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Genome-wide association studies (GWASs) have focused primarily on populations of European
descent, but it is essential that diverse populations become better represented. Increasing diversity
among study participants will advance our understanding of genetic architecture in all populations
and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-
ancestry and admixed cohorts, we outline key methodological considerations and highlight oppor-
tunities, challenges, solutions, and areas in need of development. Despite the perception that
analyzing genetic data from diverse populations is difficult, it is scientifically and ethically impera-
tive, and there is an expanding analytical toolbox to do it well.
A disproportionate majority (>78%) of participants in published

genome-wide association studies (GWASs) are of European

descent (Popejoy and Fullerton, 2016; Sirugo et al., 2019), with

71.8% of these individuals having been recruited from just three

countries: the United States, the United Kingdom, and Iceland

(Mills and Rahal, 2019). Studies of major psychiatric disorders

are no exception, having focused largely on populations of Euro-

pean ancestry (Figure 1). Conducting GWASs in individuals of

European ancestry was a practical starting point given the avail-

ability of samples and limited funding, genotyping technologies,

and analytic methods. However, there is now widespread

acknowledgment of the need for more diverse samples and for
improved analytic methods. Broadening diversity of studied

populations will improve the effectiveness of genomic medicine

by expanding the scope of known human genomic variation and

bolstering our understanding of disease etiology. Consensus in

the field points to many benefits of increased representation of

more diverse populations for locus discovery, fine-mapping,

polygenic risk scores, and addressing existing health disparities

(Duncan et al., 2019; Hindorff et al., 2018a; Lam et al., 2018; Mar-

tin et al., 2019; Walters et al., 2018).

With increasing representation of global populations in

GWASs, there is an opportunity for advanced methods develop-

ment and a need for consensus ‘‘best practices’’ for analyzing
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the emerging complex datasets. Here, we provide background

on the scientific and ethical importance of including under-repre-

sented groups in genetics research and offer guidance for

whole-genome analysis of ancestrally diverse study cohorts.

We summarize currently available resources and make recom-

mendations for avoiding practices that could lead to false posi-

tives, loss of statistical power, or misinterpretation of results.

Because this primer represents a collaborative product of the

Cross-Population Special Interest Group of the Psychiatric Ge-

nomics Consortium (PGC) (https://www.med.unc.edu/pgc/

cross-population/), we have framed our discussion within the

context of psychiatric genetics. Nevertheless, the points and

recommendations outlined herein are applicable to any complex

biomedical phenotype.

Genetic ancestry is estimated from DNA and provides informa-

tion about shared demographic history at the population level. In-

dividuals with similar ancestral origins have shared genomic sig-

natures due to migration of common ancestors, mutations and

recombination, genetic drift, and natural selection. These pro-

cesses yield differences in allele frequencies and linkage disequi-

librium (LD) patterns across populations (Barrett and Cardon,

2006; InternationalHapMapConsortium,2005) thatmustbeprop-

erly addressed to avoid false-positive genetic findings. In addition

toancestral diversity, the current lackof racial andethnicdiversity,

which are related but distinct fromancestry (seeBox 1), hinder the

development of more complete etiological models (Banda et al.,

2015; Medina-Gomez et al., 2015; Race, Ethnicity, and Genetics

Working Group, 2005). In complex disease research, race and

ethnicity can provide information about social, cultural, and envi-

ronmental factors that affect risk for disease, including having a

lived experience of social injustice. Given that these sociocultural

measures are often inappropriately used as a proxy for genetic

ancestry, researchers and clinicians should be careful to distin-

guish among them in order to tease apart specific biological, envi-

ronmental, and social determinants of health.
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Inclusion of diverse study participants in genomics research

has yielded important scientific insights for a range of human

traits and diseases. The resolution of fine-mapping improves

through cross-ancestry analysis (Wojcik et al., 2019). Estimates

of effect sizes derived from cohorts of diverse ancestries tend

to be more accurate than from those of a single ancestry (Li

and Keating, 2014). Genetic risk prediction attenuates with

increasing divergence between the discovery and target popula-

tions, indicating that polygenic risk scores (PRSs) based on

Eurocentric GWASs are not equally predictive when applied to

non-European populations (Duncan et al., 2019; Martin et al.,

2019). Conversely, constructing individual-level scores from

cross-ancestry meta-analysis results improves overall predic-

tion (Grinde et al., 2019; Márquez-Luna et al., 2017).

Besides the strong scientific justifications for broader inclu-

sion, there are important ethical, legal, and public health reasons

for increasing diversity in genomics (Hindorff et al., 2018b). Un-

derstanding how genetic risk and social inequities interact to in-

fluence disparities in disease risk and outcomes will be critical to

improving public health.

Moreover, while integration of genomics into healthcare has

the potential to improve disease prediction and optimize treat-

ments, a lack of diversity will limit the utility of precision medicine

efforts; individuals of non-European descent are more likely to

receive ambiguous test results from genetic screening (e.g., var-

iants of unknown or uncertain significance) (Petrovski and Gold-

stein, 2016) and false-positive diagnoses (Manrai et al., 2016).

There is also a higher chance of false-negative diagnoses in in-

dividuals from ancestral backgrounds that are not well repre-

sented in clinical databases, due to missing information about

additional disease-causing variants currently not on testing

panels (Minster et al., 2016; Moltke et al., 2014; Wheeler et al.,

2017). Similarly, the potential benefits of pharmacogenetics

cannot be fully realized until there is equitable representation

across ancestries, as some therapeutics may be more effective
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Figure 1. Diversity in GWAS of Psychiatric

Disorders Compared to Global Diversity
Participant numbers were extracted from the
largest consortium publication(s) for each psychi-
atric disorder and are shown as fractions of
the total sample size for each disorder. Note:
Sample sizes are given in parentheses. Numbers
reflect cases and controls combined. MD,
major depression (490,999); SCZ, schizophrenia
(205,661); PTSD, post-traumatic stress disorder
(188,932); BIP, bipolar disorder (51,710); ADHD,
attention deficit hyperactivity disorder (55,230);
AUT, autism (46,350); AD, alcohol dependence
(52,848); AN, anorexia (14,477). *For schizo-
phrenia, the African American samples from an
earlier publication (International Schizophrenia
Consortium, 2009) were not included in the most
recent PGC schizophrenia publication (2014).
Ancestry information for each participant was
based on principal-component analysis of genetic
data. See Table S1 for consortium studies and
references.
and/or safer in certain populations because of differences in

allele frequency, effect size, and penetrance of variants associ-

ated with drugmetabolism (Roden et al., 2011). Here, we provide

an accessible framework for analyzing these data, while

acknowledging that there are several important methodological

areas in need of further development. Key terminology is defined

in Box 2.

