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Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex 
traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably 
and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a 
relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate 
the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies 
for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or 
more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering 
comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing 
studies of populations without this unique history would require hundreds of thousands to millions of participants to 
achieve comparable association power.

Most alleles with demonstrated deleterious effects on phenotypes 
directly alter the structure or function of a protein1,2. Exome-sequencing 
studies aim to discover such alleles and demonstrate their association 
to common diseases and disease-related quantitative traits. However, 
exome-sequencing studies to date generally have identified few newly 
associated rare variants or genes3,4. The sample size that is required for 
such discoveries remains uncertain and theoretical analyses indicate that 
studies to date have been underpowered, as most deleterious variants 
are expected to be rare owing to purifying selection5. These previous 
analyses also suggest that the power to detect associations to delete-
rious alleles is highest in populations that have expanded in isolation  

after recent bottlenecks, as alleles passing through the bottlenecks may 
increase to much higher frequencies than in other populations6–8.

Finland exemplifies such a history. Bottlenecks occurred at the 
founding of early-settlement regions (southern and western Finland) 
2,000–4,000 years ago and again with internal migration to late- 
settlement regions (northern and eastern Finland) in the fifteenth 
and sixteenth centuries9. Finland’s subsequent population growth (to 
approximately 5.5 million) generated sizable geographical sub-isolates 
in late-settlement regions.

This unique population history has resulted in ‘the Finnish Disease 
Heritage’10, 36 Mendelian diseases that are much more common in 
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Finnish individuals than in other Europeans. These disorders concen-
trate in late-settlement regions of Finland10, and the genes responsible 
for them exhibit extreme enrichment of deleterious variants11–13. We 
created the Finnish Metabolic Sequencing (FinMetSeq) study to capi-
talize on the population history of late-settlement Finland to discover 
rare-variant associations with cardiovascular and metabolic disease- 
relevant quantitative traits through exome sequencing of two extensively 
phenotyped population cohorts, FINRISK and METSIM (Methods).

We successfully sequenced 19,292 FinMetSeq participants and 
tested the identified variants for association with 64 clinically relevant 
quantitative traits, discovering 43 novel associations with deleteri-
ous variants14,15: 19 associations (11 traits) in FinMetSeq alone and 
24 associations (20 traits) in a combined analysis of FinMetSeq with 
24,776 Finns from three cohorts with imputed genome-wide geno-
types. Of the 26 variants that underlie these 43 associations, 19 were 
unique to Finland or enriched more than 20-fold in FinMetSeq com-
pared to non-Finnish Europeans (NFE). These enriched alleles cluster 
geographically like Finnish Disease Heritage mutations, indicating that 
the distribution of trait-associated rare alleles may vary significantly 
between locations within a country.

We demonstrate that exome sequencing in a historically isolated pop-
ulation that expanded after recent population bottlenecks is an efficient 
strategy to discover alleles with a substantial effect on quantitative traits. 
As most of the novel, putatively deleterious trait-associated variants that 
we identified are unique to or highly enriched in Finland, we estimate 
that similarly powered studies of these variants in non-Finnish popula-
tions would require hundreds of thousands or millions of participants.

Genetic variation
In 19,292 successfully sequenced exomes, we identified 1,318,781 
single-nucleotide variants and 92,776 insertion or deletion vari-
ants (Supplementary Tables 1–3 and Supplementary Information). 
Compared to NFE control exomes (gnomAD v.2.1, Extended Data 
Fig. 1a), FinMetSeq exomes showed depletion of singletons and dou-
bletons and excess variants with minor allele count (MAC) ≥ 5, par-
ticularly for predicted-deleterious alleles (Extended Data Fig. 1b).

Association analyses
We tested for association between genetic variants in FinMetSeq and 
64 clinically relevant quantitative traits after standard adjustments for 
medications and covariates, and transformation to normality for analyses  
(Methods, Supplementary Tables 4, 5). Out of 64 traits, 62 exhibited  
significant heritability with common single-nucleotide variants 
(P < 0.05; 5% < h2 < 53%; Extended Data Fig. 2a, Supplementary 
Table 6), with substantial phenotypic and genetic correlations between 
traits (Extended Data Fig. 2b).

Single-variant association tests with genetic variants with MAC ≥ 3 
among the 3,558 to 19,291 individuals measured for each trait 
(Supplementary Tables 4, 5) identified 1,249 associations (P < 5 × 10−7) 
at 531 variants (Supplementary Table 7); 53 traits were associated with 
at least one variant (Fig. 1a). All 1,249 associations remained signifi-
cant after adjustment for multiple testing (exome-wide and across the 
64 traits using a hierarchical procedure setting average the false discovery 
rate (FDR) to 5%; see Methods). Using this procedure on the 531 asso-
ciated variants, we detected 287 more associations (Supplementary 
Table 8), most of which reflected a high correlation between lipid 
traits. Of the 531 variants, those with a greater than 10× frequency in 
FinMetSeq compared to NFE were more likely to be trait-associated 
(odds ratio = 4.92, P = 2.6 × 10−5; Extended Data Fig. 1c).

After clumping associated variants within 1 megabase (Mb) and with 
r2 > 0.5 into single loci (Methods), the 531 associated variants repre-
sented 262 distinct loci (597 trait–locus pairs; Supplementary Table 7). 
The number of associated loci per trait correlated positively with trait 
heritability (r = 0.38, P = 8.8 × 10−4), although height was a notable 
outlier (Fig. 1b).

Most variants and loci (61%) were associated with a single trait; 4% 
were associated with ≥10 traits. Overlapping associations (Extended 

Data Fig. 3a) reflect both phenotypic and genetic correlations and the 
estimated genetic correlation of trait pairs predicts shared loci between 
traits (Extended Data Fig. 3b). Gene-based association tests revealed 
54 associations with P < 3.88 × 10−6 and multi-trait FDR-corrected 
P < 0.05 (Methods and Supplementary Table 9), including 10 traits 
associated with APOB (Extended Data Fig. 4) and a novel association 
of SECTM1 with high density lipoprotein cholesterol subfraction 2 
(HDL2-C) (Extended Data Fig. 5).

To determine which of the 1,249 single-variant associations are 
distinct from previous GWAS findings, we repeated the association 
analysis for each trait conditioning on published associated variants in 
the EBI GWAS Catalog (as per December 2016, Methods); 478 associ-
ations at 126 loci remained significant (P < 5 × 10−7), including at least 
one association for 48 traits (Supplementary Table 10). Conditionally 
associated variants were more often rare (24% versus 11%), more likely 
protein-altering (31% versus 22%) and more frequently >10× enriched 
in FinMetSeq relative to NFE (19% versus 10%) than associated variants 
overall.

