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A B S T R A C T

Considerable evidence suggests that autism spectrum disorders (ASD), schizophrenia (SCZ), bipolar disorder
(BD) and obsessive-compulsive disorder (OCD) share a common molecular aetiology, despite their unique
clinical diagnostic criteria. The aim of this study was therefore to determine and characterise the common and
unique molecular architecture of ASD, SCZ, BD and OCD. Gene lists were obtained from previously published
studies for ASD, BD, SCZ and for OCD. Genes identified to be common to all disorders, or unique to one specific
disorder, were included for enrichment analyses using the web-server tool Enrichr. Ten genes were identified to
be commonly associated with the aetiology of ASD, SCZ, BD and OCD. Enrichment analyses determined that
these genes are predominantly involved in the dopaminergic and serotonergic pathways, the voltage-gated
calcium ion channel gene network, folate metabolism, regulation of the hippo signaling pathway, and the
regulation of gene silencing and expression. In addition to well-characterised and previously described path-
ways, regulation of the hippo signaling pathway was commonly associated with ASD, SCZ, BD and OCD, im-
plicating neural development and neuronal maintenance as key in neuropsychiatric disorders. In contrast, a large
number of previously associated genes were shown to be disorder-specific. And unique disorder-specific path-
ways and biological processes were presented for ASD, BD, SCZ and OCD aetiology. Considering the current
global incidence and prevalence rates of mental health disorders, focus should be placed on cross-disorder
commonalities in order to realise actionable and translatable results to combat mental health disorders.

1. Introduction

Clinically autism spectrum disorders (ASD), schizophrenia (SCZ),
bipolar disorder (BD) and obsessive-compulsive disorder (OCD) differ
substantially in that they not only fall into different categories of the
DSM (American Psychiatric Association, 2013), but also differ in age of
onset, neurocognitive profiles and neuroimaging (American Psychiatric
Association, 2013). Genetically, however, they might be more similar in
a broader sense (psychiatric disorders) whereby common symptom
overlap might be somewhat attributable to common underlying mole-
cular mechanisms (Carroll and Owen, 2009; Khanzada et al., 2017).
Research supports this theory in that a number of independent single
disorder genome-wide association studies (GWAS) have identified the
same significant loci regardless of disorder (Consortium et al., 2013),
and a number of cross-disorder case-control GWAS association studies
have yielded significant results (Carroll and Owen, 2009). Similar

behavioural, social, cognitive and perceptual disturbances are observed
in individuals suffering from ASD, SCZ, BD and OCD (American
Psychiatric Association, 2013; Vannucchi et al., 2014), while molecular
overlap, at both genetic and transcriptomic levels, has been identified
for the aetiology of SCZ, BD and ASD (Carroll and Owen, 2009; Gandal
et al., 2016; Khanzada et al., 2017), and suggested for ASD and OCD
(Jacob et al., 2009). Considering the latter, the exact molecular me-
chanisms that OCD may share with ASD have not been described, while
unpublished results suggest molecular overlap between OCD, SCZ and
BD (Anttila et al., 2017).

In addition to the molecular overlap described above, clinical evi-
dence further suggests common aetiology for neuropsychiatric dis-
orders. Individuals affected by OCD and SCZ show similar age-related
reductions in white matter connectivity, with overlapping spatial pat-
tern deficits, suggesting common neurobiology (Hawco et al., 2016).
Obsessive-compulsive behaviors are present in some ASD affected
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individuals (Cath et al., 2008), while individuals suffering from OCD
have increased comorbid diagnoses of both SCZ and BD (Cederlöf et al.,
2015), as well as ASD traits (Ivarsson and Melin, 2008), further sug-
gesting common aetiology for these neuropsychiatric disorders. Despite
evidence to suggest common aetiology for these neuropsychiatric dis-
orders they present with distinct clinical profiles, suggesting that each
must have a corresponding unique genetic architecture.

This study aims to characterise the common and unique molecular
architecture of ASD, SCZ, BD and OCD by analysing previously identi-
fied associations with the aforementioned neuropsychiatric disorders.