Methodological Considerations
In the analysis of multi-ancestry datasets, a significant concern is

false-positive genetic signals due to inflated test statistics from

population stratification, which occurs when disease prevalence

and allelic frequency differences are correlated within or be-

tween study cohorts (Marchini et al., 2004). Two typical strate-

gies exist for addressing this challenge while analyzing samples

from multiple populations: (1) empirically assign samples to ma-

jor continental and/or admixed populations using genome-wide

data, analyze each population separately, and conduct cross-

ancestry meta-analysis (stratified meta-analysis approach);

and (2) analyze samples from multiple populations together,

most commonly with a mixed model (joint mixed-model

approach). The choice between these approaches is perhaps

the most broadly impactful decision currently facing analysts

of genome-wide data frommultiple populations, since it impacts

methodological considerations in all analysis steps from quality

control to reference alignment in imputation, association model,

and the suitability of results for secondary analyses. We highlight

elements of GWASs where the choice between the stratified

meta-analysis and joint mixed-model approaches is particularly

salient. Figure 2 shows a general workflow for each approach.

Genotyping Technologies
Most genome-wide DNA microarrays were designed for individ-

uals of European ancestry. The differences in LD structure and

allele frequency among populations can lead to significantly
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worse coverage for other ancestry

groups. For example, at imputation accu-

racy r2 > 0.8, the Affymetrix UK Biobank
array covers 84% of the variants that have minor allele fre-

quencies (MAFs) > 1% in samples of European ancestry bu

only 46% of those for samples of African ancestry (Nelson

et al., 2017). The large genetic diversity in African populations

means that a larger number of variants is needed on arrays in or

der to provide similar coverage as in other populations (Barret

and Cardon, 2006). To address this issue, some groups, such

as China Kadoorie Biobank (Chen et al., 2011), have designed

population-specific arrays. Multi-ancestry arrays, such as the

Multi-Ethnic Global Array (MEGA), Global Screening Array

(GSA), and the H3Africa array (Mulder et al., 2018), were de-

signed based on panels with more diverse ancestries and are

therefore recommended. An alternative strategy is to sequence

whole genomes; low-depth sequencing has received recen

attention for application in diverse samples due to cost-effec-

tiveness and higher coverage with acceptable error rates (Gilly

et al., 2018; Peterson et al., 2017a; see Rare Variants).

Quality Control
Quality control (QC) of GWAS data aims to remove low-quality

data and technical artifacts in order to reduce the risk of false-

positive associations. In diverse ancestry cohorts, themain issue

is that many common QC criteria assume the sample comes

from a homogeneous population. Applying standard QCproced-

ures without adjustment for population structure leads to the

erroneous removal of too many variants and samples from mi-

nority subgroups and admixed samples, reducing statisti-

cal power.

QC criteria that are dependent on population allele fre-

quencies can generally be adapted for application in diverse co-

horts by either stratifying the cohort into major populations prio

to filtering (the stratified meta-analysis approach) or by adjusting

the QC measure to allow for varying allele frequencies (the join

mixed-model approach; see Figure 2). For example, individuals

are often removed based on excess autosomal heterozygosity



Box 1. Race, Ethnicity, and Ancestry: Interpretation and Relevance for Genetic Diversity

‘‘Race,’’ ‘‘ethnicity,’’ and ‘‘ancestry’’ are often used interchangeably, yet they have no universal definitions. We provide brief de-

scriptions of our usage below. For extensive discussion in the context of genomics, including recommendations from professional

organizations, see Banda et al. (2015); Mersha and Abebe (2015); Race, Ethnicity, and Genetics Working Group (2005).

Race: A culturally and politically charged term, for which definitions andmeaning are context-specific. Race is related to individual

and/or group identity and is often linked to stereotypes of visible physical attributes such as skin and hair pigmentation. The

concept of race is tightly linked to social power dynamics and has historically been used to justify hierarchies of power, discrim-

ination, and oppression in an unequal society. Social and cultural conditionsmay differ among racial groups, on average, and these

differences may lead to environmental effects such as chronic stress and unequal access to goods and services, including health-

care and nutrition. These inequities can affect environmental risk for complex diseases and/or potentially interact with genetics to

affect risk.

Ethnicity: Describes people as belonging to cultural groups, usually on the basis of shared language, traditions, foods, etc.

Ethnicity has often been used interchangeably with race and is similarly ambiguous. To the extent that traits are affected by social

and environmental differences, ethnicity has previously served as a proxy for health and disease risk at the population level as a

result of social, cultural, and community effects described above. There is no universal agreement on a system of ‘‘ethnic’’ group-

ings worldwide. Some ethnic groups may share genetic factors due to similar ancestral origins; other groups may be more social

and cultural in nature.

Ancestry: Meaning varies by context. Here, we use the term to denote genetic ancestry, a description of the population(s) from

which an individual’s recent biological ancestors originated, as reflected in the DNA inherited from those ancestors. Genetic

ancestry can be estimated via comparison of participants’ genotypes to global reference populations, so incomplete availability

of these references can create biased estimates. We note that different methods of calculating genetic ancestry can yield different

results. Thus, discreet labeling of ancestral populations oversimplifies the complexity of human genetic variation and demography.

Nevertheless, accounting for systematic differences in allele frequencies and LD is necessary for genetic analyses. In this paper,

diversity in genomics is described primarily in terms of ancestry.
which is a potential indication of sample contamination, but the

standard heterozygosity statistic assumes each variant’s ex-

pected allele frequency is constant across individuals. In diverse

cohorts, regressing this heterozygosity statistic on principal

components prior to identifying outliers can avoid excessive ex-

clusions of individuals from subgroups in the cohort. Step-by-

step considerations for common QC criteria, including sample

QC workflows for the stratified meta-analysis and joint mixed-

model approaches, are given in Supplemental Methods I (see

also Figure S1 and Table S2). In addition to these pre-imputation

QC steps, post-imputation QC steps should also consider

ancestry (see Imputation and Population Reference Panels).

