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T
he road from molecule to complex behaviours starts at the 
DNA sequence. The small effects of many individual DNA 
sequence variants travel through many cascades of increas-

ingly complex biological pathways that react to environmen-
tal stimuli, resulting in complex behavioural outcomes (Fig. 1). 
Genome-wide association studies (GWASs) are successfully con-
necting millions of single DNA bases to a wide range of complex 
behavioural outcomes on a large scale. It is a bold approach that 
quantifies the relationships between the DNA sequence and the 
most complex of human characteristics by examining our genomes 
with brute force through unprecedented study sample sizes, some of 
which exceed a million human participants, and without including 
any of the intermediate processes. This hypothesis-free approach 
keeps providing us with many new clues on the nature of human 
behavioural differences, but we struggle with how to read these 
clues. As GWASs continue to increase their sample sizes and refine 
their approaches, more and better data are being produced on the 
association between DNA and behavioural outcomes. Here we sum-
marize the history and current state of the field and discuss how 
we can make progress in disentangling and interpreting the grow-
ing amount of polygenic signals produced by GWASs on human 
behaviour.

The advent of GWAS
Throughout the last century, twin studies have consistently shown 
us that most human characteristics that show individual differences 
have considerable heritable components1,2. Nearly every behav-
ioural outcome that was measured showed significantly higher cor-
relations between identical twins compared with between fraternal 
twins. Thus, the first law of behavioural genetics was coined, which 
states that ‘all human behavioural traits are heritable’3. The first 
studies to link genetic regions to heritable traits at the molecular 
level were the family linkage studies in the 1980s, in which the seg-
regation of a limited number of genetic variants within families was 
compared with the segregation of a trait within families (a glossary 
of key terms is provided in Box 1). This approach was successful 
only for traits that were influenced by genes with exceptionally large 

effect sizes, such as single-gene (monogenic) disorders including 
Huntington’s disease4 and cystic fibrosis5. In the early 2000s, the 
first whole human genomes were sequenced in the Human Genome 
Project6,7. More genomes followed soon thereafter, enabling the cor-
relational structure of genetic variants to be mapped on a population 
level8,9, which shifted the focus from sparse genetic variants within 
families to genome-wide variation at the population level10. The 
insights and reference datasets that followed made it affordable to 
study larger numbers (millions) of genetic variants at larger scales, 
which resulted in the first GWASs11–13. The microarray chips used in 
GWAS analyses are designed to capture as much genetic variation 
as possible by leveraging the correlational structure of the genome 
in selecting an affordable number of genetic variants to be directly 
measured. The correlational structure of the genome can then also 
be used to fill in many of the remaining gaps of unmeasured genetic 
variation using genotype imputation, which is especially useful 
when combining studies that use different microarray chips14. In a 
GWAS, each of the measured and imputed genetic variants is tested 
for its association with a complex trait of interest. Complex traits 
are traits that are influenced by a combination of many genetic vari-
ants (polygenic) and environmental factors. Before it was feasible 
to measure that many genetic variants across the genome, complex 
traits were being linked to genetic variants that were chosen based 
on a priori hypotheses in candidate gene studies. These studies were 
largely unsuccessful due to our limited understanding of the genetic 
architecture of complex traits and resulted in many false-positive 
findings in the literature15,16. The hypothesis-free genome-wide 
scans of the GWAS design were the first to result in many new and 
replicable associations between genetic variants and complex traits.

