 .042 � .060
4. Hierarchical model 371.793 61 .956 .944 .082 .074 � .090
4a. Hierarchical model – Arithmetic split on VC and WM 227.062 60 .976 .969 .060 .052 � .069
5. CHC-based model 408.03 60 .951 .936 .087 .079 � .095
6. CHC-based model – Arithmetic split on Gf and Gsm facors 361.98 59 .957 .943 .082 .074 � .090

Note: VC¼ Verbal Comprehension; WM¼Working Memory; CHC¼ Cattell-Horn-Carroll; Gf¼ fluid reasoning factor;
Gsm¼ short-term memory factor; df¼ degrees of freedom; CFI¼ comparative fit index; TLI¼ Tucker-Lewis index;
RMSEA¼ root mean square error of approximation; C.I. ¼ confidence interval.
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and did not test strict variance by constraining residual variances because only partial

scalar invariance was tenable.

As most of the intercepts in factors remained constrained, we tested the sex differ-

ences regarding the four latent factors VC, WM, PS and PO. Table 4 shows the differ-

ences of latent factors in a partial MI model, where the Information, Arithmetic and

Coding subtests’ intercepts were released. Factor means were fixed to zero in females,

whereas means of the males were estimated as a deviation of the mean of the

females (the unit of variance was standard deviation, so the effects are in Cohen’s d

metric). Males outperformed females in the PO factor (d ¼ .369), whereas there were

no significant sex differences in the other factors.

Table 3. Goodness-of-fit indices for testing measurement invariance between males and females
with multi-group confirmatory factor analysis.

Model v2 df RMSEA CFI DCFI

1. Configural invariance 214.27 116 .047 .986 –

2. Metric invariance 228.89 126 .046 .985 .001
3. Scalar invariance 337.72 135 .063 .971 .014
3a. Releasing Information intercept 301.405 134 .057 .976 .009
3b. Releasing Arithmetic intercept 268.38 133 .052 .981 .004
3c. Releasing Coding intercept 249.20 132 .048 .983 .002

Note: The metric model was compared to the configural mode; the scalar models 3 to 3c were compared to the
metric model. CFI¼ comparative fit index; df¼ degrees of freedom; RMSEA¼ root mean square error of
approximation.

Table 2. Descriptive statistics for WAIS-III data stratified by sex.

WAIS-III subtest/scale

Male Female

Effect size d t-testN M SD N M SD

Vocabulary 341 9.87 3.11 428 10.16 2.80 �0.10 �1.33
Similarities 341 10.02 2.94 429 10.07 2.89 �0.02 �0.26
Arithmetic 341 10.53 3.10 429 9.70 2.72 0.28 3.91���

Digit Span 341 9.99 3.16 429 10.01 2.62 �0.01 �0.11
Information 341 10.53 2.96 429 9.49 2.84 0.36 4.92���

Comprehension 340 10.11 2.97 428 9.98 2.90 0.04 0.61
Letter-Number S. 340 9.88 3.07 428 10.23 2.71 �0.12 �1.68
Picture Completion 341 10.18 2.90 429 9.93 3.00 0.08 1.14
Coding 340 9.39 2.87 428 10.58 2.67 �0.43 �5.95���

Block Design 341 10.15 2.92 429 9.85 2.75 0.11 1.46
Matrix Reasoning 341 10.23 3.04 429 9.89 2.76 0.12 1.61
Picture Arrangement 341 10.23 3.12 429 9.71 2.85 0.17 2.65�

Symbol Search 341 9.72 2.84 429 10.21 2.68 �0.18 �2.451�

Object Assembly 341 9.93 3.06 429 10.12 2.81 �0.06 �0.93
VCI 341 100.87 15.51 428 99.42 14.44 0.10 1.34
POI 341 101.02 15.25 429 99.11 14.38 0.13 1.79
WMI 340 100.61 16.88 428 99.45 13.40 0.08 1.04
PSI 340 97.11 15.38 428 102.08 14.12 �0.34 �4.65���

Verbal IQ 340 101.04 15.91 428 99.04 14.05 0.13 1.83
Performance IQ 340 100.32 15.54 428 99.82 14.47 0.03 0.46
Full Scale IQ 339 100.75 15.75 427 99.21 13.95 0.10 1.43