Inferring Population Structure
Estimating the genetic population structure of a cohort typically

serves two primary goals in GWASs: (1) to characterize the

ancestral diversity of the cohort as a descriptive measure and

(2) to provide a quantitative estimate of population structure

that can be used in QC and in GWAS association models to

reduce the risk of false positives. Here, we focus on use for

description and QC and later discuss methods for controlling

for population structure (see Genome-wide Association).

For cohorts with diverse ancestral backgrounds, we can esti-

mate population structure based on genome-wide data.

Currently the most common tool for estimating continuous pop-

ulation structure is principal-component analysis (PCA); a listing

of other approaches is included in Supplemental Methods II.

PCA is a statistical method for reducing the complexity of

high-dimensional data (e.g., thousands of measured variants

across the genome) into orthogonal axes (principal components,

PCs) that explain the largest fraction of variability in the data. The
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spread of data across these axes provides a visual guide to sub-

structure among samples; when data points are estimated from

each individual’s genetic markers, the PCs illustrate population

structure. These PCs can be computed within the cohort or

can be estimated from an external reference (e.g., the 1000 Ge-

nomes Project [1KGP]; Sudmant et al., 2015), and the GWAS

sample can be projected onto the PC axes to allow comparison

with the ancestries of known reference populations (Peterson

et al., 2017b). However, the latter approach can be limited by

the number and diversity of populations represented on the

reference panel, highlighting the need for many additional

diverse population references to be generated. PCs may also

be used to control for ancestry structure in other QC metrics

(see Quality Control and Table S2).

This sample-wide estimation and visualization of genetic

ancestry can be used to empirically assign genetically similar

samples into more homogeneous groups. This assignment is

necessary for the stratified meta-analysis approach to GWASs

of diverse cohorts and is intended to reduce the risk of false-pos-

itive genetic signals due to inflated test statistics from population

stratification. Assigning samples to more homogeneous groups

for analysis reduces stratification by limiting the degree of

population structure remaining in the sample. Samples with a

specific admixture can be assigned into their own major ances-

tral group instead of being excluded from the analysis or forced

into other ancestry groups, provided there are adequate

numbers of individuals in the sample with comparable admixed

backgrounds. However, it is often the case that genomic outliers

(which tend to be from under-represented or admixed back-

grounds) might need to be excluded if there is an insufficient

number of other individuals who fall into a similar cluster. These



Box 2. General Terminology

Admixed Population: A population of individuals with ancestors from two or more populations. Admixed can also be used to refer

to individuals.

Fine-mapping: Analytical procedures designed to refine GWAS loci to a smaller set of likely causal-variant candidates to facilitate

interpretation and follow-up studies.

Genetic Correlation: The correlation of genome-wide genetic effects between two phenotypes, which is often estimated for a sub-

set of genomic variants (e.g. SNPs in a GWAS).

Genotype Imputation: Estimation of genotypes at genetic sites that have not been directly measured, using data from a reference

panel to infer genotypes based on LD and haplotype structures. Accuracy depends on availability of suitable reference panels.

GWAS: Genome-wide association study. Analysis of common genetic variants across the whole genome for association with a

phenotype.

GxE: Gene-by-environment interaction refers to genetic effects on a phenotype that vary based on environment or vice versa.

Haplotype: A group of alleles that are correlated with one another because they are inherited together on a chromosome.

HWE: Hardy-Weinberg equilibrium, the expected balance of genotypes within a population assuming randommating; infinite pop-

ulation size; and no mutation, migration, or selection. Tests of deviations from HWE are used in quality control to detect technical

issues with genotyping. Note that there are also non-technical reasons for deviation from HWE (e.g., selection, population struc-

ture, admixture, non-random mating).

LD: Linkage disequilibrium. Alleles in LD are physically linked on a chromosome, which leads to non-random coinheritance such

that their frequencies in a population are correlated.

Major Population: A group of individuals with shared genetic ancestry. A heuristic simplification of the complexity of human

demography, but useful for describing groups that are likely to have relatively similar allele frequencies and LD patterns due to

shared ancestry. Common examples used in practice include continental ancestry groups or ‘‘super populations’’ as defined by

the 1000 Genomes Project (e.g., African, Admixed American, East Asian).

PCA: Principal-component analysis. PCA of genotype data is commonly used to examine population structure in a cohort by deter-

mining the average genome-wide genetic similarities of individual samples. Derived PCs can be used to group individuals with

shared genetic ancestry, to identify outliers, and as covariates, to reduce false positives due to population stratification.

Population Stratification: Underlying population structure within a sample that is correlated with a phenotype, which can

confound genetic association tests.

PRS: Polygenic risk score. A value computed from an individual’s genotype data that quantifies genetic influences on a particular

phenotype; also known as polygenic score (PGS), genetic risk score (GRS), or risk profile score (RPS).

Reference Panel: A set of genetic variants from a population. Reference panels are used to design arrays, impute genotypes, cata-

logue genetic variants, and identify regions that are similar and different among populations.

SNP Heritability: Proportion of phenotypic variance that is explained by additive genetic effects of a set of SNPs.
assignment methods will not provide—and are not intended to

provide—detailed ancestral background information for each in-

dividual. Rather, they provide a working solution to reduce false

positives due to population stratification (Hellwege et al., 2017).

We stress that sample group assignment and identifying appro-

priate reference population panels can be difficult, particularly

for admixed ancestry, thus requiring careful inspection of data

and methods (Medina-Gomez et al., 2015).

Imputation and Population Reference Panels
GWAS arrays genotype a portion of common variation. Geno-

type imputation is a cost-effective computational approach for

inferring genotypes or genotype probabilities at variants that

have not been directly genotyped on GWAS arrays, based on

comparisons to genetic data from external reference samples.

Imputation increases the number of markers available for asso-

ciation testing and can harmonize cohorts genotyped on

different arrays for meta-analysis.

Imputation accuracy relies on having an appropriate reference

panel that includes haplotypes from the population studied.

Matching alleles and allele frequencies in the study cohort with

reference panels as part of pre-imputation QC also relies on us-
ing reference data from a matched ancestral background.