Early on, GWAS analyses were successful in detecting asso-
ciations between genetic variants and physical characteristics, 
including common diseases such as type 2 diabetes17, obesity18 and 
cardiovascular disease19, as well as non-disease dimensions of varia-
tion such as height20, blood lipids21 and body mass index (BMI)22. 
As sample sizes increased, it became more viable to apply the GWAS 
approach to behavioural outcomes as well, starting with mental 
health disorders such as schizophrenia23,24, bipolar disorder25,26 and 
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major depression27,28, and eventually also moving on to non-disease 
dimensions of human behaviour, such as personality traits29, sex-
ual orientation30, substance use31,32, intelligence33 and educational 
attainment34. With more advanced statistical genetics methods and 
growing sample sizes, the last decade has led to growing insights 
into the genetic architecture of complex behavioural traits. GWAS 
analyses have helped to expose the highly polygenic nature of these 
complex behavioural traits, showing that behavioural outcomes are 
influenced by more common genetic variants with smaller effects 
than many previously assumed35,36. The distribution of the observed 
effects of individual genetic variants was largely consistent with the 
infinitesimal model that was proposed by R. A. Fisher about a cen-
tury earlier, whereby quantitative traits are influenced by an almost 
infinite amount of genes with increasingly smaller additive effects37. 
Non-additive genetic effects (that is, gene–gene interactions and 
dominance effects) are rarely included in traditional GWAS designs, 
because they are more difficult to estimate, and both theory and 
empirical evidence suggest that their contribution is minimal38,39. 
Predictions from theory and experimental evidence state that, for 
polygenic traits, the smaller the effects of individual genes, the 
more nearly additive they are40. These increasingly smaller effects 
of individual genetic variants on behavioural traits make it difficult 
for GWASs to capture all genetic influences that were predicted to 
exist by twin studies (Fig. 2). A substantial portion of the expected 
heritability may also reside in rare genetic variants that are not well 
captured by current microarray chips41,42. Efforts to increase GWAS 
sample sizes and genomic coverage to capture more heritability 
in the polygenic signals are continuously ongoing. However, the 
proportion of the heritability explained in GWAS analyses to date 
contains enough signal to do meaningful follow-up studies on the 
relationships between the DNA sequence and complex behavioural 
outcomes.

Biology of behaviour
Identifying genetic variants that are associated with complex traits 
is regarded as an important first step towards deeper insights 
into underlying biological mechanisms. Studies have shown that  
therapeutic drug targets for physical diseases with support from 
GWAS results are more than twice as likely to succeed43,44, which 
is one of the many signs that GWAS results indeed contain biologi-
cally meaningful information. For behavioural traits, the search for 
biological insights from genetic variants identified by GWASs is still 
in its infancy. One notable occasion of an individual GWAS associa-
tion leading to a crucial biological insight occurred when follow-up 
analyses revealed that the strongest associations for schizophrenia 
came from a genetic variant on chromosome 6 that increases synap-
tic pruning during late adolescence45. However, to date, more stud-
ies have succeeded in learning about the biology of behaviour by 
looking at polygenic signals (that is, the aggregate of effects of many 
genetic variants) than by looking at individual genetic variants.

As more GWAS associations lie in intergenic and intronic regions, 
it is probable that gene regulation has a larger role in individual dif-
ferences compared with changes to the proteins46. If differences 
within our species are largely due to varying gene expression levels, 
this would be consistent with the finding that differences in neu-
ronal synapses between different vertebrate species are also largely 
due to the tuning of protein expression levels rather than changes 
in the proteome content47. Novel methods that allow polygenic sig-
nals from behavioural traits to be partitioned into manually curated 
components confirm that polygenic signals for behavioural traits are 
strongly enriched for genetic variants that are known to influence 
gene expression through transcription and gene methylation48–50. 
The same approaches show that the genes that are being regulated 
are largely expressed in expected tissues with respect to their associ-
ated traits—polygenic signals for height come largely from genes 
expressed in connective tissues or bone cells; polygenic signals for 
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Fig. 1 | The complexity of the associations between DNA sequence 

variants and human behaviour. a–h, The small effects of many individual 

DNA sequence variants (a) travel through many cascades of bidirectional 

biological processes that react to environmental stimuli to end up associated 

with complex behavioural outcomes. The DNA sequence contains patterns 

that encode protein sequences and regions that regulate their expression. 

Proteins that are built as a result of these instructions perform vital functions 

at the cellular level (b). Complex networks of cells make up organs, a 

complex network of organs makes up the human body (c) and a complex 

network of humans makes up society (g). Individual differences in biological 

make-up (b,c) in combination with environmental differences in exposures 

from the family (f; which are also influenced by the same (genetic) 