Note: Letter-Number S. ¼ Letter-Number Sequencing; VCI¼ Verbal Comprehension Index; POI¼ Perceptual
Organization Index; WMI¼Working Memory Index; PSI¼ Processing Speed index. VCI, POI, WMI, PSI, Verbal IQ,
Performance IQ and Full Scale IQ are composite scores. Effect size d¼ Cohen’s d. T-test coefficients reflect independ-
ent samples t-tests between men and women. Positive t-values and effect sizes indicate male advantage; negative t-
values indicate female advantage.
�p< 0.05;
���p< 0.001.
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MI across age groups

Descriptive data regarding age groups are shown in Table 5. Fit indices for MI analyses

across age groups are shown in Table 6. The configural invariance was met, with CFI

(> .95) and RMSEA (< .06) indicating a good fit. Metric invariance was not tenable as

imposing the equality on subtest loadings across groups resulted in a significant deg-

radation of model fit (DCFI ¼ .006). We examined the modification indices and

sequentially released the constraints from Block Design subtest loading to PO factor

and Martrix Reasoning loading to PO factor (Table 6). Releasing constraints from both

of the loadings lowered the model degradation to our criterion of the MI (DCFI �

.002) and partial metric invariance was thus confirmed. Scalar invariance was tested by

constraining the item intercepts to be equivalent across groups for metric invariant

items (the loadings of Block Design and Matrix Reasoning subtests allowed to vary).

Fit indices showed that scalar invariance was not tenable, as the degradation of model

fit was significant (DCFI ¼ .013). We investigated the source of the noninvariance by

sequentially releasing item intercept constraints and we retested the model until a

partially invariant model was confirmed. Intercepts of Picture Arrangement, Arithmetic,

Vocabulary and Information subtests needed to be released to achieve an acceptable

difference between Model 2 b and Model 3d (DCFI < .002). We discontinued the

invariance testing because full strict measurement invariance was unachievable.

We decided to compare the differences of latent factors (VC, WM, PS and PO)

because at least half of the items in every factor were constrained in the invariance

analyses. Factor means were fixed to zero in the youngest age group, whereas the fac-

tor means of the two older age groups were estimated as a deviation of the youngest

one. Hence, the negative means can be interpreted as downward age trends and the

positive means as upward age trends (again, in Cohen’s d metric). As expected, the

older age groups had mostly lower means. The age group of 30–54 years had a

slightly higher latent mean in the VC compared to the youngest age group, but the

difference was not statistically significant (Table 7).

MI across educational levels

Descriptive data are shown in Table 8 and fit indices for MI analyses are shown in

Table 9. The configural invariance was confirmed with a reasonable fit (CFI > .95;

RMSEA < .06). The metric invariance was not tenable as the equality of subtest load-

ings resulted in a significant degradation of model fit (DCFI ¼ .007). We investigated

the source of noninvariance and an examination of the modification indices revealed

that the model would improve if loading of Information to VC was released. This

Table 4. Male and female means and standard deviations of the latent factors.

VC WM PS PO

Females Mean 0 0 0 0
SD 1 1 1 1

Males Mean .038 .076 .125 .369���

SD 1.385 1.348 1.533 1.477

Note: VC¼ Verbal Comprehension; WM¼Working Memory, PS¼ Processing Speed; PO¼ Perceptual Organization.
���p< 0.001.

THE CLINICAL NEUROPSYCHOLOGIST 11



Table 5. Descriptive statistics for WAIS-III data stratified by age groups.