Reference panels with better coverage of haplotypes from

the population of the genotyped cohort will yield a greater num-

ber of well-imputed variants for GWASs, especially among

lower-frequency variants (Ahmad et al., 2017; Howie et al.,

2012). Table 1 lists major imputation panels that are currently

publicly available. We note that although many ongoing projects

are aiming at more diverse populations (Table S3), additional ef-

forts in more populations are needed to expand the diversity of

imputation reference panels (Kelleher et al., 2018).

Current imputation methods are summarized in Supplemental

Methods III. Joint imputation using the largest applicable refer-

ence panel is expected to perform at least as well as subsetting

that reference panel to match the target population (Ahmad

et al., 2017; Howie et al., 2012), possibly due to maintaining a

larger sample size for phasing. Use of the same reference panel

for all cohorts also avoids potential confounding with varying

imputation quality. However, it may be necessary to consider

imputation quality separately within subsets of individuals even

if the samples are jointly imputed, since imputation accuracy

for a variant may vary widely across individuals of different an-

cestries.
Cell 179, October 17, 2019 593



Figure 2. Flowchart for Quality Control,

Imputation, and Association Analysis in

Diverse Population Samples
This flowchart depicts the general analysis frame-
work for genome-wide association studies of
participants with diverse ancestral backgrounds.
Note: Boxes with red headers indicate analyses
done in samples with diverse ancestral back-
grounds, and blue denotes analysis done within
samples in major population groups. The left path
shows a strategy for the stratified meta-analysis
approach, and the right path shows steps for the
joint mixed-model approach. See Table S2 for
more detailed QC considerations.
Genome-wide Association
The core of GWAS analysis is testing the association between

each variant and a target phenotype. As noted, a primary

consideration for association testing in diverse cohorts is

whether to stratify samples into major population groups or to

analyze the full cohort jointly (assuming imputation was also

done jointly). In either case, the major concern is proper control

of population stratification to ensure that observed associations

reflect genetic effects of each locus rather than correlations

with ancestry.

Joint analysis using a mixed-model approach is attractive

because all participants are included irrespective of ancestry.

Ideally, mixed-model approaches control for population stratifi-

cation by modeling distant relatedness between individuals

due to ancestry (Sul et al., 2018; Wojcik et al., 2019). Several im-

plementations exist, and some are listed in Supplemental

Methods IV and Table S4. Mixed models may yield greater sta-

tistical power, both through increased sample size and by con-

trolling for the variance explained by the genetic relatedness be-

tween individuals (i.e., a random effects component; Loh et al.,

2018). However, there is evidence that basic mixed models

may not fully control for population structure in diverse cohorts,

especially if there is an environmental component to phenotypic

associations with ancestry beyond the modeled genetic related-

ness (Conomos et al., 2018; Heckerman et al., 2016; Zhang and

Pan, 2015). Non-genetic factors such as environmental expo-
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sures may be correlated with ancestry

due to a shared local environment (familial

or community effects) or the relationship

between ancestry and sociocultural fac-

tors such as race and ethnicity. More

methodological development is needed

before mixed models or other strategies

for joint GWASs of a diverse cohort can

be confidently recommended as robust.

When stratifying by population back-

grounds, covariates such as PCs should

still be used to correct for population

stratification. Conventional linear or lo-

gistic regression with these covariates

can be used for association testing as

long as QC included exclusion of related

individuals; mixed models or other alter-

natives with PC covariates may be
applied in family-based samples stratified by ancestry (Walters

et al., 2018). Computing these PCs separately within each

ancestry subset instead of the full study ensures better control

for residual structure specific to that subset (e.g., fine structure,

genotyping/technical artifacts) but at the cost of potentially

reduced control for stratification related to population structure

shared across subsets (Patterson et al., 2006). For analyses of

admixed or multi-ancestry cohorts, PCs may still be included in

the regression, but additional covariates may be required to

control for stratification that is not linear in PCA space (Cono-

mos et al., 2018; Heckerman et al., 2016; Zhang and Pan,

2015). For example, race and ethnicity are often correlated

with socioeconomic status and other environmental risk factors

for disease. Self-reported ethnicity or other variables that cap-

ture trait heterogeneity on the basis of sociocultural factors may

also be appropriate to consider as covariates in those in-

stances (Banda et al., 2015; Medina-Gomez et al., 2015).

Directly controlling for local ancestry tracts in variant-level as-

sociation analyses may further improve power and reduce false

positives in admixed samples (Li and Keating 2014).

The meta-analysis approach, combining separate analyses of

samples stratified by similar genetic background, currently has

several pragmatic advantages. First, computational pipelines

developed for single-ancestry analyses can be used for each

cohort. Separate analysis also naturally provides ancestry-spe-

cific results, which may be valuable for secondary analyses



Table 1. Listing of Currently Available Imputation Reference Panels

Reference Panels Haplotypes Ancestries Sites Availability

TOPMed 125,568 African 32%, Asian 10%,

European 40%, Hispanic 16%

463,000,000 forthcoming

Haplotype Reference Consortium (HRC;

Version 1.1 2016)

64,940 predominantly European 39,635,008 *, **

African Genome Resources 9,912 African populations +

1000 Genomes Project

93,421,145 **

UK10K 7,562 British population 24,128,798 **

1000 Genomes Project Phase 3 (version 5) 5,008 African 26%, Admixed

American 14%, East Asian

20%, European 20%,

South Asian 20%

85,167,453 *, **, mathgen.stats.

ox.ac.uk/impute

Consortium on Asthma among African-

ancestry Populations in the Americas (CAAPA)

1,766 Admixed African populations 31,163,897

(autosomes only)

*

Genome of the Netherlands (GoNL) 998 Dutch population �20,000,000 nlgenome.nl

A listing of ongoing projects for imputation panels can be found in Table S3.

*available via Michigan imputation server (https://imputationserver.sph.umich.edu)

**available via Sanger imputation server (https://imputation.sanger.ac.uk)
including PRSs (Bulik-Sullivan et al., 2015; Lam et al., 2018).

Reduced environmental variability within a subset may also

improve power. On the other hand, splitting each cohort may

be challenging due to continuous gradients of admixture or small

sample sizes within an ancestry group. This loss of information

from excluding individuals from diverse genomic backgrounds

is a missed opportunity for discovery and validation of GWAS

findings, and thus additional approaches need to be developed

and leveraged.

