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Abstract
Brain genetics is an active research area. The degree to which genetic variants impact variations in brain structure and
function remains largely unknown. We examined the heritability of regional brain volumes (P ~ 100) captured by single-
nucleotide polymorphisms (SNPs) in UK Biobank (n ~ 9000). We found that regional brain volumes are highly heritable in
this study population and common genetic variants can explain up to 80% of their variabilities (median heritability 34.8%).
We observed omnigenic impact across the genome and examined the enrichment of SNPs in active chromatin regions.
Principal components derived from regional volume data are also highly heritable, but the amount of variance in brain
volume explained by the component did not seem to be related to its heritability. Heritability estimates vary substantially
across large-scale functional networks, exhibit a symmetric pattern across left and right hemispheres, and are consistent
in females and males (correlation = 0.638). We repeated the main analysis in Alzheimer’s Disease Neuroimaging Initiative
(n ~ 1100), Philadelphia Neurodevelopmental Cohort (n ~ 600), and Pediatric Imaging, Neurocognition, and Genetics (n ~ 500)
datasets, which demonstrated that more stable estimates can be obtained from the UK Biobank.
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Introduction
The contribution of genetic variations to brain structure and
function is of great interest (Adams et al. 2016; Franke et al.
2016). One major goal of brain imaging genetic studies is to
understand the degree to which genetics can explain variations
in imaging phenotypes, which are usually measured by the

associated heritability. Heritability is the proportion of observed
phenotypic variation that can be explained by the inherited
genetic factors. Specifically, heritability can be measured by
either the proportion of total genetic variation (broad sense), or
the proportion of total additive genetic variation (narrow sense)
(Visscher et al. 2008). One traditional way to estimate narrow-

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Downloaded from https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhy157/5052722
by Imperial College London Library user
on 15 July 2018

http://www.oxfordjournals.org


sense heritability is using samples from twin/family studies
(Bartels et al. 2003; Visscher et al. 2006), in which the pedigree
information can capture the effects of all genetic variants on
phenotype (Visscher et al. 2014). Then, heritability can be esti-
mated by the fraction of phenotypic variation explained by the
genetic relationships among these related subjects. However,
family-based heritability estimator is based on contrasting the
phenotypic similarity between monozygotic and dizygotic
twins, and thus the genetic architecture of the phenotype is
largely unknown. Genetic architecture is the characteristics of
genetic variations, which contribute to the broad-sense herita-
bility (Timpson et al. 2017). Particularly, when almost all
genetic variants are believed to have small but nonzero contri-
butions, the genetic architecture of this specific phenotype is
described as highly polygenic, or onmigenic (Badano and
Katsanis 2002; Boyle et al. 2017). With genome-wide genotyping
data on unrelated individuals, an alternative estimator of
narrow-sense heritability derives from the additive effects of
all common single-nucleotide polymorphisms (SNPs) on phe-
notype among these unrelated samples, which is usually called
SNP heritability (Speed et al. 2017). Instead of using the
expected relationship based on pedigree information, SNP heri-
tability is estimated from a genome-wide average across all
common SNPs (Toro et al. 2015). Since SNP heritability can cap-
ture neither nonadditive genetic variation nor genetic variation
not covered by SNPs measured by the selected genotyping
microarray, it is usually viewed as a lower bound estimate for
(narrow-sense) heritability. However, SNP data can reveal the
genetic architecture of phenotypes. Such information provides
rationale for downstream genetic association studies that aim
to identify associated genes and pathways. Recently, comput-
ing tools such as genome-wide complex trait analysis (GCTA)
(Yang et al. 2011), linkage disequilibrium score regression
(Bulik-Sullivan et al. 2015), BOLT-REML (Loh et al. 2015), and
massively expedited genome-wide heritability analysis (Ge
et al. 2015) have been developed for SNP heritability estimation.