influences) and society (g) explain the individual differences in psychological 

and psychiatric (Ψ) outcomes (d). These behavioural outcomes have an 

important role for people’s place in society, which is often measured through 

socioeconomic outcomes such as educational attainment, occupation and 

income (e). All of these different phenotypic levels influence each other as 

well as the people and the environment around them. In modern behavioural 

genetics, to date, we have focused mainly on estimating the associations 

between genetic variants and relatively crude measures of human 

behaviour (h; the Manhattan plot at the top shows the results of a GWAS 

on educational attainment34), with relatively little progress on disentangling 

what processes are happening in-between.
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inflammatory disorders come mostly from genes expressed in the 
immune system; and polygenic signals for behavioural traits such 
as substance use, psychiatric disorders or educational attainment 
are significantly enriched for genes expressed in the central nervous 
system, especially in the cortex and the cerebellum50,51. Surprisingly, 
polygenic signals for BMI also mostly come from genes that are 
expressed in the central nervous system (especially the cortex and 
the cerebellum), suggesting that BMI is more of a behavioural trait 
than a metabolic one50,51. These methods enable the polygenic signal 
to be further delineated into more specific neuronal types, show-
ing, for example, that the polygenic signal for bipolar disorder is 
significantly enriched for GABAergic neurons (inhibitory), whereas 
the signals for BMI and schizophrenia seem to be more enriched 
for glutamatergic neurons (excitatory), and the signals for educa-
tional attainment and neuroticism for neither50. One could zoom 
in further on the synaptic level, showing that polygenic signals for 
educational attainment and bipolar disorder are more enriched for 
postsynaptic activity, autism for presynaptic activity, and attention 
deficit hyperactivity disorder for both52. However, as behavioural 
traits are more distal and less directly under biological control than 
physical traits, the delineation of their polygenic signals into such 
specific biological categories becomes more difficult to interpret. 
These polygenic signals are probably made up of a composite of 
signals from different sources that are a result of different com-
binations of underlying biological processes. If a GWAS analysis 
is the first step towards a deeper understanding of the biology of 

behaviour, the steps in between GWAS analyses and biology have 
to include disentangling what those different sources are (Box 2).

Prediction of behaviour
Understanding the underlying biology leading to an association 
between polygenic signals and their outcome is not always regarded 
as a strong prerequisite to using polygenic signals in practice.  
A promising potential for polygenic signals lies in the ability to 
leverage them to produce genetic risk predictors. These genetic 
risk predictors (hereafter, polygenic scores), represent the aggre-
gated genetic effects across the genome and can be computed by 
summing the alleles that an individual carries and weighting them 
by the allelic effect estimates from GWASs. Despite the gap in our 
knowledge about the processes between the polygenic signals and 
the phenotypic outcomes, these polygenic scores are predictive of 
heritable outcomes, which has proven to be useful in research and 
holds potential for clinical use53–55. Although each genetic variant 
generally explains a very small proportion of variance, the com-
bined effect of all variants can be substantial, although it is pres-
ently considerably lower than the total heritability estimates from 
twin studies. One of the first successful applications of polygenic 
scores in research was in 2009, in which it served as evidence for 
the polygenic nature of schizophrenia56. The polygenic score for 
schizophrenia then explained ~2–3% of the individual differences 
in schizophrenia in an independent sample, which increased to 
~10% after increasing the effective GWAS sample size from ~6,900 

Box 1 | Glossary of key terms

Family linkage study. Parents transmit relatively large segments of 
DNA to their offspring, causing genetic variants that are physically 
closer to each other to be transmitted together more often than 
expected by chance (that is, the genetic variants are linked). In a 
family linkage study, it is investigated whether a disease co-occurs 
with measured genetic markers in family pedigrees, in which case, 
the causal genetic variant is probably near (linked to) that genetic 
marker. This approach has been successful for identifying genetic 
variants with relatively large effects.

Genotype imputation. Some genetic variants appear together in a  
population more often than others, especially when they are physi cally  
closer to each other. Genotype imputation is a process whereby 
unmeasured genetic variants are estimated (imputed) with the help 
of the expected correlations between measured and unmeasured 
genetic variants, which are estimated from a reference dataset with 
more densely measured genomes of the respective population.

GWAS. A hypothesis-free study design that estimates the 
associations between many genetic variants (up to millions) and a 
heritable trait. The genetic variants that are analysed in a GWAS are 
generally limited to common single-nucleotide polymorphisms 
(SNPs; which are substitutions of a single nucleotide at a specific 
location in the genome). This approach has been successful for 
identifying many common genetic variants with smaller effects.

Polygenic signal. The aggregate of estimated effects of many 
genetic variants on a heritable trait. These are generally summarized 
in GWAS summary statistics, which include the effect sizes and P 
values for each individual genetic variant.

Complex traits. Traits that are influenced by a combination of 
many genetic variants (that is, polygenic) with relatively small 
effects and environmental factors.

Polygenic score. A genetic predictor for a complex trait, which 
is computed by summing the genetic variants carried by an 
individual, weighted by their estimated effect size. The effect size 

estimates come from a GWAS that excludes the participants for 
which the polygenic score is computed.

Population stratification. A systematic difference between 
populations in the frequencies of genetic variants due to different 
ancestral backgrounds. These can cause false-positive associations 
in a GWAS if the trait also differs between the populations. This 
can be controlled for by (1) analysing relatively homogeneous 
populations and (2) controlling for large patterns of genetic 
variation that reflect ancestry differences.