Replication and follow-up
We attempted to replicate the 478  single-variant associations 
(unconditional and conditional P ≤ 5 × 10−7) and follow up on 
2,120 sub-threshold associations from FinMetSeq (unconditional 
5 × 10−7<P ≤ 5 × 10−5 and conditional P ≤ 5 × 10−5) in 24,776  
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Fig. 1 | Characterization of associations. a, Numbers of genomic loci 
associated with each trait. Bars are subdivided into common (MAF > 1%, 
dark blue) and rare (MAF ≤ 1%, light blue) variants. b, Relationship 
between estimated heritability and number of loci detected per trait. 
Each trait is coloured by trait group. Data are mean ± s.e.m. The grey line 
shows the linear regression fit to indicate the general trend. The number 
of independent individuals used in each point is listed in Supplementary 
Table 5. Height is the notable outlier. See Supplementary Table 4 for 
abbreviations.
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participants from three Finnish cohort studies: FINRISK16,17 partici-
pants not in FinMetSeq (n = 18,215), Northern Finland Birth Cohort 
196618 (n = 5,139) and Helsinki Birth Cohort19 (n = 1,412), all 
imputed using the Finnish SISu v.2 reference panel (www.sisuproject.
fi). Following association analysis within each cohort, we conducted 
a meta-analysis of the three imputation-based studies to test for rep-
lication of FinMetSeq variants (replication analysis) and a four-study 
meta-analysis with FinMetSeq to follow up on suggestive associations 
(combined analysis).

Of 448 significant variant–trait associations with replication data, 
392 (87.5%) replicated at P < 0.05 (Supplementary Table 11). Of 
the 1,417 sub-threshold associations, 431 reached P < 5 × 10−7 in  
the combined analysis (Supplementary Table 12); more than 60%  
of the variants were absent from the reference panel and thus could 
not be tested further.

Among the significant associations from FinMetSeq or the combined 
analysis, 43 associations were with 26 predicted deleterious variants 
(6 protein truncating variants (PTVs) and 20 missense variants) that 

Table 1 | Associations with predicted deleterious variants from FinMetSeq or combined analysis
Chromosome: 
position Gene

FinMetSeq 
MAF NFE MAF MAF ratio (95% CI) Trait FinMetSeq P FinMetSeq β

Replication or 
combined P

Replication or 
combined β

1:55,076,137 FAM151A 0.099 0.0147 6.7 (6.1–7.5) IDL-C 5.4 × 10−16 −0.187 2.1 × 10−17 −0.191

IDL-P 8.9 × 10−14 −0.172 1.9 × 10−16 −0.185

2:120,848,049 EPB41L5 0.085 0.044 1.9 (1.8–2.1) eGFRa 1.7 × 10−6 −0.093 4.8 × 10−12 −0.107

Creatininea 2.5 × 10−6 0.091 2.5 × 10−12 0.098

3:125,831,672 ALDH1L1 0.0026 0 ∞ Gly 1.8 × 10−8 −0.873 4.5 × 10−4 −0.827

4:13,612,630 BOD1L1 0.0001 0 ∞ WHR 4.7 × 10−7 −2.501 NA NA

5:79,336,091 THBS4 0.0045 0.0001 45 (14.4–140.9) Weighta 6.7 × 10−7 −0.377 3.2 × 10−7 −0.252

5:140,181,423 PCDHA3 0.0001 NA NA WHR 2.7 × 10−7 2.559 NA NA

9:107,548,661 ABCA1 0.00023 0 ∞ HDL-C 4.8 × 10−10 −2.046 NA NA

9:136,501,728 DBH 0.05 0.0021 23.8 (18.4–30.4) DBPa 1.5 × 10−6 −0.115 2.8 × 10−12 −0.11

11:47,282,929 NR1H3 0.0042 0.00003 140 (19.5–1004.4) HDL-C 1.4 × 10−7 0.425 6.7 × 10−7 0.435

HDL2-Ca 3.2 × 10−6 0.473 1.3 × 10−8 0.458

VLDL-Ca 4.0 × 10−6 −0.469 3.1 × 10−7 −0.412

11:116,692,293 APOA4 0.0096 0.012 0.8 (0.7–0.9) HDL-Ca 2.2 × 10−5 0.225 1.5 × 10−7 0.196

11:117,352,857 DSCAML1 0.016 0.0002 80 (35.7–179.3) VLDL-C 4.1 × 10−8 0.299 2.0 × 10−3 0.162

14:101,198,426 DLK1 0.023 0.00013 177 (66.3–472.4) Heighta 2.7 × 10−5 −0.149 1.2 × 10−10 −0.163

16:55,862,682 CES1 0.0018 0.00003 60 (8.3–432.0) HDL-C 1.1 × 10−10 0.771 3.8 × 10−6 0.793

ApoA1a 1.9 × 10−6 0.668 4.0 × 10−9 0.718

16:56,996,009 CETP 0.0017 0.00003 56.7 (7.9–408.3) ApoA1 2.6 × 10−8 0.834 1.8 × 10−4 1.034

HDL-C 1.1 × 10−14 0.946 8.8 × 10−21 1.217

16:68,013,570 DPEP3 0.0099 0.00044 22.5 (12.9–39.1) HDL-C 1.6 × 10−7 −0.295 7.2 × 10−15 −0.373

ApoA1a 5.2 × 10−6 −0.294 4.0 × 10−7 −0.253

16:68,732,169 CDH3 0.0044 0.00064 6.9 (4.2–11.2) Pyruvatea 3.7 × 10−5 0.417 6.6 × 10−10 0.471

17:6,599,157 SLC13A5 0.00091 0 ∞ Citrate 1.3 × 10−9 1.294 9.5 × 10−12 1.309

17:7,129,898 DVL2 0.02 0.02 1.0 (0.9–1.1) Vala 4.2 × 10−5 −0.239 5.7 × 10−9 −0.232

17:39,135,270 KRT40 0.00013 0 ∞ HDL-C 3.2 × 10−8 2.416 NA NA

17:41,062,979 G6PC 0.025 0 ∞ MUFA 4.4 × 10−7 0.275 3.5 × 10−1 0.067

Glycerola 5.8 × 10−6 0.218 4.1 × 10−7 0.183

CRPa 1.6 × 10−5 0.175 4.0 × 10−9 0.185

Total TGa 1.0 × 10−6 0.23 1.3 × 10−7 0.197

17:41,926,216 CD300LG 0.00034 0 ∞ HDL-C 4.8 × 10−14 2.061 4.9 × 10−2 0.801

HDL2-C 1.3 × 10−7 2.154 NA NA

ApoA1 8.1 × 10−8 1.694 NA NA

18:47,091,686 LIPG 0.0025 0 ∞ HDL2-Ca 1.2 × 10−5 0.579 5.6 × 10−10 0.624

PCa 3.1 × 10−6 0.624 1.1 × 10−8 0.578

Total PGa 9.0 × 10−6 0.594 1.1 × 10−7 0.538

19:10,683,762 AP1M2 0.015 0.00009 167 (41.6–668.5) ApoB 5.8 × 10−8 −0.282 1.5 × 10−3 −0.199

IDL-Ca 1.1 × 10−6 −0.289 6.9 × 10−14 −0.319

IDL-Pa 2.1 × 10−6 −0.281 8.5 × 10−14 −0.318

Rem-
nant-Ca

8.0 × 10−6 −0.268 2.7 × 10−12 −0.301

19:11,350,904 ANGPTL8 0.0025 0 ∞ HDL2-Ca 3.4 × 10−6 0.564 1.1 × 10−8 0.574

19:49,318,380 HSD17B14 0.046 0.05 0.9 (0.8–1.0) Vala 3.4 × 10−5 −0.152 2.1 × 10−7 −0.144