2. Materials and methods

Gene lists were obtained from previously published studies for ASD
(number of genes, n=792) (Butler et al., 2015), BD (number of genes,
n=291) (Douglas et al., 2016), SCZ (number of genes, n=560)
(Butler et al., 2016), and OCD (number of genes, n=153; OCDB)
(http://alpha.dmi.unict.it/ocdb/; accessed 31 May 2017) (Privitera
et al., 2015). These disorders were selected for investigation due to the
evidence outlined in the introduction above and the public availability
of the gene datasets listed.

Genes identified to be common to all disorders, or unique to one
specific disorder, were included for enrichment analyses using Enrichr
(http://amp.pharm.mssm.edu/Enrichr) (Kuleshov et al., 2016). Enrichr
computes enrichment by assessing 35 gene-set libraries (including
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways and GO
(gene ontology) biological processes) and calculates p-values, adjusted
p-values, Z-scores and combined scores representative of Fisher exact
and Z-score statistics. The p-values are calculated using the Fisher's
exact test and the adjusted p-values are then obtained using the Ben-
jamini-Hochberg method for correction for multiple hypotheses testing.
The Z-score is computed for deviation from an expected rank using a
modification to Fisher's exact test. Finally, the combined score is a
combination of the p-value and z-score calculated by multiplying the
two scores (combined score= log(p-value ∗ Z-score)) (Kuleshov et al.,
2016).

STRING v10 (http://version10.string-db.org) was used to produce a
network diagram of the genes common to ASD, BD, SCZ and OCD
(Szklarczyk et al., 2015). Default interaction sources and scores were
used. No more than 50 s shell interactions (software generated sec-
ondary genes) were required in order to connect all first shell interac-
tions (target input genes; 10 common genes identified for ASD, BD, SCZ
and OCD).

3. Results

3.1. Gene list summary statistics

Ten genes were identified to be commonly associated with the ae-
tiology of ASD, SCZ, BD and OCD (BDNF, CACNA1C, CHRNA7, DRD2,
HTR2A, MAOA, MTHFR, NOS1AP, SLC6A3 and TPH2). In contrast, a
large number of previously associated genes were shown to be disorder-
specific with 620 (78%), 183 (63%), 365 (65%) and 56 (37%) genes
unique to ASD, BD, SCZ and OCD, respectively. These results, as well as
the results of two- and three-disorder gene overlap, are presented in
Fig. 1.

A network diagram showing the 10 genes commonly associated with
the aetiology of ASD, SCZ, BD and OCD, as well as other genes with
which they interact is presented in Fig. 2. The majority of these genes
were clustered in recognisable networks and pathways (dopaminergic
and serotonergic pathways, the voltage-gated calcium ion channel gene
network and folate metabolism), except for a gene cluster surrounding
NOS1AP (AJUBA, FBLIM1, LIMD1, LPP, NOS1AP, TRIP6, WTIP, ZYX),
which was further individually investigated using enrichment analyses.

3.2. Enrichment analyses – KEGG pathways

The top 10 KEGG pathway results were determined for the 10 genes
commonly associated with the aetiology of ASD, SCZ, BD and OCD
(Table 1), as well as for genes unique to ASD, BD, SCZ and OCD ae-
tiology (Supplementary Tables 1–4), respectively. Four KEGG pathways
were associated with the identified gene cluster surrounding NOS1AP
(Table 2).

3.3. Enrichment analyses – biological processes

The top 10 results for biological processes were determined for the
10 genes commonly associated with the aetiology of ASD, SCZ, BD and
OCD (Table 3), as well as for the unique genes to ASD, BD, SCZ and
OCD aetiology (Supplementary Tables 5–8), respectively. Additionally,
the top 10 results for biological processes were determined for the
identified gene cluster surrounding NOS1AP (Table 4).

4. Discussion

4.1. Genetic overlap

Ten genes were identified as commonly associated with the ae-
tiology of ASD, BD, SCZ, and OCD; namely BDNF, CACNA1C, CHRNA7,
DRD2, HTR2A, MAOA, MTHFR, NOS1AP, SLC6A3 and TPH2 (Fig. 1).
These genes are predominantly involved in substance abuse and ad-
diction, the dopaminergic and serotonergic pathways, the voltage-gated
calcium ion channel gene network and folate metabolism (Tables 1 and
3).