The genetic architecture of brain regional volumes has been
previously reported in some studies, which often focus on a
few specific brain regions, such as putamen, amygdala, and
hippocampus (Hibar et al. 2015; Franke et al. 2016; Guadalupe
et al. 2017). However, the genetic influences on many other
brain regions are still largely unknown. In addition, these heri-
tability studies are often using integrated datasets from several
cohorts (Chen et al. 2015; Roshchupkin et al. 2016; Hibar et al.
2017), which may suffer from the heterogeneity of study popu-
lations. It is well known that heritability is not a fixed property
of a phenotype, and analysis of different datasets can result in
different estimates of heritability. The estimation of heritability
depends on the relative contribution of genetic factors, nonge-
netic factors and possibly their interaction. People from differ-
ent ethnic groups can have different genetic backgrounds and
be subject to different nongenetic factors. Moreover, methodo-
logical factors, such as the sample size of the study and mea-
surement error of the phenotype, can also impact the
estimation. For these reasons, the United Kingdom (UK)
Biobank (Sudlow et al. 2015; Satizabal et al. 2017) provides a
unique opportunity to comprehensively study the genetic con-
tributions to many brain regions in one single large-scale, rela-
tively homogeneous population. It is an open-access, large
prospective study with over 500 000 participants of middle or
elderly age. Currently around 10 000 of these subjects have
brain imaging data available (Alfaro-Almagro et al. 2018).

Here, we used all common (minor allele frequency [MAF] > 0.01)
autosomal SNPs to estimate the heritability for 101 regional brain

volumes (BVs), including the total BV, total gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF). We partitioned genetic
variation into individual chromosomes to examine the distribution
of heritability across the genome. To assess whether functional
annotation (Finucane et al. 2015; Hu, Lu, Liu, et al. 2017; Hu, Lu,
Powles, et al. 2017; Wang et al. 2017) is associated with genetic
effects, we partitioned genetic variation according to cell-type-
specific annotations. In addition, we estimated the heritability of
principal components (PCs) derived from the regional volume data
and evaluated the variability of heritability estimations across brain
regions and functional networks. Furthermore, we estimated
gender-specific heritability in each region. We compared the main
findings from the UK Biobank with those from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI, n ~ 1100) (Weiner et al.
2013), Philadelphia Neurodevelopmental Cohort (PNC, n ~ 600)
(Satterthwaite et al. 2014), and Pediatric Imaging, Neurocognition,
and Genetics (PING, n ~ 500) (Jernigan et al. 2016), which demon-
strated that more stable estimates can be obtained from the UK
Biobank.

Materials and Methods
Participants and Image Preprocessing

Datasets used in this article included the UK Biobank, ADNI,
PNC, and PING.

For each dataset, we used subjects with both magnetic reso-
nance imaging (MRI) and SNP data available after applying
proper quality controls. We only used baseline data for longitu-
dinal studies. Detailed data collection/processing procedures
and quality control prior to the release of data are documented at
http://www.ukbiobank.ac.uk/resources/ for UK Biobank, http://adni.
loni.usc.edu/data-samples/ for ADNI, http://pingstudy.ucsd.edu/
resources/genomics-core.html for PING, and https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.
p1 for PNC.

The MRI data were preprocessed using standard procedures
via advanced normalization tools (ANTs) (Avants et al. 2011).
Our preprocessing steps consisted of the N4 bias correction,
registration-based brain extraction, and a prior-based N4-Atropos
6 tissue segmentation (oasis template), which classified the brain
into WM, GM, deep GM, CSF, brainstem, and cerebellum. We
then adopted the 101 regions of interest (ROIs) defined by the
manually edited labels of the publicly available MindBoggle-101
dataset (Klein and Tourville 2012) to perform multiatlas cortical
parcellation. We excluded subjects for whom the imaging data
did not pass the standard imaging quality controls, and removed
3 ROIs with many missing values: X5th ventricle, left lesion and
right lesion (missing rate > 99%). There was a total of 101 regional
BVs, including total BV, GM, WM, and CSF. We standardized each
volume to better fit the assumption for the LMM. By checking the
studentized residuals of the linear model between volume with
age and gender, we deleted the top 10 outlier subjects for each
standardized volume. The demographic information related to
the MRI datasets are listed in Supplemental Table S1.