20:24,994,201 ACSS1 0.0026 0 ∞ Acetatea 1.3 × 10−5 0.626 2.1 × 10−12 0.631

Chromosome positions were based on GRCh37. NFE MAFs were taken from gnomAD v.2.1 control exomes excluding Estonian or Swedish individuals. MAF: 0, variant present in gnomAD, but not in NFE 
controls; NA, variant not present in gnomAD. Replication values with P < 0.05 are highlighted in bold. 95% CI, 95% confidence interval. See Supplementary Table 4 for trait abbreviations.
aAssociated traits that only reach significance in combined analysis.
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conditional analysis and literature review suggest are novel (Table 1). 
Of those, 19 associations (15 variants) were significant in FinMetSeq 
(Table 1 and Supplementary Table 11); another 24 associations (16 var-
iants) reached significance in the combined analysis (Table 1 and 
Supplementary Table 12). Furthermore, 34 out of 43 associations were 
with 19 variants either found only in Finland or enriched more than 
20-fold in FinMetSeq compared to NFE. The identification of associ-
ations for these 19 variants would have required much larger samples 
in NFE populations than in FinMetSeq (Fig. 2a, b). We provide brief 
summaries relating some of these associations to known biology and 
previously described genetic evidence (Table 1, expanded version in 
Supplementary Table 13; see Supplementary Information), highlighting 
here the most notable findings.

Anthropometric traits
A predicted damaging missense variant (Arg94Cys) in THBS4, which 
was 45× more frequent in FinMetSeq than in NFE, was associated in 
the combined analysis with a mean 5.9 kg decrease in body weight. 
THBS4 encodes thrombospondin 4, a matricellular protein that is 
found in blood vessel walls and highly expressed in heart and adipose 
tissues20. THBS4 may regulate vascular inflammation21 and has been 
implicated in the risk of heart disease22.

A predicted damaging missense variant (Val104Met) in DLK1, which 
was 177× more frequent in FinMetSeq than in NFE, was associated in 
the combined analysis with a mean 1.3 cm decrease in height. DLK1 
encodes delta-like notch ligand 1, an epidermal growth factor that inter-
acts with fibronectin and inhibits adipocyte differentiation. Uniparental 
disomy of DLK1 causes Temple and Kagami–Ogata syndromes, which 
are characterized by growth restriction, hypotonia, joint laxity, motor 
delay and early onset of puberty23. Paternally inherited common var-
iants near DLK1 are associated with childhood obesity, type 1 dia-
betes, age at menarche and precocious puberty24–26. Homozygous 

null mutations in the mouse orthologue Dlk1 lead to embryos with  
reduced size, skeletal length and lean mass27; in Darwin’s finches, sin-
gle-nucleotide variants at this locus have a strong effect on beak size28.

High-density lipoprotein cholesterol
A predicted deleterious missense variant (Arg112Trp) in CD300LG 
is associated in FinMetSeq with a mean 0.95 mmol l−1 increase in 
high-density lipoprotein cholesterol (HDL-C) and is associated with 
increased HDL2-C and ApoA1. This variant, which is absent from 
NFE, has an opposite direction of effect from a previously reported 
deleterious missense variant in this gene29, which encodes a type-I 
cell-surface glycoprotein.

Amino acids
A stop gain variant (Arg722X) in ALDH1L1 is associated in FinMetSeq 
with reduced serum glycine levels and is absent from NFE; this trait 
may increase risk for cardiometabolic disorders30,31. ALDH1L1 encodes 
10-formyltetrahydrofolate dehydrogenase, which competes with serine 
hydroxymethyltransferase to alter the ratio of serine to glycine in the 
cytosol. Gene-based tests suggest that additional PTVs and missense 
variants in ALDH1L1 alter glycine levels (P = 1.4 × 10−20; Extended 
Data Fig. 6 and Supplementary Table 9).

Ketone bodies
A predicted damaging missense variant (Phe517Ser) in ACSS1 is asso-
ciated in the combined analysis with increased serum acetate levels and 
is absent from NFE. ACSS1 encodes an acyl-coenzyme A synthetase 
and has a role in the conversion of acetate to acetyl-CoA. In rodents, 
increased acetate levels lead to obesity, insulin resistance and metabolic 
syndrome32.

Trait-associations and disease end points
Genotype data from FinnGen33 enabled us to test whether delete-
rious variants responsible for our novel trait associations contrib-
uted to related disease end points. We examined 22 diseases for the 
25 available variants shown in Table 1; 3 variants were associated 
with diseases in FinnGen at a Bonferroni threshold value of P < 0.05/
(22 × 25) = 9.0 × 10−5 (Supplementary Table 14).

A predicted damaging missense variant (Ser32Pro) in KRT40, which 
is associated in FinMetSeq with elevated HDL-C but is absent in NFE, is 
associated in FinnGen with increased risk of pancreatitis. Although this 
is the first disease association reported for KRT40, type-I keratins reg-
ulate exocrine pancreas homeostasis34. A 29-bp deletion that causes a 
frameshift in FAM151A is associated in FinMetSeq with decreased total 
cholesterol in intermediate-density lipoproteins (IDL-C) and decreased 
concentration of IDL particles, is 6.7× more frequent in FinMetSeq 
than NFE and is associated in FinnGen with decreased risk of myo-
cardial infarction. Interpretation of this association is complicated as 
the variant is also situated in an overlapping gene (ACOT11), which 
is involved in fatty acid metabolism and lies <1Mb from a cardiopro-
tective variant in PCSK9. Finally, a predicted damaging missense var-
iant (Arg65Trp) in DBH, which is associated with a mean 1.0 mm Hg 
decrease in diastolic blood pressure in the combined analysis, is 23.8× 
more frequent in FinMetSeq than in NFE, and is associated in FinnGen 
with decreased risk of hypertension. Distinct loci in this gene and gene-
based tests are associated with mean arterial pressure35,36.

Replication outside Finland
To assess the generalizability of these novel associations, we attempted 
to replicate associations from our combined analysis with data from 
the UK Biobank. Across 8 anthropometric and blood pressure traits 
for which UK Biobank data are publicly available, our combined anal-
ysis identified 31 trait–variant associations, of which 23 were present 
in the UK Biobank. Of the 23 associations, 20 were to variants with 
a minor allele frequency (MAF) > 1% in FinMetSeq and a compa-
rable frequency in UK Biobank; 15 (75%) showed association in UK 
Biobank at P < 0.05/23 = 2.2 × 10−3. The three rare variants in this 
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Fig. 2 | Allelic enrichment in the Finnish population and its effect 
on genetic discovery. a, Relationship between MAF and estimated 
effect size for associations discovered in FinMetSeq. Each variant that 
reached significance in FinMetSeq was plotted, with associations in 
Table 1 represented by dark-blue points (FinMetSeq MAFs) and green 
points (NFE MAFs). Purple lines indicate 80% power curves for sample 
sizes of n = 10,000 and n = 20,000 at α = 5 × 10−7. b, Same plot as in a, 
highlighting the variants in Table 1 that only reached significance in the 
combined analysis.
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analysis were all more than 10× more frequent in FinMetSeq than in 
UK Biobank; none were associated in UK Biobank (Supplementary 
Table 15). However, even after adjusting for winner’s curse37, we had 
<50% power to detect these associations in UK Biobank, consistent 
with the argument that extremely large samples will be needed in other 
populations to achieve the power for rare-variant association studies 
that we observed in Finland.

