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To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, 
multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We 
identify 16 previously unreported loci for T2D and 1 locus for CHD, including a new T2D association at a missense variant in HLA-
DRB5 (odds ratio (OR) = 1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint T2D–
CHD analysis identified eight variants—two of which are coding—where T2D and CHD associations appear to colocalize, including 
a new joint T2D–CHD association at the CCDC92 locus that also replicated for T2D. The variants associated with both outcomes 
implicate new pathways as well as targets of existing drugs, including icosapent ethyl and adipocyte fatty-acid-binding protein.

90,831 CHD cases and 169,534 controls to identify genetic pathways 
connected with both outcomes.

RESULTS
Genome-wide association and replication testing for T2D
We used genetic data from 48,437 individuals (13,525 T2D cases and  
34,912 controls) of South Asian (n = 28,139; 9,654 T2D cases 
and 18,485 controls) and European (n = 20,298; 3,871 T2D cases  
and 16,427 controls) descent. We used non-overlapping data for 
T2D from the DIAGRAM Consortium5 and conducted combined 
discovery analysis on 198,258 participants (48,365 T2D cases and 
149,893 controls). Characteristics of the participants and information 
on genotyping quality control are summarized in Supplementary 
Tables 1–3 and Supplementary Figure 1. After removing known loci, 
we advanced into replication 21 new loci with suggestive associa-
tion with T2D (P ≤ 5 × 10−6). We performed further testing of these 
SNPs in additional samples of up to 67,420 individuals (24,972 cases 
and 42,448 controls) of South Asian (n = 13,960; 4,587 T2D cases 
and 9,373 controls), European (n = 2,479; 387 T2D cases and 2,092 
controls), and East-Asian (n = 50,981; 19,998 T2D cases and 30,983 
controls) descent. Our combined discovery and replication analyses 
included 265,678 participants (73,337 T2D cases and 192,341 controls) 
(Supplementary Fig. 1a). In the combined analysis across both stages, 
14 SNPs at previously unreported loci for T2D obtained genome-
wide significance (fixed-effects meta-analysis P < 5 × 10−8; Table 1). 
A previous report found one of our variants (rs10507349) strongly 
associated with T2D9, but we report genome-wide significance for 
this variant here for the first time. Population-specific analyses  
(Europeans only or South Asians only) identified one additional 
locus where a sentinel variant obtained genome-wide significance in 
only European participants (Table 1, Fig. 1, Supplementary Figs. 2  
and 3, and Supplementary Tables 4 and 5). Aside from this case, there 
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The global epidemic of T2D is expected to worsen over the coming 
decades, and the number of people with T2D is projected to reach 
~592 million by 2035 (ref. 1). T2D is also a major risk factor for CHD, 
which is the leading cause of death worldwide2. Patients with T2D are 
also at a twofold higher risk of mortality due to CHD as compared 
to individuals who do not have T2D3, although the mechanisms that 
link T2D with increased risk of CHD remain inadequately under-
stood. Recently, a coding variant in the GLP1R gene encoding the 
glucagon-like peptide-1 receptor was reported4 that was associated 
with lower fasting glucose levels, lower T2D susceptibility, and, more 
modestly, with reduced risk for CHD, a result consistent with existing 
therapeutic perturbation of this gene. This type of result is noteworthy 
and motivates the search for additional loci with this type of genetic 
support: associations with protective effects for both T2D and CHD 
in humans. Such targets would merit detailed molecular, functional, 
and therapeutic experimentation, but these candidate loci need to be 
first identified from existing and newly generated data sets.

Genome-wide association studies (GWAS) have advanced under-
standing of the genetic architecture individually for each disease, 
yielding discovery of several dozen loci for T2D and CHD5,6. Previous 
work has also demonstrated a genetic correlation between these end-
points7,8, although no study has directly compared individual variants 
beyond established sites across the genome or examined the pathways 
that are shared by the two outcomes. Regional association for multiple 
SNPs for both endpoints at a locus has been observed (for example, 
CDKN2A–CDKN2B or APOE)5,6. These initial observations indicate 
that the genetic pathways that connect T2D and CHD may have a 
modest impact on disease risk, hence requiring large sample sizes to 
enable robust discovery.

We therefore assembled a discovery association set for T2D com-
prising 73,337 T2D cases and 192,341 controls to first enable discov-
ery of new loci for T2D. Second, we used additional genetic data on 
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was little evidence of heterogeneity of effect between the ancestry  
groups in either our primary genetic analyses or across the two 
stages (Supplementary Fig. 2). We replicated previously reported 
associations with T2D5,9 at 60 loci at genome-wide significance; a 
further 25 known loci were associated with T2D at P < 0.05 (Fig. 1 
and Supplementary Table 4). We did not observe association at three 
loci (rs76895963, rs7330796, and rs4523957) in our overall meta-
analyses, owing to their previous discovery in subjects of East Asian 
ancestry (Supplementary Table 4). To nominate candidate genes and 
pathways, we obtained expression quantitative trait locus (eQTL) data 
from the MuTHER Consortium and the Genotype-Tissue Expression 
(GTEx) Project (v6; Supplementary Table 6)10,11. These data suggest 
a candidate gene at two loci (ITFG3 and PLEKHA1) where the lead 
eQTL association strongly tagged the T2D association (r2 = 1.0).

Coding variants at new genetic loci
To identify coding variants that may influence protein structure at 
unreported T2D loci, we obtained data on up to 31,207 individuals  
(9,500 T2D cases, 21,707 controls) of South Asian (7,832 T2D cases, 
16,703 controls) and European origin (1,668 T2D cases, 5,004 controls)  
(Online Methods) genotyped on the ExomeChip12. We investi-
gated 505 variants captured by the ExomeChip within ±250-kb 
regions flanking the sentinel SNPs. We identified one missense 
variant in HLA-DRB5 (rs701884) that was associated with T2D risk 
at close to exome-wide significance (fixed-effects meta-analysis  
P < 2 × 10−7) (Supplementary Table 7). The missense variant was 
found to have a relatively stronger impact on disease risk than the 
lead noncoding variant. At HLA-DRB5, the OR for T2D for the mis-
sense variant (rs701884) was 1.29 (95% confidence interval (CI)  
= 1.23–1.35; P = 4.8 × 10−7) as compared to the T2D OR of 1.06 
(95% CI = 1.04–1.08; P = 7.56 × 10−9) for the noncoding variant 
(rs2050188). Existing knowledge on gene function is summarized in 
Supplementary Table 8.