WAIS-III subtest

Age group 16–29 years Age group 30–54 years Age group 55–89 years

N M SD N M SD N M SD

Vocabulary 242 10.06 2,87 252 9.98 3.17 275 10.06 2.80
Similarities 242 10.06 2,97 252 10.13 2.93 276 9.97 2.84
Arithmetic 242 10.24 2,99 252 9.97 3.10 276 10.00 2.69
Digit Span 242 10.08 2.79 252 10.05 3.07 276 9.89 2.75
Information 242 10.06 2.86 252 9.94 3.00 276 9.86 2.96
Comprehension 242 10.16 3.05 252 9.94 2.90 274 10.03 2.86
Letter-Number S. 241 10.28 2.93 252 10.14 2.76 275 9.83 2.93
Picture C. 242 10.01 2.93 252 10.23 3.08 276 9.89 2.87
Coding 241 10.09 2.92 252 10.17 2.90 275 9.91 2.65
Block Design 242 10.17 3.00 252 10.06 2.95 276 9.74 2.54
Matrix Reasoning 242 9.98 2.94 252 10.26 2.92 276 9.89 2.83
Picture A. 242 10.06 3.11 252 10.18 2.93 276 9.62 2.89
Symbol Search 242 10.04 3.00 252 10.14 10.14 276 9.80 2.53
Object Assembly 242 10.09 2.95 252 10.08 10.08 276 9.95 2.79
VCI 242 100.29 14.96 252 100.08 15.25 275 99.84 14.66
POI 242 100.32 15.09 252 101.05 15.18 276 98.64 14.10
WMI 241 100.97 15.52 252 100.01 15.50 275 99.03 14.16
PSI 241 100.18 16.00 252 100.68 15.08 275 98.87 13.65
Verbal IQ 242 100.56 15.31 252 99.81 15.32 274 99.46 14.23
Performance IQ 241 100.60 15.52 252 101.27 15.21 275 98.44 14.10
Full Scale IQ 241 100.58 15.32 252 100.38 15.24 273 98.82 13.84

Note: Letter-Number S. ¼ Letter-Number Sequencing; Picture C. ¼ Picture Completion; Picture A. ¼ Picture
Arrangement; VCI¼ Verbal Comprehension Index; POI¼ Perceptual Organization Index; WMI¼Working Memory
Index; PSI¼ Processing Speed Index. VCI, POI, WMI, PSI, Verbal IQ, Performance IQ and Full Scale IQ are compos-
ite scores.

Table 6. Goodness-of-fit indices for testing measurement invariance across age groups with
multi-group confirmatory factor analysis.

Model v2 df RMSEA CFI DCFI

1. Configural invariance 266.91 174 .046 .984 –

2. Metric invariance 319.05 194 .050 .978 .006
2a. Releasing Block Design loading to PO 305.29 192 .048 .980 .004
2b. Releasing Matrix Reasoning loading to PO 293.64 190 .046 .982 .002
3. Scalar invariance 382.88 208 .057 .969 .013
3a. Releasing Picture Arrangement intercept 347.97 206 .052 .975 .007
3b. Releasing Arithmetic intercept 334.41 204 .050 .977 .005
3c. Releasing Vocabulary intercept 323.96 202 .049 .979 .003
3d. Releasing Information intercept 308.71 200 .046 .981 .001

Note: The metric models 2 to 2 b were compared to the configural model; the scalar models 3 to 3d were compared
to the metric model 2 b. PO¼ Perceptual Organization; CFI¼ comparative fit index; df¼ degrees of freedom;
RMSEA¼ root mean square error of approximation.

Table 7. Differences of latent factors between age groups.

VC WM PS PO

Age 16–29 Mean 0 0 0 0
SD 1 1 1 1

Age 30–54 Mean .107 �.333�� �.824��� �.279��

SD 1.524 1.761 1.857 1.556
Age 55–89 Mean -.331�� �1.407��� �2.471��� �1.705���

SD 1.695 2.359 2.725 2.143

Note: VC¼ Verbal Comprehension; WM¼Working Memory; PS¼ Processing Speed; PO¼ Perceptual Organization.
�p< 0.05;
��p< 0.01;
���p< 0.001.
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adjustment was not sufficient, but further examination of the modification indices

showed that the largest remaining modification index was not statistically significant;

hence, the model could not be improved. This means that the partial measurement

invariance was not tenable as well and we discontinued further invariance testing.

Discussion

In the present study, we analysed the MI of Estonian WAIS-III across sex, age and edu-

cational levels, using the multi-group confirmatory factor analysis.

First, we established the baseline factor structure of the Estonian WAIS-III. The

results of the confirmatory factor analyses of the standardization sample supported

the four-factor model, with the latent factors of Verbal Comprehension, Perceptual

Organization, Working Memory and Processing Speed. These results replicate the solu-

tion found in the original version of WAIS-III (Wechsler, 1997; see also Saklofske et al.,

2000) as well as subsequent standardizations (Egeland et al., 2009; Garc�ıa et al., 2003;

Table 8. Descriptive statistics for WAIS-III data stratified by educational levels.