Considering each disorder independently this is not too surprising
since substance abuse (alcoholism, amphetamine abuse and cocaine
addiction) and dopaminergic involvement are ‘repeat offenders’ in
terms of comorbidities, covariates and risk factors in association studies
(Walker and Druss, 2017). The novelty presented here, however, is that
a molecular argument can be made for cross-disorder investigations in
support of genetic overlap for these factors. This has the potential to go
a long way in terms of not only understanding the molecular aetiology
of mental disorders, but also comorbidity and treatment outcome.
Supporting this is the fact that dopamine and serotonin neuro-
transmitters have been implicated in neuropsychiatric disorder ae-
tiology for a number of decades (Carlsson, 1977). The evidence for their
involvement in the aetiologies of ASD, BD, SCZ, and OCD has been
extensively reviewed and includes neuroimaging, pharmacological and
genetic studies (Bokor and Anderson, 2014; Grünblatt et al., 2014;
Muneer, 2016; Sumiyoshi et al., 2014). Similarly, neuroimaging,
pharmacological and genetic studies have also implicated voltage-gated
calcium ion channels (Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2013; Heyes et al., 2015) and folate
(one‑carbon) metabolism (Esnafoğlu and Yaman, 2017; Gatt et al.,
2015; Siscoe and Lohr, 2017) in neuropsychiatric disorder aetiology.

In addition to these well-characterised networks and pathways a
small gene cluster (AJUBA, FBLIM1, LIMD1, LPP, NOS1AP, TRIP6,
WTIP, ZYX) was also identified surrounding the commonly associated
NOS1AP gene (Fig. 2). Enrichment analyses showed that this cluster is
involved in the regulation of the hippo signaling pathway, as well as,
the regulation of gene silencing and expression (Tables 2 and 4).

4.2. The hippo signaling pathway

The hippo signaling pathway was initially identified as the major
regulator of organ size, by modulating cell proliferation and migration
(Harvey et al., 2003; Pan, 2007), however it is also known to play a role
in regulating dendritic maintenance (Emoto et al., 2006; Emoto, 2012;
Ultanir et al., 2012). Dendritic maintenance is the process by which
dendritic coverage is maintained over the receptive field for the lifespan
of a neuron (Grutzendler et al., 2002; Mizrahi and Katz, 2003). SCZ and

K.S. O'Connell et al. Molecular and Cellular Neuroscience 88 (2018) 300–307

301

http://alpha.dmi.unict.it/ocdb
http://amp.pharm.mssm.edu/Enrichr
http://version10.string-db.org


BD are characterised by disrupted dendritic maintenance and reduced
coverage (Konopaske et al., 2014; Moyer et al., 2015; Penzes et al.,
2013), while dendritic abnormalities were also recently described for
ASD (Martínez-Cerdeño, 2017) and OCD (van de Vondervoort et al.,

2016). It may be hypothesised that dysregulation of this signaling
pathway, by genetic variation within core pathway genes, may there-
fore result in aberrant dendritic maintenance and disease progression.
Overexpression of NOS1AP has been shown to modulate hippo

Fig. 1. A Venn-diagram demonstrating the overlap of investigated genes in the aetiology of autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and obsessive-
compulsive disorder (OCD).