Variant association with traits and circulating biomarkers
To help understand the underlying biological mechanisms, we 
examined the association of genetic variation at newly discovered 

loci with a range of phenotypes and biomarkers (n = 70 traits) 
(Supplementary Table 9). We also used an association screen 
against a panel of 105 phenotypic traits measured in the PROMIS 
study in up to 17,542 participants (Supplementary Table 10)13. For 
the new loci, we conducted 2,800 variant–phenotype analyses using 
linear regression resulting in a Bonferroni-adjusted significance 
threshold of P = 1.8 × 10−5. Allelic variation that increased T2D risk 
was associated at TMEM18 with increased body mass index (BMI; 
P = 4.39 × 10−52), BMI in childhood (P = 7.95 × 10−12), obesity 
(P = 2.50 × 10−25) and obesity in childhood (P = 2.85 × 10−20); at 
KL with increased fasting glucose (P = 2.26 × 10−8); at PLEKHA1 
with increased risk of neovascular disease (P = 2.71 × 10−94); at 
SLC22A1 with increased lipoprotein(a) levels (P = 5.10 × 10−6); 
and at CMIP with decreased HDL cholesterol (HDL-C) (P = 1.32 
× 10−19), increased triglycerides (P = 2.14 × 10−7), and decreased 
adiponectin (P = 1.87 × 10−18).

Genetic risk for T2D and CHD shared at established loci
We next examined the relationships of sentinel T2D SNPs with the 
risk of CHD at all T2D loci (Supplementary Table 11). For analyses 
in relation to CHD, we used data on up to 260,365 participants (90,831 
CHD cases and 169,534 controls) (Online Methods). We found allelic 
variation at 17 T2D loci to be nominally associated with CHD risk at  
P < 0.01, which was more than expected (17 of 106 T2D SNPs; 
binomial test P = 5.9 × 10−13). In one case, we found that the T2D  
sentinel SNP rs7578326 (the IRS1 locus) was associated with both 
T2D and CHD at genome-wide levels of significance (Supplementary  
Table 11 and Supplementary Fig. 4). To the best of our knowledge, 
this is the first definitive report of genetic variation at IRS1 associ-
ated with CHD (Supplementary Note)6. We further investigated the 
relationship between these two endpoints in more detail.

Genetically elevated T2D risk overall increases CHD risk
First, we examined whether elevated T2D risk conferred a higher 
risk of CHD using the framework of Mendelian randomization 
(MR)14–16 and examined whether all genetic T2D risk pathways 
influence CHD susceptibility in a similar way. We calculated genetic 

Table 1 S ixteen new loci associated with T2D
Lead variant Closest gene Chr. Position (hg19) EA NEA EAF OR 95% CI P value I2 Phet

Loci associated with T2D in the combined analysis of Europeans, South Asians, and East Asians at P < 5 × 10−8

rs2867125 TMEM18 2 622,827 C T 0.83 1.06 1.04–1.08 2.18 × 10−9 18 2.3 × 10−1

rs11123406 BCL2L11 2 111,950,541 T C 0.36 1.04 1.03–1.06 8.57 × 10−9 2 4.4 × 10−1

rs2706785 TMEM155 4 122,660,250 G A 0.05 1.13 1.08–1.17 2.40 × 10−8 0 9.0 × 10−1

rs329122 PHF15 5 133,864,599 A G 0.43 1.04 1.03–1.06 3.02 × 10−9 0 5.1 × 10−1

rs622217 SLC22A3 6 160,766,770 T C 0.52 1.05 1.03–1.07  2.47 × 10−10 0 7.0 × 10−1

rs9648716 BRAF 7 140,612,163 T A 0.15 1.06 1.04–1.09 1.16 × 10−9 0 4.8 × 10−1

rs12681990 KCNU1 8 36,859,186 C T 0.15 1.05 1.04–1.07 3.07 × 10−9 0 6.4 × 10−1

rs10507349 RNF6 13 26,781,528 G A 0.78 1.05 1.04–1.07  9.69 × 10−10 0 6.1 × 10−1

rs576674 KL 13 33,554,302 G A 0.16 1.07 1.05–1.10  9.27 × 10−13 4 4.0 × 10−1

rs7985179 MIR17HG 13 91,940,169 T A 0.72 1.07 1.05–1.10 4.16 × 10−9 0 6.2 × 10−1

rs9940149 ITFG3 16 300,641 G A 0.83 1.05 1.04–1.07 1.09 × 10−9 0 9.2 × 10−1

rs2050188 HLA-DRB5a 6 32,339,897 T C 0.67 1.06 1.04–1.08 7.56 × 10−9 17 5.8 × 10−1

rs2421016 PLEKHA1 10 124,167,512 C T 0.53 1.05 1.03–1.06  3.68 × 10−11 17 2.3 × 10−1

rs2925979 CMIP 16 81,534,790 T C 0.29 1.05 1.03–1.07 2.41 × 10−8 6 3.8 × 10−1

rs825476b CCDC92 12 123,568,456 T C 0.57 1.04 1.03–1.06 4.3 × 10−8 0 6.2 × 10−1

Locus associated with T2D in Europeans at P < 5 × 10−8

rs7674212 CISD2a 4 103,988,899 G T 0.58 1.07 1.04–1.09 6.85 × 10−9 0 7.2 × 10−1

Chr., chromosome; EA, effect allele; NEA, non-effect allele; EAF, risk allele frequency in Europeans (allele frequencies by ancestry are reported in Supplementary Table 2); OR, 
odds ratio; CI, confidence interval; I2, heterogeneity inconsistency index; Phet, P value for heterogeneity across the meta-analysis data sets. Position is under hg19.
aCandidate gene based on ExomeChip lookup or Mendelian subform. bVariant discovered from the bivariate scan with additional support from replication.
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risk scores comprising collections of SNPs associated with T2D and 
potentially a range of cardiometabolic traits (Online Methods). These 
analyses underscore three key findings. First, a genotype risk score 
based on variants exclusively associated with increased risk of T2D 
(Online Methods and Supplementary Tables 12 and 13) was sig-
nificantly associated with increased CHD risk (OR = 1.26; Wald test 
P = 3.3 × 10−8), supporting a causal role for T2D in CHD etiology 
in a directionally consistent manner (Supplementary Table 14). 
Second, T2D risk scores that involved variants based on their asso-
ciation with established risk factors for CHD (blood pressure, BMI, 
lipids, and anthropometric traits; Supplementary Table 13) showed 
significant differences in their estimated effects in relation to CHD  
(OR = 1.07–1.43; Cochran’s heterogeneity test P = 1.4 × 10−5), indi-
cating that the genetic mechanisms and underlying pathways that 
increase risk of T2D do not uniformly influence CHD risk in the 
same manner (Supplementary Table 14). Finally, in contrast to these 
scores, variants associated with T2D and glucose or insulin-related 
traits, but not other traits, were not associated with CHD (OR = 1.07; 
Wald test P = 0.06) (Supplementary Table 14); however, this could 
be due to reduced power of this instrument relative to others, as has 
been observed previously15. These analyses indicate that pathways 
segregating genetic susceptibility for T2D may not have an equivalent 
impact on CHD risk.