Genetic correlation. An estimate of the overlap in genetic effects 
between two traits. A genetic correlation (rg) can vary from 
−1 (100% overlap in the opposite direction) to 0 (no overlap) 
to 1 (100% overlap in the same direction). Significant genetic 
correlations are widespread between behavioural traits (Fig. 2).

Mendelian randomization. A study design that uses genetic  
variants, ideally with a known effect mechanism, as instrumental 
variables to assess the causal effect of a modifiable exposure (on 
which the genetic variants have an effect) on an outcome (on 
which the genetic variants are assumed to not have a direct effect).

Gene–environment correlation. When genetic influences are 
associated with environmental exposures, which can happen in 
three ways: (1) passive gene–environment correlation occurs when 
the rearing environment that parents provide for their offspring is 
influenced by heritable parental behaviours, resulting in parents 
who pass down both genes and environment to offspring; (2) 
active gene–environment correlation comes about when a choice 
that leads to an environmental exposure is influenced by heritable 
traits; and (3) evocative gene–environment correlations occur 
when the environmental exposure results from a response from 
others to a heritable outcome.

Ascertainment bias. A bias in the data collection in which a 
(heritable) trait is associated with the probability of being included 
in the sample.
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to ~214,000 about a decade later57. The polygenic score for the 
less-heritable outcome of educational attainment went through a 
comparable trajectory, first explaining 2% of the variation using a 
GWAS of ~125,000 participants58, which increased to ~12% when 
the GWAS sample size reached 1.1 million participants34. As sample 
sizes keep expanding, the prediction accuracy of polygenic scores 
is expected to further increase with an expected r2 (that is, the pro-
portion of variance explained) of h2

SNP/(1 + (M/N × h2
SNP)), where 

h2
SNP is the heritability captured by the GWAS, M is the number of 

independent genetic variants and N is the discovery GWAS sample 
size59. This expected increase may eventually yield clinically action-
able predictions from disease-related polygenic scores60. Polygenic 
scores can improve the predictive power of clinical models, as has 
been shown for cardiovascular disease, breast cancer, prostate can-
cer and type 1 diabetes61–65. With enough predictive power, poly-
genic scores could potentially be applied to identify individuals at 
risk before symptoms manifest and to identify who could be most 
responsive to specific treatments. Even without a deeper knowledge 
on the origin of the predictive value, contributions to research and 
the clinic can be useful provided that the prediction is valid and 
informative for the research question or clinical outcome. However, 
prediction of more complex behavioural outcomes with polygenic 
scores comes with substantial caveats, particularly when the inter-
pretation of the prediction is relevant to the research question or the 
intervention. When the nature of the predictive ability of polygenic 
scores for behavioural traits is not fully understood, applying them 
in either scientific research or the clinic can lead to incorrect inter-
pretations and conclusions. The ease with which polygenic scores 
can be applied for prediction should increase the urgency with 
which we need to invest in disentangling the sources of the poly-
genic signals that these scores are based on.

Dissecting the polygenic signal
Substantial parts of genetic signals from GWASs contain signals 
that are not directly related to the biology of the trait of inter-
est itself. The largest patterns of genetic variation in a population 
reflect ancestry differences66, which are strongly correlated with 
geography67–70 and are therefore in line with many environmen-
tal and cultural differences between populations/subpopulations.  
Not controlling for these systematic ancestry differences results  
in spurious associations (population stratification)71. In the earlier 
days of GWAS analyses, confounding due to ancestry differences 
that was not accounted for accordingly could have easily gone  
undetected and become part of the signal72,73. More recently,  
methods have been developed to successfully disentangle which  
part of the GWAS signal is due to confounding due to ancestry  
differences and which part reflects polygenic effects74. This was an 
important step in extracting the genetic signals of interest from 
GWAS studies, but blindly extracting all associated signals that 
reflect polygenicity is still probably not sufficient for a fuller under-
standing of the genetic architecture of the trait. Besides polygenic 
effects on the trait of interest itself, the part of the GWAS signal 
that reflects polygenicity is expected to contain significant amounts 
of signal from at least three other sources that need to be disen-
tangled—polygenic effects on correlated traits, environmental 
effects that are correlated with polygenic effects and polygenic 
effects reflecting systematic biases in the ascertainment of study 
participants.