Enriched variants cluster geographically
Given the concentration of Finnish Disease Heritage mutations within 
regions of late-settlement Finland38, we hypothesized that trait- 
associated variants discovered through FinMetSeq would also clus-
ter geographically. Principal component analysis supported this 
hypothesis, revealing a broad-scale population structure within late- 
settlement regions among 14,874 unrelated FinMetSeq participants 
with known parental birthplaces (Extended Data Fig. 7). Carriers of 
PTVs and missense alleles showed more clustering of parental birth-
places than carriers of synonymous alleles, even after adjusting for 
MAC (Supplementary Table 16a, b).

To analyse the distribution of variants within late-settlement Finland, 
we delineated geographically distinct population clusters using hap-
lotype sharing among 2,644 unrelated individuals with both parents 
born in the same municipality (Methods and Extended Data Fig. 8). 
We compared variant counts across functional classes and frequencies 
between an early-settlement reference cluster and 12 clusters containing 
≥100 individuals (Extended Data Fig. 9 and Supplementary Tables 17, 
18). Clusters that represent the most heavily bottlenecked late- 
settlement regions (Lapland and Northern Ostrobothnia) displayed a 
deficit of singletons and enrichment of intermediate frequency variants 
compared to other clusters.

Variants that were more than 10× enriched in FinMetSeq com-
pared to NFE displayed particularly strong geographical clustering 

(Supplementary Table 19). We further characterized clustering for 
FinMetSeq-enriched trait-associated variants, by comparing mean dis-
tances between birthplaces of parents of minor allele carriers to those 
of non-carriers (Supplementary Table 20). Most of these variants were 
highly localized. For example, for rs780671030 in ALDH1L1, the mean 
distance between parental birthplaces is 135 km for carriers and 250 km 
for non-carriers (P < 1.0 × 10−7, Fig. 3a).

Finally, we identified comparable geographical clustering between 
carriers of 35 Finnish Disease Heritage mutations and carriers of 
FinMetSeq-enriched trait-associated variants (Fig. 3b and Methods). 
Clustering was considerably greater in carriers than clustering observed 
for non-carriers of both sets of variants, suggesting that rare trait- 
associated variants may be much more unevenly distributed geograph-
ically than has previously been appreciated.

Discussion
We demonstrate that a well-powered exome-sequencing study of deeply 
phenotyped individuals can identify numerous rare variants that are 
associated with medically relevant quantitative traits. The variants 
that we identified provide a useful starting point for studies aimed 
at uncovering biological mechanisms and fostering clinical trans-
lation. The power of this study to discover rare-variant associations 
derives from the numerous deleterious variants that are enriched in or 
unique to Finland. Prioritizing the sequencing of multiple population 
isolates that have expanded from recent bottlenecks is a strategy for 
increasing the scale of the discovery of rare-variant associations7,39–41. 
Because genetic drift results in a different set of alleles to pass through  
population-specific bottlenecks, thus enriching some variants and 
depleting others, the numerous rare-variant associations that could be 
identified by sequencing of well-phenotyped samples across multiple 
isolates could rapidly increase our understanding of the genetic archi-
tecture of complex traits.
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Fig. 3 | Geographical clustering of associated variants. a, Example of 
geographical clustering for a novel trait-associated variant (Table 1). The 
map shows birth locations of all 113 parents of carriers (orange) and 113 
randomly selected parents of non-carriers (blue) of the minor allele for 
rs780671030 in ALDH1L1. b, Mutations in the Finnish Disease Heritage 
(FDH) genes (n = 38) geographically cluster (by parental birthplace) 
similarly to trait-associated variants (Table 1) that are >10× more 

frequent in FinMetSeq than in NFE (n = 12) and more than enriched 
variants from our combined analysis (n = 7). For all variants, carriers 
clustered more than non-carriers (centre line, median; box limits, upper 
and lower quartiles; whiskers, 1.5× interquartile range; points, outliers). 
Birthplaces of carrier and non-carrier individuals were plotted on a map of 
Finland, including regions that were ceded before the Second World War 
(© Karttakeskus Oy, 2001).

N A t U r e | www.nature.com/nature



ArticlereSeArcH

Our results support recent suggestions of continuity between the 
genetic architectures of complex traits and disorders that are classically 
considered monogenic42,43, by identifying numerous deleterious vari-
ants with large effects on quantitative traits that demonstrate geograph-
ical clustering comparable to the clustering of the mutations responsible 
for the Finnish Disease Heritage.

Using a Finland-specific reference panel44 to impute FinMetSeq var-
iants into array-genotyped samples from three other Finnish cohorts 
enabled us to identify additional novel associations. However, the clus-
tering in FinMetSeq of deleterious trait-associated variants within lim-
ited geographical regions and our inability to follow up on more than 
700 sub-threshold associations from FinMetSeq for which the associ-
ated variants were absent in the Finnish imputation reference panel, 
emphasize the importance of representing regional subpopulations in 
such reference panels, to account for fine-scale population structures.

The value of rare-variant studies in population isolates will depend 
on the richness of phenotypes in sequenced cohorts from these pop-
ulations. For example, we associated fewer than 100 of the more than 
24,000 deleterious, highly enriched variants identified in FinMetSeq 
with any of the 64 quantitative traits studied here. The associations 
that we identified to disease end points in FinnGen hint at the dis-
coveries that will be possible when that database reaches its full size of 
500,000 participants. The insights gained from such efforts will acceler-
ate the implementation of precision health, informing projects in more 
heterogeneous populations that are still at an early stage45.
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MeThodS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Study designs, phenotypes, and sequenced participants of the METSIM and 
FINRISK studies. METSIM is a single-site study investigating cardiometabolic 
disorders and related traits in 10,197 men randomly selected from the popula-
tion register of Kuopio, Eastern Finland, aged 45 to 73 years at initial examina-
tion from 2005 to 2010. We attempted exome sequencing of all METSIM study  
participants15,46.

FINRISK is a series of health examination surveys47 based on random popula-
tion samples from five (six in 2002) geographical regions of Finland, carried out 
every five years beginning in 1972. For exome sequencing, we chose 10,192 par-
ticipants in the 1992–2007 FINRISK surveys from northeastern Finland (former 
provinces of North Karelia, Oulu and Lapland).