Meta-analysis of GWAS Summary Statistics
Traditional meta-analytic approaches for GWASs rely on fixed-

effects models that assume a given variant has the same true

marginal effect size across all studies. This assumption is likely

to be violated in meta-analyses across diverse cohorts. Even

when the causal genetic effect of a variant is constant across

populations, as seems common in cross-ancestry GWAS to

date (Huang et al., 2017; Lam et al., 2018), marginal effect sizes

may show heterogeneity when LD structures are different.

Further heterogeneity across cohorts from different populations

may arise due to differences in genetic background (e.g., gene-

gene interactions) and/or environmental context (e.g., gene-

environment interactions) as well as differences in study design

(e.g., imputation artifacts, phenotyping). As a result, it is gener-

ally appropriate to model this cross-cohort heterogeneity in

meta-analysis by using a random effects or trans-ancestral

meta-analysis model (Supplemental Methods V; Table S4).

Fine-Mapping
A trait-associated locus from GWASs typically implicates a large

genomic region with many variants of similar significance. This

set may contain a few causal variants, while the association of

other variants is driven by their LD with the causal one(s). Fine-

mapping refines GWAS loci to a smaller set of likely causal vari-

ants to facilitate interpretation and follow-up studies (Schaid

et al., 2018). Fine-mapping studies in samples of European

ancestry havemade important advances, with some loci resolved
even to single-variant resolution (Huang et al., 2017; Mahajan

et al., 2018). Because fine-mapping assumes the causal variant(s)

has been observed, non-European populations face a unique

challenge due to the lack of representation of many variants as

a result of incomplete sampling from these populations, subopti-

mal chip design, and limited imputation performance.

Combining samples across ancestries has an advantage for

fine-mapping: the LD patterns that differ across populations

can improve the resolution, assuming that many causal variants

are shared across populations, which has been shown true for

some traits, including schizophrenia (Lam et al., 2018; Mari-

gorta and Navarro, 2013; Wojcik et al., 2019). Non-causal

variants tagging the causal variants have marginally different

effects across populations if LD is different, thus allowing

the causal variant to be distinguished from non-causal

variants. Furthermore, in certain populations (e.g., African), LD

blocks are generally smaller, so fewer non-causal variants will

tag the causal variants, improving the resolution of fine-

mapping (International HapMap Consortium, 2005; Schaid

et al., 2018).

Most fine-mapping algorithms (Huang et al., 2017; Schaid

et al., 2018) can be applied to samples from multiple ances-

tries combined through meta-analysis. However, this strategy

does not take full advantage of genomic diversity across pop-

ulations. An alternate Bayesian fine-mapping strategy (Lam

et al., 2018) more precisely mapped the schizophrenia genetic

associations through explicitly modeling diversity in LD be-

tween East Asian and European samples. This approach

works on a presumption that the causal variants and their

effect sizes are identical across populations, which is not al-

ways true. The Probabilistic Annotation INTegretOR (PAIN-

TOR) method (Kichaev and Pasaniuc, 2015) relaxes this pre-

sumption by allowing the effect size to vary across

populations, although the causal variant still needs to be the

same. Fine-mapping methods will benefit from continued

development that appropriately models LD and relies on fewer

assumptions.
Cell 179, October 17, 2019 595

http://ox.ac.uk
http://nlgenome.nl
https://imputationserver.sph.umich.edu
https://imputation.sanger.ac.uk


PRS in Diverse Populations
PRSs are individual-level estimates of the relative genetic contri-

bution to a phenotype, computed for each genotyped individual

in a target sample based on GWAS results from a discovery

sample. PRSs are useful for validating GWAS results in external

cohorts and have the potential to provide individualized risk pre-

diction from genetic data (Khera et al., 2018; Martin et al., 2019).

The predictive value of PRS profiling depends both on the statis-

tical power of the discovery (training) dataset—specifically,

enrichment in the genome-wide distribution of association test

statistics that is attributable to aggregate, additive genetic ef-

fects—and the relevant characteristics of the target (testing)

dataset.

In particular, PRS accuracy is also a function of recent human

demographic history, such that a greater proportion of pheno-

typic variance is explainable in target populations that are genet-

ically more similar to the population studied in the discovery

GWAS. Stated another way, with increasing genetic ‘‘distance’’

between the discovery and target datasets, there is often atten-

uation of polygenic predictive value. Furthermore, becausemost

participants in large GWASs have been broadly European

(Figure 1), most PRSs currently perform best in target samples

of European ancestries, with markedly worse performance in

other populations, especially in individuals of African descent

(Duncan et al., 2019; Martin et al., 2019).

A practical question is how to construct polygenic scores for

recently admixed individuals or individuals who are genetically

distant from those in the largest existing GWAS. Use of trans-

ancestry meta-analytic results to weight alleles can increase

prediction accuracy (Grinde et al., 2019), and MultiPred is an

approach that combines PRSs based on European training

data with PRSs based on training data from the target popula-

tion (Márquez-Luna et al., 2017). Current methods develop-

ment is focused on improving handling of allele frequency dif-

ferences and LD within and across populations. Given current

limitations in understanding similarities and differences in poly-

genic risk across populations, caution is advised in interpret-

ing differences in PRSs across ancestries (Novembre and Bar-

ton, 2018).

Heritability and Genetic Correlation
GWASs can provide insights into the genetic architecture of

human traits, including SNP heritability and genetic correlation.

Several methods have been proposed for estimating these pa-

rameters from genotype data (Table S4; Supplemental Methods

VI), but estimation and interpretation of these quantities is more

challenging in diverse populations. Heritability estimates may

differ between populations due to variation in both environ-

mental factors and population genetic forces. Cross-population

differences in phenotype measurement (see Non-Genetic Con-

tributors to Trait Variability) may further complicate interpreta-

tion. In evaluating shared genetic variance across populations,

genetic correlation between groups can be defined either as

the correlation of allelic effect sizes (genetic-effect correlation)

or the correlation of the relative contribution to total phenotypic

variance (genetic-impact correlation) and for all variants or for

common variants present in a study. Each value is potentially

informative, but divergence in allele frequencies and LD patterns
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between populations will lead to differences between these pa-

rameters (Galinsky et al., 2019).

