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Abstract

Polygenic risk scores (PRSs) summarize the genetic predisposition 

of a complex human trait or disease and may become a valuable tool 

for advancing precision medicine. However, PRSs that are developed 

in populations of predominantly European genetic ancestries can 

increase health disparities due to poor predictive performance in 

individuals of diverse and complex genetic ancestries. We describe 

genetic and modifiable risk factors that limit the transferability of PRSs 

across populations and review the strengths and weaknesses of existing 

PRS construction methods for diverse ancestries. Developing PRSs that 

benefit global populations in research and clinical settings provides an 

opportunity for innovation and is essential for health equity.
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population or context, differences in sociocultural factors, environ-

mental exposures and measurement errors between populations 

that affect total phenotypic variance can alter heritability estimates 

and influence the accuracy of PRSs (discussed further below). It has 

been shown that even within a relatively homogeneous population, 

heritability — and thus the predictive accuracy of PRSs — can differ 

by major demographic variables such as age, sex and socioeconomic  

status27,28.

The transferability of PRSs across populations might also be 

impacted by differences in the frequency of causal variants and their 

allelic effect sizes (Fig. 2c). These factors can vary due to demographic 

histories (such as mutations in historical migrant groups followed 

by genetic drift or population bottlenecks) or gene by environment 

interactions. Although existing studies have shown extensive genetic 

overlap across ancestries for a range of complex traits and diseases both 

at the variant level and the genome-wide level (via cross-population 

genetic correlation analyses), especially between European and East 

Asian populations29–32, widespread allelic effect heterogeneity has also 

been observed33,34. Even assuming identical allelic effects, population 

differences in allele frequencies can impact the amount of pheno-

typic variance explained by these variants, and thus PRS performance. 

As the vast majority of GWAS have been conducted in individuals of 

European ancestries, most existing PRSs have been constructed from 

variants that are common in European populations, which may have 

substantially lower frequencies in other populations. Moreover, causal 

variants in non-European ancestry populations may not be detectable 

in European ancestry GWAS due to low allele frequencies in European 

ancestries, and thus limited statistical power, further reducing the 

generalizability of PRSs.

The marked differences in LD patterns across populations can also 

impact PRS transferability. For example, the size of LD blocks is, on 

average, much smaller in African populations than in European or East 

Asian populations35,36. As a result, many more variants are needed to 

capture the same level of genetic variation in African populations than 

in other populations. Many of the variants used in PRS construction are 

not causal but are merely in LD with causal variants, and many early 

genotyping arrays were designed based on European-enriched variants. 

Thus, differences in LD across populations can affect the transferability 

of PRSs derived from European GWAS (Fig. 2d). Taken together, the 

number of causal alleles and their allelic effect size distributions25,26 

coupled with their frequencies and local LD patterns can have a com-

plex impact on the performance of PRSs across populations. Further-

more, although most PRSs only capture additive genetic effects tagged 

by assayed or imputed variants, non-linear genetic effects including 

allelic heterogeneity, haplotype effects and gene by gene interac-

tions can influence the genetic basis of a complex trait or disease37 and 

further complicate the transferability of PRSs.

It is important to recognize that the analysis and comparison of 

genetic architecture of a trait or disease between populations depend 

on how the continuum of genetic ancestry is operationalized into 

discrete categories and population labels (Box 1). However, genetic 

diversity exists even within populations with a relatively high degree 

of genetic similarity or within geographically constrained regions38. 

Genetic admixture presents further challenges to the characteriza-

tion of genetic architecture and the development of PRS construction 

methods because the genomes of individuals are mosaics of their 

ancestors, and when individuals have different local genetic ancestries 

across the genome, the genetic effects can broadly vary from individual 

to individual.

Introduction
Genome-wide association studies (GWAS) have discovered thousands 

of variants associated with complex human traits, illustrating the high 

polygenicity of many common diseases and emphasizing the poten-

tial of leveraging these findings for genetic prediction of health out-

comes. Although each individual associated variant accounts for a 

small proportion of phenotypic variance, aggregating information 

across multiple variants into a single score creates a compendium 

of an individual’s genetic predisposition for a given complex trait or 

disease. Calculated as a sum of alleles weighted by their estimated 

effect sizes, these cumulative genetic profiles are commonly referred 

to as polygenic risk scores (PRSs) when derived for a binary disease 

outcome or polygenic scores when calculated for a general trait.

PRSs have the potential to advance precision medicine by 

improving disease stratification and prioritization of high-risk indi-

viduals for appropriate interventions, enabling more accurate diag-

noses and predicting therapeutic outcomes1. Nearly two decades 

of GWAS have provided a rich foundation of discoveries to facilitate 

PRS construction2. However, more than 85% of GWAS have been under-

taken in individuals of European ancestries, and PRSs derived from 

these studies can be substantially less predictive for other genetic 

ancestries, potentially exacerbating health disparities3,4. The growing 

recognition of this issue has spurred methodological innovations to 

integrate data from diverse populations, enabling more powerful analy-

ses of existing studies, as well as the establishment of new biobanks, 

consortia and data collection initiatives of diverse populations5.

Here, we consider the principles and methods of applying PRSs 

across global populations, complementing existing reviews on PRS 

methodology and clinical utility1,6–10. Specifically, we consider how 

genetic and non-genetic factors impact PRS performance, how new 

methods might improve their transferability across populations and 

implications for PRS clinical utility. We describe the technical chal-

lenges associated with the development of PRS predictive modelling 

within the context of social and environmental influences, and discuss 

the evaluation of model performance and clinical utility in popula-

tions of diverse ancestral backgrounds. These aspects are especially 

important given that many individuals have complex genetic ancestries 

shaped by recent admixture (Fig. 1). In addition to these challenges, 

we highlight emerging resources and opportunities for the devel-

opment of new methods to enable more widespread and equitable 

translation of PRSs.

Genetic factors influencing PRS performance
PRSs have lower accuracy in cross-population prediction when the 

target sample is genetically distant from the discovery GWAS sample, 

regardless of the PRS construction method3,11–16 (Fig. 2a,b). This is akin 

to agricultural genetics, in which the accuracy of genomic prediction 

decreases as the genetic distance between the training and target popu-

lations increases17–20. Several genetic factors can influence the genetic 

architecture of a complex trait and may limit the transferability of PRSs 

across populations, including differences in heritability, causal allele 

frequencies, allelic effect sizes and linkage disequilibrium (LD) patterns.

Heritability, the percentage of variation in a trait attributed 

to genetics, can differ across populations. Array heritability21, the 

proportion of phenotypic variation that can be captured by the addi-

tive effects of SNPs assayed and imputed from a GWAS array, limits the 

prediction accuracy of a PRS based on common genetic variation in a 

given population22–26. As heritability measures the relative contribution 

of genetic factors to total inter-individual trait variation in a specific 
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Recent theoretical and empirical studies have attempted to sepa-

rate the contributions of the different genetic factors discussed above 

to the transferability of PRSs across diverse populations. These stud-

ies support the view that allelic effects of causal variants are similar 

across ancestries, and the attenuation of PRS accuracies can be pri-

marily attributed to differences in allele frequencies and LD structure, 

although none of the factors can fully explain the power loss23,32,39,40. 

In addition, improving PRS accuracy in African-ancestry populations 

can be especially challenging due to the existence of a much larger 

number of genetic variants in these groups41. Although these find-

ings are promising to facilitate the dissection of cross-population 

genetic architecture and inform the development of PRS construction 

methods, our current understanding of the genetic basis of complex 

traits and common diseases is still hindered by small sample sizes for 

under-represented populations. A full accounting of the genetic archi-

tecture across the phenotypic spectrum and diverse ancestries, and its 

impact on the transferability of PRSs, requires continued expansion  

of non-European genomic resources and a comprehensive catalogue of  

global genetic and phenotypic variation.

Social and environmental factors influencing PRS 
performance
Many complex diseases arise from both genetic and environmental 

risk factors, which may together impact PRS performance across 

populations. Environmental factors include individual-level expo-

sures (such as cigarette smoking, diet or physical activity), and 

macro-environmental factors (such as health policies or neighbour-

hood characteristics including degree of urbanization, green space, 

available facilities, environmental noise and air pollution, and so on). 

Risk factors and health outcomes may be shaped by the broader con-

ditions in which populations live, work and age, referred to as social 

determinants of health (SDOH) (Fig. 3a). SDOH relate to an individual’s 

place in society, including access to healthcare resources, and capture 

experiences of social exclusion, such as racism and discrimination. For 

disease-specific PRS development and evaluation, there is a need to cre-

ate a conceptual framework that specifies relationships between PRSs, 

genetic ancestry and specific social and environmental risk factors.

SDOH encompass a wide array of factors, each of which may act 

differently in relation to PRSs, as an effect modifier, a confounder or a 

partial mediator of the observed PRS effects (Fig. 3b,c). To understand 

and account for the influence of SDOH, these factors must first be 

accurately measured and operationalized. For instance, if the contri-

bution of important environmental risk factors is lower in the training 

versus testing populations, the proportion of variance in the trait 

explained by the PRS may appear lower in the target population. Using 

structured approaches such as directed acyclic graphs42,43 to clarify 

assumptions and inform appropriate analytic strategies, for example 

covariate adjustment for population structure44, may help interpret 
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Fig. 1 | Complex genetic ancestries and admixture using data from 

UCLA-ATLAS. a, Comparison between genetically inferred ancestry and 

self-identified race and ethnicity (SIRE): Hispanic/Latino (HL), non-Hispanic/

Latino (NH), Pacific Islander (PI), Native American (NatAm) and African/African 

American (Afr). Genetically inferred ancestry labels are assigned based on 

proximity to 1000 Genomes reference populations in principal component (PC) 

space using the k-nearest neighbour algorithm. SIRE is a composite label based 

on separate entries in the ‘Race’ and ‘Ethnicity’ fields extracted from medical 

records. b, First two PCs of the genetic data. Each dot represents an individual, 

with colours corresponding to their assigned genetically inferred ancestry 

cluster. A non-trivial percentage of individuals could not be categorized into 

a ‘homogeneous’ or ‘continental’ population. c, Unsupervised clustering of 

the genetic data. Each column represents the proportion of the global genetic 

ancestry of an individual with respect to 1000 Genomes reference populations.
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Fig. 2 | Genetic factors that can influence PRS performance. a, First two 

principal components (PCs) of the genetic data. Each dot represents an individual. 

Individuals are assigned discrete population labels by applying arbitrary cut-offs to 

the genetic ancestry continuum. Different colours represent different population 

labels. Grey dots represent individuals who are unclassified. A genetic distance 

(d) can be calculated between each individual and the centre of the discovery 

genome-wide association study (GWAS) samples in the PC space. b, Prediction 

accuracy of the polygenic risk score (PRS) shows individual to individual variation 

and decreases along the genetic ancestry continuum when the genetic distance 

between the training and target samples increases. c, Differences in causal allelic 

effect size between the discovery (upper graph) and target (lower graph) samples 

can influence the accuracy of PRS across populations. d, Differences in linkage 

disequilibrium (LD) patterns between the discovery (upper graph) and target 

(lower graph) samples can influence the accuracy of PRS across populations. 