All participants in both studies provided informed consent, and study protocols 
were approved by the Ethics Committees at participating institutions (National Public 
Health Institute of Finland; Hospital District of Helsinki and Uusimaa; Hospital 
District of Northern Savo). All relevant ethics committees approved this study.
Selection of traits, harmonization, exclusions, covariate adjustment and trans-
formation. Of the 257 quantitative traits measured in both METSIM and FINRISK, 
we selected 64 for association analysis in FinMetSeq based on clinical relevance 
for cardiovascular and metabolic health (Supplementary Tables 4, 5). We excluded 
individuals with type 1 diabetes and women who were pregnant at the time of 
phenotyping from all analyses; individuals with type 2 diabetes from analyses of 
glycaemic traits; and individuals who had not fasted for at least 8 h after their last 
meal for traits influenced by food consumption. A complete list of exclusions can 
be found in Supplementary Table 5. We adjusted measured values of systolic and 
diastolic blood pressures for individuals on antihypertensive medication at the 
time of testing48,49, and serum lipid measures for individuals on lipid-regulating 
medications50,51. Trait adjustments are listed in Supplementary Table 5.

We prepared quantitative traits for association analysis separately for METSIM 
and FINRISK by linear regression on trait-specific covariates after log-transforming  
skewed variables. Covariates for regression analyses included: age and age2 
(METSIM); sex, age, age2 and cohort year (FINRISK). Trait transformations and 
trait-specific covariates are listed in Supplementary Table 5. Several traits were 
adjusted for sex hormone treatment, which included women on contraceptives 
or hormone-replacement therapy. We transformed residuals from these initial 
regression analyses to normality using inverse normal scores.
Exome sequencing. We carried out exome sequencing in two phases.
Phase 1. We quantified 10,379 DNA samples with PicoGreen (ThermoFisher 
Scientific) and randomly parsed samples with adequate DNA (>250 ng) into 
cohort-specific files. We then re-arrayed samples to ensure equal numbers of 
METSIM and FINRISK samples on each 96-well plate, alternating samples between 
studies in consecutive positions within and across plates, to minimize between-
study batch effects.
Using 100–250 ng input DNA, we constructed dual-indexed libraries using the 
HTP Library Kit (KAPA Biosystems, target insert size of 250 bp), pooling 12 
libraries before hybridization to the SeqCap EZ HGSC VCRome (Roche) exome 
reagent. After estimating the concentration of each captured library pool by qPCR 
(Kapa Biosystems) to produce appropriate cluster counts for the HiSeq2000 plat-
form (Illumina), we generated 2× 100-bp paired-end sequencing data, yielding 
approximately 6 Gb per sample to achieve a coverage depth of ≥20× for ≥70% of 
targeted bases for every sample.
Phase 2. We quantified, prepared, pooled and captured 9,937 samples as described 
for phase 1. We generated 2× 125-bp paired-end sequencing reads on the 
HiSeq2500 1T to achieve the same coverage as described for phase 1.
Contamination detection, sequence alignment, sample quality control and 
variant calling. We aligned sequence reads to the human genome reference 
build 37 (bwa-mem, v.0.7.7), realigned insertions or deletions (indels) (GATK52 
IndelRealigner v.2.4) and marked duplicates (Picard MarkDuplicates, v.1.113; 
http://broadinstitute.github.io/picard) and overlapping bases (BamUtil clipOverlap 
v.1.0.11; http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap).

For each sample, we required single-nucleotide variant (SNV) genotype array 
concordance >90% if SNV array data were available, excluding samples with esti-
mated contamination >3% or sample swaps compared to existing genotype data 
(verifyBamID53 v.1.1.1; Supplementary Table 1).

We called SNVs and short indels with GATK52 (v.3.3, using recommended best 
practices) for all targeted exome bases and 500 bp of sequence up and down-
stream of each target region using HaplotypeCaller. We merged calls in batches of 
200 individuals using CombineGVCFs and recalled genotypes for all individuals 
at all variable sites with GenotypeGVCFs.

After merging genotypes for the 19,378 samples that passed preliminary quality- 
control checks, we filtered SNVs and indels separately using the recommended 

best practices for variant quality score recalibration (VQSR). We used the true- 
positive variants in the GATK resource bundle (v.2.5; build37) to train the VQSR 
model after restricting to sites in targeted exome regions. After assessment with 
VQSR, we retained variants for which we identified ≥99% of true-positive sites 
used in the training model for both SNVs and indels.

Following initial variant filtering, we decomposed multi-allelic variants into 
bi-allelic variants, left-aligned indels and dropped redundant variants using vt54 
(v.0.5). We filtered variants with >2% missing calls and/or Hardy–Weinberg 
P< 10−6. We additionally removed variants with an overall allele balance (alter-
nate allele count/sum of total allele count) < 30% in genotyped samples. We 
excluded 86 individuals with >2% missing variant calls yielding a final analysis 
set of 19,292 individuals.
Array genotypes, genotype imputation and integrated exome + imputation 
panel. For all except 1,488 participants (57 METSIM, 1,431 FINRISK), previ-
ously generated array genotypes were available17,55, with which we generated 
three datasets: (1) a merged array-based call set of all variants present in ≥90% 
of array-genotyped individuals across both cohorts; (2) a merged array-based 
Haplotype Reference Consortium (HRC) v.1.1 imputed dataset using the Michigan 
Imputation Server56,57; (3) an integrated dataset containing HRC imputed gen-
otypes and exome-sequence variants (excluding all individuals without array 
data, and using the sequence-based genotypes in cases in which there was overlap 
between sequenced and imputed genotypes).
Annotation. We annotated the final set of sequence variants that passed quality 
control using variant effect predictor (VEP v.76)58 of Ensembl using five in sil-
ico algorithms to predict the functional impact of missense variants: PolyPhen2 
HumDiv and HumVar59, LRT60, MutationTaster61 and SIFT62.
Association testing. Single variants. We carried out single-variant association tests 
for transformed trait residuals with genotype dosages for variants with MAC ≥ 3 
assuming an additive genetic model, using the EMMAX63 linear mixed model 
approach, as implemented in EPACTS (v.3.3.0; http://genome.sph.umich.edu/wiki/
EPACTS), to account for relatedness between individuals. We used genotypes for 
sequenced variants with MAF ≥ 1% to construct the genetic relationship matrix.
Conditioning on associated variants from previous GWAS. To differentiate associa-
tion signals identified here from known associations, we performed exome-wide 
association analysis for each trait conditioning on variants previously associated 
(P < 10−7) with that trait in the EBI GWAS catalogue (https://www.ebi.ac.uk/gwas/
downloads; 4 December 2016 version)64, publications55,65–67 or manuscripts in 
preparation. The keywords from the GWAS catalogue that we used to assign known 
variants to each trait can be found in Supplementary Table 21. We also manually 
curated published associations for specific metabolites65,68.