Genetic correlations. At the end of the nineteenth century, the cor-
relation coefficient was invented in an attempt to quantify inher-
ited similarities between individuals from the same family and to  
quantify the covariation between different traits within the same 
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individuals75,76. It helped to further illustrate the heritability of 
human traits and it helped in exposing that correlations between 
human traits and diseases are widespread. For example, people with 
a mental health disorder show a higher risk of developing other 
mental health problems77, but are also at a higher risk of develop-
ing additional physical health problems78. There are several ways in 
which traits can become correlated with each other, mostly due to 
one trait causing the other or due to shared underlying causal fac-
tors. Two traits are genetically correlated with each other when a sig-
nificant portion of the correlation between them can be explained 
by the same underlying genetic influences. Significant genetic cor-
relations have been detected between many behavioural outcomes 
by measuring and modelling multiple outcomes within identical 
and fraternal twins79–85. More recently, methods have been devel-
oped that make it possible to compute genetic correlations between 
traits without having to measure the different traits in the same 
individuals. These methods compare polygenic signals extracted 
from GWAS results on different traits86. This has greatly increased 
our potential to map out the genetic overlap between a wide range 
of complex traits and diseases. Results so far suggest that significant 
genetic correlations between complex traits are widespread, both 
between behavioural traits (Fig. 2) and between behavioural and 
physical traits86,87. Genetic correlations can reflect different types 
of relationships88, mostly reflecting some form of pleiotropy (that 
is, the same genes influencing different traits), the following two in 
particular: (1) horizontal pleiotropy, where the same genetic variants 
influence both traits either directly or indirectly through an inter-
mediate phenotype; and (2) vertical pleiotropy, where the genetic 
variants influence the first trait, and the first trait has a causal effect 
on a second trait. Methods that distinguish between horizontal and 
vertical pleiotropy indicate that many of the genetic correlations 
result from of a combination of both89,90. Another potential source 
for genetic correlations is cross-trait assortative mating, whereby 

people who score high on one trait tends to choose a mate who 
scores highly on another trait, causing genes for the two different 
traits to be passed down and inherited together. This has been sug-
gested to partly explain the genetic correlation between educational 
attainment and height91. Assortative mating on the same trait, which 
is especially strong for educational attainment92,93, can also result in 
the trait becoming genetically correlated with itself, meaning that 
genetic variants that influence educational attainment, but are not 
usually transmitted together, will appear together in the offspring 
more often than expected by chance, which can inflate heritability 
estimates94.

One way to learn more about the nature of widespread pleiot-
ropy among behavioural traits is to dissect the polygenic signals 
into polygenic effects that are shared between traits and polygenic 
effects that are more trait specific. Several methods have recently 
been developed and applied that take important first steps towards 
that goal. Some approaches leverage overlapping polygenic sig-
nals to improve the statistical power to study the genetic architec-
ture of shared underlying dimensions; these approaches have been 
applied to better capture polygenic effects that overlap between 
mood-related traits (wellbeing, major depression and neuroti-
cism)95,96, between psychiatric disorders97, and between intelligence 
and educational attainment98. A recently developed approach called 
case–case GWAS (CC-GWAS)99 uses polygenic signals from two 
different disease GWASs (that is, disease cases versus healthy con-
trols) to create new polygenic signals that reflect what separates the 
two groups of disease cases from each other. To illustrate the effec-
tiveness of CC-GWAS, the approach was applied to identify novel 
loci that reflect genetic differences between eight psychiatric disor-
ders99. Psychiatric disorders are, with their enormous societal bur-
den, important candidates for these applications, because to date we 
understand little about why the substantial genetic overlap between 
polygenic signals for psychiatric disorders is not in line with current 

Box 2 | The next steps in behavioural genetics

GWAS analyses of behavioural traits produce polygenic signals 
that are difficult to interpret. The next phase in the field of be-
havioural genetics includes disentangling the complex mixture of 
sources that make up these polygenic signals, including the fol-
lowing steps:

•	 Partitioning polygenic signals into their subcomponents. 
Polygenic signals from behavioural traits include a compos-
ite of a large number of lower-level outcomes. Studies need to 
extend their focus beyond single behavioural traits, and com-
bine polygenic signals from multiple measures using meth-
odological advancements in statistical genetics that (1) enable 
polygenic signals to be decomposed into their subcomponents 
and (2) enable the modelling of the (causal) relationships 
between those components.

•	 Dealing with environmental effects in polygenic signals. 
Heritable traits are associated with environmental exposures 
for a variety of reasons, which results in polygenic signals that 
contain environmental effects. Analysing genetic data within 
families and within geographical regions would mitigate this 
type of confounding, but would also require larger genotyped 
datasets that extend to families and social circles, preferably 
with a good geographical coverage of the population.