Genotyping

Genotype imputation was performed on the PNC, ADNI, and
PING datasets. A full description of the imputation procedure in
PNC, ADNI, and PING datasets is provided in Supplementary
Methods. For UK Biobank, we used an unimputed dataset.
Previous study has reported that the heritability estimates
from imputed and unimputed SNP data are similar (Davis et al.
2013). On each SNP dataset, we only selected subjects with
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available BV data, and then we used all autosomal SNPs and
applied the same standard quality control procedures in each
SNP dataset (Purcell et al. 2007): excluding subjects with more
than 10% missing genotypes, only including SNPs with MAF >
0.01, with genotyping rate >90%, and passing Hardy–Weinberg
test (P > 1 × 10−7). We further removed non-European subjects,
if any. In PING, we only used biologically unrelated subjects.
After quality control, we calculated the GRM by all SNPs and by
SNPs on each chromosome separately using GCTA software
(Yang et al. 2011). To avoid including closely related relatives,
we excluded one of any pair of individuals with estimated
genetic relationship larger than 0.025. The sample sizes of the
datasets after conducting all quality control procedures are
listed in Supplementary Table S2.

Heritability Analysis

First, for each regional volume, we estimated the proportion of
variation explained by all autosomal SNPs with a LMM (101
analyses in total). The formal setting of the LMM and definition
of likelihood ratio test statistics can be found in (Yang et al.
2011). The basic idea is to fit the GRM with random effects to
the phenotypic measure, while adjusting for other covariates
with fixed effects. The GRM was the correlation matrix of parti-
cipants estimated by the common genetic variants, which was
expected to capture the genetic similarity among unrelated
individuals. Then the heritability of a phenotype was estimated
by contrasting the genetic similarity among individuals with
their phenotypic similarity. Baseline age, gender indicator, top
10 PCs of GRM and BV (for regions other than BV itself) were
included as covariates, unless otherwise stated. We also
included the phase indicator for the ADNI study to adjust for
potential batch effects. Besides the combined sample, we fitted
the LMM separately on female and male samples for UK
Biobank data. Second, we partitioned the genetic variation by
each chromosome. We estimated the GRM of each chromo-
some and fitted each of them separately on each volume (22
analyses per volume, 2222 analyses in total). The same set of
covariates was included in these LMMs. Next, we performed
PCA on the volumes and computed the heritability of the top 10
PCs. We also partitioned the genetic variation on the compo-
nents by each chromosome. In the LMMs for the components,
we did not adjust for BV unless otherwise stated, since we have
observed that the variation of BV is almost captured by the first
component, and should be orthogonal to the remaining
components.

Finally, we fitted linear models between the length of a
chromosome and the aggregate heritability of all volumes or
their components to study the heritability distribution across
the genome. We clustered the regions according to their biolog-
ical functions and showed the heritability distribution across
these communities using the R package circlize (Gu et al. 2014).

Functional Enrichment of Genetic Signals

Cell-type-specific active chromatin annotations per SNP were
from (Finucane et al. 2015) and (Boyle et al. 2017). According to
Finucane et al. (2015), we performed functional annotation
analyses using cell-type-specific annotations marked by the 4
histones: H3K4me1, H3K4me3, H3K9ac, and H3K27ac. Each cell-
type-specific annotation corresponded to a histone mark in a
single cell type, and there were 220 such annotations. The 220
cell-type-specific annotations were further divided into 10
groups, including adrenal gland and pancreas, CNS,