As detailed in Supplemental Methods VI, most common

methods for estimating SNP heritability and genetic correlation

either require modification or may not be suitable for use in

multi-ancestry studies. Methods relying on relatedness estima-

tion (e.g., genomic-relatedness matrix restricted maximum likeli-

hood, GREML) require estimation methods robust to population

structure (Conomos et al., 2018; Thornton et al., 2012), and

methods modeling LD (e.g., LD score regression, LDSC) require

either ancestry-matched reference panels or individual-level

data for LD calculations (Luo et al., 2018). Ancestry-matched

reference panels, along with the large GWAS sample sizes

required for robust estimation using these methods, may be

especially challenging to acquire for studies in under-repre-

sented or admixed groups.

Beyond these most commonmethods, local ancestry tracts in

admixed population samples can be leveraged to estimate

heritability (Zaitlen et al., 2014), and both genetic-effect and

genetic-impact correlations of observed variants can be esti-

mated using Popcorn (Brown et al., 2016) if LD information is

available and the two populations are relatively homogeneous.

Recent studies estimating cross-ancestry genetic-effect corre-

lations have foundmoderate to high correlations formost pheno-

types (Bigdeli et al., 2017; Brick et al., 2019; Lam et al., 2018).

The extent to which these cross-ancestry genetic correlations

reflect consistent effects at any particular locus remains a ques-

tion for fine-mapping analyses.

Rare Variant Association Analysis
Rare SNPs and structural variants have been implicated in com-

plex disease (Bomba et al., 2017). Due to their more recent

origin, rare variants tend to be more geographically clustered

and can be population specific. They can also be particularly

important from both clinical and biological perspectives because

some confer a large increase in disease risk. However, there is

severely limited power to identify trait associations of individual

rare variants. Therefore, aggregation methods such as burden

tests, variance-component tests, and hybrid tests have been

developed to test the combined effect of several variants. Using

this approach, variants can be combined within genes or regula-

tory genetic elements (Gilly et al., 2018; Kuchenbaecker and

Appel, 2018). Ancestry groups may carry different driving vari-

ants at the same locus, as demonstrated by the association of

different functional variants in ADH1B with alcohol use disorder

in African Americans compared with European and Asian Amer-

icans (Edenberg and McClintick, 2018). Therefore, aggregate

testing can be particularly suitable to projects involving different

ancestral groups because they focus on functional units rather

than individual variants and it is not necessary to observe the

same variants or frequencies across cases. Meta-analysis

methods have been developed that are able to encompass

heterogeneous genetic effects across studies and are applicable

to cross-ancestry meta-analysis (Lee et al., 2013; Tang and

Lin, 2015).

Association testing for rare variants is particularly sensitive to

population stratification, and adjusting for fine-scale patterns of

population stratification can be difficult with traditional methods



(Zhang et al., 2013). In simulation studies, adjusting for PCs failed

to fully control inflation for collapsing and variance-component

methods (Persyn et al., 2018). Mixed effects models that have

been developed for related samplesmight improve on this (Jiang

andMcPeek, 2014). However, this area requires further methods

development.

Non-genetic Contributors to Trait Variability
Diversity in social, cultural, and environmental factors also affect

disease risk and can contribute to confounding in genetic

studies. In the case of complex traits with strong environmental

influences, such as psychiatric conditions, the need to account

for non-genetic contributors to disease is important. Unfortu-

nately, measurement of environmental factors can be difficult,

so proxy measures such as zip code or insurance status can

be used to model non-genetic risk factors such as air quality or

accessibility to quality healthcare. PCs calculated from geno-

types can control for population structure due to genetic related-

ness, but this approach alone may not capture the social and

environmental factors that are encompassed in self-reported

‘‘race’’ and ‘‘ethnicity,’’ even though these measures can be

correlated with genetic ancestry. Self-reported measures of di-

versity can help in the modeling of societal determinants of

health, such as increased stress due to the experience of racism

and inequality and related variability in environmental factors

(e.g., socioeconomic status) that affect disease risk. However,

the reliance on race and ethnicity as proxy variables for

environmental effects or in order to control for population

structure may be inappropriate. Better understanding and mea-

surement of causal environmental risk factors is critical in order

to advance discovery methods beyond these oversimplified

and potentially harmful constructs of non-genetic contributors

to trait variability.

Investigating complex traits in diverse populations, especially

when samples are pooled from different research sites or cultural

contexts, requires consistency and equivalence in the underlying

construct and assessment measures across groups. Differences

and variability in phenotypic measurement between study sites

and populations may affect both gene discovery and the

transferability of genetic findings between populations. Most

psychiatric classification systems and diagnostic measures

have been developed and validated in individuals from industri-

alized, Western societies (Henrich et al., 2010). This presents a

substantial challenge for global and cross-cultural collabora-

tions. Investigations into cross-cultural differences in the preva-

lence of major depression, for instance, have suggested that

although there is a shared underlying disorder construct across

groups (Kendler et al., 2015; Simon et al., 2002), individuals may

differ culturally in terms of the level of symptomatology reached

prior to seeking help (Simon et al., 2002). The inclusion and

consideration of diverse populations in the development, valida-

tion, and deployment of diagnostic measures used in genetic

studies is therefore critical for ensuring an unbiased picture of

disease etiology (Supplemental Methods VII).

Despite the known large effects of environmental exposures

on complex disease risk, there have been limited efforts to

incorporate these factors into large-scale genetic studies.

Appropriate modeling of the environment is especially critical
when a phenotype or trait of interest is influenced by gene-by-

environment interactions (GxE). That is, genetic risk factors not

only alter average risk but also influence sensitivity to the effects

of environmental adversities. However, the majority of GxE

studies have been underpowered and conducted using samples

of primarily European descent, which limits the assessment of

GxE and thereby the identification of modifiable targets for inter-

vention and prevention among understudied groups (Duncan

et al., 2014). We note that the statistical definition of GxE de-

pends on the choice of modeling on an additive or multiplicative

scale (Kendler and Gardner, 2010). Greater representation of

diverse individuals is critically needed in order to increase our un-

derstanding of how the interrelated contributions of genes and

environment vary across social and cultural groups and how

these factors may interact.

Perspectives and Recommendations
The lack of diversity in genetic studies is problematic for a variety

of ethical and scientific reasons. Continued reliance on samples

that only represent a fraction of genomic, sociocultural, and envi-

ronmental diversity limits our understanding of disease biology

and may ultimately contribute to widening global health dispar-

ities. Greater ancestral diversity in study samples has the

potential to accelerate the discovery of causal risk variants and

is critical for a greater understanding of the biological causes

of disease, including GxE. In this Primer, we have highlighted

the challenges and benefits of working with diverse populations,

recommended practices based on current methods, and noted

specific areas that are in need of further methodological

development (Table 2). In summarizing progress, remaining

challenges, and requisite next steps, we consider three main do-

mains: (1) researcher participation, (2) data resources, and (3)

analytic methods.