Fig. 2. A network diagram generated in STRING v10 demonstrating the 10 genes commonly associated with the aetiology of ASD, SCZ, BD and OCD (BDNF, CACNA1C, CHRNA7, DRD2,
HTR2A, MAOA, MTHFR, NOS1AP, SLC6A3 and TPH2) (coloured), as well as the genes with which they interact. No more than 50 interactions were required in order to connect all 10
initial genes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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signaling by promoting phosphorylation of the key hippo signaling
protein (yes-associated protein, YAP) resulting in reduced transcrip-
tional activity of YAP-target genes, ultimately restricting cellular pro-
liferation and migration (Clattenburg et al., 2015). This has been shown
to alter neuronal migration during cortical development resulting in
reduced numbers of cells in the cortical plate (Carrel et al., 2015).
Furthermore, NOS1AP overexpression has been shown to alter dendritic
maintenance (Richier et al., 2010), in a similar manner to that observed
in ASD (Martínez-Cerdeño, 2017), BD (Penzes et al., 2013), SCZ
(Konopaske et al., 2014; Moyer et al., 2015), and OCD (van de
Vondervoort et al., 2016) patients as described above. Moreover, an
investigation of transcriptomic overlap between neuropsychiatric

disorders provides additional validation of these results by identifying
downregulation of genes involved in neuronal and synaptic processes in
ASD, BP and SCZ (Gandal et al., 2016). These studies support the as-
sociation of NOS1AP variation with neuropsychiatric disorder aetiolo-
gies by providing evidence of potential mechanisms through which
disease progression may be modulated.

Interestingly, AJUBA, LIMD1 and WTIP were identified by NOS1AP
enrichment analyses. These genes encode for proteins that inhibit
LATS1/2 resulting in reduced phosphorylation of the key hippo sig-
naling protein YAP and corresponding increased transcriptional activity
of YAP target genes, cell proliferation and migration (Keyvani Chahi
et al., 2016; Reddy and Irvine, 2013; Sun and Irvine, 2013). The effect

Table 1
KEGG pathways associated with the 10 genes commonly associated with the aetiology of ASD, BD, SCZ and OCD.

Rank KEGG pathway (accession number) p-Value Adjusted p-value Z-score Combined score

1 Cocaine addiction (hsa05030) 6.604× 10−09 3.170× 10−07 −1.89 28.33
2 Serotonergic synapse (hsa04726) 1.907× 10−07 4.576× 10−06 −1.86 22.82
3 Dopaminergic synapse (hsa04728) 3.366× 10−07 5.386× 10−06 −1.84 22.34
4 Alcoholism (hsa05034) 1.249× 10−06 1.499× 10−05 −1.83 20.30
5 Amphetamine addiction (hsa05031) 4.240× 10−06 4.071× 10−05 −1.87 18.91
6 Calcium signaling pathway (hsa04020) 8.213× 10−05 6.570× 10−04 −1.83 13.42
7 cAMP signaling pathway (hsa04024) 1.106× 10−04 7.584× 10−04 −1.79 12.86
8 Tryptophan metabolism (hsa00380) 1.737× 10−04 0.001 −1.61 11.09
9 Neuroactive ligand-receptor interaction (hsa04080) 2.935× 10−04 0.002 −1.70 10.98
10 Cholinergic synapse (hsa04725) 0.001 0.005 −1.75 9.14

Table 2
KEGG pathways associated with the identified gene cluster surrounding NOS1AP (AJUBA, FBLIM1, LIMD1, LPP, NOS1AP, TRIP6, WTIP, ZYX).

Rank KEGG pathway (accession number) p-Value Adjusted p-value Z-score Combined score

1 Hippo signaling pathway (hsa04390) 2.390×10−05 9.561× 10−05 −1.74 16.07
2 Circadian entrainment (hsa04713) 0.037 0.050 −1.89 5.67
3 NOD-like receptor signaling pathway (hsa04621) 0.023 0.045 −1.77 5.48
4 Focal adhesion (hsa04510) 0.078 0.078 −1.85 4.71

Table 3
Biological processes for the 10 genes commonly associated with the aetiology of ASD, BD, SCZ and OCD.

