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a b s t r a c t

This study employed both hierarchical and Bi-factor multi-group confirmatory factor analysis with mean

structures (MGCFA) to investigate the question of whether sex differences are present in the US standard-

ization sample of the WAIS-III. The data consisted of age scaled scores from 2450 individuals aged from

16 to 89 years. The findings were more or less uniform across both analyses, showing a sex difference

favoring men in g (0.19–0.22d), Information (0.40d), Arithmetic (0.37–0.39d) and Symbol Search (0.40–

0.30d), and a sex difference favoring women in Processing Speed (0.72–1.30d).

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The question of whether there is a sex difference in general cog-

nitive ability is a matter of considerable controversy. Richard Lynn

has made three important contributions to debate on this issue.

Firstly, he has proposed that there is a male advantage on g in

adults of about 3–5 IQ points (Lynn, 1994, 1999), secondly that

there is a developmental trend whereby, while among children

up to the age of 16 years the sex difference in overall intelligence

is negligible, the male advantage begins to appear at the age of

16 and increases into early adulthood. For convenience, we will

dub this the developmental theory of sex differences in cognitive

ability. Thirdly, he has questioned the overwhelming consensus

that there is greater male variability (Irwing & Lynn, 2005; Johnson,

Carothers, & Deary, 2008). This paper will test all three of these

propositions in the US standardization sample of the WAIS-III.

From discussions of the issue you might think that the evidence

is overwhelmingly against the developmental theory of sex differ-

ences (e.g. Ceci, Williams, & Barnett, 2009). In fact, a simple

examination of empirical findings shows that by far the majority

of the evidence favors a mean male advantage in adulthood and

that its emergence follows a developmental trend (e.g. Irwing &

Lynn, 2005; Jackson & Rushton, 2006; Johnson & Bouchard, 2007;

Lynn, 1994, 1999; Lynn & Irwing, 2004). There are studies which

apparently support a null sex difference, or even a female advan-

tage among adults, though most of these studies have used

multi-group confirmatory factor analysis (MGCFA) (e.g. Dolan

et al., 2006; Keith, Reynolds, Patel, & Ridley, 2008; van der Sluis

et al., 2006).

The confused state of debate on this issue is perhaps attribut-

able to a number of methodological problems, which any study

of sex differences needs to address. Firstly, there is a problem of

selection biases which may mean that any given sample is not

equally representative of males and females (Madyastha, Hunt,

Deary, Gale, & Dykiert, 2009). Secondly, findings are method

dependent, and there are strong arguments favouring MGCFA as

the preferred form of analysis (Dolan et al., 2006). In particular, a

number of criticisms of the method of correlated vectors have been

made (e.g. Ashton & Lee, 2005; Lubke, Dolan, & Kelderman, 2001),

such that conclusions depending on this method must be regarded

as suspect. Thirdly, there is the issue of the quality of tests and

exactly what they measure. Fourthly, the establishment of

measurement invariance and lack of bias represent prerequisites

for the unequivocal demonstration of sex differences (Meredith,

1993). Fifthly, there is strong evidence that g is not normally

distributed (Johnson et al., 2008). Unfortunately, no study, includ-

ing the current one is immune from all these difficulties.

It was probably Gustafsson who first suggested that MGCFA

should be the preferred method of analyzing group differences in

intelligence. Which method is appropriate is dependent on which

model of intelligence is veridical. Certainly MGCFA is compatible

with the consensus hierarchical factor models of human cognitive

abilities. Apart from compatibility, MGCFA has many other advan-

tages over alternatives such as the method of correlated vectors or

exploratory factor analysis (Bollen, 1989). It may, therefore, seem

damaging that studies using MGCFA have uniformly failed to

support a mean male advantage in g. However, there are a number

of complications in conducting such analyses. It has been shown by

Molenaar, Dolan, and Wicherts (2009) that large samples are
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required to attain sufficient power in order to detect a mean