Genetic risk for T2D and CHD shared across the genome
We next looked for enrichment in the consistency of the risk allele 
associated with both T2D and CHD across the genome. In our meta-
analyses, of the 1,260 variants associated with T2D at P < 5 × 10−8, we 
found that 76.1% of the T2D risk alleles were associated with higher 
risk of CHD as well, in comparison with an expectation of 50% under 
the null hypothesis (binomial test P = 2.6 × 10−33; Table 2). In contrast, 
variants associated with CHD at P < 5 × 10−8 were not enriched for 

directional consistency in allelic associations with T2D (48.2 versus 
the 50% expected; binomial test P = 0.79). Among the loci nominally 
associated with T2D and CHD (P < 0.05 but excluding associations 
above P < 5 × 10−8), 81.8% of the allelic variation associated with 
both the outcomes in a directionally consistent manner (binomial test  
P < 10−100). Furthermore, of the allelic variation that was not associ-
ated with both T2D and CHD at P > 0.05, only 50.6% of the allelic 
 variation (as compared to the 50% expected under the null hypothesis)  
was associated with the two outcomes in a directionally consistent 
manner (Table 2). To rule out any biases introduced as a result of 
allelic variations at a limited set of loci associated with both CHD 
and T2D, we conducted sensitivity analyses in PROMIS using 
genome-wide variants pruned for linkage disequilibrium (LD) and 
found results consistent for an overall enrichment of loci associ-
ated with both T2D and CHD in a directionally consistent manner 
(Supplementary Table 15).

Joint test identifies an additional locus for T2D and CHD
Motivated by the enrichment of directionally consistent associations 
of allelic variation between T2D and CHD SNPs, we performed a 
genome-wide association scan that modeled the joint distribution of 
association with both T2D and CHD (T2D–CHD; Online Methods), 
a test to help improve power for discovery of new loci that are asso-
ciated with both the outcomes (Supplementary Fig. 5). After veri-
fying that our test statistic was calibrated (Supplementary Fig. 6), 
we used this approach to identify a set of loci that were associated 
with both T2D and CHD (trait-specific fixed-effects meta-analysis  
P < 10−3) and that were overall associated at genome-wide levels 
of significance (bivariate P < 5 × 10−8; Supplementary Table 16). 
Nineteen loci met these criteria, which included many established 
loci for T2D or CHD.

We identified one association near CCDC92 (bivariate P = 2.7 
× 10−9; Supplementary Fig. 7a). The sentinel variant (rs825476) 
was associated with both T2D (fixed-effects meta-analysis  
P = 2.2 × 10−6) and CHD (fixed-effects meta-analysis P = 2.9 × 10−7)  
(Supplementary Fig. 7b,c); rs825476[T] at this locus increased 
risk for both outcomes. To demonstrate conclusive association of 
rs825476 with T2D, we sought replication data from eight addi-
tional cohorts, comprising 21,560 T2D cases and 42,814 controls. 
We observed marginal replication for this variant in those data 
alone (OR = 1.04, 95% CI = 1.01–1.07; fixed-effects meta-analysis  
P = 5.5 × 10−3) and obtained genome-wide significance when 
combined with the previous data (OR = 1.04, 95% CI = 1.03–1.06; 
fixed-effects meta-analysis P = 4.3 × 10−8; Supplementary Fig. 7b). 
Analyses conditioned on the lead SNP accounted for all the residual  
joint T2D–CHD association in the region (Online Methods), indi-
cating that the underlying genetic associations for both endpoints 
colocalize to a shared genetic risk factor potentially tagged by the 
sentinel SNP (Supplementary Fig. 8). The rs825476[T] allele also 
increased the expression of CCDC92 in subcutaneous adipose  
tissue (Supplementary Table 6) in eQTL analyses conducted in the 
MuTHER Consortium and GTEx10,11, suggesting a possible candi-
date gene for the association.

We sought to reduce our list to a subset of loci that colocalized the 
T2D and CHD associations to a single underlying genetic risk variant  
by conducting formal colocalization analyses (Online Methods). 
Eight of these 19 loci met this criterion, and at 7 of those 8 loci the 
risk allele for T2D also increased the risk for CHD (Table 3). This 
included loci with known associations with T2D (TCF7L2, HNF1A, 
CTRB1, and CTRB2) as well as previously unreported T2D loci 
reported here (MIR17HG and CCDC92) or known association with 
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Figure 1  A circular Manhattan plot summarizing the association results 
for the T2D scan. Black, previously established T2D loci; red, previously 
unreported T2D loci from trans-ancestry meta-analysis; blue, previously 
unreported T2D loci from European-only meta-analysis; green, previously 
unreported T2D locus discovered from the bivariate scan with additional 
support from replication.
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CHD (MRAS and ZC3HC1). Interestingly, this set of directionally  
consistent loci included coding variants in two genes encoding tran-
scription factors: the missense variant(s) p.Ile27Leu in HNF1A and 
p.Arg326His in ZC3HC1. At the APOE locus, where the effect of 
association for T2D and CHD risk was opposite, localization was 
observed at rs4420638, but the tagging among the lead sentinel SNPs 
was incomplete, making it challenging to distinguish between mul-
tiple conditionally independent variant associations with both traits 
versus partial tagging of a single, common association. At the IRS1 
locus, while we found rs7578326 to be associated with both T2D 
and CHD (P < 5 × 10−8), formal colocalization analyses failed to 
identify a single underlying genetic risk factor for the two outcomes 
at this locus.

Next, we used biomarker data to help understand the mecha-
nisms linking T2D and CHD at two new loci discovered through 
bivariate scan, MIR17HG and CCDC92. The region around CCDC92 
segregates numerous cardiometabolic trait associations, including 
T2D (rs1727313)9, HDL-C (rs4759375 and rs838880), triglycerides 
(rs4765127)17, and waist–hip ratio adjusted for BMI (rs4765219)18. 
However, variants in these previous reports were not strongly linked 
to our sentinel SNP (r2 < 0.02 in all cases). The risk variant for T2D– 
CHD at the CCDC92 locus also decreased HDL-C levels (fixed-
effects meta-analysis P = 2.2 × 10−9) in analyses by the Global Lipids 
Genetics Consortium (GLGC)17; this variant was in partial linkage 
with a variant (rs10773049; r2 = 0.6 and 0.3 in Europe and South Asia, 
respectively) previously known for association with BMI. MIR17HG 
appeared to harbor only modest associations with HDL (fixed-effects 
meta-analysis P = 1.3 × 10−4), fasting insulin levels (P = 6.4 × 10−4), 
and homeostatic model assessment of insulin resistance (HOMA-IR; 
P = 7.9 × 10−4).