In panels c and d, each dot represents the marginal association strength of a 

genetic variant. The lead (most associated) variant in yellow represents the causal 

variant and the grey bar represents its effect size. Other variants are coloured by 

descending degrees of LD with the causal variant (ordered red, orange, green and 

blue dots). Diamond represents the variant (which may be a tagging variant) used 

in PRS construction. Dashed line represents genome-wide significance.
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differences in PRS accuracy. As an example, directed acyclic graphs 

can identify scenarios in which PRS effects may be partially mediated 

by genetically inferred ancestry, leading to a different interpretation of 

adjusted estimates of PRS performance compared with a case in which 

ancestry acts as a confounder45,46. Furthermore, as PRS performance is 

context-dependent, identifying and characterizing gene–environment 

Box 1

Population descriptors and concepts
Historically, most genetic association studies have involved assigning 

participants to discrete clusters to facilitate statistical analyses. 

Variability in criteria for defining such clusters and inconsistent use 

of labels for the resulting populations not only creates challenges 

for analysis and interpretation but might also contribute to harmful 

misuse of findings from genome-wide association studies (GWAS) 

and polygenic risk scores (PRSs). Here, we provide a brief overview 

of common population descriptors and discuss distinct, but related, 

concepts of ancestry161 that are relevant for genetic association 

studies.

Race, etohnicity and ancestry

Both race and ethnicity have a history of being used as a misleading 

shorthand for groups of individuals with shared genetic ancestry. 

Race is a socially constructed system for classifying humans based 

on erroneous beliefs about innate biological differences, often 

proxied by physical features (such as skin colour) and sociocultural 

characteristics. Ethnicity is a sociopolitical identity that is assumed 

by or assigned to a group of individuals, typically in a contiguous 

geographic area, based on shared heritage and cultural similarities, 

such as language, religion or beliefs. Individuals of the same ethnicity 

often share genetic or genealogical heritage, but as this system varies 

globally, in certain regions ethnicity may be primarily a sociocultural 

identity. Ancestry is a complex and context-dependent term that 

encompasses both the biological and social components of an 

individual’s or population’s descent. In the western world, it has an 

aspect of both sociocultural and continental origin, whereas in the 

eastern and southern hemispheres there is an aspect of either shared 

genealogical or genetic heritage, or both, on a smaller regional scale. 

Race and/or ethnicity should not be conflated with ancestry or used 

as synonyms for population genetic differences.

Different types of ancestry

Unlike race or ethnicity, which are subjective constructs, genetic 

ancestry is a fixed characteristic of the genome. Genealogical 

ancestry describes an individual’s lineage based on family trees 

of known ancestors that have been traced back over multiple 

generations. Genealogical ancestry is inferred using oral and 

written historical records, and, more recently, genetic information. 

Genetic ancestry refers to segments of an individual’s genome 

that have been inherited through a subset of realized paths from 

their ancestors, and unlike genealogical ancestry does not require 

reconstructing a family pedigree. The complete record of coalescent 

and recombination events (that is, the convergence of two lineages 

into a single population and the process of shuffling of alleles on the 

chromosome to produce novel combinations of alleles, respectively) 

in the history of an individual’s genetic lineage is called an ancestral 

recombination graph, which is the fundamental representation of 

genetic ancestry. Genetic similarity is a quantitative measure 

of genetic sharing between individuals or populations. Most studies 

that develop and evaluate PRSs approximate genetic ancestry from 

measures of genetic similarity, typically with respect to reference 

ancestral populations. We note that these types of ancestry are 

rarely distinguished in the literature and the research community 

frequently uses genetic ancestry as a catch-all term for all dimensions 

of ancestry. Throughout our review of PRS methods we refer to 

genetically inferred ancestry, unless otherwise specified. When 

describing findings from the literature, we use the same terminology, 

including population labels, as the original publication(s).

Measuring genetic ancestry

Coalescent models provide a statistical framework for reconstructing 

evolutionary history to determine how alleles sampled from a group 

of individuals link to a common ancestor. Quantitative models for 

ancestry inference incorporate patterns of linkage disequilibrium 

(LD) and allele frequencies, which are also fundamental features 

for describing the genetic architecture of complex traits. Global 

(genome-wide) genetic ancestry is the proportion of contributions 

of different assumed proxy ancestral populations to an individual or 

a group of individuals’ overall genetic make-up. Global ancestry can 

be inferred using both model-based162 and data-driven methods163,164. 

Local ancestry is the genetic ancestry of an individual at a particular 

location in a chromosomal segment. Local ancestry can be inferred 

by computational approaches, often using discriminative modelling165 

or generative hidden Markov models166 with modifications to improve 

on efficiency, accuracy and the number of ancestral populations 

considered167–169.

Admixture

Populations from which an individual or group of individuals have 

inherited their genome are referred to as ancestral populations. 

Admixture is the process that brings together individuals from 

two or more ancestral populations that were previously isolated 

for a period of evolutionary time, allowing distinct haplotypes to 

be combined in a gene pool. Although admixture is a pervasive 

phenomenon, the term ‘admixed’ typically refers to individuals with 

recent admixture (<100 generations). For much of human history, 

admixture has occurred through mass migration, colonization or 

forced displacement. However, in today’s increasingly globalized 

and interconnected society, novel patterns of recent admixture are 

emerging and shaping the ancestry of modern human populations 

(Fig. 1). Genetic ancestry in admixed populations varies between 

individuals and along haplotypes. The proportion of populations 

contributing to an individual’s genome can be represented on global 

and local levels that both attempt to determine the ancestral origin of 

polymorphisms or chromosomal segments in the admixed individual.
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Fig. 3 | Interplay between social, environmental and genetic determinants of 

health. a, Complex interrelationship among different risk factors for ill health 

and poor disease outcomes. These include living and working conditions (such 

as environmental exposures and social determinants of health (SDOH)) and 

genomic factors. b, Race and/or ethnicity can confound polygenic risk score 

(PRS) associations with health outcomes if a correlation exists with genetic 

ancestry (dotted line). In this case, correction for population structure using 

methods such as principal component analysis (PCA) that captures similarity 

in allele frequencies and linkage disequilibrium (LD) structure that arises 

due to shared demographic histories between populations can mitigate the 

confounding effect. c, Residual confounding may bias PRS associations when 

genetic ancestry is correlated with environmental and/or social factors due 

to shared demographic histories. For instance, when asthma is the health 

outcome and exposure to air pollution is the non-genetic risk factor, standard 

methods such as PCA may under-correct for population structure. d, Admixture 

mapping detects disease-associated loci and patterns of excess local ancestry 

that help disentangle the contribution of genetic factors to observed disparities 

in risk.
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interactions may inform PRS implementation efforts by identifying 

groups of individuals who may experience a greater or smaller degree 

of risk stratification benefits from PRS. For example, previous stud-

ies have reported a synergistic interaction effect between PRSs and 

childhood trauma on depression, suggesting that individuals with 

both high PRSs and exposure to childhood trauma are particularly 

at risk for developing depression and could form a target group for 

interventions47. However, efforts to replicate this effect have led to 

mixed results48, and evidence supporting robust PRSs by environment 

interactions in general has been limited to date7.

It is important to assess the potential impact of PRS implementa-

tion on health disparities and recognize that genetic factors do not 

capture the full understanding of an individual’s health. The contri-

bution of heritable factors can vary depending on how a disparity 

is quantified. In the United States, individuals identified as African 

American or Black, Hispanic or Latino and Native American are dispro-

portionately affected by numerous conditions, such as hypertension49, 

chronic kidney disease50,51 and certain cancers52–55, compared with those 

identified as white. Trends in the incidence of such conditions that are 

not easily attributed to diagnostic biases or differences in risk factor 

profiles may offer clues to a potential role of genetic factors. Dispari-

ties in mortality are largely driven by inequities in healthcare access, 

although for certain cancers, germ-line genetic factors have been 

shown to underlie differences in the prevalence of actionable tumour 

mutations between populations55,56. In this context, race poses a unique 

confounding challenge because it is correlated with measures of SDOH 

and genetic ancestry, hence setting the stage for confounding of PRS 

associations when considering trait predictions.

If disease susceptibility varies across ancestral groups, the degree 

of admixture and the extent to which SDOH and other modifiable fac-

tors correlate with genetic ancestry will affect PRS performance. If dif-

ferences in disease risk between two ancestral populations arise partly 

due to differences in the frequencies of risk alleles, we would expect to 

observe an enrichment of one ancestry in cases compared with controls 

at specific loci in the genome (Fig. 3d). Admixture mapping can be used 

to identify genetic loci that contribute to differences in disease risk, 

while controlling for global ancestral differences as well as confounding 

due to non-genetic factors that differ between populations, thus pro-

viding insights into the genetic causes of health disparities in recently 

admixed populations. To date, admixture mapping has refined impor-

tant risk loci for prostate cancer57, breast cancer58, asthma59, multiple 

sclerosis60 and coronary heart disease61, which may complement PRS 

development efforts by uncovering ancestry-specific causal variants.

Methods to improve PRS transferability across 
populations
Recent shifts in GWAS towards increasing the diversity of populations 

included33,34,62,63, in parallel with rapid advances in methods that lever-

age these more diverse studies as well as existing Eurocentric GWAS, 

aim to improve the transferability of PRSs across populations. These 

methods can be broadly grouped into approaches that combine or 

jointly model population-specific summary statistics (Table 1).

One approach combines GWAS from multiple ancestry groups 

using fixed-effect  meta-analysis and constructs PRSs using the 

meta-GWAS and a single-population PRS method. This approach 

is widely used in many large-scale multi-ancestry GWAS and can 

improve the transferability of PRSs relative to population-specific 

PRSs34,62,63. However, it can require potentially difficult parsing of 

mixed LD patterns in the meta-GWAS and makes strong assumptions 

of homogeneous allelic effects across ancestries, which may limit 

the accuracy of the resulting PRSs. Restricting the meta-analysis to 

variants that are common across all populations will further limit 

PRS transferability. More flexible meta-analysis methods, such as 

ShaPRS64 that incorporates heterogeneity of SNP effects across 

GWAS coupled with an appropriate LD reference panel for the derived 

summary statistics, might improve downstream PRS performance. 

Alternatively, another approach linearly combines PRSs constructed 

from each population-specific discovery GWAS using clumping and 

P-value thresholding (C + T)65,66; this method improved risk prediction 

in recently admixed individuals67. Subsequent work in combining PRSs 

across populations has replaced C + T with more sophisticated poly-

genic prediction methods to further improve prediction68,69. However, 

this method cannot fully exploit cross-population models of genetic 

architecture that incorporate heritability, genetic correlation and 

polygenicity to inform PRS construction.

Another approach uses one large-scale GWAS — often conducted 

in European populations and termed the ‘auxiliary GWAS’ — to improve 

prediction in a target non-European population where there are smaller 

GWAS. This method leverages the observation that many causal signals 

are shared among populations29 and cross-ancestry genetic correla-

tions for human complex traits and diseases are often moderate to 

high30,31,70. For example, XP-BLUP71 builds PRSs using a two-component 

linear mixed-effects model, with one component including variants 

that show associations in the auxiliary GWAS and the other component 

including all available variants in the target data set to capture the 

polygenic background. XPASS(+)72 uses a bivariate linear mixed-effects 

model with a multivariate normal prior to jointly model SNP effect sizes 

from the auxiliary and non-European GWAS. BridgePRS73 fits a Bayesian 

ridge regression to the auxiliary GWAS and uses the posterior SNP effect 

size estimates as the prior when fitting a second Bayesian ridge regres-

sion to the GWAS in the target non-European population. TL-Multi74 

transfers the SNP weights estimated by Lassosum75 in the auxiliary 

GWAS to the target population, with an assumption that effect sizes 

across populations are largely similar. SDPRX76 models the auxiliary 

and non-European GWAS using a hierarchical non-parametric Bayesian 

model with a prior that characterizes the joint effect size distribution 

of each variant in the two populations to be null, population-specific 

or shared with correlation.