•	 Dealing with ascertainment bias. Whether someone partic-
ipates in a study is a heritable behavioural trait. This affects 
polygenic signals for a wide range of behavioural traits. To 
overcome this bias, the data collection needs to be extended 
to unmeasured parts of the population, and/or additional 

representative genetic ‘census’ datasets need to be assembled 
that can be used to model and account for participation bias.
A more global form of ascertainment bias is the strong Euro-
centric focus of most large-scale GWASs. Systematic differences  
in genetic and environmental influences between ancestries 
make current polygenic signals substantially less predictive in 
individuals of non-European descent132. Data collection needs 
to be expanded to a wider range of ancestral backgrounds to 
better reflect global and increasingly diversifying societies.

•	 Increasing sample sizes. Despite the enormous increase in 
GWAS sample sizes throughout the last decade, we are still 
capturing only a fraction of the expected heritability of behav-
ioural traits. To increase the heritability captured by GWASs, 
sample sizes need to be further increased. However, note that 
the biases discussed here will also become more pronounced 
in the GWAS signal with an increased sample size, so it is 
essential that those are dealt with accordingly, particularly 
through more inclusive sampling strategies.

•	 Sharing GWAS summary statistics. The development of 
methodology and analysis of polygenic signals requires exper-
tise from a wide array of disciplines, including statistics, genet-
ics, bioinformatics and psychometrics. Public access to GWAS 
results is an essential stimulant for this cooperative scientific 
effort. Fortunately, it is already standard practice among many 
groups that conduct large-scale GWASs to publicly share their 
GWAS summary statistics, and it is important to continue to 
stimulate and expand this tradition.
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clinical boundaries100,101. Another recently developed method 
called genomic structural equation modelling (genomic SEM)102 
can be used to model the joint genetic architecture of complex  
traits. Genomic SEM has recently been applied to subtract polygenic  
signals for cognitive ability from polygenic signals of educational 
attainment103. The cognitive and non-cognitive parts were estimated 
to make up 43% and 57% of the educational attainment polygenic 
signal, respectively. These analyses further revealed that the cogni-
tive and non-cognitive skills that make up the genetic predisposition 
for educational attainment show genetic correlations in the opposite 
directions for conscientiousness, extraversion, agreeableness, empa-
thy, and the risk of schizophrenia and bipolar disorder (these all 
show negative genetic correlations with cognitive skills and positive 
genetic correlations with non-cognitive skills). Additional differ-
ences between the cognitive and non-cognitive part of the polygenic 
signal include that the non-cognitive part shows stronger associa-
tions with traits that are related to risk tolerance, delayed gratifi-
cation and healthier behaviour, as well as weaker associations with 
regional brain volume and stronger associations with white matter 
tracts103. The same approach has been applied to subtract poly-
genic signals associated with socioeconomic status from polygenic 
signals from GWASs on mental health problems, which substan-
tially altered the genetic correlations between various mental health 
problems, most strongly for attention deficit hyperactivity disorder 
and substance use104.

While identifying which parts overlap between traits can be 
leveraged to increase the power of a GWAS by combining differ-
ent traits, identifying which parts of the polygenic effects are more 
trait specific may help to get us closer to the biological mecha-
nisms for a specific trait of interest. Furthermore, the production 
of ‘cleaner’ polygenic signals opens the door to a better investiga-
tion of the causal relationships that underlie the widespread genetic 
correlations between complex behavioural outcomes. Methods that 
leverage polygenic signals to investigate causal relationships are in 
place: Mendelian randomization (MR) is an instrumental variable 
approach that uses genetic markers that are robustly predictive of 
an ‘exposure’ variable as an instrument to test causal effects on an 
‘outcome’ variable of interest. Assuming that genes are randomly 
transmitted from parents to offspring and that an outcome cannot 
alter a person’s genes, MR suffers less from confounding and reverse 
causality compared with conventional observational research105. 
By picking a gene ideally with a known effect on the exposure of 
interest (for example, a nicotinic receptor gene affecting smoking 
behaviour) and testing for its association with an outcome variable 
(for example, lung cancer), MR can reveal the causal effect of the 
exposure on the outcome (for example, whether smoking causes 
lung cancer), because the known effect of the gene can travel only 
through the exposure (smoking) to the outcome (lung cancer), and 
not the other way around. Indeed, MR has been successfully applied 
to establish the causal relationships between smoking and lung can-
cer106, and has successfully shown the absence of causal effects of 
high-density lipoprotein cholesterol107 and hormone replacement108 
on heart disease. However, MR can suffer from confounding in the 
presence of horizontal pleiotropy109, which could potentially be 
addressed by the extraction of non-overlapping polygenic signals. 
Another assumption of the MR approach is that the genetic instru-
ment is not associated with confounders that influence the two 
traits under investigation109, which could be violated in the presence 
of gene–environment correlations.