Using the combined HRC and exome panel, we pruned each trait-specific list of 
associated variants (GWAS variants) based on linkage disequilibrium (r2 > 0.95). 
Of the 23 GWAS variants that were absent from the HRC and exome panel, we 
identified a proxy (r2 > 0.80) variant for 17; we excluded the remaining 6 variants 
from the conditional analysis. The variants included in the conditional analysis 
are listed in Supplementary Table 22. We extracted genotypes for variants used 
in conditional analysis from the HRC and exome panel and converted dosages 
to alternate allele counts by rounding to the nearest integer (0, 1 or 2). For condi-
tional analyses, we imputed missing genotypes for the individuals without array 
data using the mean genotype. We then ran association analysis using the same 
linear mixed model approach as in unconditional analysis but including the com-
plete set of pruned GWAS variants as covariates in the association test. We then 
evaluated the novelty of conditional associations by searching OMIM, ClinVar, 
and the literature.
Defining loci. To identify the number of distinct associations for each trait, we 
performed linkage disequilibrium clumping using Swiss (https://github.com/
welchr/swiss) of variants with unconditional P < 5 × 10−7 or both unconditional 
and conditional P < 5 × 10−5 for at least one trait. For each variant in this subset, 
we provided Swiss with the minimum unconditional P value across all traits. The 
clumping procedure starts with the variant with the smallest P value, merges into 
one locus all variants within ±1Mb that have r2 > 0.5 with the index variant and 
iterates this process until no variants remain.
Calculating effects and variance explained of individual variants. For novel variants 
highlighted in Table 1, we evaluated the effect of each variant on the trait values by 
calculating the mean trait value in carriers and non-carriers. As the effect estimates 
from our association tests are standardized, we calculated variance explained for 
a given variant with the equation var. exp. = β−f f2 (1 ) ˆ2

, where f is the MAF and 
β̂ is the estimated effect size. The variance explained is included in Supplementary 
Table 10.
Gene-based testing. We carried out gene-based association tests using the mixed 
model implementation of SKAT-O69, considering three different, but nested, sets 
of variants (variant ‘masks’): (1) PTVs at any allele frequency with VEP anno-
tations: frameshift_variant, initiator_codon_variant, splice_acceptor_variant, 
splice_donor_variant, stop_lost, stop_gained; (2) PTVs included in (1) plus  

http://broadinstitute.github.io/picard
http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
http://genome.sph.umich.edu/wiki/EPACTS
http://genome.sph.umich.edu/wiki/EPACTS
https://www.ebi.ac.uk/gwas/downloads
https://www.ebi.ac.uk/gwas/downloads
https://github.com/welchr/swiss
https://github.com/welchr/swiss
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missense variants with MAF < 0.1% scored as damaging or deleterious by all five 
functional prediction algorithms; (3) PTVs included in (1) plus missense variants 
with MAF < 0.5% scored as damaging or deleterious by all five algorithms.

For each trait and mask, we only tested genes with at least two qualifying vari-
ants. Each mask contained a different number of genes with at least two qualifying 
variants: up to 7,996, 12,795 and 12,890 for the three masks, respectively. The 
exact number of genes tested varied by trait owing to sample size. We first used a 
Bonferroni-corrected exome-wide threshold for 12,890 genes, which corresponds 
to a threshold of P < 3.88 × 10−6. Analogous to single-variant association, we 
passed genes that met this association threshold for additional consideration with 
hierarchical false-discovery rate (FDR) correction, as described below.
Hierarchical FDR correction for testing multiple traits and variants. To con-
trol for multiple testing across 64 traits, we adopted an FDR controlling proce-
dure70, using a two-stage hierarchical strategy (described in the Supplementary 
Information). Stage 1 identifies the set of R variants (or genes) associated with 
at least one trait (P < 5 × 10−7 for single-variant unconditional results and 
P < 3.88 × 10−6 for gene-based results), controlling genome-wide FDR across 
all variants at P = 0.05. Stage 2 identifies all traits associated with the discovered 
variants in a manner that guarantees an average FDR P < 0.05.
Genotype validation. We validated exome-sequencing-based genotype calls using 
Sanger sequencing for METSIM carriers of 13 trait-associated very rare variants 
with MAF < 0.1% in seven genes, finding concordance for 107 out of 108 (99.1%) 
non-reference genotypes evaluated.
Replication in additional Finnish cohorts. We attempted to replicate significant 
single-variant associations (P < 5 × 10−7) and follow up suggestive single-variant 
associations (P < 5 × 10−5) using imputed array data from up to 24,776 indi-
viduals from three cohort studies: Northern Finland Birth Cohort 196618, the 
Helsinki Birth Cohort Study19 and FINRISK study participants not included in 
FinMetSeq16,17.

For each cohort, before phasing we performed genotype quality control batch-
wise using standard quality thresholds. We pre-phased array genotypes with Eagle71 
(v.2.3) and imputed genotypes genome-wide with IMPUTE72 (v.2.3.1) using 2,690 
sequenced Finnish genomes and 5,092 sequenced Finnish exomes. We assessed 
imputation quality by confirming sex, comparing sample allele frequencies with 
reference population estimates and examining imputation quality (INFO score) 
distributions. We excluded any variant with INFO < 0.7 within a given batch from 
all replication/follow-up analyses.

For each cohort, we matched, harmonized, covariate adjusted and transformed 
available phenotypes as described above for FinMetSeq, and ran single-variant 
association using the EMMAX linear mixed model implemented in EPACTS, after 
generating kinship matrices from linkage disequilibrium-pruned (command: plink 
–indep-pairwise 50 5 0.2) directly genotyped variants with MAF > 5%.
Association to disease end points. From >1,100 disease end points available for 
analysis in FinnGen, we selected 22 that we considered most relevant to the traits 
analysed in FinMetSeq, identifying variant associations as described previously33.
Association replication in UK Biobank. For eight FinMetSeq anthropometric and 
blood pressure traits available in UK Biobank (height, weight, body mass index, 
hip circumference, waist circumference, fat percentage, systolic blood pressure and 
diastolic blood pressure), we extracted, for variants reaching P < 5 × 10−7 in our 
combined analysis, trait-variant association statistics from http://www.nealelab.is/
uk-biobank. Of the 8 traits, 7 had at least one associated variant and 23 of the total 
of 31 variants were available in UK Biobank. A comparison of association results 
is in Supplementary Table 15.
Population genetic analyses. Identifying unrelated individuals. To identify nearly 
independent common SNVs, we removed SNVs with MAF < 5% and pruned the 
remaining SNVs in windows of 50 SNVs, in steps of 5 SNVs, such that no pair of 
SNVs had r2 > 0.2. We used KING73 to estimate pairwise relationships among the 
exome-sequenced individuals, removing one individual from each pair inferred 
by KING to have a relationship of third degree or closer, yielding 14,874 unrelated 
individuals for population genetic analyses.
Enrichment of predicted-deleterious alleles in Finland. We assessed enrichment 
of predicted-deleterious alleles in Finland by comparing the 14,874 nearly unre-
lated FinMetSeq individuals to the 14,944 NFE control exomes in gnomAD (after 
removing NFE individuals from countries with substantial Finnish populations, 
Estonia and Sweden). We analysed the two most common alleles at each site with 
base quality score >10, mapping quality score >20, and coverage equal to or 
greater than that found in ≥80% of variable sites (17.73× in FinMetSeq, 32.27× 
in gnomAD), resulting in around 38.6 Mb for comparisons. We contrasted the 
proportional site frequency spectra for FinMetSeq and NFE for five functional 
variant categories (PTVs, missense, synonymous, untranslated regions and intronic 
variants) after down-sampling both datasets to 18,000 chromosomes.