Recent work has also allowed for the modelling of GWAS summary 

statistics from more than two populations. For example, CT-SLEB41 

expanded the C + T algorithm to the multi-ancestry setting for SNP 

selection, and uses an empirical Bayes algorithm for computationally 

efficient SNP effect size estimation. TL-PRS77 fine-tunes effect sizes 

estimated from large-scale training GWAS to the target population 

using transfer learning and a gradient descent algorithm. PROSPER78 

uses a combination of LASSO (L1) and Ridge (L2) penalties to regular-

ize SNP effect sizes, encouraging a sparse genetic architecture within 

populations and similar genetic effects across populations. ME-Bayes 

SL79 performs Bayesian hierarchical modelling of SNP effect size dis-

tributions under a multivariate spike-and-slab prior and integrates 

information across different tuning parameter settings and ances-

try groups using ensemble learning. Lastly, PRS-CSx68 extended the 

single-population polygenic prediction method, PRS-CS80, to jointly 

model GWAS summary statistics from an arbitrary number of popula-

tions, using Bayesian regression and a continuous shrinkage prior on 

SNP effect sizes that is coupled across populations.

Although these methods have different variant selection pro-

cedures or make different assumptions about the prior distribution 

https://github.com/mkelcb/shaprs
https://github.com/tanglab/XP-BLUP
https://github.com/YangLabHKUST/XPASS
https://github.com/clivehoggart/BridgePRS
https://github.com/mxxptian/TLMulti
https://github.com/eldronzhou/SDPRX
https://github.com/andrewhaoyu/CTSLEB
https://github.com/ZhangchenZhao/TLPRS
https://github.com/Jingning-Zhang/PROSPER
https://github.com/Jin93/MEBayesSL
https://github.com/Jin93/MEBayesSL
https://github.com/getian107/PRScsx
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Table 1 | Polygenic prediction methods integrating GWAS summary statistics from diverse populations

Category Method Input Variants for 

prediction

Need 

validation 

data set

Tuning parameters Algorithm Ref.

Combining 

approaches

Meta-analysis Population-specific 

GWAS and LD

Up to all 1000 

Genomes 

common variants

Optional Depends on the 

single-population PRS 

method

Fixed-effect meta-analysis 

and a single-population 

PRS method

62

ShaPRS Population-specific 

GWAS and LD

Up to all 1000 

Genomes 

common variants

Optional Depends on the 

single-population PRS 

method

Meta-analysis accounting for 

heterogeneity between GWAS 

and a single-population PRS 

method

64

MultiPRS Population-specific 

GWAS and LD

Up to all 1000 

Genomes 

common variants, 

depending on the 

C + T parameters

Yes C + T parameters and linear 

combination weights for 

population-specific PRS

C + T 67

Joint modelling of 

two populations

XP-BLUP GWAS in 

the auxiliary 

population; 

individual-level 

data for the target 

population

Genotyped SNPs 

in the target 

data set

Yes P-value threshold for the 

auxiliary GWAS (optional)

Local FDR for variant 

selection; restricted 

maximum likelihood (ReML) 

for model fitting; best linear 

unbiased prediction

71

XPASS(+) GWAS and LD from 

the auxiliary and 

target populations

All available 

variants

No None Best linear unbiased prediction 

and conjugate gradient for 

solving linear systems

72

BridgePRS GWAS and LD from 

the auxiliary and 

target populations; 

individual-level 

data for the 

auxiliary population

All available 

variants

Yes Ridge shrinkage parameters 

and linear combination 

weights for PRS generated 

under different prior 

parameters and loci 

selection criteria

Best linear unbiased 

prediction

73

TL-Multi GWAS and LD from 

the auxiliary and 

target populations

HapMap3 Optional Regularization parameters in 

LASSO

Coordinate descent for 

model fitting

74

SDPRX GWAS and LD from 

the auxiliary and 

target populations

HapMap3 Yes Linear combination weights 

for population-specific PRS

Markov chain Monte Carlo 76

Joint modelling 

of two or more 

populations

CT-SLEB Population-specific 

GWAS and LD

Up to all 1000 

Genomes 

common variants, 

depending on the 

C + T parameters

Yes C + T parameters and 

parameters in the super 

learning model (such as 

LASSO, ridge regression and 

neural networks)

Two-dimensional C + T; 

empirical Bayes (for SNP 

effect estimation); super 

learning (for combining PRSs 

generated under different 

C + T parameters)

41

TL-PRS/

MTL-PRS

Population-specific 

GWAS and LD

HapMap3 Yes Learning rate and number 

of iterations in the gradient 

descent algorithm

Gradient descent for model 

fitting

77

PROSPER Population-specific 

GWAS and LD

HapMap3 + MEGA 

chip array

Yes Regularization parameters in 

LASSO, ridge regression and 

LD matrix estimation; tuning 

parameters in the ensemble 

regression

Coordinate descent 

and super learning (for 

combining PRSs generated 

under different tuning 

parameters)

78

ME-Bayes SL Population-specific 

GWAS and LD

HapMap3 + MEGA 

chip array

Yes Parameters in the super 

learning model (such as 

linear regression, ridge 

regression and elastic net)

LDpred2 (for estimating 

causal SNP proportions and 

heritability); ME-Bayes (for 

SNP effect estimation); super 

learning (for combining PRSs 

generated under different 

ME-Bayes parameters)

79

PRS-CSx(-auto) Population-specific 

GWAS and LD

HapMap3 Optional The global shrinkage 

parameter and linear 

combination weights for 

population-specific PRS; 

none for the auto algorithm

Markov chain Monte Carlo 68

https://github.com/mkelcb/shaprs
https://github.com/tanglab/XP-BLUP
https://github.com/YangLabHKUST/XPASS
https://github.com/clivehoggart/BridgePRS
https://github.com/mxxptian/TLMulti
https://github.com/eldronzhou/SDPRX
https://github.com/andrewhaoyu/CTSLEB
https://github.com/ZhangchenZhao/TLPRS
https://github.com/ZhangchenZhao/TLPRS
https://github.com/Jingning-Zhang/PROSPER
https://github.com/Jin93/MEBayesSL
https://github.com/getian107/PRScsx


Nature Reviews Genetics

Review article

of SNP effect sizes, they all aim to account for different degrees of 

polygenicity of the underlying SNP effect size distribution, integrate 

GWAS summary statistics from two or more populations in a princi-

pled statistical framework that accounts for allele frequency and LD 

differences, and leverage cross-ancestry genetic correlation to bor-

row information from well-powered European GWAS to improve PRS 

performance in non-European populations.

Other work has incorporated information beyond GWAS for 

the trait of interest into PRS construction algorithms. For example, 

XPXP81 extends XPASS to enable joint modelling of multiple geneti-

cally correlated traits in both auxiliary and target populations. 

X-Wing82 expands the modelling framework of PRS-CSx to allow for 

annotation-dependent priors and uses trans-ancestry local genetic 

correlation to up-weight variants whose effect sizes are more concord-

ant across populations. PolyPred-S+/PolyPred-P+69 uses functionally 

informed statistical fine-mapping to identify and prioritize functional 

variants, whose effects are often more portable than tagging variants 

due to assumed shared mechanisms of biology83 and minimal impact 

of differential LD patterns across populations. The fine-mapping 

informed PRSs can then be combined with population-specific 

genome-wide PRSs to capture signals at polygenic loci that are difficult 

to fine-map.

Considerations of PRS methods for diverse 
populations
Although methodological developments can help improve PRS trans-

ferability, several limitations merit consideration. First, many of the 

methods require a validation data set with individual-level phenotypes 

and genotypes to tune an algorithm’s hyper-parameters. Although 

this can maximize the accuracy of PRSs for specific populations, it 

also increases the risk of overfitting. In addition, there may not exist 

a sufficiently large independent validation data set in the target 

non-European population, especially when the hyper-parameter space 

is large. Fully Bayesian models84, pseudo-validation methods74,75 and 

repeated learning techniques82,85 that can automatically learn model 

parameters from summary-level data may facilitate cross-population 

PRS development.

Second, many methods require categorizing individuals into a 

genetic ancestry group before a PRS can be optimized and applied 

(Box 1). However, this poses challenges when implementing the PRS in 

clinical settings, where admixed individuals can be difficult to assign 

to a discrete population cluster, and genetically inferred ancestry can 

differ from self-reported race or ethnicity.

A third consideration is that existing methods need to balance 

trade-offs between prediction accuracy and computational com-

plexity. For example, the infinitesimal model, which assumes that 

prior SNP effect sizes are independent and normally distributed, has 

a closed-form posterior distribution and is highly scalable41,72,73,81. 

However, this approach shrinks the effects of all variants towards zero 

at the same constant rate, and is thus less adaptive to varying genetic 

architectures. More sophisticated Bayesian methods assume that the 

prior distribution is a mixture of two or more normals76,86,87, which 

allows for flexible modelling of the genetic architecture but makes 

model fitting challenging and potentially unstable. Continuous shrink-

age priors68,80 can balance modelling flexibility and computational 

efficiency, but full posterior inference remains infeasible to scale to 

all common variants across the genome. As a result, most Bayesian 

methods use HapMap3 variants to construct PRSs. Although they 

might have provided a good balance between computational cost and 

genetic variation captured within European populations, HapMap3 

variants do not tag genetic variation in non-European populations 

equally well and can miss population-specific signals. This coupled 

with unequal imputation accuracy across populations can limit the 

transferability of PRSs.

Fourth, although it has been shown that the polygenic background 

can modify the penetrance of monogenic variants88,89, studies and 

methods that explore the integration of genome-wide rare and com-

mon variants for prediction are limited90–93. The prediction accuracy 

Category Method Input Variants for 

prediction

Need 

validation 

data set

Tuning parameters Algorithm Ref.

Incorporating 

information 

beyond GWAS

XPXP Population-specific 

GWAS (for both 

the target trait 

and its genetically 

correlated traits) 

and LD

All available 

variants

No None Best linear unbiased 

prediction and conjugate 

gradient for solving linear 

systems

81

X-Wing Population-specific 

GWAS and LD

HapMap3 No None Scan statistics (for local 

genetic correlation 

estimation); Markov chain 

Monte Carlo (for PRS 

model fitting); summary 

statistics based repeated 

learning (for combining 

population-specific PRSs)

82

PolyPred-S+/

PolyPred-P+

Population-specific 

GWAS and 

LD; functional 

annotations

All available 

variants for 

PolyFun-pred; 

HapMap3 for 

SBayesR and 

PRS-CS

Yes Linear combination weights 

for population-specific PRS

PolyFun + SuSiE (for 

fine-mapping informed PRS) 

and Markov chain Monte 

Carlo (for SBayesR and 

PRS-CS)

69

C + T, clumping and P-value thresholding; FDR, false discovery rate; GWAS, genome-wide association studies; LD, linkage disequilibrium; PRS, polygenic risk score.