Gene–environment correlations. Complex traits and diseases are 
influenced by a combination of genetic and environmental factors, 
which are not independent sources of variation. Environmental 
effects can be correlated with polygenic effects due to a variety 
of reasons. The effects that genes have on people’s behaviour also 
influence which environment they actively expose themselves to  

(active gene–environment correlations). For example, it was recently  
shown that people who leave economically disadvantaged neigh-
bourhoods have a higher polygenic score for educational attain-
ment than the people they leave behind, causing a correlation 
between genes associated with educational attainment and envi-
ronmental factors associated with regional wealth and health110. 
Rearing environments are influenced by the genetic make-up of 
parents, which results in a correlation between the parental genes 
that offspring inherit and the environment in which they grow up 
(passive gene–environment correlations). Polygenic scores for edu-
cational attainment built from the half of the parental genes that 
are not transmitted to their offspring have recently been shown to 
be predictive of offspring education and a range of other offspring 
health outcomes111. These familial indirect genetic effects are sig-
nificant for both the cognitive part and the non-cognitive part of 
the polygenic signal of educational attainment112. This shows that 
effects that are often considered to be environmental (parental rear-
ing environment) can also be under genetic influence.

When environmental effects are correlated with polygenic 
effects, they become part of the polygenic signal in a traditional 
GWAS design. One way to reduce confounding due to gene–envi-
ronment correlations is through family-based GWAS designs. These 
approaches generally compare transmitted and non-transmitted 
alleles between siblings, which has the added benefit of protection 
against confounding due to population stratification, as the trans-
mitted and non-transmitted alleles between siblings have the same 
ancestry71. These designs are expected to remove a great deal of 
inflation for traits such as educational attainments, for which poly-
genic scores have been estimated to have a predictive power of ~1.6 
times greater between families than within families113 and twice as 
large in non-adopted children than in adopted children114. Recently, 
one of the first large-scale within-family GWAS efforts estimated 
the genetic effects for 25 traits in up to ~160,000 siblings, and found 
a decreased polygenic signal for a range of traits, most strongly 
reduced for educational attainment, and strongly reduced genetic 
correlations between educational attainment and physical traits 
such as BMI and height115. The genetically informative nature of 
twins has motivated the recruitment of large numbers of twins and 
their family members by twin registries throughout the globe116,117, 
which will increase in value once again when within-family designs 
are more broadly implemented in a GWAS setting.

Family-based designs will not be sufficient to get rid of all infla-
tion when gene–environment correlations extend beyond the fam-
ily. The environments that shape us are probably influenced by 
people outside the family as well, such as neighbours, teachers, col-
leagues and peers. Indirect genetic effects from individuals outside 
of the family have received little attention so far. Expanding family 
cohorts to include genotypes and behavioural measures of people 
in their social networks will probably add valuable information for 
new research designs that could take these influences into account. 
The physical and social environments that we live in are built by 
the communities we live in, and the people within those communi-
ties may also react to us differently depending on our own genetic 
make-up (evocative gene–environment correlations). If the alleles a 
person carries are correlated with the alleles of people close by, these 
indirect genetic effects should also lead to an overestimation of the 
effects of an individual’s alleles in GWASs. It was recently described 
how migration leads to geographical clustering of alleles that influ-
ence complex traits and disease risk in Great Britain110. Regional 
clustering is strongest for alleles that are associated with educational 
attainment, but is also significant for alleles that are associated with 
other behavioural traits such as personality and mental health. The 
geographical clustering of risk alleles is in line with regional mea-
sures of environmental risk factors for health and socioeconomic 
adversity110. Controlling for geographical location or conducting 
within-region GWAS analyses has recently been shown to reduce 
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this type of confounding118, but may not eliminate it completely, as 
geographical location alone is a relatively crude approximation of 
someone’s social environment. To more fully account for genetic 
correlates from one’s physical and social environment, we would 
need deeper longitudinal characterizations of the participants’ lives 
and social circles.