WAIS-III subtest/scale

Educational level: basic Educational level: secondary Educational level: higher

rsN M SD N M SD N M SD

Vocabulary 121 7.59 2.79 389 10.04 2.60 152 12.11 2.51 .499��

Similarities 122 7.67 2.79 389 10.05 2.59 152 11.95 2.45 .467��

Arithmetic 122 8.31 2.93 389 10.02 2.77 152 11.45 2.49 .336��

Digit Span 122 8.69 2.97 389 10.05 2.71 152 10.93 2.85 .263��

Information 122 7.49 2.59 389 9.93 2.72 152 11.88 2.38 .424��

Comprehension 121 7.69 2.82 388 10.07 2.61 152 11.99 2.53 .470��

Letter-Number S. 122 8.25 3.17 387 10.01 2.69 152 11.32 2.22 .342��

Picture C. 122 8.60 3.26 389 10.30 2.85 152 10.64 2.66 .156��

Coding 121 8.11 3.08 388 10.15 2.51 152 11.32 2.53 .350��

Block Design 122 8.20 2.99 389 10.21 2.73 152 10.82 2.38 .256��

Matrix Reasoning 122 8.13 3.02 389 10.12 2.66 152 11.36 2.62 .340��

Picture A. 122 8.52 3.07 389 9.98 2.90 152 10.75 2.81 .231��

Symbol Search 122 8.37 2.95 389 10.21 2.58 152 10.81 2.60 .369��

Object Assembly 122 8.88 3.37 389 10.27 2.76 152 10.49 2.87 .146��

VCI 121 86.29 12.96 389 99.87 12.91 152 111.67 12.21 .528��

POI 122 89.72 15.23 389 101.03 13.86 152 105.63 12.93 .328��

WMI 122 90.07 15.29 387 99.68 13.86 152 107.34 12.70 .360��

PSI 121 89.50 15.55 388 100.76 13.74 152 105.99 13.22 .339��

Verbal IQ 121 86.63 13.03 388 99.67 13.00 152 111.22 12.59 .512��

Performance IQ 121 88.92 15.12 388 100.82 13.77 152 106.81 13.31 .364��

Full Scale IQ 120 86.75 13.26 387 99.98 13.05 152 109.99 12.39 .488��

Note: Letter-Number S. ¼ Letter-Number Sequencing; Picture C. ¼ Picture Completion; Picture A. ¼ Picture
Arrangement; VCI¼ Verbal Comprehension Index; POI¼ Perceptual Organization Index; WMI¼Working Memory
Index; PSI¼ Processing Speed Index. VCI, POI, WMI, PSI, Verbal IQ, Performance IQ and Full Scale IQ are compos-
ite scores.
��p< 0.01.

Table 9. Goodness-of-fit indexes for testing measurement invariance across educational levels
with multi-group confirmatory factor analysis.

Model v2 df RMSEA CFI DCFI

1. Configural invariance 267.82 174 .050 .982 –

2. Metric invariance 322.76 194 .055 .975 .007
2a. Releasing Information loading to VC 306.11 192 .052 .978 .004

Note: The metric models were compared to the configural model. CFI¼ comparative fit index; df¼ degrees of
freedom; RMSEA¼ root mean square error of approximation.
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Gr�egoire, 2004). The fit of models with one or two factors as well as models based on

CHC framework was inadequate. Documenting the factor structure in different adapta-

tions and standardization samples is important because it allows to establish the uni-

versality of the underlying structure of the scale and thereby cognitive abilities more

generally, beside the validity of the adaptation (especially in the case of WAIS-III,

which is so commonly used in many adaptations).

Egeland et al. (2009) reported of a Norwegian sample that in the most parsimoni-

ous model of WAIS-III, the Arithmetic subtest did not load to one single factor, but

had to be allowed to load on both WM and VC factor. The same also appeared in the

current study, which confirms that the Arithmetic subtest is somewhat multifaceted.

Changing the Arithmetic subtest loading from the initial WM factor to the VC factor

somewhat increased the fit indices, but the best fit appeared when the subtest was

allowed to load on both factors. A possible interpretation of this is that the Arithmetic

subtest is composed of word problems that require verbal comprehension to give the

right answers (Arnau & Thompson, 2000), but solving these problems needs a broader

working memory involvement as well (Tulsky & Price, 2003). Egeland et al. (2009) also

found that education explained a larger part of the variance in the VC subtests and in

the Arithmetic subtest, but less in the other WM subtests. Similar issues with the

Arithmetic subtest have also been pointed out by other authors – for example, the

factor analysis studies in France (Gr�egoire, 2004) and the re-analysis of the original

scale (Arnau & Thompson, 2000; Tulsky & Price, 2003). Therefore, we used a four-factor

solution with splitted loading on the VC and the WM in further MI analyses.