Researcher Participation

It is essential that cross-population research is carried out with

careful consideration of its ethical, legal, and social implications

(ELSIs). This includes an ethos of trust-building, transparency,

bi-directional knowledge sharing, and community engagement.

This is especially true in low- and middle-income (LMIC) settings

and in work with minority groups—contexts in which mistrust of

researchers is warranted given historical mistreatment and

ethical violations. As there is no single overarching legislative

framework that covers this area, we draw attention to literature

that (1) articulates key issues (e.g., consent-taking, data-sharing,

sample governance, equal partnership, capacity building,

community engagement, participants’ advisory boards) (Akin-

hanmi et al., 2018; Claw et al., 2018; Parker and Kwiatkowski,

2016) and (2) proposes effective working solutions to them (Bea-

ton et al., 2017; Campbell et al., 2017; de Vries et al., 2015). Addi-

tionally, there is a need to overcome traditional barriers to

research empowerment for under-represented groups. H3ABio-

Net (https://www.h3abionet.org/), GINGER (https://ginger.sph.

harvard.edu/), AMARI (https://amari-africa.org/), MIND (https://

minds-uf.org/), and BRAIN (https://advance.washington.edu/

brains) are examples of initiatives that embed the targeted deliv-

ery of skills and training within broader programs of research.

Additional funding mechanisms that support such an approach

would be particularly beneficial.
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Table 2. Common Pitfalls, Recommendations, and Methods in Need of Development

Method Pitfall Recommendation Needs

Genotyping Many genotyping platforms

do not cover non-European

variation well.

Use or design population-specific array

or multi-ancestry array; high array density

can improve coverage in groups with

high diversity. Consider low-depth

whole-genome sequencing.

Continue improving coverage of diverse

ancestries on genotyping arrays. Encourage

ongoing development and sharing of

pipelines for analysis of low-depth

sequencing data.

QC Unnecessary loss of data

and/or incorrect inferences

by using a one-size-fits-all

approach

See Figure 2 for specific recommendations

for each QC step and Table S2.

Improve availability and convenience of

implementing proposed QC methods

robust to population structure.

Imputation Inaccurate imputation due

to poor matching of

reference panel to sample

Consider matching the ancestry of the

reference panel as closely as possible

to the sample ancestry if using a single

ancestry sample. Consider the largest

reference panel possible for imputation

of multiple or admixed samples.

Continue expanding diversity of imputation

panels, through collection of whole-genome

sequencing data, creation of imputation

panels from that data, and promoting public

sharing/accessibility of those panels.

GWAS Poor control of population

stratification

Consider standard linear/logistic

regression methods for analysis of

single ancestry groups followed by

meta-analysis. Consider mixed model

approaches for admixed or

multi-ancestry analyses

Include PCs as covariates even when

single ancestry groups analyzed.

PCs should be computed individually

for each major population group

within a multi-ancestry cohort and

included as covariates in the regression

model. Additional covariates should be

considered for the multi-ancestry

analysis.

Continue investigating causes of—and

solutions to—current incomplete control of

population stratification from principal

components and mixed models.

Meta-analysis False negative and false

positive findings; effect

heterogeneity

Use a random-effects (with possible

bias towards the null), or modified

random-effects meta-analysis model.

Continue to investigate and find solutions

to improve power for the detection of

heterogeneous effects.

Fine-mapping LD improperly handled when

all samples are meta-analyzed

across populations. Uneven

genome coverage across

populations because of the

genotyping array and the

imputation reference panel

Use fine-mapping methods that

explicitly model population-specific

LD. See recommendations for

Genotyping and Imputation above.

Continue to develop fine-mapping methods

that rely on fewer assumptions, and

thoroughly evaluate their performance.

Polygenic risk

scores

Loss of accuracy in target

population with increasing

genetic distance from

discovery cohort

Extrapolation of PRSs from one

ancestry to another is problematic

with current approaches and data.

Large discovery cohorts for all populations

are needed. Develop methods for computing

PRSs that are not biased when applied

across populations, potentially incorporating

LD information and/or local ancestry

information among diverse populations.

Rare variants Population stratification;

low power to detect

associations

Aggregate tests can improve power

and handle separate causal variants

in different populations.

Approaches with better control of population

stratification; more data on diverse

populations needed.

Heritability

estimates

Differences in MAF and

LD structures; different

environments

For GREML, use admixture-aware

relatedness estimation for admixed

samples. For LDSC, consider using

cov-LDSC if in-sample genotype

data is available

Caution when comparing estimates

between groups.

Currently no method based entirely on

summary statistics can handle admixed/diverse

samples. Evaluate options for developing

estimation methods with reduced requirements

for access to genotype data or ancestry-

matched LD reference panels.

(Continued on next page)
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Table 2. Continued

Method Pitfall Recommendation Needs

Cross-ancestral

genetic

correlation

Requires large sample

sizes and dense array;

estimates influenced by

genetic distance between

groups.

Use Popcorn or GREML with admixture-

aware estimation of genetic relatedness.

Improve robustness and user-friendliness of

software for summary statistics; increase

diversity of LD reference panels.

Phenotypic

measurement

Lack of consideration of

potential measurement

differences across groups

Consider and test for equivalence across

populations. Be cautious when

meta-analyzing or comparing across

groups in which culturally sensitive

measurement has not been demonstrated.

Interdisciplinary collaborations with local

researchers across populations to continue

developing and validating phenotypic

measures

GxE Lack of consideration of

environmental factors that

are relevant

Consider environmental factors that

may be of particular relevance to

different socio-cultural groups (e.g.,

‘‘racial/ethnic’’ discrimination). Consider

running analyses separately for each

group to gain understanding of

GxE processes within populations, and

be cautious when making comparisons

across populations.

Large samples of diverse individuals and

assessment of a broad range of environmental

exposures and socio-cultural experiences
Data Resources

There is a critical need for extensive collaborative efforts to

generate large-scale discovery cohorts of diverse ancestry.