We also examined association at APOE where the T2D risk allele 
was associated with decreased CHD risk. The T2D risk allele was also 
found associated with increased HDL-C (fixed-effects meta-analysis 
P = 1.72 × 10−21), decreased LDL cholesterol (LDL-C; P = 1.51 × 
10−178), decreased total cholesterol (P = 1.14 × 10−149), decreased 
triglycerides (P = 1.55 × 10−14), reduced LDL particle size (P = 3.80 × 
10−11), increased waist–hip ratio (BMI adjusted; P = 1.80 × 10−6), and 
increased risk of neovascular disease (P = 2.78 × 10−8).

Joint T2D–CHD associations highlight new pathways
We next aimed to identify a subset of highly connected loci that 
indicate unidentified pathways that were jointly related to T2D and 
CHD. To achieve this, we used results from our bivariate T2D–CHD 
association scan and pruned SNPs for LD to obtain a set of unlinked 
regions across the genome (r2 < 0.05). From this list, we selected 
299 LD-independent SNPs that were found to be associated with 
T2D and CHD in our bivariate scan (P < 0.001; Supplementary  
Tables 17 and 18) and sought to prioritize candidate genes impli-
cated in the association using the text-mining approach GRAIL19. 
Seventy-nine of 299 regions were found to have prioritized specific 
genes in associated intervals (GRAIL P < 0.05), significantly more 
overall than expected (26.4%; binomial test P < 1 × 10−34). Next, pro-
tein–protein interaction connectivity analysis among these 79 genes20 
demonstrated more direct and indirect connections than expected 
(permuted P < 1 × 10−4; Online Methods), thus motivating us to 
focus on this subset for further analysis. Several plausible candidates 
from this list emerged, including the hepatic glucose transporter gene 
SLC2A2, the adipocyte fatty-acid-binding protein gene FABP4 (aP2), 
LPIN1 (lipin-1), PPARGC1B (PGC-1β), and the free fatty acid recep-
tor 1 gene FFAR1, among others (Supplementary Table 18).

Table 2 E nrichment in directional consistency for all SNPs in the T2D and CHD association scan

P-value cutoff

No. of SNPs in total

T2D and CHD associations from trait-specific meta-analyses

T2D CHD No. of SNPs T2D/CHD consistent % of SNPs T2D/CHD consistent Adjusted –log10 (P)a

(0, 5 × 10−8] – –b 1,260 959 76.11 76.966

– –b (0, 5 × 10−8] 595 287 48.24 0.062

(0.5, 1] (0.5, 1] 1,874,138 948,292 50.60 –

(5 × 10−8, 0.05] (5 × 10−8, 0.05] 36,242 29,634 81.77 3319.168

aP values from the binomial sign test are reported. The probability used to estimate the P values in the binomial sign test is the percentage highlighted in bold. bAll variants, irrespective of  
association P value.

Table 3  Genome-wide significant loci by bivariate scan at sentinel SNPs that are associated with both T2D and CHD (P < 1 × 10−3) 
where leading associations colocalize

Gene Lead variant Chr. Position (hg19) EA NEA

T2D CHD BVN

OR 95% CI P value OR 95% CI P value P value

Established loci with T2D–CHD risk allele agreement and colocalization (r2 > 0.7 between T2D and CHD associations and coloc Prob. > 0.5)
TCF7L2 rs7903146 10 114,758,349 T C 1.35 1.33–1.38 1.3 × 10−219 1.04 1.02–1.05 2.9 × 10−5 2.6 × 10–212

HNF1A (I27L) rs1169288 12 12,146,650 A C 1.06 1.04–1.08 9.3 × 10–10 1.04 1.03–1.06 3.9 × 10–7 2.0 × 10–12

CTRB1/2 rs7202877 16 75,247,245 T G 1.06 1.03–1.08 4.0 × 10–6 1.06 1.04–1.09 2.9 × 10–6 1.0 × 10–8

MRAS rs2306374 3 138,119,952 C T 1.05 1.02–1.07 6.5 × 10–4 1.06 1.04–1.08 2.3 × 10–8 9.8 × 10–9

ZC3HC1 (R342H) rs11556924 7 129,663,496 C T 1.03 1.01–1.05 4.9 × 10–4 1.08 1.06–1.10 3.3 × 10–20 1.4 × 10–19

New loci with T2D–CHD risk allele agreement and colocalization (r2 > 0.7 between T2D and CHD associations and coloc Prob. > 0.5)
MIR17HG rs7985179 13 91,940,169 A T 1.07 1.05–1.10 3.7 × 10–9 1.05 1.02–1.08 6.4 × 10–4 1.5 × 10–9

CCDC92 rs825476 12 124,568,456 T C 1.04 1.03–1.06 2.2 × 10–6 1.03 1.02–1.05 3.0 × 10–7 2.7 × 10–9

Opposite risk allele for T2D and CHD with colocalization (r2 > 0.7 between T2D and CHD associations and coloc Prob > 0.5)
APOE rs4420638 19 45,422,946 A G 1.08 1.05–1.11 8.8 × 10–8 0.89 0.85–0.93 1.8 × 10–6 2.6 × 10–13

Chr., chromosome; EA, effect allele; NEA, non-effect allele; OR, odds ratio; CI, confidence interval; BVN, bivariate normal distribution of T2D and CHD statistics. Position is  
under hg19.
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We next performed ontology analysis on the set of 79 genes that 
emerged from the T2D–CHD bivariate scan for connectivity21. To 
compare our findings, we also conducted similar ontological analy-
sis on loci identified for T2D or CHD in previous GWAS for each 
of these traits. As expected, ontological analysis of established T2D 
loci alone indicated robust enrichment of diabetes, hyperglycemia, 
and insulin resistance disease annotations (enrichment test P < 1 × 
10−55), as well as enrichment for pathways related to insulin secretion 
and transport, glucose homeostasis, and pancreas development (all  
P < 1 × 10−9). Also as expected, ontological analysis of CHD loci alone 
demonstrated robust enrichment of disease annotations related to 
coronary disease, myocardial infarction, and arteriosclerosis (P < 1 × 
10−36), as well as enrichment for pathways related to lipid homeostasis 
and cholesterol transport (P < 1 × 10−8). As expected, analysis of the 
79 gene intervals associated with T2D and CHD identified loci that 
were also modestly enriched for disease ontologies related to vascular 
resistance (P < 1 × 10−12), T2D, cardiovascular disease, fatty liver, 
obesity, gestational hypertension, and pre-eclampsia (all P < 1 × 10−5), 
as well as cancer (P < 1 × 10−9). In contrast to the pathways described 
above, we also observed enrichment for additional pathways related 
to cardiovascular system development, cell signaling, signal trans-
duction, regulation of phosphorylation, and transmembrane receptor 
protein kinase signaling among the categories (adjusted P < 1 × 10−7) 
(Supplementary Fig. 9).