The main aim of this study was to evaluate the MI across different groups. The

results show that the Estonian WAIS-III has a partial MI across sexes. The configural

and metric invariances were satisfied, whereas the scalar invariance was tenable only

after the intercepts of Information, Arithmetic and Coding were released. According to

the descriptive data and the comparison of observed means, males were found to out-

perform females on two of the 14 subtests – Information and Arithmetic – and

females outperformed males on two processing speed subtests: Coding and Symbol

Search. The MI analysis showed the similar results that Information, Arithmetic and

Coding subtests were biased, so we allowed its intercepts to vary freely across genders

when comparing latent factor means. Males and females showed no mean differences

of the factors VC, WM or PS. However, males had a significantly higher mean score of

the PO factor. Even so, it is questionable if the latent means were in fact comparable

because of the partial invariance. There are no universal recommendations for how

the partially invariant models influence the accuracy of mean-level comparisons

(Putnick & Bornstein, 2016). Steinmetz (2013) found that the effects of scalar noninvar-

iance might be large. More research is definitely needed, as there are no clear solu-

tions how to manage the partial noninvariance (Putnick & Bornstein, 2016), although

in practice partial subtest intercept invariance is not uncommon (Immekus &

Maller, 2010).

These results are in concordance with the previous studies. The analysis of sex dif-

ferences on Dutch (Van der Sluis et al., 2006) and Spain (Dolan et al., 2006) WAIS-III

revealed a similar pattern of differences. In both studies, men had higher scores in the

Information subtest. This finding is well documented with several previous studies
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with the Information subtest of the Wechsler scales or similar overall general know-

ledge tests (Lynn et al., 2002, 2004). Recent meta-analysis (Tran et al., 2014) also found

some male advantage of general knowledge, but their analysis indicated that these

sex differences could be explained by the differences in schooling and selection proc-

esses that were moderated by the parental education.

Similar to the current study, analysing latent factor means, Van der Sluis et al.

(2006) and Dolan et al. (2006) found no sex differences in the VC factor and that males

outperformed females in the PO factor. The absence of sex differences in verbal ability

have been found in earlier studies as well, which have not specifically looked for MI

(see further the meta-analysis by Hyde & Linn, 1988). Comparable to our findings,

females did not show any advantages over males in the PS in a Spanish study (Dolan

et al., 2006), although Dutch females outperformed males in the PS factor (Van der

Sluis et al., 2006). Both studies also found that males outperformed females in the

Working Memory factor, which was not the case with the present study. Gender differ-

ences are therefore possibly culture-specific.

Next, we analysed the MI across three age groups and concluded that partial MI is

tenable. The configural invariance was satisfied. The metric and scalar invariances were

not entirely tenable and the constraints of some subtests needed to be released to

result in an acceptable model fit. We released loadings of the Block Design and Matrix

Reasoning subtests to the PO factor as testing the metric invariance. We released the

intercepts of the Picture Arrangement, Arithmetic, Vocabulary and Information subtests

as testing the scalar invariance. None of the items had full noninvariance with both

the loading and the intercept being released. Again, it is questionable how releasing

constraints would influence the mean difference analysis. However, as most of the

items in factors were constrained we explored the differences between latent factors.

The results were as expected with the lowest means in the older age groups, the larg-

est discrepancies in the PS factor and the smallest differences in the VC factor.

The finding that the MI in most part held across the age groups is significant in

many ways. It ensures that the measure is comparably usable both in the younger age

groups as well as in the older age groups, which has a critical value for diagnostic or

classification purposes. The MI also shows that the underlying constructs are stable

across the age groups, which is an important property for both the psychological con-

structs themselves and their test (Bowden et al., 2006). In the case of many degenera-

tive diseases there is a need to conduct repeated assessments, often over extended

retest intervals (Horn & McArdle, 1992), so the MI is crucial to adequately interpret the

changes across aging (Bowden et al., 2006). However, the MI across age groups is also

relevant for the very concept of intelligence. For example, it has been argued that if

intelligence factors such as g emerge developmentally as a consequence of mutually

beneficial interactions among the specific skills (dynamic mutualism approach by Van

der Maas et al., 2006), their co-variances should not be structurally invariant. In

response to this theory, Gignac (2014) tested the mutualism approach and g models

with various Wechsler scales and his results did not support the mutualism model,

because the g factor was present and constantly strong across the development.