We also assessed the enrichment of deleterious alleles within subpopulations 
of the FinMetSeq dataset. We applied Chromopainter and fineSTRUCTURE 
to 2,644 unrelated FinMetSeq individuals whose parents were both born in 

the same municipality to identify 16 subpopulation clusters74 (Supplementary 
Information). Of the 16 clusters, we used as the reference population a cluster 
for which the highest proportion of the parents of its members were from early- 
settlement Finland (Northern Savonia population 3 (NSv3), Supplementary 
Table 17). We used the twelve clusters with >100 members in subsequent analyses 
(Supplementary Table 17). We then compared the ratio of the site frequency spec-
tra to the reference for PTVs, missense and synonymous variants, down-sampling 
both datasets to 200 haploid chromosomes. For each comparison, we computed 
statistical evidence for enrichment or depletion at a given allele count bin by 
exact binomial test against a null of equal number of variants found in both the 
test and reference cluster.
Geographical clustering of predicted functionally deleterious alleles. We first gener-
ated a distance matrix tabulating the pairwise geographical distance between the 
birthplaces of all available parents of unrelated sequenced individuals. For each 
variant of interest, we computed for the minor allele carriers in FinMetSeq the 
mean distance among all parent pairs. We evaluated statistical significance of geo-
graphical clustering by comparing the observed mean distance to mean distances 
for up to 10,000,000 sets of randomly drawn non-carrier individuals matched by 
cohort status and number of parents with birthplace information available.

To assess whether PTVs or missense variants may be more geographically 
clustered than synonymous variants, we first identified a set of near-independent 
variants (r2 > 0.02) with MAC ≥ 3 and MAF ≤ 5% among the 14,874 unrelated 
individuals. For each variant, we computed the mean pairwise geographical dis-
tance between the birthplaces across all pairs of the available parents of carriers of 
the minor allele and regressed this mean distance on variant class (PTVs, missense 
or synonymous) and MAC, MAC2 and MAC3 (Supplementary Table 16). For those 
variants in gnomAD, we also assessed whether variants enriched in FinMetSeq 
compared to NFE are more likely to be geographically clustered. As above, we 
computed the mean pairwise distances among parents of carriers of the minor 
allele and regressed mean distance on the logarithm of enrichment and MAC, 
MAC2 and MAC3 (Supplementary Table 19). In both analyses, we assessed a model 
with the interaction terms but report only the model without interactions if the 
interactions were not significant.
Heritability estimates and genetic correlations. We used genome-wide array gen-
otype data on the 13,326 unrelated individuals for whom both exome sequenc-
ing and array data were available to estimate heritability and genetic correlations 
for the 64 traits. We constructed a genetic relationship matrix with PLINK75 
(v.1.90b, https://www.cog-genomics.org/plink2) by applying additional filters for 
MAF > 1% and genotype missingness rate < 2% to the set of previously used gen-
otyped SNVs, leaving 205,149 SNVs for genetic relationship matrix calculation. 
We used the exact mixed model approach of biMM76 (v.1.0.0, http://www.helsinki.
fi/~mjxpirin/download.html) to estimate the heritability of our 64 traits and the 
genetic correlation of the 2,016 trait pairs.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The sequencing data can be accessed through dbGaP (https://www.ncbi.nlm.nih.
gov/gap/) using study numbers phs000756 and phs000752. Association results can 
be accessed at http://pheweb.sph.umich.edu/FinMetSeq/ and are searchable via 
the Type 2 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org/). 
Summary statistics are also available through the NHGRI-EBI GWAS Catalog at 
https://www.ebi.ac.uk/gwas/downloads/summary-statistics.
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Extended Data Fig. 1 | Allele frequency comparisons between 
FinMetSeq and NFE from gnomAD. a, Distribution of allelic frequencies 
between FinMetSeq and gnomAD NFE. The comparison of allele 
frequencies shows the excess of variants at higher frequency in Finland 
as a result of the multiple bottlenecks experienced in Finnish population 
history. b, Proportional site frequency spectra between FinMetSeq and 
gnomAD NFE by variant annotation class. In general, we find a depletion 
of the variants in the rarest frequency class, as well as enrichment of 
variants in the intermediate to common frequency range. The site 
frequency spectra were down-sampled to 18,000 chromosomes for each 
data set. c, Comparison of MAFs for trait-associated variants in FinMetSeq 

and NFE gnomAD. Plotted in the grey background is a two-dimensional 
histogram of variants with non-zero allele frequencies in both gnomAD 
and FinMetSeq but no trait associations. Variants associated with at least 
one trait are coloured and scaled inversely proportional to the logarithm of 
the association P value. Variants >10× enriched in FinMetSeq compared 
to NFE are pink, those <10× enriched are in blue. The dashed line is 
the line of equal frequency. Two-sided uncorrected P values are from 
a regression of trait on the count of alternative allele at each variant. 
The number of independent individuals used in each point is listed 
in Supplementary Table 5.
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Extended Data Fig. 2 | Heritability of and correlations between traits. 
a, b, Traits are in the same order, clockwise in a, and left to right and top to 
bottom in b, following the trait group colour key. a, Heritability estimated 
in 13,342 unrelated individuals (for abbreviations see Supplementary 
Table 4; for details see Supplementary Table 6). b, Heat map of the absolute 

Pearson correlations of standardized trait values (top right triangle) and 
the absolute values of estimated pairwise genetic correlations (bottom 
left triangle). Genetic correlations are estimated in 13,342 unrelated 
individuals. Values in grey below the diagonal had trait heritability less 
than 1.5× the s.e. of heritability.
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Extended Data Fig. 3 | Properties of associations shared between traits. 
a, Shared genomic associations by pairs of traits. For traits x and y,  
colour in row x and column y reflects the number of loci associated with 
both traits divided by the number of loci associated with trait x. Traits 
are presented in the same order as in Extended Data Fig. 2a, and the 
side and top colour bars reflect trait groups. b, Relationship between 
estimated genetic correlation and extent of sharing of genetic associations. 
For each trait pair, the extent of locus sharing is defined as the number 

of loci associated with both traits divided by the total number of loci 
associated with either trait. Analysis using the absolute value of the 
Pearson correlation of the residual series results in a very similar pattern. 
The number of trait pairs in each x-axis category is as follows: 0–1%, 819; 
1–10%, 204; 11–20%, 102; 21–30%, 41; 31–40%, 29; 41–50%, 16; >50%, 13.  
The bar within each box is the median, the box represents the upper and 
lower quartiles, whiskers extend to 1.5× the interquartile range and points 
represent outliers.
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Extended Data Fig. 4 | Gene-based association of extremely rare 
variants in APOB with serum total cholesterol. Top, the distribution 
of the covariate-adjusted and inverse-normal transformed phenotype. 
Bottom, the association statistics for each variant included in the  

gene-based test along with the trait value for minor allele carriers of 
each variant (orange triangles). SV.P is the P value from the analysis of 
each variant in a single-variant analysis. The number of independent 
individuals in the analysis is 19,291.
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Extended Data Fig. 5 | Gene-based association of rare variants in 
SECTM1 with HDL2 cholesterol. Top, the distribution of the covariate-
adjusted and inverse-normal transformed phenotype. Bottom, the 
association statistics for each variant included in the gene-based test, 