difference in MGCFA models. Here, we have such a large sample,

and in order to ensure sufficient power we carry out the analysis

in the entire sample aged 23 years and older. A more profound

difficulty is that most analyses have failed to separate out

measurement issues from structural analyses. In doing so, authors

have simply followed recommended practice (Chen, Sousa, & West,

2005). The problem is that for cross group comparisons to be valid

scalar invariance must hold (Widaman & Reise, 1997). To establish

scalar invariance multiple congeneric measures at the first order

factor level are required (Widaman & Reise, 1997), but to date,

no study including the current one, has had access to multiple

measures. However, we adopt a somewhat novel solution by sim-

ply recognizing that testing of metric invariance is the most that

we can achieve with only one measure for each construct.

Probably the most serious problem in validly testing for mean

differences in MGCFA models is that factors are correlated, and

therefore order of testing influences the conclusion. The problem

is closely analogous to that presented by post hoc testing in multi-

variate analysis of variance. Here, in order to achieve an unambig-

uous conclusion, we present two solutions to this problem. The

first followed the practice in stepdown analysis of prioritizing the

order of testing according to a mixture of theoretical and practical

criteria. We then used a Bonferroni correction in order to control

for type 1 error. In the second, we used a Bi-factor model which re-

moves the problem of correlated factors by orthogonalizing them.

In short we use one of the best samples, the doyen of psycho-

metric tests of general cognitive ability, and a novel testing proce-

dure in order to examine Lynn’s developmental theory.

2. Method

2.1. Sample

The sample analyzed in this study is the American standardiza-

tion sample of the WAIS-III1. This consists of 2450 individuals aged

from 16 to 89 years. The data consist of sex differences in age scaled

scores provided by the Psychological Corporation. The standardiza-

tion sample was designed to be representative of the US population

according to the 1995 census, with regard to age, sex, ethnicity, edu-

cational level and geographic region (US Bureau of Census, 1995).

Three categories of adults were excluded from the sample: individ-

uals with sensory or motor deficits that might compromise the

validity of test scores; individuals fitting criteria for drug or alcohol

dependency or who were on medication; and individuals with

known or possible neuropsychological disorders. These exclusions

would not seem to impair the suitability of the sample for the anal-

ysis of sex differences.

2.2. Measures

TheWAIS-III contains 13 subtests and a Full Scale IQ, a Verbal IQ

and a Performance IQ, like its predecessors. It also provides

measures of four factors: Verbal Comprehension (Vocabulary,

Similarities, Information, Comprehension), Perceptual Organization

(Picture Completion, Block Design, Matrix Reasoning, Picture

Arrangement), Working Memory (Arithmetic, Digit Span, Letter-

Number Sequencing), and Processing Speed (Digit Symbol – Coding,

Symbol Search). Object Assembly is an optional test, but the current

analysis placed it on the Perceptual Organization factor, in common

with some other analyses (Dolan et al., 2006). Average split-half

reliability coefficients across the 13 age groups were .98 for Full

Scale IQ, .97 for Verbal IQ and .94 for Performance IQ. The average

reliabilities for the individual subtests ranged from .93 (Vocabu-

lary) to .70 (Object Assembly).

Descriptive statistics for sex differences in the American WAIS

III data are given in Table 1, which shows the means, standard

deviations, and sample sizes for male and female subtest and scale

scores on the WAIS-III, together with Cohen’s d (the male mean

score minus the female mean score divided by the within-group

standard deviation). Multivariate ANOVA revealed main effects of

sex for both the subtests (F(14, 1284) = 30.38, p < .001) and scale

scores (F(4,1294) = 46.70, p < .001). Twelve of the 14 subtest differ-

ence scores are in favor of males (six significant at the .001 level),

and two are in favor of females (both significant at the .01 level).

Cohen’s d for the Full-Scale IQ score is .185 in favor of males.