Table 1 (Continue) | Polygenic prediction methods integrating GWAS summary statistics from diverse populations

https://github.com/YangLabHKUST/XPXP
https://github.com/qlu-lab/X-Wing
https://github.com/omerwe/polyfun
https://github.com/YangLabHKUST/XPXP
https://github.com/qlu-lab/X-Wing
https://github.com/omerwe/polyfun
https://github.com/omerwe/polyfun
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of rare and low-frequency variants across populations has not been 

systematically assessed, although a recent study suggests that rare 

coding variants will likely contribute only modestly to population risk 

stratification94. Whether rare variants provide value for the predic-

tion of complex traits depends on the number of rare causal variants 

and their effect sizes, which will likely be trait-specific. Although the 

contribution of rare high-penetrance variants to overall trait variation 

may be small relative to common-variant PRSs, they can be valuable to 

identify high-risk individuals.

Finally, the methods described above primarily use GWAS sum-

mary statistics from relatively homogeneous populations as input 

and only model allele frequency and LD differences at the continen-

tal level. Much work remains to develop best practices to integrate 

GWAS from admixed or under-represented populations (such as 

the PAGE study33) with large genomic diversity and heterogeneous 

LD patterns. As noted above, mismatch between the LD structure 

of the GWAS discovery sample and the reference panel is likely an 

important contributing factor to the loss in PRS prediction accuracy. 

Moreover, when the target sample is admixed, most methods weight 

population-specific PRSs globally without modelling local ancestry 

and individual-level proportions of admixture. Initial attempts to infer 

local ancestry tracts, estimate local ancestry-specific effect sizes95 

and build local ancestry-aware PRSs40,96 have shown increased power 

for loci discovery and improved prediction accuracy in admixed 

populations. A recently developed method, GAUDI97, explicitly mod-

els local ancestry using a fused LASSO framework that encourages 

similar effects across ancestries but allows for population-specific 

effects. These methods, however, have only been evaluated in two-way 

recently admixed populations, and the predictive performance of 

PRSs has not been fully benchmarked against other cross-ancestry 

polygenic prediction methods.

Benchmarking PRS methods may require a reference-standardized 

set-up98, whereby a common set of variants and individuals are used 

to build reference panels and assess the accuracy of PRSs. However, 

the optimal prediction method might depend on a range of factors 

including the genetic architecture, the diversity and sample size of the 

discovery GWAS, and the ancestry composition of the target sample99. 

For example, clumping and fine-mapping based methods may work well 

Glossary

Absolute risk

The probability that a person or 

group of individuals who are free of 

a certain disease at a given point in 

time will develop that disease over a 

certain time period. Absolute risks are 

typically expressed as proportions 

from 0 to 100%.

Admixture

The process by which two or more 

previously separated populations 

come into contact, often through 

migration, generating a descendant 

population with a mixed mosaic 

of genetic material.

Admixture mapping

An approach that consists of inferring 

local genetic ancestry and testing for 

association between local ancestry 

segments derived from different 

ancestral populations and the 

phenotype.

Area under the receiver 

operating characteristic  

curve

(AUC). The ability of a model to 

discriminate between diseased and 

disease-free individuals is calculated 

as the AUC, which compares the true 

positive rate (sensitivity) with the false 

positive rate (1 – specificity). An AUC of 

0.50 indicates that the classification 

accuracy of a model is equal to 

chance; an AUC of 1.0 indicates perfect 

discrimination.

Clumping

A procedure that iteratively selects the 

variant with the lowest P-value within a 

specified window from genome-wide 

association study (GWAS) results 

and removes nearby variants that are 

correlated with the selected variants 

above a specific linkage disequilibrium 

(LD) threshold.

Genetic architecture

The genetic basis of a trait described  

by the number, frequency and 

magnitude of effect size of genetic 

variants contributing to its heritability.

Genetic correlation

The correlation between the genetic 

influences on two traits, or the 

proportion of variance that two traits 

share due to genetics.

Haplotype

A cluster of polymorphisms or alleles 

that typically reside near each other 

on a chromosome and tend to be 

inherited together.

Linkage disequilibrium

(LD). Non-random association of 

alleles at different genetic loci, 

often measured as the square of 

the correlation coefficient between 

two alleles. LD is, on average, lower in 

African populations compared with 

European and Asian populations.

Meta-analysis

Statistical analysis that combines results 

from multiple studies.

Net reclassification indices

Metrics that measure the extent 

to which a new model improves 

classification as compared with an old 

model, calculated as the difference 

between the proportion of individuals 

who are correctly reclassified and 

the proportion of individuals who are 

incorrectly reclassified.

P-value thresholding

A procedure that selects the genetic 

variants whose P-value is below a 

threshold in a genome-wide association 

study (GWAS).

Polygenic risk scores

(PRSs; also known as genetic risk 

scores). Single values that quantify an 

individual’s genetic predisposition to a 

discrete health outcome, calculated as 

a sum of alleles weighted by effect sizes 

corresponding to a relative magnitude 

of association.

Polygenic scores

Single values that quantify an 

individual’s genetic predisposition 

calculated as a sum of trait-associated 

alleles weighted by their additive, 

per-allele effect sizes, typically 

derived from genome-wide association 

studies (GWAS).

Population structure

The presence of multiple genetically 

distinct subpopulations that differ 

in their allele frequencies and 

mean phenotypic values. Not 

accounting for this structure can 

lead to spurious associations in 

genome-wide association studies 

(GWAS) and polygenic risk score (PRS) 

analyses.

Relative risk

The probability that a certain health 

outcome will occur in a person or group 

of individuals relative to the probability 

that this event will occur in a reference 

population. Relative risks are typically 

expressed as ratios, with 1.0 indicating 

no difference between the comparison 

groups.

Risk stratification

The process of classifying and ordering 

individuals according to their specific 

risk estimates.
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for traits that have a handful of large-effect causal variants but not as 

well when predicting highly polygenic traits. In contrast, genome-wide 

PRS approaches may capture signals that do not reach statistical signi-

ficance, but they may also include a large number of non-informative 

variants when the genetic architecture is sparse and the power of GWAS 

is limited. Future methodological efforts that focus on integrating 

multiple data modalities (such as variants across the allele frequency 

spectrum, functional annotations and cross-ancestry fine-mapping 

results100,101) from diverse resources and better local and global ances-

try modelling in a computationally efficient and robust framework, 

coupled with increasing size of non-European genomic resources, 

hold promise to improve the accuracy and generalizability of PRSs.

Evaluation of PRS clinical utility
Demonstrating the clinical utility of PRSs across diverse populations 

requires careful consideration of suitable performance metrics, which 

depend on the intended use of the PRS in a specific clinical context. 

The area under the receiver operating characteristic curve (AUC) for 

binary health outcomes and the C-index, an analogous measure of con-

cordance for time to event outcomes102, are widely used to report dis-

criminatory abilities of PRSs. The AUC can take values between 0.5 and 

1.0, ranging from completely random, clinically useless predictions to 

perfect classification. In practice, the AUC of a PRS has an upper bound 

based on disease heritability and is thus always less than 1. For many 

common complex diseases, such as breast cancer103–106, coronary heart 

disease107,108 and type 2 diabetes mellitus84,107, the best-performing PRS 

has achieved AUC values in the range of 0.6–0.7 across different popu-

lations, demonstrating moderate discriminatory abilities. However, 

the AUC and related measures do not account for disease rates in the 

underlying population, and therefore cannot be translated directly 

into the predictive value of PRSs at the individual level and provide 

little insight regarding clinical utility109.

Many studies use rank-based risk classifications to identify 

high-risk individuals and report, for example, an odds ratio that com-

pares individuals in the top decile of the PRS distribution with those 

around the median. These measures, however, depend on the reference 

population for the PRS distribution. Metrics of PRS utility are also 

affected by operationalization of the PRS. For instance, when a PRS 

cut-off is used for classifying individuals as high risk, it is important 

to select an optimal threshold that maximizes discrimination. This 

requires calibration of the PRS distributions across populations, which 

can have different mean values and spread (Fig. 4). Existing studies 

express polygenic risk on the same scale across ancestrally diverse 

individuals by removing gross cross-population differences in the 

mean and variance of the PRS distribution that can be captured by 

genetic principal components84,110–112; however, these methods could 

remove real risk differences explainable by genetic and non-genetic 

risk factors that are correlated with population structure, reducing 

the predictive power of PRSs.

In general, relative risk estimates (such as those based on the odds 

ratio) do not provide information that can be readily translated to 

risk thresholds for clinical action, such as diagnostic and treatment 

decisions. Instead, these typically require estimates on the absolute 

risk scale. Positive and negative predictive values, which represent 

the proportions of individuals who test positive (or negative) who will 

(or will not) have the disease, respectively, give absolute risk estimates 

and are more clinically relevant metrics. For diseases that have clini-

cal guidelines based on absolute risk thresholds (for example, breast 

cancer and coronary heart disease), absolute risk models with and 

without the PRS can be compared to quantify the expected increase in 

individuals who now meet this threshold. Additionally, we can exam-

ine the increase in disease cases detected among the high-risk indi-

viduals identified using the PRS108,113. Measures of net reclassification 

indices114 — which summarize the net number of cases and controls 

who move into higher and lower risk categories, respectively, accord-

ing to a new model compared with an existing model — can be used 

to evaluate the added value of PRSs in relation to existing clinical risk 

factors115. However, net reclassification indices, similar to the AUC, do 

not take into account disease rates in the underlying population and 

do not directly quantify clinical utility. In addition, caution is needed 

for inappropriate use of such measures in the absence of predefined 

risk categories116. When specific risk thresholds are not available, one 

can also carry out decision curve analysis117 to evaluate the net benefit 

associated with decision-making at different absolute risk thresh-

olds under alternative models118. An important consideration, when 

evaluating the added value of PRSs in diverse populations, is whether 

existing risk-threshold guidelines themselves are universally suit-

able across groups that may have different loss–benefit balances for  

underlying decisions.

For diseases that do not have established absolute risk models, 

absolute risk can be estimated by combining overall or relative risk 

estimates with disease incidence rates observed internally in cohort 

studies or approximated by external information on population inci-

dence rates119,120. Studies evaluating absolute risk have shown that PRSs 

for some common diseases, even with their modest discriminatory 

performance, can now identify a substantial fraction of the popula-

tion who would be considered as high risk to warrant drug therapy, 

or invasive and potentially costly interventions not appropriate for 

the general population108. However, as rates of many diseases as well 

as SDOH are typically estimated with stratification by self-identified 

race or ethnicity, and are known to vary widely by racial groups, it is 

particularly important to incorporate absolute risk considerations 

when the utility of PRSs is being evaluated across diverse populations. 

Future research is merited to explore the ability of genetic ancestry 

to explain known variations in disease incidence rates across popula-

tion groups121. Furthermore, as the severity, prognosis and financial 

burdens of diseases can vary widely by socioeconomic status, it will 

be important to demonstrate the utility of PRSs considering the risk 

of different types of adverse outcomes.

Another dimension of PRS performance that is not commonly 

assessed is the uncertainty in relative and absolute risks derived 

from the PRS and the stability of PRS-based risk classifications 

across different PRS modelling approaches and choice of LD refer-

ence panels. Recent work has demonstrated substantial variability in 

individual-specific PRS estimates for 13 complex traits122. As an exam-

ple, for high-density lipoprotein (HDL) PRSs, the 95% credible interval 

for an individual at the 90th PRS percentile spans widely between the 

41st and 99th percentiles. There are multiple sources of uncertainty in 

PRSs, including error in estimates of SNP weights, and this is likely to be 

higher for non-European ancestry populations because of the smaller 

sample sizes used to create PRSs. Quantifying the impact of this uncer-

tainty on clinical decisions will be important for PRS implementation 

across diverse populations.