along with the trait value for minor allele carriers of each variant (orange 
triangles). SV.P is the P value from the analysis of each variant in a single-
variant analysis. The number of independent individuals in the analysis is 
10,984.
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Extended Data Fig. 6 | Gene-based association of extremely rare 
variants in ALDH1L1 with glycine levels. Top, the distribution of the 
covariate-adjusted and inverse-normal transformed phenotype. Bottom, 
the association statistics for each variant included in the gene-based test, 

along with the trait value for minor allele carriers of each variant (orange 
triangles). SV.P is the P value from the analysis of each variant in a single-
variant analysis. The number of independent individuals in the analysis is 
8,206.
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Extended Data Fig. 7 | Population structure of the FinMetSeq dataset, 
by region. Population structure, by region, from a principal component 
analysis of exome-sequencing variant data (MAF > 1%) for 14,874 
unrelated individuals with known parental birthplaces. Colour indicates 
individuals with both parents born in the same region; grey indicates 
individuals with different parental birth regions or missing information for 
one parent. Ctf, Central Finland; COs, Central Ostrobothnia; Kai, Kainuu; 

Khm, Kanta-Hame; Kyl, Kymenlaakso; Lap, Lapland; Nka, Northern 
Karelia; NOs, Northern Ostrobothnia; NSv, Northern Savonia; Osb, 
Ostrobothnia; Phm, Paijat-Hame; Prk, Pirkanmaa; SKa, Southern Karelia; 
SOs, Southern Ostrobothnia; SSv, Southern Savonia; Stk, Satakunta; Swf, 
Southwest Finland; Usm, Uusimaa; X, split parental birthplaces. Large 
solid circles represent the centre of each region. A map of Finland with 
regions labelled is supplied for reference.
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Extended Data Fig. 8 | Hierarchical clustering tree produced by 
fineSTRUCTURE. We identified 16 subpopulations within the 
FinMetSeq dataset by applying a haplotype-based clustering algorithm, 
fineSTRUCTURE, on 2,644 unrelated individuals born by 1955 whose 
parents were both born in the same municipality (Methods). Each 
subpopulation is named based on the most common parental birth 
location among its members. Kai, Kainuu; Lap, Lapland; NKa, North 

Karelia; NOs, North Ostrobothnia; NSv, North Savonia; SOs, South 
Ostrobothnia; SuK, Surrendered Karelia. A map of Finland with regions 
labelled is supplied for reference. If multiple subpopulations share the 
same location label, the subpopulation is further distinguished with a 
numeral. NSv3 is used as an internal reference for the enrichment analysis. 
See Supplementary Table 17 for more detailed demographic descriptions 
of each subpopulation.
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Extended Data Fig. 9 | Regional variation in allele frequencies by 
functional annotation. Enrichment of variants by allelic class in regional 
subpopulations of late-settlement Finland (defined in Supplementary 
Table 17). Each bin represents the ratio of variants in the subpopulation 
compared to the reference subpopulation (NSv3), after down-sampling 
the frequency spectra of all populations to 200 chromosomes. Pink cells 

represent enrichment (ratio >1), blue cells represent depletion (ratio <1).  
Sample sizes and confidence intervals for each enrichment ratio and the 
associated P values are presented in Supplementary Table 18. The results 
are consistent with multiple bottlenecks in late-settlement Finland, 
particularly for populations in Lapland and Northern Ostrobothnia. 
*P < 0.05; **P < 0.01; ***P < 0.005.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection bwa-mem v0.7.7 
picard v1.113 
GATK - IndelRealigner v2.4 
BamUtil - clipOverlap v1.0.11 
verifyBamID v1.1.1 
GATK v3.3 
VQSR  
vt v0.5 
VEP v76 
CADD v1.2 
(PolyPhen2 (v2.2.2), LRT (11/09 release), MutationTaster (2013 release), SIFT (09/11 release)) as in dbNSFP v2.4 

Data analysis EMMAX  
EPACTS v3.3.0 
PLINK v1.9 
R 3.4.0 
Swiss v1.0.0 
SKAT-O  
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Eagle v2.3 
IMPUTE2 v2.3.1 
KING v2.0 
SHAPEIT v2, r837 
ChromoPainter v2 
fineStructure v2.0.8 
biMM v1.0.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The sequence data can be accessed through dbGaP using the following study numbers: FINRISK: phs000756, METSIM: phs000752.  Association results can be 
accessed at http://pheweb.sph.umich.edu/FinMetSeq/.  NOTE:  METSIM phs000752 is the correct accession number, however dbGaP has not yet released the data.  
We are working to resolve this
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All available subjects in two extensive population cohorts of Finnish subjects

Data exclusions We excluded 126 individuals, 92 with type 1 diabetes and 34 women who were pregnant at the time of phenotyping, from all analyses. 
Pregnancy is known to dramatically alter metabolic profiles and type 1 diabetics also represent an altered profile compared to the general 
population, and thus both might obscure variant-trait relationships present in the rest of the population. Both represent a very small fraction 
of the overall sample. Though these samples were sequenced, they were excluded prior to any gene/trait association testing. We also 
excluded 3,088 individuals with T2D from analyses of glycemic traits. For traits influenced by food consumption (amino acids, fatty acids, LDL 
cholesterol, total triglycerides, and glycemic traits), we excluded individuals not fasting for at least 8 hours after their last meal. A complete list 
of exclusions can be found in Supplementary Table 4.  All exclusion criteria were determined before any analyses were conducted.

Replication We performed replication analysis of significant single-variant associations (P<5×10-7) and follow-up analysis of suggestive single-variant 
associations (P<5×10-5) in up to 24,776 individuals from three GWAS cohort studies: Northern Finland Birth Cohort 1966 (NFBC1966), the 
Helsinki Birth Cohort Study (HBCS), and FINRISK study participants not included in the exome sequencing portion of FinMetSeq. We also did 
look ups of our discoveries in UK Bio Bank (for some of the same quantitative traits) and FinnGen (a Finnish Biobank, for disease endpoints). 

Randomization no experimental treatments in our study

Blinding no experimental treatments in our study

Reporting for specific materials, systems and methods
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics METSIM is a single-site study comprised of 10,197 men randomly selected from the population register of Kuopio, Eastern 
Finland, aged 45 to 73 years at initial examination from 2005 to 2010. FINRISK is a series of health examination surveys carried 
out by the National Institute for Health and Welfare (formerly National Public Health Institute) of Finland every five years 
beginning in 1972. The surveys are based on random population samples from five (six in 2002) geographical regions of Finland. 
Participants were selected by 10-year age group, sex, and study area. Survey sample sizes have varied from 7,000 to 13,000 
individuals and participation rates from 60% to 90%. The age-range was 25 to 64 years until 1992 and 25 to 74 years since 1997. 

Recruitment FINRISK - Multi-site national health examination of adults executed every 5 years since 1972 representing a geographically 
diverse cross-section of the country. No major exclusions. 
METSIM - Single site population cohort representing older (>= 45 at recruitment) adult males in the city of Kuopio in eastern 
Finland. Though a population cohort, recruited only older men due to their increased risk for cardiovascular and metabolic 
disease.  
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