3. Results

We have analyzed the data using two different models for

reasons explained above. Because, in 1151 cases, there were

missing data for Letter–Number Series, we used Full Information

Maximum Likelihood estimation for all analyses, which broadly

conforms with best practice (Schafer & Graham, 2002). In all cases,

we test for measurement invariance in the order: (1) configural

invariance; and (2) metric invariance (for the reasons given above,

we do not consider tests for scalar invariance to be logical as ap-

plied to this data set). As a third step, we constrained all mean

and intercept differences across sex to zero and then, in subse-

quent models, allowed for mean differences based on both theory

(Bollen, 1989) and modification indices (Jöreskog & Sorbom, 2001).

Finally, in the Bi-factor model we tested for sex differences in fac-

tor variances. The theory and logic of testing for measurement

invariance is extensively detailed elsewhere (e.g. Meredith, 1993;

Widaman & Reise, 1997) so we do not repeat this here.

There is no fully satisfactory answer to the question of model fit,

particularly as this applies to testing for measurement invariance

(Yuan, 2005). Moreover, with Full Information Maximum Likeli-

hood, the only available fit indices are the likelihood ratio statistic

and the root mean square error of approximation (RMSEA). We rely

partly on the simulations of Hu and Bentler (1998, 1999), which

suggest that in order to assess absolute fit, a cut-off point of about

.06 is appropriate for the RMSEA. Decline in model fit at a given

stage of the invariance analysis indicates that the assumptions of

invariance do not hold in the constrained parameters (French &

Finch, 2006). To assess possible decline in model fit, we rely on

the conclusion of Cheung and Rensvold (2002). Their primary

recommendation is that changes of equal to or less than �0.01

for CFI indicate that invariance holds. However, since this statistic

is not available, we suggest a comparable cut-off value of 0.013 for

the RMSEA, based on their findings. Though conventionally the v2

difference statistic has been proposed as a measure of decrease in

fit between nested models, it too has been demonstrated to be sen-

sitive to sample size (Kelloway, 1995), and therefore it has been

argued to be inferior to other metrics for comparison of nested

models (Cheung & Rensvold, 2002).

3.1. Hierarchical MGCFA

First we consider results for the hierarchical MGCFA factor

model shown in Fig. 1. We analyzed this using the subsample aged

23 years or older (Nmale = 902, Nfemale= 1053), since, according to

data presented in Lynn and Irwing (2004), together with

developmental studies of brain tissue, we surmise that this is the

age at which sex differences probably attain their full adult value.

All invariance analyses considered parameters in the first- and

1 Standardization data from the Wechsler Adult Intelligence Scales� – Third Edition.

Copyright � 1997 by Harcourt Assessment Inc. Used with permission. All rights

reserved.
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second-order factor models simultaneously. For the configurally

invariant model (same factor pattern), the RMSEA was within the

specified cut-off, clearly demonstrating that the model provides a

good fit to the data (v2 = 569.1, df = 134; p < .001; RMSEA = .055).

For the fully metrically invariant model the fit effectively improved

as indicated by a reduction in the RMSEA (v2 = 597.2, df = 147;

Table 1

Univariate means, standard deviations and Cohen’s d.