The appropriate choice of clinical utility metrics must also be 

considered in the development stage of PRSs in diverse ancestry 

settings. Current multi-ancestry methods allow the development 

of improved population-specific PRSs by borrowing data across 

diverse multi-ancestry populations. Although these approaches 
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have the advantage of being able to generate the best possible PRS 

for a given ancestry group using all existing data, in a country such 

as the United States where there are many diverse groups, and many 

admixed sub-groups, delivery of optimized PRSs for each distinct 

group is not practical. Additionally, optimizing PRSs for each ances-

try group separately might still exacerbate inequity in their perfor-

mance across groups because of differences in sample sizes and 

genetic architecture of traits across groups. Therefore, an alterna-

tive goal may be to develop more universal PRSs that can be applied 

across populations by using suitable loss functions that take into 

account fairness constraints so that prediction performance is not 

driven by a majority group. Although there is an emerging body of 

literature in machine learning theory to incorporate different types 

of fairness constraints123–126, considerations of such a framework are 
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Fig. 4 | Considerations for the assessment of PRS clinical utility. a, Visual 

representation of the difference between risk prediction and risk stratification. 

b, An example of model calibration, that is, the agreement between observed 

and estimated disease risk. Accurate estimation of absolute risks requires 

well-calibrated models. For instance, risks are systematically overestimated 

for Population B compared with Population A. c, Cross-population calibration 

of the polygenic risk score (PRS) distributions, which can have different mean 

and spread. Differences in calibration between populations arise due to a 

combination of the genetic and clinical risk factors. Cross-population calibration 

is important when selecting a single cut-off to identify individuals as high risk 

across samples with diverse ancestral and sociocultural backgrounds.
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currently lacking in PRS development. An additional challenge relates 

to defining what fairness means in the context of PRSs and prioritiz-

ing trade-offs, as simultaneously satisfying all constraints may not 

be feasible127.

Remaining challenges and future directions
As we strive towards creating and improving PRSs across diverse 

populations, several challenges lie ahead. First, in the shift away from 

the use of race and ethnicity in biomedical research and clinical prac-

tice, genetic ancestry is often put forth as a suitable replacement128. 

Although this has numerous advantages, the use of discrete popula-

tion categories, including groups derived from genetic ancestry or 

genetic similarity, is also problematic129. Global ancestry cut-offs used 

to create more homogeneous groups are often arbitrary, study-specific 

and primarily driven by considerations of statistical power. Sensitivity 

analyses at different ancestry thresholds are typically not performed 

or reported. The most fundamental consideration for PRS accuracy 

is the genetic distance between the PRS training population, such as 

the source GWAS sample, and the target population where the PRS is 

intended to be applied15. Gauging expected PRS performance using 

genetic distance does not require forming discrete population clus-

ters, and the development of robust PRSs in the future will benefit 

from this approach.

Although race, a socially defined construct, is not an acceptable 

proxy for genetic ancestry or patterns of admixture, it remains exten-

sively used in administrative databases, disease surveillance systems 

and healthcare records in the United States, and thus has been used in 

the design and analysis of GWAS. Participants are sampled or enrolled 

based on race and/or ethnicity rather than genetic ancestry, which can 

induce systematic differences in ascertainment, phenotyping and 

measurement of potential confounders or effect modifiers, especially 

for SDOH. In some GWAS, samples have been genotyped using different 

arrays depending on participants’ race (self-reported or assigned by 

healthcare providers), which has implications for imputation quality 

and downstream analyses130. Ignoring race/ethnicity, especially when it 

is a study design feature, can bias estimates of PRS accuracy when con-

sidering continuous measures of genetic diversity. Differences in study 

design are a major source of heterogeneity in GWAS meta-analyses, and 

this heterogeneity can disproportionately affect studies conducted 

in admixed and non-European ancestry populations. Together with 

the smaller GWAS sample sizes in these populations, this may further 

reduce the signal-to-noise ratio in data used to construct PRSs and limit 

PRS transferability and generalizability.

Another challenge in transitioning to continuous genetic ancestry 

relates to operationalizing analyses that require additional inputs, 

such as incidence or mortality rates. This issue applies not only to 

integration of PRSs with population-level health indicators but also  

to more basic analyses, such as converting heritability estimates from 

the observed to the liability scale using lifetime risks131. Although track-

ing disease morbidity and mortality by race or ethnicity is suboptimal, 

these metrics are not collected alongside genetic ancestry, and outside 

the United States, surveillance systems such as disease registries are 

often agnostic to any metrics of race, ethnicity or ancestry. In develop-

ing countries and low-resource settings, surveillance systems may be 

extremely limited, leading to sparse or non-existent data on disease 

burden and non-genetic risk factors. Further, as observed variations 

in disease incidence, outcomes and mortality rates by race, ethnicity 

and other categorical descriptors (such as immigration status) could 

be due to life experiences and environmental exposures unrelated to 

genetics, removing such proxy information prematurely can hinder 

contextualizing clinical utility of PRSs in the absolute risk scale.

This leads to a broader but related challenge for PRS transla-

tion. Once a PRS demonstrating acceptable within-population and 

cross-population predictive performance has been developed, an 

appropriate statistical framework for integrating the PRS with other 

clinical predictors and established risk assessment tools must be 

established. For conditions with existing risk calculators, the sim-

plest approach is to multiply risk estimates generated by the PRS and 

the clinical model. However, this assumes that PRSs are independent 

of other predictors, which may not be valid for all health outcomes, 

especially if the PRS captures indirect genetic effects partly medi-

ated by clinical or modifiable risk factors. Furthermore, most existing 

models were not developed and validated in ancestrally diverse popu-

lations. For instance, pooled cohort equations, QRISK and Framing-

ham scores for atherosclerotic cardiovascular disease have shown 

worse performance in African Americans, African Caribbeans and 

South Asians based on studies in the United States and the United 

Kingdom132,133. Lung cancer screening criteria from the US Preven-

tive Services Task Force have been shown to significantly underesti-

mate screening eligibility in African Americans compared with white 

Americans134. This disparity was attenuated, but not eliminated, with 

the PLCOm2012 model135. Therefore, even if PRS-based risk estimates 

are well calibrated, the accuracy of the overall risk prediction model 

may suffer due to poor performance of the non-genetic components.

Simultaneously combining data on all relevant risk factors, includ-

ing family history136,137 and relevant pre-existing conditions, into a 

framework that returns a single estimate of absolute risk would acceler-

ate the uptake of PRSs into clinical practice. Currently, few such models 

exist, and they have been validated only in individuals of European 

ancestries138. For instance, the BOADICEA model for breast and ovar-

ian cancer has successfully integrated modifiable risk factors with 

rare, high-penetrance mutations and PRSs139,140. A PRS for coronary 

heart disease was shown to be largely uncorrelated with pooled cohort 

equations and QRISK, suggesting that incorporating PRSs may further 

improve these models if they are transferable across ancestries141. Given 

the population differences in performance that exist for both genetic 

and non-genetic predictors, developing reliable risk prediction tools 

will likely require fitting and validating new ancestry-aware models 

that incorporate joint effects of PRSs and other risk factors. To achieve 

this, large cohorts would be needed to measure the calibration of the 

joint model. The All of US Research Program142 is one such promising 

cohort. In addition, multiple medical centres have created their own 

biobanks. Forming a network of these types of cohorts would provide 

additional avenues to evaluate whether the developed models offer 

accurate predictions in terms of calibration.

Generating new data in under-represented populations will 

undoubtedly have the largest impact on precision medicine efforts 

by providing the information necessary to develop effective, evidence-

based tools, including PRSs. For instance, African populations have the 

greatest genetic diversity, the largest number of population-specific 

alleles and the smallest LD blocks, providing a wealth of information 

to enable globally relevant genetic discoveries143,144. However, until 

systems are in place to support large-scale collection of genetic, clini-

cal and epidemiologic data in Africa and globally144, and until such 

data collection efforts mature, utilizing existing resources remains 

important. Furthermore, the success of new data collection efforts will 

require a commitment to transparency and community engagement 

in order to build trust with populations who have been historically 
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under-represented and exploited in biomedical research. To improve 

participation and ensure ethical translation of genetic discoveries, 

concerns regarding potential for misinterpretation, stigma and 

discri mination, conflicts of interest, data sovereignty and premature 

commercialization of PRSs must be understood and addressed145,146.

Data aggregation and pooling efforts are crucial for advancing 

genetic research in under-represented populations, and must be sup-

ported by the development of best practices for phenotyping and data 

harmonization. Use of external controls may be an effective way of 

leveraging limited resources, particularly for studies of rare conditions 

using whole-genome sequencing; however, matching closely on genetic 

ancestry is critical for avoiding bias and this may be more challenging 

for admixed populations147. Imputation with more diverse reference 

panels, such as TOPMed148, will improve the utility of existing genetic 

data, but this will not fully compensate for the bias in genotyping arrays 

that were optimized for European LD structure towards alleles that 

segregate at intermediate frequencies in non-African populations149–152. 

Until whole-genome sequencing data are more widely available, choice 

of genotyping arrays and imputation panels will continue to limit PRS 

transferability and accuracy, especially for highly polymorphic and 

complex regions, such as HLA152,153.

Understanding the primary drivers of health disparities is critical 

for contextualizing PRS performance and informing appropriate public 

health interventions. In addition to comprehensively measuring differ-

ent dimensions of SDOH, methods are needed to account for complex 

confounding structures and population stratification that may arise. 

Detailed information on social constructs, environmental exposures 

and behavioural factors is often absent from genomic studies, and these 

variables are less amenable to pooling across studies due to differences 

in data collection and exposure assessment. Careful consideration of 

non-genetic risk factors is important both for PRS evaluation and for 

covariate adjustment in GWAS used to generate summary statistics 

for PRS development44. Some variables or underlying constructs may 

only be applicable to specific countries or communities. For instance, 

although race or ethnicity is an imperfect surrogate for the effects 

of discrimination and access to health care, for studies conducted 

in the United States it might be the only available measure of these 

constructs154. Methods are thus needed for reconciling risk information 

captured by genetic ancestry and other population descriptors, and PRS 

evaluations will continue to need to account for disparities that cannot 

be explained by genetic ancestry alone. Although GWAS have historically 

prioritized achieving large sample sizes by including the minimal set of 

covariates available across the largest number of individuals or studies, 

smaller studies with deep phenotyping and more comprehensive risk 

factor assessment will be equally important for PRS development.

Conclusions
Although progress has been made towards the improvement of PRS 

prediction accuracy in non-European populations, substantial efforts 

are needed to improve PRS transferability, integrate PRSs into routine 

health care and equitably deliver PRS to global populations. In addi-

tion to further narrowing the gap in the prediction and stratification 

capabilities of PRSs between European and non-European populations, 

novel statistical and computational methods are needed to construct, 

validate and optimize PRSs that can be applied to any individual along 

the continuum of genetic ancestry. Admixture-aware and clinically 

informative metrics are also needed to assess the accuracy, calibration, 

uncertainty and stability of PRS prediction in ancestrally diverse sam-

ples. These methodological development efforts must be coupled with 

data generation initiatives to diversify samples in genomic research as 

well as to collect and harmonize measures for SDOH across studies. 