Ascertainment bias. Even when defining the phenotype perfectly 
and accounting for all gene–environment correlations, a GWAS 
probably still contains polygenic signals from unintended pheno-
types, namely phenotypes related to whether participants were able 
and willing to be measured. The people who donate their DNA and 
phenotypic measurements to the datasets that we study are rarely 
representative of the general population.

Participation bias is detectable through polygenic risk: people 
with a higher genetic risk of mental health problems, such as schizo-
phrenia, were less likely to complete questionnaires or attend data 
collection in a population cohort of ~15,000 participants119. Such 
participation bias can also introduce artificial (genetic) correlations 
between two traits through collider bias when those two traits influ-
ence the variable that influences participation120. These confounding 
effects do not get solved by increasing sample sizes; to the contrary, 
with larger sample sizes, the statistical power increases to detect poly-
genic effects associated with behavioural differences between people 
who participate in studies versus the general population. One of the 
most widely used large-scale genetic datasets is the UK Biobank  
(nresearchers ≈ 15,000, nparticipants ≈ 500,000), which depends on voluntary  
participation. The ~500,000 volunteers make up 5.5% of the ~9.2 million 
people who were approached to participate in the study and are not 
a perfect reflection of the general population; on average, they tend 
to live healthier lives, are more educated and live in less economically 
deprived areas of the country121,122. In the UK Biobank, e-mail contact 
and the completion of an online mental health survey show signifi-
cant genetic correlations with educational attainment and physical 
and mental health123. Continued engagement in follow-up measure-
ments in the UK Biobank is associated with polygenic signals for 
complex traits such as intelligence, Alzheimer’s disease, neuroticism 
and schizophrenia124. Another large contributor to many GWASs is 
23andMe, which has access to DNA from millions of their custom-
ers who participate in their studies in return for feedback on their 
genetic make-up. Both the UK Biobank and 23andMe show sex dif-
ferences in participation bias that are detectable at the polygenic level. 
For example, females with a higher genetic predisposition for higher 
BMI are less likely to have participated in the study than their male 
counterparts125. Non-random misreports related to disease ascer-
tainment can introduce additional biases; for example, in the UK 
Biobank, people with a higher disease burden tend to underreport 
their alcohol intake, which significantly affects estimates of genetic 
correlations between alcohol use and complex disease outcomes, 
sometimes even changing the direction of the correlation126.

Most human populations on Earth are underrepresented in 
GWASs, as ~88% of the participants up to 2017 were of European 
descent127. The ethnic homogeneity of GWAS datasets is partly 
intended to prevent systematic ancestry differences from being 
mistaken for associations due to causal genetic variants (that is, 
false positives due to population stratification)71. Even within the 
large European datasets, participation bias is difficult to over-
come when you do not measure the entire population. There 
are a few examples of studies with a population approach, such 
as the Danish iPSYCH128 study, which is based on nationwide 
neonatal dried blood spots, or the Icelandic deCODE129 dataset, 
which consists of genotypes and phenotypes from approximately 
half of the Icelandic population. Such population-level genetic 
databases could provide important population-level estimates 
of genetic variation that could potentially be used to model and 
account for participation bias in GWAS studies125. Genotyping 

the majority of a population is not yet a viable option for most 
countries but, given the relatively strong geographical clustering 
of genome-wide ancestry and complex trait variation67–69,110,130, we 
are more likely to get closer to population-level estimates if we 
aim for higher geographical coverage.

Conclusions
The pathways between our genetic code and complex behav-
ioural outcomes contain many possible cascades of biological and 
social processes with intermediate (endo)phenotypic outcomes. 
Mapping these pathways in their entirety is a daunting task that 
will probably not be completed soon. We have the ability to, within 
a reasonable timeframe, substantially narrow the gap between the 
polygenic signals that we currently capture and behavioural traits 
of interest, which will be helpful for studies that rely on GWAS 
signals to investigate causal relationships or underlying biological 
mechanisms. We summarized the three major sources of poly-
genic signal that are being mixed with the polygenic signals of 
interest and described ways in which we can better characterize 
them or account for them. However, these additional sources are 
not just noise that we need to exclude from our signals; these 
unintentionally captured signals can teach us more about the 
genetic architecture of human behaviour and the way we study 
them. Before we are ready to dive deeper into the biological pro-
cesses behind the polygenic signals, or their utility in the clinic 
or social policies, the way forward is to keep increasing sample 
sizes, ideally targeting families and extended social circles with 
good geographical coverage, to increase the signal while simul-
taneously refining the polygenic signals by better delineating  
their origin.
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