Scale/subtest Males Females d F

N M SD N M SD

Full-Scale IQ 603 134.41 25.83 696 129.42 27.92 .185 <.001

Verbal Comprehension 1147 41.44 10.59 1303 38.96 10.65 .233 <.001

Vocabulary 1147 10.08 2.98 1303 9.96 3.04 .038 .230

Similarities 1147 10.19 3.00 1303 9.91 3.00 .095 .055

Information 1147 10.67 3.04 1303 9.40 2.82 .433 <.001

Comprehension 1147 10.50 2.91 1303 9.69 2.98 .276 <.001

Perceptual Organization 1147 41.26 9.71 1303 39.19 9.25 .219 <.001

Picture Completion 1147 10.15 3.05 1303 9.92 2.97 .076 .077

Block Design 1147 10.51 3.10 1303 9.70 2.78 .274 <.001

Matrix Reasoning 1147 10.23 2.95 1303 9.85 2.95 .130 .003

Picture Arrangement 1147 10.38 3.13 1303 9.72 2.94 .217 <.001

Working Memory 603 31.27 7.44 696 29.51 7.41 .238 <.001

Arithmetic 1147 10.68 3.21 1303 9.45 2.96 .399 <.001

Digit Span 1147 10.15 3.03 1303 9.95 3.04 .069 .095

Letter–Number 603 10.18 3.14 696 9.92 3.08 .083 .135

Processing Speed 1147 19.15 5.21 1303 20.82 5.54 �.308 <.001

Digit Symbol 1147 9.27 2.81 1303 10.60 3.04 �.456 <.001

Symbol Search 1147 9.89 2.94 1303 10.21 3.05 �.108 .006

Object Assembly 1147 10.09 3.02 1303 9.96 3.05 .040 .391

The last column contains p values based on the multivariate F-test, d represents the males’ minus the females’ means scores divided by the within-groups standard deviation.

Fig. 1. The WAIS-III second-order confirmatory factor model with mean structures (M8) – common metric completely standardized solution (VC, Verbal Comprehension;

WM, Working Memory; PS, Processing Speed; PO, Perceptual Organization; Comp, comprehension; Inf, information; Sim, similarities; Voc, Vocabulary; Ari, Arithmetic; DSp,

Digit Span; LN, Letter–Number sequencing; DS, Digit Symbol; SS, Symbol Search; Matr, Matrix Reasoning; PA, Picture Arrangement; PC, Picture Completion; OA, Object

Assembly; BD, Block Design).
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p < .001; RMSEA = .054, DRMSEA = �.001), so we conclude that

metric invariance is convincingly demonstrated.

At the next step, we constrained all subtest means (intercepts)

and factor means to equality in both males and females. This re-

sulted in a dramatic decrement in fit (v2 = 1254.6, df = 171;

p < .001; RMSEA = .081, Dv2 = 657.4, df = 24, p < .001). This clearly

establishes that there are mean differences in either factor or scale

scores across sex.

There are well established sex differences in Processing Speed,

Information and Arithmetic, while g is the focus of the investigation

(e.g. Hedges & Nowell, 1995; Held, Alderton, Foley, & Segal, 1993;

Lynn, Irwing, & Cammock, 2002;Majeres, 2007). Following the logic

of stepdown analysis the means (intercepts) for each of these vari-

ables was released first. Next, an inspection of modification indices

(MI) suggested that the intercept for Symbol Search (MI = 77.4)

should be released. This model provided equivalent fit to that of

the metrically invariant model in terms of the RMSEA index

(v2 = 709.4, df = 166; p < .001; RMSEA = .058, DRMSEA = 0.004), so

we accepted this model. Next we released the intercepts for Verbal

Comprehension, Working Memory and Perceptual Organization

which lead to a non-significant change in the likelihood ratio

(Dv2 = 2.09,df = 3,p > .05), sowemayconcludethatgadequatelyex-

plains the residual mean differences for these second-order factors.

The differences in the means expressed in d scores are 0.19

(t = 3.88, p = .00005), �0.72 (t = 15.54, p < .00001), 0.40 (t = 7.66,

p < .00001), 0.37 (t = 14.14, p < .00001), and 0.40 (t = 32.12,

p < .00001) for g, Processing Speed, Information, Arithmetic and

Symbol Search, respectively (a negative score denotes a female

advantage). The Bonferroni corrected probability is .002 in order

to maintain the probability of a type 1 error at .01, so clearly all

the d-score differences are significant.