cardiovascular system, connective tissue and bone, gastrointes-
tinal, immune and hematopoietic systems, kidney, liver, skele-
tal muscle and other. The SNPs were first divided into 4
overlapping groups according to their activeness in all cell-type
groups (only, few, broad, and never active). A SNP was labeled
“only” if it was annotated as active in only 1 of the 10 cell-type
groups. A SNP was labeled “few” if it was annotated as active in
at most 5 cell-type groups. SNPs that were active in 6–10 cell-
type groups were labeled “broad,” and SNPs that were not
active in any cell type were labeled “never active.” Then, SNPs
were further labeled as either active in the CNS cell group
(“CNS active”) or not (“CNS inactive”). Finally, we have 7 SNP
categories: CNS_active_broad (n = 36342), CNS_active_few (n =
49 227), CNS_active_only (n = 13 320), CNS_nonactive_broad (n =
8368), CNS_nonactive_few (n = 78 381), CNS_nonactive_only (n =
61533), and never_active (n = 205 742). We then calculated the
heritability explained by all SNPs in each category on each
region of interest.

Results
Heritability Estimates by all Common Autosomal SNPs

We first estimated the proportion of variation in regional BVs
that can be explained by all common autosomal SNPs, using lin-
ear mixed-effect models (LMMs) (see Materials and Methods).
Genetic similarity among individuals was captured by the
genetic relationship matrix (GRM). We used GCTA tools (Yang
et al. 2011) for heritability estimation, adjusting for baseline age,
gender, top 10 PCs, as well as BV (to remove scaling effects for
other regions).

Supplementary Tables S3 and S4 display the heritability
estimates, standard errors, and P-values from the one-sided
likelihood ratio test in each brain region. We found that a large
proportion of variation in regional volume is explained by addi-
tive genetic effects. The heritability estimates vary across the
brain (Supplementary Fig. S1). The top 10 regions with high her-
itability estimates are the brainstem 82.7%, cerebellar vermal
lobules VIII.X 68.3%, cerebellar vermal lobules I.V 68.0%, BV
65.9%, left cerebellum exterior 64.1%, right cerebellum exterior
63.2%, WM 62.8%, right ventral diencephalon (DC) 62.4%, left
ventral DC 58.8%, and right cerebellum WM 58.1%, in descend-
ing order of heritability point estimate. Noticeable evidence of
symmetry in heritability estimates is observed in many brain
regions. In Supplementary Fig. S1, many left/right pairs of
regions (such as R/L 07, R/L 44, R/L 08, R/L 19) are located next
to each other. Since we have a sufficiently large sample size (n
~ 9000), P-values for most regions are highly significant even
after controlling the false discovery rate at 0.05 by Benjamini
and Hochberg procedure (Benjamini and Hochberg 1995).

We investigated whether the observed considerable variabil-
ity in heritability estimates across brain regions is driven by the
varying levels of regional BVs. Supplementary Figure S2A
shows the linear relationship between the SNP heritability esti-
mate and the average volume of each brain region. Although
there is significant association between heritability estimates
and average volume size (P-value <0.002) in the UK Biobank, we
observe that large region does not necessarily has high herita-
bility estimate (R-squared = 0.096). Genetic contributions have
large variation among regions with comparable mean volume
sizes.

We also estimated gender-specific heritability in each region
(Fig. 1). The top regions with largest gender disparity, as mea-
sured by absolute difference in point heritability estimates are
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listed in Supplementary Table S5. Although there are several
regions showing strong evidence of gender difference, such as
right putamen (difference = 0.437) and left putamen (difference
= 0.411), the distribution of heritability is largely consistent
among all, female and male subjects.

Partitioning Genetic Variation by Chromosome

To examine the distribution of heritability across the genome,
we partitioned genetic variation into individual chromosomes.
Specifically, we estimated GRM using SNPs on each chromo-
some and estimated heritability separately for each chromo-
some on each regional BV (22 analyses per region, 2222
analyses in total).