DISCUSSION
We report the discovery of 16 new loci for T2D using discovery and 
replication studies in 265,678 participants. Using ExomeChip data, we 
were able to identify a coding variant that was more strongly associ-
ated with T2D risk than the corresponding noncoding variant. Using 
additional data on 260,365 participants, we report a new locus for 
CHD and identify genetic loci that are shared by T2D and CHD, of 
which a subset colocalized to the same genetic variant (for example, 
CCDC92, MIR17HG, HNF1A, ZC3HC1, and APOE; Table 3). Finally, 
using a bivariate scan for T2D and CHD together, genetic association 
data pointed to new pathways that are implicated in the etiology of 
both the disease outcomes.

Many of the loci discovered in the current meta-analyses suggest 
new T2D biology or confirm pathways previously implicated in T2D. 
For instance, MIR17HG, KL, and BCL2L11 have been shown to be 
involved in cell survival, apoptosis, and cellular aging, respectively22–24.  
Genetic variants near KL have also been shown to be associated with 
fasting glucose levels as well25. TMEM18 is involved in cellular migra-
tion; HLA-DR5 and CMIP have crucial roles in immune-mediated  
responses and have been implicated in various immunological dis-
orders26,27. Genetic variation at the HLA locus (rs9272346) has 
previously been implicated in type 1 diabetes (T1D); however, we 
did not find any evidence of association of rs9272346 with T2D in 
our meta-analyses. Additionally, rs9272346 was not in LD with the 
T2D sentinel SNP (rs2050188) at this locus (r2 = 0.06 in Europe and 
r2 = 0.01 in South Asian). However, rs7111341 has previously been 
reported as a risk factor for T1D28. We found that rs7111341[T] is 
associated with increased risk for T2D but decreased risk for T1D, a 
similar pattern of association to a previously established association 
(rs7202877, near CTRB1).

The contrasting associations of APOE with T2D and CHD were 
challenging to interpret. APOE encodes apolipoprotein E found 
in the chylomicron and intermediate-density lipoproteins (IDLs). 
Genetic variation at the APOE locus is associated with major lipids  
and CHD6,17. Here the T2D risk variant was associated with decreased CHD 
risk and LDL-C and with reduced LDL particle size. These observations  

are consistent with recent studies indicating that reduction in levels 
of LDL-C, a major CHD risk factor, may confer a higher, but modest 
risk of T2D. Evidence from a meta-analysis of randomized controlled  
trials has shown that reduction of LDL-C by statin treatment, as  
compared to placebo, led to a higher but a very small absolute risk of 
T2D29. Moreover, genetic variants associated with reduced expression 
of HMG–CoA reductase, the target of statins, and reduced LDL-C 
levels have been shown to be associated with increased risk of T2D30. 
Also, two MR studies concluded that genetically mediated decreases 
in LDL-C associated with a higher risk of T2D31,32. Furthermore, it 
has been shown that genetic variants in the PCSK9 gene that lower 
LDL-C levels are associated with a higher risk of T2D, fasting glucose 
concentration, body weight, and waist–hip ratio33. In contrast to the 
findings from our overall meta-analyses, these results suggest that 
LDL-C may represent one of a small subset of discrete pathways that 
display opposing associations for the two outcomes. These findings 
underscore how human genetics can help focus future investigations 
on T2D therapeutics that have either neutral or beneficial effects on 
vascular outcomes.

The collection of 79 regions identified through our joint T2D–CHD 
bivariate scan involves targets of existing drugs. These includes icos-
apent, a polyunsaturated fatty acid found in fish oil that is an FFAR1 
and PPARG agonist and a COX1/COX2 inhibitor34. The ANCHOR 
trial showed that icosapent ethyl, marketed as the drug Vascepa, has 
efficacy in lowering triglycerides in patients with high triglyceride 
levels35 as well as non-HDL-C and HDL-C36. A second plausible 
candidate gene is FABP4 (encoding the adipocyte fatty-acid-binding 
protein; also known as aP2). Mouse models deficient in aP2 display 
protection against atherosclerosis and antidiabetic phenotypes37–39.  
Moreover, small-molecule inhibition of aP2 has been shown to reduce 
atherosclerosis, glucose and insulin levels, and triglycerides in a mouse 
model40; inhibition of this pathway through a monoclonal antibody 
also appears to be efficacious in mouse models41.

Careful evaluation of the pathways or biological processes where 
T2D, CHD, and related traits overlap could help to highlight new 
avenues for therapeutic targeting. First, using gene discovery and 
biomarker studies, we have identified new pathways, outside of 
the established glucose and cholesterol homeostatic networks, 
that could be investigated in more detail. Second, we have found 
that some genetic variants associated with T2D singly or in aggre-
gate are enriched for associations with CHD. With one exception 
(pathways involving LDL-C), genetic pathways that increase T2D 
risk tend to overall increase CHD risk. Hence, existing or future 
therapeutic programs designed for the prevention of T2D could 
be better guided by evidence from genetic studies, to prioritize tar-
gets that have either neutral or directionally consistent effects on  
vascular outcomes. Overall, identification of genetic loci associated 
with both T2D and CHD risk in a directionally consistent manner 
could provide therapeutic opportunities to lower the risk of both 
outcomes.

Note added in proof: A report42 was published while our article was 
under review that mapped T2D associations to three regions reported 
here at genome-wide significance. These regions include (i) rs2925979; 
(ii) rs2292626, which is perfectly linked (r2 = 1.0) to rs2421016 reported 
here; and (iii) rs9271774, which maps to nearby rs2050188 reported 
here but is not strongly linked (r2 = 0.14).