3.2. Bi-factor models

Although the hierarchical factor model corresponds well to

some conceptualizations of the structure of intelligence, it has

some disadvantages. Because all the factors are correlated, this

can lead to ambiguities in the interpretation of such models. In

Bi-factor models, the factors are uncorrelated, which in principle

greatly simplifies interpretation. For these reasons, Carroll

(2003), for example, has favoured such models. Therefore, using

the same strategy and logic of analysis as presented above, we

examined Bi-factor models (see Fig. 2). With regard to all tests of

measurement invariance, the Bi-factor model supported identical

conclusions to those derived from the hierarchical factor model.

The mean score sex differences were highly similar at 0.22, .0.40,

.0.39 and 0.30 for g, Information, Arithmetic and Symbol Search,

respectively, but the estimated difference for Processing Speed, at

1.30, was substantially larger.

The Bi-factormodel has another advantage in that it greatly sim-

plifies testing for equality of factor variances. We applied equality

constraints to variances and error variances in themetrically invari-

ant model. All means and intercepts were also constrained except

for those five which were significantly different (v2 = 629.3,

df = 176; p < .001; RMSEA = .051, Dv2 = 71.8, df = 25, p < .001). We

then sequentially released constraints on each of the variances

one at a time. The variance ratios and associated chi-square differ-

ences were: g (VR = 1.04, Dv2 = 0.32, df = 1, p = 0.572), Verbal

Comprehension (VR = 1.03, Dv2 = 0.07, df = 1, p = 0.791), Working

Memory (VR = 1.39, Dv2 = 5.07, df = 1, p = 0.024), Processing Speed

(VR = 0.65 ,Dv2 = 9.07, df = 1, p = 0.003), and Perceptual Organiza-

tion (VR = 1.14, Dv2 = 0.45, df = 1, p = 0.502). We can thus conclude

that there are no significant differences in variability between

males and females on g, Verbal Comprehension, and Perceptual

Organization, while there is significantly greater male variability

on Working Memory at the .05 level, and significantly greater

variability in females on Processing Speed at the .01 level.

3.3. Sex differences across age in g

There is evidence that education has an effect on intelligence

(Dolan et al., 2006; Johnson, Deary, & Iacono, 2009), so it could

be argued that the observed sex difference in g favouring males

Fig. 2. The WAIS-III Bi-factor model with mean structure (M16) = common metric completely standardized solution (abbreviations as for Fig. 1).
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may be attributable to the older age groups in the sample in

which women would have been exposed to less education than

males.

In order to test for sex differences in g across age, we first calcu-

lated a composite g score using factor score regression. This

approach could be criticized in that it is known that composite

measures of g are potentially contaminated with non-g variance.

However, provided our results are not greatly discrepant from

those obtained from the latent variable analyses, we can be confi-

dent that the parameter estimates observed with the composite

score are in this instance closely equivalent. The sample was

divided into 13 age bands with 200 participants in all age bands

except the oldest two which comprised 150 and 100, respectively.

We carried out an analysis of variance with the g composite score

as the dependent variable, and sex and age group as the indepen-

dent variables. There was a significant mean difference for sex

(d = 0.177, F = 17.95, df = 1, p < 0.001), but neither the age nor the

interaction term were significant. To provide a direct test of the

effects of exposure to education we next controlled for length of

education divided into five levels from 68 toP16 years. The effect

of sex remained significant (F = 14.41, df = 1, p = .001), and Cohen’s

d (0.154) reduced only marginally. Consequently, the argument

that the sex difference in g is attributable to differential experience

of education does not appear to hold.

Figure 3 shows a plot of the data which shows some interesting

features of the profile of g across age. Firstly, although not signifi-

cant, there is a trend whereby the sex difference in g increases

across age from 17–23 years, as predicted by the developmental

theory of sex differences. Secondly, across age from 23–60 years,

male g-scores appear to follow a V shaped trend, while over the

same period female g-scores follow an inverted V.