Limited diversity in genetics research is a major factor limiting

our ability to address important scientific questions. The 1KGP

(Sudmant et al., 2015) serves as one of the most widely used re-

sources in genetics research, but expanding those reference

panels is a priority. Here, we provide a selected catalog of extant

and emerging sources of whole-genome sequence data (Tables

1 and S3) to facilitate improved matching of diverse study co-

horts to appropriate reference panels. Notably, some sources

of non-European data are under-utilized, such as minority

groups within the UK Biobank. Although diverse ancestry groups

only account for about 5% of this data, that fraction amounts to

over 35,000 samples of non-European and admixed ancestry

(Bycroft et al., 2018), and yet only 7.3% of publications since

2008 that used this data included any of these diverse samples.

Thus, there are opportunities to make better use of these and

other existing resources.

Additionally, substantial efforts are needed for efficient and

ethical international sample and data sharing. This is an issue un-

der active debate, as countries have different approaches to

weighing concerns about the privacy of individuals against the

collective benefits of science, and the regulatory landscape of in-

dividual-level genotype data has been uneven. For example,

while the UK allows open access of individual-level genotype

data with a valid scientific proposal, other countries, such as

China, Denmark, and Iceland, tightly regulate the sharing of

such data. SomeGWAS consortia, including the Enhancing Neu-

roImaging Genetics throughMeta-Analysis (ENIGMA) and Social

Science Genetic Association Consortium (SSGAC), overcame

these regulatory challenges using essentially a ‘‘federated

sharing model’’ (Fiume et al., 2019). Without sharing individual-

level genotype data, a study in these consortia follows the

prespecified analytic protocol and contributes its summary sta-

tistics to the meta-analysis, allowing the participation of studies
that do not have permission to share individual-level data. Re-

searchers should be aware of such options and restrictions,

and we recommend regular review of policies as scientific ad-

vances may change the ground on which they are based. The

practice of sharing summary statistics is increasingly important

and facilitates meta-analyses and other secondary analyses

like polygenic risk scoring and estimation of cross-trait genetic

correlations. Journals and funding agencies should require

sharing of summary statistics whenever it is ethically and legally

possible.

Future Directions for Improving Analytic Methods

Many of the analytic challenges involved in genetic studies of

diverse populations (Table 2) can be addressed by recent ad-

vances in methodologies. We reflect on two key issues that

remain unresolved and are likely to be beneficial directions for

methodological development: (1) the division of individuals into

major population groups for analysis and (2) the extension of

common secondary analyses of GWAS results to accommodate

results from cross-population studies.

A primary question currently being faced in genetic analyses of

diverse cohorts is whether to follow a ‘‘combining’’ approach

(analyzing all individuals together, regardless of ancestry) or a

‘‘stratifying’’ approach (dividing the cohort into major population

groups for separate analysis followed by cross-ancestry meta-

analysis; Figure 2). Concerns regarding joint analysis methods

(e.g., mixed models) include inadequate control for confounding

population stratification and the limited options for secondary

analyses, such as polygenic risk scoring and genetic correlation

estimates. To the extent that stratifying individuals into major

population groups remains a feature of cross-population ana-

lyses, future methods and theoretical work may continue to

refine standards for how best to assign individuals to more ho-

mogeneous groups. The best solution currently available com-

bines a priori analysis plans, exploratory examination of the

data, and involving collaborators who have expertise in

analyzing globally representative datasets. Future work will
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benefit from increasing diversity in reference panels, formalizing

howmajor populations should be defined for the purposes of ge-

netic analyses, and evaluating the performance of such

methods. Continued methodological work should help resolve

the tension between these approaches, clarifying if and when

stratifying samples is necessary and providing improved

methods for joint analysis of diverse cohorts that addresses pop-

ulation stratification.

Many post-GWAS statistical methods have limited portability

to association results from diverse and admixed populations,

due to complexities with LD patterns. Caution should be taken

in the downstream analysis of cross-population GWASmeta-an-

alyses, because many common approaches such as gene-

based testing (e.g., MAGMA [de Leeuw et al., 2015]), heritability

and genetic correlation estimation (e.g., LD score regression

[Bulik-Sullivan et al., 2015]), and predicted gene expression

(e.g., S-PrediXcan [Barbeira et al., 2018]) rely on external refer-

ence panels that may not be compatible with the combining

approach. Even methodologies such as Popcorn (Brown et al.,

2016) that are specifically designed for cross-population ana-

lyses typically assume single-population summary statistics as

input. Furthermore, it is unclear whether annotations of GWAS

results based on observed associations in external studies

(e.g., gene expression, Hi-C contacts, and methylation) may

also need to evaluate population specificity or include diverse

samples to improve generalizability across populations. For

example, 85% of GTEx expression quantitative trait locus

(eQTL) annotations are from individuals of European ancestry

(GTEx Consortium, 2013), and other functional genomics re-

sources may be similarly limited.

The above-described methods of cross-population aggrega-

tion and comparison rely on an assumption that complex dis-

eases are phenotypically similar across global populations and

that measurement of such disorders is culturally unbiased. Given

that we know these assumptions are not always accurate, the

best practical steps are to be aware of potential phenotypic

and environmental differences across populations and involve

multi-disciplinary teams with expertise in global societal

determinants of health and cultural competency. Suitable

methods—such as those that account for cultural context of

phenotype ascertainment and GxE—should then be developed

and implemented to more precisely measure and treat disorders

across cultures.

Conclusion
There is a growing need for investment in policies and practices

to support the inclusion of diverse research participants and thus

maximize the global potential of genetics research and precision

medicine. Broadening participation of both study populations

and researchers from many regions of the globe and LMIC in

particular will likely be tremendously beneficial. Within the arenas

of available data and analytic methods, short-term goals include

improved sharing and openness of data. Longer-term goals

include identifying ways in which the complex practical, cultural,

social, legal, and ethical issues that inhibit sample collection

from under-represented populations are best resolved. Early,

often, and meaningful engagement of stakeholders from diverse

patient groups and communities, multi-disciplinary investigators
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(including those with expertise in community-based participa-

tory research), research institutions, scientific editors and re-

viewers, and funding agencies will all be critical to the success

of these short- and long-term objectives toward fostering an

environment of inclusive research. Knowing that the lack of rep-

resentation of diverse populations in genetics research will hind-

er our understanding of disease etiology, it is clear that this is

both an important ethical and scientific growth area for genomics

research.
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