URLs. CARDIoGRAMC4D Consortium, http://www.cardiogramplusc4d.
org/; DIAGRAM Consortium, http://diagram-consortium.org/; coloc 
tool, https://github.com/chr1swallace/coloc; bivariate scan analysis 
code, https://github.com/WWinstonZ/bivariate_scan/; WebGestalt, 

http://www.cardiogramplusc4d.org/
http://www.cardiogramplusc4d.org/
http://diagram-consortium.org/
https://github.com/chr1swallace/coloc
https://github.com/WWinstonZ/bivariate_scan/
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http://www.webgestalt.org/option.php; GRAIL, http://software. 
broadinstitute.org/mpg/grail/; DAPPLE, http://archive.broadinsti-
tute.org/mpg/dapple/dapple.php; SNPTEST, https://mathgen.stats.
ox.ac.uk/genetics_software/snptest/snptest.html; LocusZoom, http:// 
locuszoom.org/; METAL, http://genome.sph.umich.edu/wiki/METAL; 
GTEx, https://gtexportal.org/home/; optiCall, https://opticall.bitbucket.
io/; zCall, https://github.com/jigold/zCall; RAREMETALWORKER, 
http://genome.sph.umich.edu/wiki/RAREMETALWORKER; 1000 
Genomes, http://www.internationalgenome.org/; PLINK, https://
www.cog-genomics.org/plink2; GCTA, http://cnsgenomics.com/soft-
ware/gcta/; summary data availability, http://www.med.upenn.edu/ 
ccebfiles//t2d_meta_cleaned.zip and http://www.med.upenn.edu/ 
ccebfiles/chd_t2d_af_gwas12_cleaned_combined_1000gRefAlt_
added_pvalRescaled_varSetID_added.zip.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study subjects. In the discovery phase, we performed meta-analysis on data 
from eight different studies; four studies (PROMIS, RACE, BRAVE, and 
EPIDREAM) include participants of South Asian origin living in Pakistan, 
Bangladesh, and Canada and four studies (FINRISK, MedStar, MDC, and 
PennCATH) include subjects of European origin (Supplementary Table 1 and 
Supplementary Note). GWAS/Metabochip data and information on T2D risk 
were available on 48,437 individuals (13,525 T2D cases and 34,912 controls) 
from these eight studies. We further used published data from the DIAGRAM 
Consortium and conducted combined discovery analysis on 198,258 partici-
pants (48,365 T2D cases and 149,893 controls). Characteristics of the partici-
pants and information on genotyping arrays and imputation are summarized 
in Supplementary Tables 1–3. Replication studies were completed in partici-
pants enrolled in the LOLIPOP, SINDI, SDS, MSSE, TAICHI, and BBJ studies 
(Supplementary Table 1), collectively composed of 67,420 individuals (24,972 
cases and 42,448 controls) who were of South Asian (n = 13,960; 4,587 T2D 
cases and 9,373 controls), European (n = 2,479; 387 T2D cases and 2,092 
controls), and East Asian (n = 50,981; 19,998 T2D cases and 30,983 controls) 
descent. Hence, our combined discovery and replication analyses included 
265,678 participants (73,337 T2D cases and 192,341 controls). Further details 
of the contributing cohorts and characteristics of the participants are provided 
in Supplementary Table 1 and the Supplementary Note.

Institutional review boards and informed consent. All participating studies 
were approved by the relevant local institutional review boards. All participants 
enrolled in each of the participating studies provided informed consent.

Genotyping and quality control in the discovery stage. All studies used 
a high-density genotyping array (GWAS/Metabochip) (Supplementary  
Table 2 and Supplementary Note). Quality control procedures were performed 
for each individual study. Details on study-specific quality control are provided 
in Supplementary Table 2. Each study individually assessed and controlled for 
any population stratification using principal-component analysis.

Imputation. In all studies, the genomic locations of all variants were first 
harmonized using NCBI Build 37/UCSC hg19 coordinates. Only studies that 
contributed GWAS data underwent imputation. Imputation of genotypes 
across the genome was computed using data from the 1000 Genomes Project 
(phase 1 integrated release 3, March 2012)43. Imputed SNPs were removed 
if they had (i) a minor allele frequency (MAF) of <0.01; (ii) an info score 
of <0.90; or (iii) an average maximum posterior call <0.90. Supplementary 
Table 2 provides further details on the imputation protocol used by each of 
the participating studies.

Statistical analysis in the discovery stage. To test for an association between 
each SNP and risk of T2D, a logistic regression model was computed with 
adjustment for age, sex, and the first study-specific principal components using 
SNPTEST44. SNPs were modeled under an additive genetic model, and imputa-
tion uncertainty was accounted for under an allele dosage approach. Inflation 
of association statistics was assessed within each study by the genomic control 
method (Supplementary Fig. 1 and Supplementary Table 3). Variants that 
were retained in at least two studies were subjected to meta-analysis using 
the weighted z-score method implemented in METAL45. Heterogeneity was 
assessed by Cochran’s Q statistic and the I2 heterogeneity index. Pairwise LD 
between SNPs was assessed and visualized using the 1000 Genomes European 
reference panel43. Regional association plots were visualized using LocusZoom 
software. After removing regions harboring known loci, the top associated 
SNP and one or more SNPs based on LD with the lead variant found in asso-
ciation with any of the above phenotypes (P < 5 × 10−6) were selected for the 
replication studies.

Analyses in the replication stage. Studies that participated in the replica-
tion stage had conducted genotyping on GWAS or Metabochip arrays. The 
association of SNPs with T2D was calculated separately using a trend test, 
with heterogeneity between studies assessed using Cochran’s Q statistic. Meta-
analysis was then conducted using the weighted z-score method implemented 
in METAL to combine the results across all replication studies and with the 

discovery stage. For the combined analysis of discovery and replication data, 
genome-wide significance was inferred at P < 5 × 10−8.

eQTL and functional prioritization. To determine whether the identified 
risk variants influence expression of any nearby genes, we accessed a variety 
of sources, including (i) GTEx cis-eQTL data in all available tissues, including 
liver, brain, endothelial cells, and whole blood10, and (ii) cis-eQTL data for adi-
pose, lymphoblastoid cell lines, and skin from the MuTHER Consortium11.

ExomeChip analysis. To assess whether there are coding variants associated 
with T2D in the proximity of the newly discovered sentinel T2D SNPs, we 
performed an ExomeChip-based meta-analysis in four studies (PROMIS, 
BRAVE, CIHDS-CGPS, and PROSPER) in the ±500-kb regions centered on 
the sentinel T2D SNPs. For all the studies, genotyping and quality control were 
carried out centrally in Cambridge, UK. In each study, samples with extreme 
intensity values and outlying plates or arrays were removed before genotype 
calling. Genotype calling was initially performed with optiCall. Samples with 
a call rate (CR) less than (mean CR – 3 s.d.) were removed before postprocess-
ing optiCall calls with zCall. Scanner-specific Z-values (calculated using the 
1,000 samples with the highest optiCall CR) were adopted as they gave the 
best global concordance within each batch. Rare variants (optiCall, MAF < 
0.05) were then postprocessed with zCall using the scanner-specific Z-values. 
Within each genotyping batch, variants were removed if variant CR was <0.97 
or if Hardy–Weinberg equilibrium P value was <1 × 10−6 for common variants 
or <1 × 10−15 for rare variants (MAF < 0.05). Variants within each genotyp-
ing batch were aligned to the human genome reference sequence plus strand, 
and the standardized files were used for sample quality control. Samples were 
excluded from each batch or study if sample heterozygosity was >±3 s.d. from 
the mean heterogeneity or sample call rate was >3 s.d. from the mean call 
rate. Variants were further selected on the basis of stringent quality control 
thresholds (CR < 0.99, Hardy–Weinberg equilibrium P < 1 × 10−4, MAF > 
0.05) and LD pruned (r2 < 0.2) for principal-component analysis and kinship 
calculations. Duplicates within each collection (kinship coefficient > 0.45) and 
ancestral outliers identified by principal-component analysis were removed. 
Samples and variants that failed quality control were removed from individual 
batches. Where studies were analyzed in multiple batches, the batches were 
combined and any single-nucleotide variants (SNVs) out of Hardy–Weinberg 
equilibrium across the study were removed.