4. Discussion

The MGCFA and Bi-factor analyses both show the existence of a

sex difference favoring men in g, Information, Arithmetic, and

Symbol Search and a sex difference favoring women in Processing

Speed. The sex difference effect sizes were highly similar except

that the estimate for Processing Speed was substantially larger in

the Bi-factor model.

Our results that the females have an advantage on Processing

Speed, while males have an advantage on Information and

Arithmetic replicate the findings of a number of other studies

(e.g. Hedges & Nowell, 1995; Held et al., 1993; Lynn et al., 2002;

Majeres, 2007). The large female advantage of 0.72–1.30d on Pro-

cessing Speed is particularly notable. The magnitude of this effect

arises partially because g is not masking sex differences in this

analysis (Johnson & Bouchard, 2007). Nevertheless, this finding

does support the argument of Majeres (2007) that because the

female brain is highly specialized for processing phonologically

coded information, this provides a female advantage on a range

of cognitive tasks including perceptual speed, digit-symbol

substitution, numerical computation, spelling ability and word-le-

vel reading. Neuroimaging studies also show that during

phonological processing women evidence greater right hemisphere

activation (e.g. Pugh et al., 1997). If women devote more right

Fig. 3. Age profile of g-scores by sex.
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hemisphere brain tissue to phonological processing, and men

devote more to visual rotation, then this might explain the trade-

off observed by Johnson and Bouchard (2007) on what they refer

to as a rotation-verbal dimension.

Contrary to some previous findings (e.g. Hedges & Nowell,

1995; Johnson et al., 2008), we did not find greater variability in

male scores on g, Verbal Comprehension, or Perceptual Organiza-

tion, and while we did find greater male variability on Working

Memory, there was even greater female variability on Processing

Speed. Our results add to the numerous inconsistencies in findings

on sex differences in variability. There are some possible reasons

for these discrepancies. Firstly, no latent variable analysis of the

issue has found greater male variability. This may be attributable

to known difficulties with composite variables. For example, dur-

ing development up to about 14 years of age, males score lower

on Verbal ability, and higher on Visuo-Spatial ability than do

females. This in itself would lead to greater apparent variability

in males on a composite containing these factors. Equally, if there

are greater differences in developmental lags among males, this

would also produce greater male variability until they enter adult-

hood. Alternatively, the findings may be due to a lack of power.

Although the WAIS-III is a very highly regarded cognitive

battery, nevertheless it does suffer some limitations for the estima-

tion of sex differences. In particular, 3-D mental rotation, for which

there is a large male advantage (e.g. Voyer, Voyer, & Bryden, 1995),

is not tested in the WAIS-III, and therefore the WAIS-III is likely to

provide an underestimate of the sex difference in g. We also found

that between the ages of 23 and 60 that the sex difference was

strongly attenuated (see Fig. 3). One interpretation would be that

successful males in these age ranges are harder to contact than

females, while intelligent females are more likely to volunteer.

Despite rigorous attempts at random sampling it would not be sur-

prising if the WAIS-III standardization sample was subject to such

selection effects, which would lead to an underestimate of the sex

difference in g.

The WAIS-III manual also documents that extensive procedures

were used in the construction of the test in order to eliminate gen-

der bias. The methods of expert opinion and differential item func-

tioning (DIF) were both used for this purpose. It is impossible to

know exactly how these procedures were employed. However, it

is well established that expert opinion is not a good basis to estab-

lish bias in items (Smith & Smith, 2005). DIF analyses will also tend

to remove unbiased items unless item pools are truly unidimen-

sional and this is something that is hard to establish (Embretson

& Reise, 2000). Taking all these considerations together, there are

some grounds to think that the WAIS-III, despite its excellent

psychometric properties, may underestimate sex differences in

cognitive abilities.

In conclusion, our findings provide further support for Lynn’s

developmental theory of sex differences, and suggest that the

consensus view that there is greater male variability in cognitive

abilities requires further investigation.
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