Rank Biological process (GO accession number) p-Value Adjusted p-value Z-score Combined score

1 Dopamine metabolic process (GO:0042417) 6.414×10−10 1.886× 10−7 −2.65 41.05
2 Phenol-containing compound metabolic process (GO:0018958) 2.384×10−10 1.402× 10−7 −2.14 33.71
3 Catechol-containing compound metabolic process (GO:0009712) 3.852×10−9 5.663× 10−7 −2.30 33.14
4 Catecholamine metabolic process (GO:0006584) 3.852×10−9 5.663× 10−7 −2.30 33.09
5 Synaptic transmission (GO:0007268) 1.968×10−8 2.145× 10−6 −2.34 30.57
6 Behaviour (GO:0007610) 4.254×10−8 3.187× 10−6 −2.40 30.34
7 Learning or memory (GO:0007611) 2.189×10−8 2.145× 10−6 −2.30 29.98
8 Cognition (GO:0050890) 4.337×10−8 3.187× 10−6 −2.31 29.19
9 Phenol-containing compound biosynthetic process (GO:0046189) 4.016×10−7 2.147× 10−5 −2.56 27.48
10 Response to drug (GO:0042493) 3.957×10−7 2.147× 10−5 −2.44 26.24

GO, gene ontology.

Table 4
Biological processes for the identified gene cluster surrounding NOS1AP (AJUBA, FBLIM1, LIMD1, LPP, NOS1AP, TRIP6, WTIP, ZYX).

Rank Biological process (GO accession number) p-Value Adjusted p-value Z-score Combined score

1 Regulation of posttranscriptional gene silencing (GO:0060147) 3.525× 10−09 1.049× 10−07 −2.42 38.88
2 Regulation of gene silencing by miRNA (GO:0060964) 3.525× 10−09 1.049× 10−07 −2.41 38.78
3 Regulation of gene silencing by RNA (GO:0060966) 3.525× 10−09 1.049× 10−07 −2.37 38.07
4 Regulation of hippo signaling (GO:0035330) 3.525× 10−09 1.049× 10−07 −2.34 37.53
5 Regulation of gene silencing (GO:0060968) 7.411× 10−08 1.764× 10−06 −2.55 33.81
6 Gene silencing by RNA (GO:0031047) 2.733× 10−07 5.420× 10−06 −2.43 29.45
7 Gene silencing (GO:0016458) 1.571× 10−06 2.671× 10−05 −2.30 24.21
8 Cell-substrate adherens junction assembly (GO:0007045) 3.527× 10−05 3.816× 10−04 −2.50 19.68
9 Focal adhesion assembly (GO:0048041) 3.527× 10−05 3.816× 10−04 −2.49 19.62
10 Regulation of gene expression, epigenetic (GO:0040029) 1.213× 10−05 1.804× 10−04 −2.27 19.59

GO, gene ontology.
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that changes in the expression of these genes may have on dendritic
maintenance has not been investigated to date. These genes do, how-
ever, exhibit opposite effects on the hippo signaling pathway as those
identified for increased NOS1AP expression (Keyvani Chahi et al., 2016;
Reddy and Irvine, 2013; Sun and Irvine, 2013). Reduced expression of
these genes, resulting in increased LATS1/2 activity and corresponding
increased YAP phosphorylation, may therefore result in restricted cell
proliferation and migration, and aberrant dendritic maintenance si-
milar to that observed when NOS1AP is overexpressed. Future studies
should investigate these genes as candidates in the pathophysiology of
neuropsychiatric disorders due to their probable roles in altered neu-
ronal migration during cortical development and aberrant dendritic
maintenance (Keyvani Chahi et al., 2016; Reddy and Irvine, 2013; Sun
and Irvine, 2013). Furthermore, functional variation within these
genes, and others in the hippo signaling pathway, should be assessed for
association with neuropsychiatric disorders. This may provide targets
for novel drug development in the treatment and/or prevention of these
disorders.

4.3. miRNA mediated gene silencing

In addition to their role in the hippo signaling pathway, AJUBA,
LIMD1 and WTIP are also implicated in miRNA mediated gene silencing
(James et al., 2010). The proteins encoded by these genes interact with
the Ago1/2 proteins in miRNA induced silencing complexes (miRISC),
as well as eukaryotic translation initiation factor 4E (eIF4E) and the 7-
methyl-guanosine (m7GTP) cap structure (James et al., 2010). The
eIF4E protein is responsible for directing ribosomes to the m7GTP cap at
the 5′ region of mRNA molecules in order for translation to occur
(Sonenberg et al., 1979). The AJUBA, LIMD1 and WTIP proteins inhibit
eIF4E-m7GTP translation and instead direct this complex to Ago1/2 in
the miRISC complex where the mRNA is cleaved (James et al., 2010).
Atypical expression of specific genes due to miRNA mediated gene si-
lencing, as a result of variation within the AJUBA, LIMD1 and WTIP
genes, may contribute to the aetiology of neuropsychiatric disorders
and requires future investigation.