Study-specific analyses were conducted using RAREMETALWORKER46,47 
incorporating the kinship matrix and adjusting for age and sex. In each study, 
variants with minor allele count (MAC) <10 were removed before meta-
analysis. Meta-analysis was performed in METAL. In the meta-analysis, the 
sample-size-weighted approach was used to estimate P values and an inverse-
variance-weighted approach was used to calculate pooled effect estimates 
and corresponding standard errors. Study-specific information is provided 
in Supplementary Table 19.

Phenome/biomarker scan analyses. We downloaded online-available GWAS 
data from 12 consortia for 70 traits (Supplementary Table 9) and harmonized 
genome positions to Build37/hg19. We then performed a lookup for the newly 
discovered T2D SNPs using these harmonized data sets. We also performed 
a phenotypic scan for the same new T2D SNPs across 105 biomarkers meas-
ured in the PROMIS participants using a linear regression model adjusted 
for the first five principal components (Supplementary Table 10). We used a 
Bonferroni-adjusted P-value cutoff of 1.8 × 10−5 (= 0.05/175 traits/16 SNPs) 
to declare statistical significance.

Coronary heart disease meta-analysis. We assembled 56,354 samples 
of European, East Asian, and South Asian ancestry genotyped on the 
CardioMetabochip to identify genetic determinants of CHD. These results 
were combined with those reported by CARDIoGRAMplusC4D to yield analy-
ses comprising 260,365 subjects (90,831 CHD cases) for CHD. Additional new 
CHD studies comprised 16,093 CHD cases and 16,616 unaffected individuals: 
EPIC-CVD study, a case–cohort study recruited across ten European coun-
tries; the Copenhagen City Heart Study (CCHS), the Copenhagen Ischemic 
Heart Disease Study (CIHDS), and the Copenhagen General Population Study 
(CGPS) all recruited within Copenhagen, Denmark; the South Asian studies 
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comprised up to 7,654 CHD cases and 7,014 controls from the Pakistan Risk 
of Myocardial Infarction Study (PROMIS), a case–control study that recruited 
samples from nine sites in Pakistan, and the Bangladesh Risk of Acute Vascular 
Events (BRAVE) study based in Dhaka, Bangladesh; the East Asian studies 
comprised 4,129 CHD cases and 6,369 controls recruited from seven studies 
across Taiwan that collectively make up the TAIwan metaboCHIp (TAICHI) 
Consortium. Samples from EPIC-CVD, CCHS, CIHDS, CGPS, BRAVE, 
and PROMIS were all genotyped on a customized version of the Illumina 
CardioMetabochip, referred to as Metabochip+, in two Illumina-certified 
laboratories located in Cambridge, UK, and Copenhagen, Denmark. TAICHI 
samples were genotyped using the latest version of the CardioMetabochip. 
For each study, samples were removed if they had CR <0.97, had average het-
erozygosity >±3 s.d. from the overall mean heterozygosity, or the genotypic 
sex did not match the reported sex. One of each pair of duplicate samples and 
first-degree relatives (identified by a kinship coefficient >0.2) was removed. 
CardioMetabochip data were also obtained from the Women’s Health Initiative 
Study and the ARIC study; the two studies underwent the same quality control 
as described for the TAICHI study. Across all studies, SNP exclusions were 
based on MAF < 0.01, P < 1 × 10−6 for Hardy–Weinberg equilibrium, or CR 
< 0.97. CARDIoGRAMplusC4D Consortium data were obtained online (see 
URLs). Only non-overlapping samples were used for meta-analyses. Fixed-
effects inverse-variance-weighted meta-analysis was used to combine the 
effects across studies in METAL45.

Genetic risk score analysis. We used a two-sample MR method48 to estimate 
effects for a multi-SNP genetic instrument by using summary statistics. This 
method has previously been validated to infer causal effects (odds ratios) and 
associated standard error49. Briefly, association data for both T2D and CHD 
were obtained using data from two separate genome-wide meta-analyses. For 
T2D, we used the data from the current meta-analyses, whereas we used data 
from the most recent CHD meta-analyses as described in the Supplementary 
Note. Using sentinel SNPs for all established T2D associations, we identified 
a set of variants (n = 16) exclusively associated with T2D by screening against 
the GWAS catalog of publicly available data50 for anthropometric traits (BMI, 
waist–hip ratio, waist circumference, waist–hip ratio adjusted for BMI, waist 
circumference adjusted for BMI, and hip), glucose/insulin or MAGIC traits 
(fasting glucose, 2-h glucose, fasting insulin, and proinsulin levels), blood 
lipids (HDL-C, LDL-C, and triglycerides), and blood pressure (systolic and 
diastolic). We next attempted to group the remaining pleiotropic T2D SNPs 
into different categories on the basis of their observed associations for vari-
ous cardiometabolic intermediate traits (P < 0.01). These groupings included 
(i) variants associated with glucose/insulin traits only (n = 13), (ii) variants 
associated with triglycerides/HDL-C and waist circumference/waist–hip ratio 
but not glucose/insulin, blood pressure, LDL-C, or BMI (n = 6), (iii) variants 
associated with triglycerides/HDL-C and obesity/anthropometric traits but 
not glucose/insulin, blood pressure, or LDL-C (n = 6), (iv) variants associated 
with triglycerides/HDL-C, blood pressure, and BMI but not glucose/insulin or 
LDL-C (n = 8), and (v) variants associated with triglycerides/HDL-C, blood 
pressure, BMI, and glucose/insulin but not blood pressure or LDL-C (n = 24) 
(Supplementary Table 12). Established T2D SNPs that did not fall into any 
of these categories were excluded. Heterogeneity in odds ratios was assessed 
via Cochran’s Q test for heterogeneity.

T2D and CHD enrichment analysis. We used a binomial distribution with 
baseline enrichment probability Pb to derive the density for the test statistic 
E ~ Binomial(n, Pb), where n is the number of SNPs in a variant set. E is the 
number of SNPs with a directionally consistent effect on T2D and CHD (the 
allele that increases the risk for T2D also increases the risk for CHD). Using 
SNPs that were not associated with T2D or CHD (P ≥ 0.05 for T2D and CHD), 
we calculated the percentage of SNPs with a directionally consistent effect in 
T2D and CHD and used this as an estimate for Pb. We then performed the 
enrichment analysis in two variant sets: (i) the variant set with all variants 
available and (ii) the variant set with LD-clumped variants. The results are 
shown in Supplementary Table 15. In the LD clumping procedure, the SNPs 
with more significant T2D P values were retained as seeds and the other SNPs 
that were in LD (r2 > 0.1 based on data from the 1000 Genomes Project (phase 
3, v5 variant set)) with the seed SNPs were removed43.