We further established that the Estonian WAIS-III is not invariant and thereby likely

to be biased across educational levels. Measurement noninvariance means that the
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construct has a different structure or meaning to different groups (Putnick &

Bornstein, 2016). In turn, group mean differences cannot be interpreted in terms of

the latent cognitive abilities (Wicherts, 2016). According to Wicherts (2016), the failure

of MI with respect to some subgroups in the standardization sample would raise a

question whether it is appropriate to use overall norms. Wicherts (2016) proposes that

a possible solution for the noninvariance of cognitive tests may be to develop sub-

group norms or to revise the subtests (adaptations) to correct the bias.

To our knowledge, MI analyses of WAIS-III across educational levels have not been

previously published, although some recent results of the WAIS-R and WAIS-IV invari-

ance are available. Tommasi et al. (2015) found the MI across educational levels ten-

able with the WAIS-R, while Abad et al. (2016) recently studied the invariance across

educational levels with the WAIS-IV sample from Spain. They concluded that the factor

structure of the WAIS-IV was only partially invariant, as three subtests (Matrix

Reasoning, Coding and Letter-Number Sequencing) showed lower loadings as the edu-

cational level increased. The differences between these previous studies and our study

may stem from various causes. Firstly, different editions of the Wechsler Scales are

similar, but not exactly the same, so the structure may depend on the changes made

throughout subsequent versions. Secondly, the results may be influenced by the lan-

guage/location, where the test was adapted and the sample was collected. Besides

language, the differences may be in the composition of samples, divisions of the edu-

cational levels and differences based on the overall educational system. Therefore, it is

crucial to study the relationships between the different models, theories of intelligence

structure, educational systems and locations more widely to make further conclusions.

Wicherts and Dolan (2010) have discussed additional reasons for intercept differences

in the intelligence test CFA models, for example test-taking strategies, familiarity with

testing in general and tests in particular or abilities that are tapped by certain subtest

and that are distinct from the targeted latent ability.

Some limitations of our study deserve attention. A larger sample would add power

to the analyses. The sizes of the groups divided by educational level were somewhat

uneven, for example the sample with basic education had 121 participants, while the

group with secondary education had 389 participants. The sample composition was

based on the Estonian population and we controlled that the different age groups did

not differ significantly by educational level, which may provide a partial solution to

this problem. Second, as our overall sample was already small, we differentiated the

education only by three levels, which allowed the groups to be sufficient in size.

Another division of more specific educational paths may have given different results,

although a more complex study design with a larger sample size and equal groups is

needed to investigate these issues further. In addition, significant differences in the

demographic characteristics between groups may have influenced the results. We

found small to medium effect sizes for the analyses of age and education differences

between genders. The effect size was medium to large when comparing education dif-

ferences across age groups.

Future studies would benefit from the MI analyses with the clinical samples as well,

especially if the MI with standardization sample is tenable and proves the validity of

the measure. As the neurocognitive measures are often used with clinical populations,
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it is crucial to make sure that the factor structure proposed with a normative sample

will be supported in various other diagnoses. There is some evidence that the MI for

neurocognitive tests may not hold, when patients are compared to healthy controls

(Haring et al., 2015). In addition, evaluating the MI between ethnic groups could also

reduce the possibility of bias in mental testing. For example, it has been claimed that

mean differences between racial or ethnic subgroups result from problems in the con-

struction, design or interpretation of tests, not from real group differences in the abil-

ity (Brown et al., 1999).

In conclusion, the results of this study provide evidence that the structural model

underlying the Estonian adaptation of WAIS-III is partially invariant across sex and age

groups but not invariant across educational levels. Our study also presents the add-

itional information on the sex differences of cognitive ability in Estonia. As Wicherts

(2016) pointed out, assessment of the MI provides a way to empirically test whether

tests of the cognitive ability measures function in the same manner across the differ-

ent groups. We can conclude that the results of the current study provide some evi-

dence of the appropriateness of the Estonian WAIS-III normative data, but the reasons

of noninvariace across the educational levels needs to be studied further as it was not

in the scope of this study.
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