4.4. Disorder-specific genetics

The majority of previously associated genes were shown to be dis-
order-specific for ASD (78%), BD (63%) and SCZ (65%), while only
37% of genes previously associated with OCD aetiology were unique to
that disorder (Fig. 1).

4.5. Autism spectrum disorder

Chromatin modifications, changes to the genomic DNA and/or as-
sociated nuclear proteins, were the most notable biological processes
identified when genes unique to ASD were investigated (Supplementary
Table 5). Evidence for the role of chromatin modification in the ae-
tiology of ASD has been previously described (LaSalle, 2013; Vogel
Ciernia and LaSalle, 2016). In addition to variant associations, muta-
tions within histone demethylase genes have been identified in patients
with ASD (Adegbola et al., 2008; Jensen et al., 2005). Furthermore,
chromatin itself influences genomic locations of de novo mutations,
specifically hyper-mutability of open active chromatin in ASD patients
(Michaelson et al., 2012), as well as DNA methylation levels in the form
of partially methylated domains (PMDs) (Lister et al., 2009). These
domains are characterised by lower levels of methylation (40–70%),
compared to methylation observed in the rest of the genome (> 70%)
(Lister et al., 2009), and are often observed in genes involved in neu-
ronal development, immune response and synaptic transmission
(Schroeder et al., 2011, 2013). Genes shown to be mutated in patients
with ASD are also highly enriched for PMDs when compared to the
other parts of the genome (Schroeder et al., 2011). Further compli-
cating the role of chromatin modification in ASD aetiology is that a

number of factors have been shown to influence chromatin, including
genetic variability, gender, environmental toxins, nutrition and meta-
bolism, and immune response (LaSalle, 2013). Understanding the
complex nature of chromatin modelling, as well as the factors that af-
fect it, is key in characterising gene networks and pathways con-
tributing to ASD aetiology.

4.6. Bipolar disorder

One of the main biological processes identified for the genes un-
iquely associated with bipolar disorder is the regulation of sodium ion
transmembrane transporter activity (Supplementary Table 6). The so-
dium- and potassium-activated adenosine triphosphatase pump (Na, K-
ATPase) hypothesis for bipolar disorder, initially proposed by Singh
(1970) and expanded on later by el-Mallakh (1983), suggests that a
reduction in Na-K-ATPase activity may lead to mania and depression by
increasing membrane excitability and decreasing neurotransmitter re-
lease. Subsequently, reduced Na-K-ATPase activity has been identified
in the neural tissue of Myshkin mice displaying mania-like behaviour
(Kirshenbaum et al., 2011) and in the erythrocyte membranes of BD
patients (Banerjee et al., 2012). Despite the aforementioned literature,
as well as the enrichment results of this study, highlighting the im-
portance of Na-K-ATPase in the aetiology and treatment of BD, the
exact mechanism(s) by which lithium regulates Na-K-ATPase remains
unknown (Banerjee et al., 2016).

4.7. Schizophrenia

When the genes unique to SCZ aetiology were investigated using
enrichment analyses a number of substance abuse-related pathways
were identified; including nicotine, amphetamine and cocaine addic-
tion, as well as alcoholism (Supplementary Table 3). The prevalence of
substance abuse in schizophrenic patients is known to be high (Toftdahl
et al., 2016), and a number of studies implicate substance abuse in the
aetiology of SCZ (Callaghan et al., 2012; Jordaan and Emsley, 2014;
Kuepper et al., 2011; Nielsen et al., 2017). In addition to this, recent
studies have identified shared genetic liability between SCZ and nico-
tine dependence (Bhavsar et al., 2017; Chen et al., 2016). The results of
this study further contribute to the concept of shared molecular and
genetic liability between risk for substance abuse and SCZ. These results
challenge the current clinical and diagnostic boundaries separating
substance abuse and neuropsychiatric disorders, such as schizophrenia
(American Psychiatric Association, 2013), and should be considered for
improved understanding going forward.