Release of ancestry-specific GWAS summary statistics155 in addition 

to multi-ancestry meta-analysis results is critical to the characteriza-

tion of the comparative genetic architectures between populations 

and will facilitate the development of more flexible and accurate PRS 

construction methods (as shown in Table 1). A comprehensive catalogue 

of genetic, phenotypic, environmental and behavioural variation in 

diverse populations will not only inform and facilitate the development 

of more accurate and generalizable PRSs but also help disentangle the 

genetic and non-genetic contributions to disease burden and health 

disparities between populations, and characterize the relationships 

between PRSs and social and environmental factors.

Finally, future work is critically needed to contextualize PRS 

performance in real-world healthcare settings, and to develop 

integrative clinical models that combine PRSs with established risk 

factors into reliable and unbiased absolute risk assessment tools 

for patients of diverse ancestral and sociocultural backgrounds. 

Importantly, all PRS development, evaluation and implementation 

efforts should adhere to the latest reporting standards156 and promote 

data sharing and transparency to facilitate reproducibility, replication 

and benchmarking157.

Encouragingly, the field is rapidly advancing on all fronts, includ-

ing method development, data generation and clinical implementa-

tion. For example, the National Institutes of Heath (NIH)-funded 

Polygenic Risk Methods in Diverse Populations (PRIMED) Consor-

tium (https://primedconsortium.org) is developing methods and 

pooling genomic and phenotypic information to improve the use of  

PRSs for disease prediction in diverse populations. The growth  

of global biobanks and national health registries5 has substantially 

expanded sample diversity, accelerated genomic discovery and 

already informed PRS construction, evaluation and interpretation158. 

The emerging data sets from medical systems linked to electronic 

health records and a range of physical measurements and question-

naires on lifestyle, family history, socioeconomic factors and environ-

ment, such as the All of Us Research Program142 (https://allofus.nih.

gov), the BioMe Biobank, the Mayo Clinic Biobank, the Vanderbilt’s 

BioVU resource, the Mass General Brigham Biobank and the UCLA 

Precision Health Biobank, will substantially expand data from groups 

that are historically under-represented in biomedical research and 

provide unprecedented opportunities to contextualize PRSs of spe-

cific diseases in real-world clinical settings. The NIH-initiated Elec-

tronic Medical Records and Genomics (eMERGE) IV study (https://

emerge-network.org) has pioneered the return and communication 

of PRS results along with monogenic risks, family history and clinical 

risk assessments via a genome-informed risk assessment report to 

participants and their healthcare providers across ten conditions159,160, 

and will assess the uptake of care recommendations after the return 

of results. By combining new PRS construction methods, evaluation 

metrics, data resources and clinical implementation efforts that 

focus on diverse populations, the PRS may be well suited to real-

ize its potential to advance precision medicine that benefits global 

populations.
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References
1. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).

2. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: 

realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

https://primedconsortium.org
https://allofus.nih.gov
https://allofus.nih.gov
https://emerge-network.org
https://emerge-network.org


Nature Reviews Genetics

Review article

3. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health 

disparities. Nat. Genet. 51, 584–591 (2019).  

This paper demonstrates that PRSs have limited generalizability across populations 

and emphasizes the importance of diversity to realize the full and equitable potential 

of PRSs.

4. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 

243–250 (2022).  

This paper presents an updated ancestry tabulation for participants in GWAS 

catalogue and discusses strategies for increasing diversity in genomic studies.

5. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery 

across human disease. Cell Genom. 2, 100192 (2022).

6. Wang, Y., Tsuo, K., Kanai, M., Neale, B. M. & Martin, A. R. Challenges and opportunities 

for developing more generalizable polygenic risk scores. Annu. Rev. Biomed. Data Sci. 5, 

293–320 (2022).

7. Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical 

instruments. Genome Med. 12, 44 (2020).

8. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic 

risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

9. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk 

score analyses. Nat. Protoc. 15, 2759–2772 (2020).

10. Polygenic Risk Score Task Force of the International Common Disease Alliance. 

Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. 

Nat. Med. 27, 1876–1884 (2021).

11. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse 

human populations. Nat. Commun. 10, 3328 (2019).

12. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across 

diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

13. Mars, N. et al. Genome-wide risk prediction of common diseases across ancestries 

in one million people. Cell Genom. 2, 100118 (2022).

14. Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and 

applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 373 (2022).

15. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. 

Nature 618, 774–781 (2023).  

This paper shows that the prediction accuracy of PRSs decreases from individual to 

individual along the continuum of genetic ancestries.

16. Cavazos, T. B. & Witte, J. S. Inclusion of variants discovered from diverse populations 

improves polygenic risk score transferability. HGG Adv. 2, 100017 (2021).

17. Wientjes, Y. C. J. et al. Empirical and deterministic accuracies of across-population 

genomic prediction. Genet. Sel. Evol. 47, 5 (2015).

18. Pszczola, M., Strabel, T., Mulder, H. A. & Calus, M. P. L. Reliability of direct genomic values 

for animals with different relationships within and to the reference population. J. Dairy. 

Sci. 95, 389–400 (2012).

19. Wientjes, Y. C. J., Veerkamp, R. F. & Calus, M. P. L. The effect of linkage disequilibrium 

and family relationships on the reliability of genomic prediction. Genetics 193, 621–631 

(2013).

20. Habier, D., Fernando, R. L. & Dekkers, J. C. M. The impact of genetic relationship 

information on genome-assisted breeding values. Genetics 177, 2389–2397 (2007).

21. Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and 

interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).

22. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk 

of disease using a genome-wide approach. PLoS ONE 3, e3395 (2008).

23. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic 

scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).  

This paper theoretically and empirically investigates the impact of various genetic 

factors on the transferability of PRSs across populations.

24. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, 

e1003348 (2013).

25. Zhang, Y., Qi, G., Park, J.-H. & Chatterjee, N. Estimation of complex effect-size 

distributions using summary-level statistics from genome-wide association studies 

across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

26. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic 

analyses of genome-wide association studies. Nat. Genet. 45, 400–405, 405e1–405e3 

(2013).

27. Ge, T., Chen, C.-Y., Neale, B. M., Sabuncu, M. R. & Smoller, J. W. Phenome-wide heritability 

analysis of the UK Biobank. PLoS Genet. 13, e1006711 (2017).

28. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry 

group. eLife 9, e48376 (2020).  

This paper demonstrates that the predictive accuracy of PRSs can depend on sample 

characteristics such as age, sex and socioeconomic status even within a group that 

has relatively homogeneous genetic ancestries.

29. Shi, H. et al. Localizing components of shared transethnic genetic architecture of 

complex traits from GWAS summary data. Am. J. Hum. Genet. 106, 805–817 (2020).

30. Shi, H. et al. Population-specific causal disease effect sizes in functionally important 

regions impacted by selection. Nat. Commun. 12, 1098 (2021).

31. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and 

European populations. Nat. Genet. 51, 1670–1678 (2019).

32. Hou, K. et al. Causal effects on complex traits are similar for common variants across 

segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 

549–558 (2023).

33. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for 

complex traits. Nature 570, 514–518 (2019).

34. Chen, M.-H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 

individuals from 5 global populations. Cell 182, 1198–1213.e14 (2020).

35. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 

(2003).

36. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. 

Nature 526, 68–74 (2015).

37. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: 

genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 

(2012).

38. Zaidi, A. A. & Mathieson, I. Demographic history mediates the effect of stratification on 

polygenic scores. eLife 9, e61548 (2020).

39. Saitou, M., Dahl, A., Wang, Q. & Liu, X. Allele frequency differences of causal variants 

have a major impact on low cross-ancestry portability of PRS. Preprint at bioRxiv https://

doi.org/10.1101/2022.10.21.22281371 (2022).

40. Bitarello, B. D. & Mathieson, I. Polygenic scores for height in admixed populations. G3 10, 

4027–4036 (2020).

41. Zhang, H. et al. Novel methods for multi-ancestry polygenic prediction and their 

evaluations in 5.1 million individuals of diverse ancestry. Preprint at bioRxiv https:// 

doi.org/10.1101/2022.03.24.485519 (2022).

42. Digitale, J. C., Martin, J. N. & Glymour, M. M. Tutorial on directed acyclic graphs. J. Clin. 

Epidemiol. 142, 264–267 (2022).

43. Lipsky, A. M. & Greenland, S. Causal directed acyclic graphs. J. Am. Med. Assoc. 327, 

1083–1084 (2022).

44. Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable 

covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. 

Genet. 96, 329–339 (2015).

45. Tennant, P. W. G. et al. Use of directed acyclic graphs (DAGs) to identify confounders in 

applied health research: review and recommendations. Int. J. Epidemiol. 50, 620–632 

(2021).

46. Socrates, A. et al. Investigating the effects of genetic risk of schizophrenia on behavioural 

traits. NPJ Schizophr. 7, 2 (2021).

47. Peyrot, W. J. et al. Effect of polygenic risk scores on depression in childhood trauma.  

Br. J. Psychiatry 205, 113–119 (2014).

48. Peyrot, W. J. et al. Does childhood trauma moderate polygenic risk for depression? 

A meta-analysis of 5765 subjects from the psychiatric genomics consortium.  

Biol. Psychiatry 84, 138–147 (2018).

49. Dorans, K. S., Mills, K. T., Liu, Y. & He, J. Trends in prevalence and control of hypertension 

according to the 2017 American College of Cardiology/American Heart Association 

(ACC/AHA) guideline. J. Am. Heart Assoc. 7, e008888 (2018).

50. Centers for Disease Control and Prevention. Chronic kidney disease in the United States. 

CDC https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.

html (2021).

51. Chu, C. D. et al. Trends in chronic kidney disease care in the US by race and ethnicity, 

2012–2019. JAMA Netw. Open. 4, e2127014 (2021).

52. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 

72, 7–33 (2022).

53. Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. 

Br. J. Cancer 124, 315–332 (2021).

54. Marinac, C. R., Ghobrial, I. M., Birmann, B. M., Soiffer, J. & Rebbeck, T. R. Dissecting racial 

disparities in multiple myeloma. Blood Cancer J. 10, 19 (2020).

55. Daly, B. & Olopade, O. I. A perfect storm: how tumor biology, genomics, and health 

care delivery patterns collide to create a racial survival disparity in breast cancer and 

proposed interventions for change. CA Cancer J. Clin. 65, 221–238 (2015).

56. Carrot-Zhang, J. et al. Genetic ancestry contributes to somatic mutations in lung cancers 

from admixed Latin American populations. Cancer Discov. 11, 591–598 (2021).

57. Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus 

in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).

58. Fejerman, L. et al. Admixture mapping identifies a locus on 6q25 associated with breast 

cancer risk in US Latinas. Hum. Mol. Genet. 21, 1907–1917 (2012).

59. Gignoux, C. R. et al. An admixture mapping meta-analysis implicates genetic variation 

at 18q21 with asthma susceptibility in Latinos. J. Allergy Clin. Immunol. 143, 957–969 

(2019).

60. Chi, C. et al. Admixture mapping reveals evidence of differential multiple sclerosis risk 

by genetic ancestry. PLoS Genet. 15, e1007808 (2019).

61. Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery 

disease in genetically diverse populations. Nat. Med. 28, 1679–1692 (2022).

62. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in 

schizophrenia. Nature 604, 502–508 (2022).

63. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power 

of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

64. Kelemen, M., Vigorito, E., Fachal, L., Anderson, C. A. & Wallace, C. ShaPRS: leveraging 

shared genetic effects across traits or ancestries improves accuracy of polygenic scores. 

Preprint at bioRxiv https://doi.org/10.1101/2021.12.10.21267272 (2021).

65. International Schizophrenia Consortium et al. Common polygenic variation contributes 

to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

66. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. 