Estimating the T2D–CHD bivariate normal density. To establish the 
T2D–CHD bivariate normal density, we used all variants that we identified 
in our analyses on T2D and CHD; we further pruned them for LD with 1000 
Genomes Project data (Phase 3, v5 variant set) to r2 ≤ 0.1 using PLINK51,52. 
The reference and alternate alleles of the variants that survived LD pruning 
were retrieved from the same 1000 Genomes VCF file used for pruning, and 
the variants’ effects on CHD and T2D were aligned to their reference alleles. 
The statistics used to estimate the bivariate normal density were produced 
using the following formula: 

Z
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T2D
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2 2
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where Φ−1 is the inverse-cumulative distribution function of the standard 
normal distribution, PCHD and PT2D are the P values for CHD and T2D, respec-
tively, and βCHD and βT2D are the effect sizes of the reference allele on CHD 
and T2D, respectively. Because a successful estimation of the bivariate distri-
bution depends on both positive and negative Z-scores, we used the signs of 
the corresponding effect estimates (β/|β|) to determine the signs of ZCHD and 
ZT2D. The distributions of ZCHD and ZT2D are shown in Supplementary Figure 
5. Parameters for the bivariate normal density were estimated using the mvn.
ub() function in the R package miscF. The estimated bivariate normal density 
has the following parameter values. 
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Two-degree-of-freedom test under the bivariate normal density. Assuming 
that Z is distributed as a bivariate normal, then 
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∼ (3)

where N2(µ, Σ) denotes a bivariate normal distribution with a vector of means 
µ and variance–covariance matrix Σ, and c2

2  is the chi-squared distribution 
with 2 degrees of freedom. Using Y as the test statistic, we performed a two-
degree-of-freedom test on Z = (ZCHD, ZT2D), and our null hypothesis was 
that a SNP was not associated with either of the two traits. Supplementary  
Figure 5 depicts the rejection region of the two-degree-of-freedom test.

Conditional analysis for CCDC92. We performed approximate conditional 
analysis for the CCDC92 locus using the software package GCTA53. We used 
the summary meta-analysis data for our primary T2D and CHD scans (before 
replication) as data input from each continental group (European, South Asian, 
and East Asian). As the reference input, we used population data from the 1000 
Genomes Project (version 3) matching the continental ancestry for the respec-
tive conditional analysis. We then conditioned on rs825476—the lead SNP 
associated with CHD and T2D—for each continental group. We combined 
the summary results from each continental group via inverse-weighted fixed-
effects meta-analysis. LocusZoom plots for these conditional meta-analysis 
association results are presented in Supplementary Figure 8.

Colocalization analysis. To determine whether the T2D and CHD associa-
tion signals colocalized to the same genetic variant, we used the R package 
coloc. For each of the 19 loci that met our T2D–CHD association criteria, 
we obtained association data from all SNPs within 500 kb of the sentinel 
bivariate associated SNP (Supplementary Table 16). From there, we used 
the coloc.abf() function to calculate the probability that both traits are 
associated and share a single causal variant (H4), using the P values from 
the overall inverse-variance fixed-effects meta-analysis for T2D (without 
replication) and CHD, the overall case–control sample sizes for both scans, 
and the allele frequencies for the variant based on all 1000 Genomes data 
(version 3). We call variants colocalized if the H4 colocalization probability 
was greater than 0.5.
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Selection of loci for connectivity and ontology analyses. For T2D, we used 
the previously reported loci5 (n = 88) and the loci discovered in this report  
(n = 16). For CHD, we used the previously reported loci described in the most 
recent report published by the CARDIoGRAMplusC4D Consortium (n = 58)6. 
Prioritization of genes from this list of established loci for T2D and CHD 
(Supplementary Table 17) was based on evidence from monogenic associa-
tion with disease53, coding mutations in nearby genes, functional evidence 
implicating genes, or the gene nearest to the sentinel SNP. For T2D–CHD 
associations arising from our bivariate scan, we first pruned the data set for 
LD (r2 < 0.1). We further selected 299 LD-independent SNPs that were found 
to be associated with T2D and CHD with P < 0.001 in our bivariate scan 
and used them to identify underlying candidate genes using GRAIL19. For  
protein–protein interaction connectivity analysis, we used DAPPLE20 on 
the 79 loci that were found to be significant in GRAIL19. Empirical signifi-
cance for excess connectivity in protein–protein interactions was assessed  
by 10,000 permutations.

Ontology analysis and drug target annotations. We used the online tool 
WebGestalt21 to perform ontology enrichment analysis. For analysis of the 
query loci, we nominated genes (n = 79) that were prioritized from text mining 
(GRAIL P < 0.05). We also performed ontology analyses using separate gene 
lists for T2D (n = 104) and CHD (n = 58) loci separately. The hypergeomet-
ric distribution was used to assess significance, and adjustment for multiple 
testing was controlled for using the Benjamini–Hochberg procedure54 imple-
mented in WebGestalt21.

Data availability. Summary GWAS estimates for the T2D meta-analysis  
and bivariate summary data, respectively, are publicly available in the follo
wing files: http://www.med.upenn.edu/ccebfiles//t2d_meta_cleaned.zip, and  

http://www.med.upenn.edu/ccebfiles/chd_t2d_af_gwas12_cleaned_com-
bined_1000gRefAlt_added_pvalRescaled_varSetID_added.zip. A Life 
Sciences Reporting Summary is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. For our meta-analysis, we aimed to conduct the largest meta-analyses by 
generation new data and assembling publicly available information.

2.   Data exclusions

Describe any data exclusions. A brief description on all participating studies  has been provided in the 
supplementary note. If participants were excluded by any particular study, 
details have been provided in the supplementary note. No animal studies 
have been conducted in the current analyses.

3.   Replication

Describe whether the experimental findings were reliably reproduced. We replicated our findings by assembling datasets independent of our 
discovery studies; only those genetic variants which were successfully 
replicated were declared to be novel in association with type-2 diabetes

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. All analyses were conducted in SNPTEST, PLINK, R and STATA which are 
available to the wider scientific community. Methods to perform the 
bivariate scan are available through a public github repository. All other 
tools used in the manuscript derive from computational tools that are 
publicly available. 

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

N/A

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

A brief description on all participating studies  has been provided in the 
supplementary note.
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