4.8. Obsessive-compulsive disorder

Considering the genes unique to OCD, neuroactive ligand-receptor
interactions and G-protein coupled receptor (GPCR) signaling pathways
were among the top enrichment results (Supplementary Tables 4 and
8). Further analysis of the known human neuroactive ligand-receptor
interactions revealed that all eight genes (ADRB1, BDKRB2, CCKBR,
CHRM4, CRHR2, HTR2B, MTNR1A and MTNR1B) associated with these
interactions encode for GPCRs, and interact with a number of molecules
including epinephrine, bradykinin, cholecystokinin, acetylcholine,
corticotropin releasing hormone, 5-hydroxytryptamine and melatonin,
respectively (http://www.genome.jp/kegg/pathway/hsa/hsa04080.
html). Interestingly, neuroactive ligand-receptor interactions have
previously been associated with SCZ treatment response (Adkins et al.,
2012) and Parkinson's disease aetiology (Kong et al., 2015). Con-
sidering the much smaller subset of genes uniquely associated with
OCD aetiology and the identification of overlapping KEGG pathways
and biological processes, these results highlight the neuroactive ligand-
receptor interactions as excellent candidates for investigation to better
understand the aetiology of OCD.
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4.9. Study limitations

The analyses performed in this study are limited by the availability
of published literature and the maintenance and accuracy of curated
databases (Knottnerus and Tugwell, 2013; Matosin et al., 2014). Fur-
thermore, it is not known if all genes specific to each disorder gene set
have been investigated in any/all disorders due to the bias of not
publishing negative findings (Matosin et al., 2014), as well as the
possibility of unpublished positive results (Knottnerus and Tugwell,
2013). A limited number of input genes may explain the lack of addi-
tional enriched KEGG pathways (Table 2) for the identified small gene
cluster (AJUBA, FBLIM1, LIMD1, LPP, NOS1AP, TRIP6, WTIP, ZYX) and
further studies examining additional genes that interact with this
cluster may help to identify additional significant pathways that could
be investigated in the aetiology of neuropsychiatric disorders. Ad-
ditionally, although outside the scope of this publication, very relevant
traction in support of epigenetic factors and shared environment as a
contributing factor to mental health disorders has been proposed
(Nestler et al., 2016). Despite these limitations, these analyses provide
relevant insight into pathways and biological processes that may be
explored to better understand the common underlying aetiologies of the
investigated neuropsychiatric disorders. Moreover, key pathways and
biological processes were highlighted for further investigation for their
contribution to the disorder-specific progression of the aforementioned
disorders.

5. Conclusions

Neuropsychiatric disorders are complex in nature and consequently
variation within many genes is expected to contribute to their aetiology
(Visscher et al., 2012). Genetic overlap between ASD, BD, SCZ and OCD
suggests common pathways, as well as pathways unique to each dis-
order. Here genetic overlap between ASD, BD, SCZ and OCD was found
to be enriched for the well-characterised dopaminergic and ser-
otonergic pathways, voltage-gated calcium ion channel gene network,
and folate metabolism biological networks. The novel finding of reg-
ulation of the hippo signaling pathway was found to be commonly as-
sociated with these neuropsychiatric disorders, implicating neural de-
velopment and neuronal maintenance as key in disorder
psychopathology. In addition to the commonalities, unique disorder-
specific pathways and biological processes were identified for ASD, BD,
SCZ and OCD. These results highlight new prospects to be explored for
the improved understanding of the complex aetiologies across neu-
ropsychiatric disorders. Considering the current global incidence and
prevalence rates of mental health disorders (Kessler et al., 2007; “WHO
| Global status report on noncommunicable diseases 2010”, 2011), it
might be best to focus on cross-disorder commonalities in an attempt to
realise actionable and translatable results to combat mental health
disorders.
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