Gigascience 8, giz082 (2019).

https://doi.org/10.1101/2022.10.21.22281371
https://doi.org/10.1101/2022.10.21.22281371
https://doi.org/10.1101/2022.03.24.485519
https://doi.org/10.1101/2022.03.24.485519
https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html
https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html
https://doi.org/10.1101/2021.12.10.21267272


Nature Reviews Genetics

Review article

67. Márquez-Luna, C., Loh, P.-R., South Asian Type 2 Diabetes (SAT2D) Consortium, SIGMA 

Type 2 Diabetes Consortium, & Price, A.L. Multiethnic polygenic risk scores improve risk 

prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017).

68. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. 

Nat. Genet. 54, 573–580 (2022).  

This paper introduces a Bayesian model that can integrate GWAS summary statistics 

from multiple populations to improve the predictive performance of PRSs across 

diverse populations.

69. Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to 

improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).  

This paper leverages functionally informed fine-mapping to improve cross-population 

polygenic prediction.

70. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., 

Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. 

Am. J. Hum. Genet. 99, 76–88 (2016).

71. Coram, M. A., Fang, H., Candille, S. I., Assimes, T. L. & Tang, H. Leveraging multi-ethnic 

evidence for risk assessment of quantitative traits in minority populations. Am. J. Hum. 

Genet. 101, 638 (2017).

72. Cai, M. et al. A unified framework for cross-population trait prediction by leveraging the 

genetic correlation of polygenic traits. Am. J. Hum. Genet. 108, 632–655 (2021).

73. Hoggart, C. et al. BridgePRS : a powerful trans-ancestry polygenic risk score method. 

Preprint at bioRxiv https://doi.org/10.1101/2023.02.17.528938 (2023).

74. Tian, P. et al. Multiethnic polygenic risk prediction in diverse populations through transfer 

learning. Front. Genet. 13, 906965 (2022).

75. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores 

via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480  

(2017).

76. Zhou, G., Chen, T. & Zhao, H. SDPRX: a statistical method for cross-population prediction 

of complex traits. Am. J. Hum. Genet. 110, 13–22 (2023).

77. Zhao, Z., Fritsche, L. G., Smith, J. A., Mukherjee, B. & Lee, S. The construction of 

cross-population polygenic risk scores using transfer learning. Am. J. Hum. Genet. 109, 

1998–2008 (2022).

78. Zhang, J. et al. An ensemble penalized regression method for multi-ancestry 

polygenic risk prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532652 

(2023).

79. Jin, J. et al. ME-Bayes SL: enhanced Bayesian polygenic risk prediction leveraging 

information across multiple ancestry groups. Preprint at bioRxiv https://doi.org/10.1101/ 

2023.04.12.536510 (2023).

80. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian 

regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

81. Xiao, J. et al. XPXP: improving polygenic prediction by cross-population and 

cross-phenotype analysis. Bioinformatics 38, 1947–1955 (2022).

82. Miao, J. et al. Quantifying portable genetic effects and improving cross-ancestry genetic 

prediction with GWAS summary statistics. Nat. Commun. 14, 832 (2023).

83. Amariuta, T. et al. Improving the trans-ancestry portability of polygenic risk scores by 

prioritizing variants in predicted cell-type-specific regulatory elements. Nat. Genet. 52, 

1346–1354 (2020).

84. Ge, T. et al. Development and validation of a trans-ancestry polygenic risk score for type 

2 diabetes in diverse populations. Genome Med. 14, 70 (2022).

85. Zhao, Z. et al. PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics. 

Genome Biol. 22, 257 (2021).

86. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic 

risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

87. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression 

on summary statistics. Nat. Commun. 10, 5086 (2019).

88. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for 

tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

89. Oetjens, M. T., Kelly, M. A., Sturm, A. C., Martin, C. L. & Ledbetter, D. H. Quantifying 

the polygenic contribution to variable expressivity in eleven rare genetic disorders. 

Nat. Commun. 10, 4897 (2019).

90. Dornbos, P. et al. A combined polygenic score of 21,293 rare and 22 common variants 

improves diabetes diagnosis based on hemoglobin A1C levels. Nat. Genet. 54, 1609–1614 

(2022).

91. Lali, R. et al. Calibrated rare variant genetic risk scores for complex disease prediction 

using large exome sequence repositories. Nat. Commun. 12, 5852 (2021).

92. Chen, C.-Y. et al. The impact of rare protein coding genetic variation on adult cognitive 

function. Nat. Genet. 55, 927–938 (2023).

93. Fiziev, P. P. et al. Rare penetrant mutations confer severe risk of common diseases. 

Science 380, eabo1131 (2023).

94. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. 

Nature 614, 492–499 (2023).

95. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed 

individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

96. Marnetto, D. et al. Ancestry deconvolution and partial polygenic score can improve 

susceptibility predictions in recently admixed individuals. Nat. Commun. 11, 1628 

(2020).

97. Sun, Q. et al. Improving polygenic risk prediction in admixed populations by explicitly 

modeling ancestral-specific effects via GAUDI. Preprint at bioRxiv https://doi.org/10.1101/ 

2022.10.06.511219 (2022).

98. Pain, O. et al. Evaluation of polygenic prediction methodology within a 

reference-standardized framework. PLoS Genet. 17, e1009021 (2021).  

This study establishes a reference-standardized framework for fair comparison of PRS 

construction methods.

99. Wang, Y. et al. Polygenic prediction across populations is influenced by ancestry, genetic 

architecture, and methodology. Preprint at bioRxiv https://doi.org/10.1101/2022.12.29.522270 

(2023).

100. Shen, J. et al. Fine-mapping and credible set construction using a multi-population joint 

analysis of marginal summary statistics from genome-wide association studies. Preprint 

at bioRxiv https://doi.org/10.1101/2022.12.22.521659 (2022).

101. Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative 

causal variants underlying human complex traits and diseases. Preprint at medRxiv 

https://doi.org/10.1101/2023.01.07.23284293 (2023).

102. Harrell, F. E. Jr, Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of 

medical tests. J. Am. Med. Assoc. 247, 2543–2546 (1982).

103. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast 

cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

104. Ho, W.-K. et al. European polygenic risk score for prediction of breast cancer shows 

similar performance in Asian women. Nat. Commun. 11, 3833 (2020).

105. Shieh, Y. et al. A polygenic risk score for breast cancer in US Latinas and Latin American 

women. J. Natl Cancer Inst. 112, 590–598 (2020).

106. Du, Z. et al. Evaluating polygenic risk scores for breast cancer in women of African 

ancestry. J. Natl Cancer Inst. 113, 1168–1176 (2021).

107. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify 

individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 

(2018).

108. Dikilitas, O. et al. Predictive utility of polygenic risk scores for coronary heart disease in 

three major racial and ethnic groups. Am. J. Hum. Genet. 106, 707–716 (2020).

109. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic 

risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 

(2016).  

This paper provides a comprehensive review of concepts and methods relevant for 

the development and evaluation of risk prediction models that incorporate genetic 

susceptibility factors.

110. Wang, M. et al. Validation of a genome-wide polygenic score for coronary artery disease 

in South Asians. J. Am. Coll. Cardiol. 76, 703–714 (2020).

111. Khera, A. V. et al. Whole-genome sequencing to characterize monogenic and polygenic 

contributions in patients hospitalized with early-onset myocardial infarction. Circulation 

139, 1593–1602 (2019).

112. Khan, A. et al. Genome-wide polygenic score to predict chronic kidney disease across 

ancestries. Nat. Med. 28, 1412–1420 (2022).

113. Hurson, A. N. et al. Prospective evaluation of a breast-cancer risk model integrating 

classical risk factors and polygenic risk in 15 cohorts from six countries. Int. J. Epidemiol. 

50, 1897–1911 (2022).

114. Leening, M. J. G., Vedder, M. M., Witteman, J. C. M., Pencina, M. J. & Steyerberg, E. W. Net 

reclassification improvement: computation, interpretation, and controversies:  

a literature review and clinician’s guide. Ann. Intern. Med. 160, 122–131 (2014).

115. Kachuri, L. et al. Pan-cancer analysis demonstrates that integrating polygenic risk 

scores with modifiable risk factors improves risk prediction. Nat. Commun. 11, 6084 

(2020).  

This paper quantifies the added predictive value of PRSs for 16 cancer types when 

added to models that contain extensive clinical and environmental risk factors.

116. Kerr, K. F. et al. Net reclassification indices for evaluating risk prediction instruments: 

a critical review. Epidemiology 25, 114–121 (2014).

117. Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating 

prediction models. Med. Decis. Mak. 26, 565–574 (2006).

118. Pal Choudhury, P. et al. Comparative validation of breast cancer risk prediction 

models and projections for future risk stratification. J. Natl Cancer Inst. 112, 278–285 

(2020).

119. Pal Choudhury, P. et al. iCARE: an R package to build, validate and apply absolute risk 

models. PLoS ONE 15, e0228198 (2020).

120. Pain, O., Gillett, A. C., Austin, J. C., Folkersen, L. & Lewis, C. M. A tool for translating 

polygenic scores onto the absolute scale using summary statistics. Eur. J. Hum. Genet. 

30, 339–348 (2022).

121. Naret, O. et al. Improving polygenic prediction with genetically inferred ancestry. HGG 

Adv. 3, 100109 (2022).

122. Ding, Y. et al. Large uncertainty in individual polygenic risk score estimation impacts 

PRS-based risk stratification. Nat. Genet. 54, 30–39 (2022).  

This paper estimates the variance of an individual’s PRS and highlights the 

importance of incorporating uncertainty into the interpretation of individual PRS 

estimates.

123. Chouldechova, A. & Roth, A. The frontiers of fairness in machine learning. Preprint at 

https://doi.org/10.48550/arXiv.1810.08810 (2018).

124. Komiyama, J., Takeda, A., Honda, J. & Shimao, H. in Proc. 35th Int. Conf. Machine Learning 

Vol. 80 (eds Dy, J. & Krause, A.) 2737–2746 (PMLR, 2018).

125. Agarwal, A., Dudik, M. & Wu, Z. S. in Proc. 36th Int. Conf. Machine Learning Vol. 97 

(eds Chaudhuri, K. & Salakhutdinov, R.) 120–129 (PMLR, 2019).

126. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring fairness in 

machine learning to advance health equity. Ann. Intern. Med. 169, 866–872 (2018).

https://doi.org/10.1101/2023.02.17.528938
https://doi.org/10.1101/2023.03.15.532652
https://doi.org/10.1101/2023.04.12.536510
https://doi.org/10.1101/2023.04.12.536510
https://doi.org/10.1101/2022.10.06.511219
https://doi.org/10.1101/2022.10.06.511219
https://doi.org/10.1101/2022.12.29.522270
https://doi.org/10.1101/2022.12.22.521659
https://doi.org/10.1101/2023.01.07.23284293
https://doi.org/10.48550/arXiv.1810.08810


Nature Reviews Genetics

Review article

127. Kleinberg, J., Mullainathan, S. & Raghavan, M. Inherent trade-offs in the fair 

determination of risk scores. Preprint at https://doi.org/10.48550/arXiv.1609.05807 

(2016).

128. Oni-Orisan, A., Mavura, Y., Banda, Y., Thornton, T. A. & Sebro, R. Embracing genetic 

diversity to improve Black health. N. Engl. J. Med. 384, 1163–1167 (2021).

129. Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 

250–252 (2022).

130. Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in 

the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics 

200, 1285–1295 (2015).

131. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability 

for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 

(2011).

132. Tillin, T. et al. Ethnicity and prediction of cardiovascular disease: performance 

of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study 

(SABRE-Southall And Brent REvisited). Heart 100, 60–67 (2014).

133. Rodriguez, F. et al. Atherosclerotic cardiovascular disease risk prediction in disaggregated 

Asian and Hispanic subgroups using electronic health records. J. Am. Heart Assoc. 8, 

e011874 (2019).

134. Aldrich, M. C. et al. Evaluation of USPSTF lung cancer screening guidelines among 

African american adult smokers. JAMA Oncol. 5, 1318–1324 (2019).

135. Pasquinelli, M. M. et al. Risk prediction model versus United States Preventive Services 

Task Force lung cancer screening eligibility criteria: reducing race disparities. J. Thorac. 

Oncol. 15, 1738–1747 (2020).

136. Mars, N. et al. Systematic comparison of family history and polygenic risk across 

24 common diseases. Am. J. Hum. Genet. 109, 2152–2162 (2022).

137. Hujoel, M. L. A., Loh, P.-R., Neale, B. M. & Price, A. L. Incorporating family history of 

disease improves polygenic risk scores in diverse populations. Cell Genom. 2, 100152 

(2022).

138. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and 

prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 

(2020).

139. Pal Choudhury, P. et al. Comparative validation of the BOADICEA and Tyrer–Cuzick 

breast cancer risk models incorporating classical risk factors and polygenic risk in a 

population-based prospective cohort of women of European ancestry. Breast Cancer Res. 

23, 22 (2021).

140. Lee, A. et al. Comprehensive epithelial tubo-ovarian cancer risk prediction model 

incorporating genetic and epidemiological risk factors. J. Med. Genet. 59, 632–643 

(2022).

141. Riveros-Mckay, F. et al. Integrated polygenic tool substantially enhances coronary artery 

disease prediction. Circ. Genom. Precis. Med. 14, e003304 (2021).

142. NIH. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

143. Choudhury, A. et al. High-depth African genomes inform human migration and health. 

Nature 586, 741–748 (2020).

144. Pereira, L., Mutesa, L., Tindana, P. & Ramsay, M. African genetic diversity and adaptation 

inform a precision medicine agenda. Nat. Rev. Genet. 22, 284–306 (2021).

145. Chapman, C. R. Ethical, legal, and social implications of genetic risk prediction 

for multifactorial disease: a narrative review identifying concerns about interpretation 

and use of polygenic scores. J. Community Genet. https://doi.org/10.1007/ 

s12687-022-00625-9 (2022).

146. Lemke, A. A. et al. Addressing underrepresentation in genomics research through 

community engagement. Am. J. Hum. Genet. 109, 1563–1571 (2022).

147. Wojcik, G. L. et al. Opportunities and challenges for the use of common controls in 

sequencing studies. Nat. Rev. Genet. 23, 665–679 (2022).

148. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. 

Nature 590, 290–299 (2021).

149. Bien, S. A. et al. Strategies for enriching variant coverage in candidate disease loci on a 

multiethnic genotyping array. PLoS ONE 11, e0167758 (2016).

150. Kim, M. S., Patel, K. P., Teng, A. K., Berens, A. J. & Lachance, J. Genetic disease risks can be 

misestimated across global populations. Genome Biol. 19, 179 (2018).

151. Martin, A. R. et al. Low-coverage sequencing cost-effectively detects known and novel 

variation in underrepresented populations. Am. J. Hum. Genet. 108, 656–668 (2021).

152. Emde, A.-K. et al. Mid-pass whole genome sequencing enables biomedical genetic 

studies of diverse populations. BMC Genomics 22, 666 (2021).

153. Kim, M. S. et al. Testing the generalizability of ancestry-specific polygenic risk scores to 

predict prostate cancer in sub-Saharan Africa. Genome Biol. 23, 194 (2022).

154. Borrell, L. N. et al. Race and genetic ancestry in medicine—a time for reckoning with 

racism. N. Engl. J. Med. 384, 474–480 (2021).

155. Reales, G. & Wallace, C. Sharing GWAS summary statistics results in more citations. 

Commun. Biol. 6, 116 (2023).

156. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction 

studies. Nature 591, 211–219 (2021).  

This paper outlines a framework for systematic reporting of methods and results from 

PRS studies that is necessary to build a high-quality evidence base for informing PRS 

translational efforts.

157. Lambert, S. A. et al. The polygenic score catalog as an open database for reproducibility 

and systematic evaluation. Nat. Genet. 53, 420–425 (2021).

158. Wang, Y. et al. Global Biobank analyses provide lessons for developing polygenic risk 

scores across diverse cohorts. Cell Genom. 3, 100241 (2023).

159. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the 

eMERGE study. Genet. Med. 25, 100006 (2023).  

This paper describes the ongoing prospective eMERGE study that returns integrated 

genetic risk assessment including monogenic risks, PRSs and family history to 

high-risk individuals for 11 conditions.

160. Lennon, N. J. et al. Selection, optimization, and validation of ten chronic disease 

polygenic risk scores for clinical implementation in diverse populations. Preprint at 

bioRxiv https://doi.org/10.1101/2023.05.25.23290535 (2023).

161. Mathieson, I. & Scally, A. What is ancestry? PLoS Genet. 16, e1008624 (2020).

162. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using 

multilocus genotype data. Genetics 155, 945–959 (2000).

163. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide 

association studies. Nat. Genet. 38, 904–909 (2006).

164. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 

2, e190 (2006).

165. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative 

modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 

278–288 (2013).

166. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination 

hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 

(2003).

167. Browning, S. R., Waples, R. K. & Browning, B. L. Fast, accurate local ancestry inference 

with FLARE. Am. J. Hum. Genet. 110, 326–335 (2023).

168. Price, A. L. et al. Sensitive detection of chromosomal segments of distinct ancestry in 

admixed populations. PLoS Genet. 5, e1000519 (2009).

169. Salter-Townshend, M. & Myers, S. Fine-scale inference of ancestry segments without 

prior knowledge of admixing groups. Genetics 212, 869–889 (2019).

Acknowledgements
This Review was supported by the National Institutes of Health (NIH) for the Polygenic 

Risk Methods in Diverse Populations (PRIMED) Consortium, with grant funding for 

the Coordinating Center (U01HG011697) and the study sites PREVENT (U01HG011710), 

CAPE (U01HG011715), CARDINAL (U01HG011717), FFAIRR-PRS (U01HG011719), EPIC-PRS 

(U01HG011720), D-PRISM (U01HG011723) and PRIMED-Cancer (U01CA261339). 

Additional funding was received from the NIH: R00CA246076 (to L.K.), R01HG010480 

and U01CA249866 (to N.C.), R35GM140487 (to D.J.S.), R01CA241410 (to J.S.W.) and 

R01HG012354 (to T.G.). The content is solely the responsibility of the authors and does 

not necessarily represent the official views of the NIH. The authors thank Y. Ding and 

H. Zhang for their help with creating the figures in this Review.

Author contributions
L.K., B.P., J.S.W. and T.G. conceptualized the Review. L.K., N.C., J.H. and T.G. drafted the 

manuscript with input from D.J.S., I.M., I.J.K., E.E.K., B.P. and J.S.W. All authors contributed to 

the literature search, synthesis and interpretation of findings, and reviewed and/or edited the 

manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Peer review information Nature Reviews Genetics thanks Michael Inouye and the other, 

anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 

article under a publishing agreement with the author(s) or other rightsholder(s); author 

self-archiving of the accepted manuscript version of this article is solely governed by the 

terms of such publishing agreement and applicable law.

Related links
BridgePRS: https://github.com/clivehoggart/BridgePRS

CT-SLEB: https://github.com/andrewhaoyu/CTSLEB

ME-Bayes SL: https://github.com/Jin93/MEBayesSL

PolyPred-S+/PolyPred-P+: https://github.com/omerwe/polyfun

PROSPER: https://github.com/Jingning-Zhang/PROSPER

PRS-CSx(-auto): https://github.com/getian107/PRScsx

SDPRX: https://github.com/eldronzhou/SDPRX

ShaPRS: https://github.com/mkelcb/shaprs

TL-Multi: https://github.com/mxxptian/TLMulti

TL-PRS/MTL-PRS: https://github.com/ZhangchenZhao/TLPRS

X-Wing: https://github.com/qlu-lab/X-Wing

XP-BLUP: https://github.com/tanglab/XP-BLUP

XPASS( + ): https://github.com/YangLabHKUST/XPASS

XPXP: https://github.com/YangLabHKUST/XPXP

© Springer Nature Limited 2023

https://doi.org/10.48550/arXiv.1609.05807
https://doi.org/10.1007/s12687-022-00625-9
https://doi.org/10.1007/s12687-022-00625-9
https://doi.org/10.1101/2023.05.25.23290535
https://github.com/clivehoggart/BridgePRS
https://github.com/andrewhaoyu/CTSLEB
https://github.com/Jin93/MEBayesSL
https://github.com/omerwe/polyfun
https://github.com/Jingning-Zhang/PROSPER
https://github.com/getian107/PRScsx
https://github.com/eldronzhou/SDPRX
https://github.com/mkelcb/shaprs
https://github.com/mxxptian/TLMulti
https://github.com/ZhangchenZhao/TLPRS
https://github.com/qlu-lab/X-Wing
https://github.com/tanglab/XP-BLUP
https://github.com/YangLabHKUST/XPASS
https://github.com/YangLabHKUST/XPXP


Nature Reviews Genetics

Review article

Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium Methods Working Group

Paul L. Auer20, Nilanjan Chatterjee3, Matthew P. Conomos21, David V. Conti22,23, Yi Ding24, Tian Ge17,18,19, Jibril Hirbo4,5, 
Linda Kachuri1,2, Eimear E. Kenny9,10,11, Iftikhar J. Kullo8, Iman Martin7, Bogdan Pasaniuc12,13,14, Daniel J. Schaid6, Ying Wang19,25,26, 
John S. Witte1,2,15,16, Haoyu Zhang27,28 & Yuji Zhang29

20Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. 21Department of 

Biostatistics, University of Washington, Seattle, WA, USA. 22Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, 

Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. 23Norris Comprehensive Cancer Center, Keck School of Medicine, 

University of Southern California, Los Angeles, CA, USA. 24Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA. 25Analytic and 

Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 26Program in Medical and Population Genetics, Broad Institute of MIT 

and Harvard, Cambridge, MA, USA. 27Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 28Division of Cancer 

Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA. 29Department of Epidemiology and Public Health, University of Maryland 

School of Medicine, Baltimore, MD, USA. 


	Principles and methods for transferring polygenic risk scores across global populations

	Introduction

	Genetic factors influencing PRS performance

	Population descriptors and concepts


	Social and environmental factors influencing PRS performance

	Methods to improve PRS transferability across populations

	Considerations of PRS methods for diverse populations

	Evaluation of PRS clinical utility

	Remaining challenges and future directions

	Conclusions

	Acknowledgements

	Fig. 1 Complex genetic ancestries and admixture using data from UCLA-ATLAS.
	Fig. 2 Genetic factors that can influence PRS performance.
	Fig. 3 Interplay between social, environmental and genetic determinants of health.
	Fig. 4 Considerations for the assessment of PRS clinical utility.
	Table 1 Polygenic prediction methods integrating GWAS summary statistics from diverse populations.