Supplementary Figure S3A shows the heritability estimates
by chromosome. The chromosomes are ordered from left to
right by their lengths. We found that longer chromosomes tend

to have larger heritability estimates than shorter ones. We then
calculated the aggregate heritability across all of the 101
regions and found that the aggregated heritability explained by
each chromosome is also highly correlated with chromosome
length (Fig. 2a, R2 = 69.0%, P-value = 1.67 × 10−6). These findings
are consistent with a highly polygenic, or omnigenic model
(Lee et al. 2012; Boyle et al. 2017) and indicate that SNPs con-
tributing to variations in regional BVs are spread nearly uni-
formly across the genome.

Partitioning Genetic Variation by Functional Annotation

We explored whether functional annotation of SNPs can
explain the amount of genetic variation. Following (Finucane
et al. 2015), we used 220 cell-type-specific annotations.
Specifically, SNPs were divided into 7 groups according to their
activeness among 10 cell groups, namely adrenal gland and
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pancreas, central nervous system (CNS), cardiovascular system,
connective tissue and bone, gastrointestinal, immune and
hematopoietic systems, kidney, liver, skeletal muscle and
other. In our analysis, we particularly focused on SNPs active in
the CNS cell group (see Materials and Methods). We found that
the heritability estimated by SNPs residing in chromatin
regions inactive across all cell groups is similar to the heritabil-
ity estimated by SNPs residing in chromatin regions active in at
least one cell group (mean difference = 0.028, P-value = 0.064,
Fig. 3). Moreover, SNPs in chromatin regions particularly active
in the CNS cell group and SNPs in CNS-inactive chromatin
regions (but active in other cell groups) contributed similarly to
the heritability of brain region volumes (mean difference =
0.014, P-value= 0.279). On average, SNPs in chromatin regions,

which are active in a few cell groups, but not specifically active
in CNS cell group, contribute the largest to the heritability of
brain region volumes.

Heritability Pattern Across Brain Function Networks

To investigate the heritability pattern across large-scale brain
functional networks, we clustered 97 brain regions into 18 func-
tional communities (Buckner et al. 2008; Sporns and Betzel
2016; Huang et al. 2017) (Supplementary Table S6). We found
that the heritability estimates vary substantially across these
functional communities, while the degree of gene control on these
functional communities is comparable (Fig. 4). Communities with
many functions (larger than 2) tend to have large regional variance
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in heritability. For example, communities C1 and C5 are involved
in several networks, including default mode, somatomotor, visual,
attention, and language. Regions within the 2 communities have
large variance in heritability estimates. Other clusters linked to 1
or 2 functions (with smaller cluster size as well) tend to have
smaller regional variance in heritability estimates. The heritability
estimates cluster rather tightly together for regions within com-
munities C9 (default mode, motion), C11 (visual), C13 (auditory,
language), C14 (memory), and C15 (somatosensory). Most of the
regions in C18 (other) are phylogenetically older regions which are
involved in many critical functions for life. It is interesting to note
that these foundational regions would be most heritable.

Heritability Analysis After Dimension Reduction

To evaluate BVs on a global scale, we performed principal com-
ponent analysis (PCA) on the regional BVs and obtained the top
10 PCs. Since the top PCs can explain a large part of variation of
the BVs, the heritability pattern of these top PCs may reveal the
genetic contributions to all the regions at a global level.
Supplementary Table S7 lists the heritability estimates for the
top 10 PCs with and without adjusting for BV. We found that
the first PC has a high heritability estimate without adjusting
for BV (68.7%), but the heritability estimate is zero after adjust-
ing for BV. These estimates indicate that the first PC fully cap-
tured the variance of BV. The Pearson correlation between the
first PC and BV is 0.979. As the PCs are orthogonal, adjusting for
BV did not affect the heritability estimates of other PCs.

Although the top 10 PCs are highly heritable, the amount of
phenotypic variation explained by each PC does not seem to be
related to the heritability of the PC. For example, the heritabil-
ity of the second PC was much smaller than that of the other
top 10 components. It makes sense because nongenetic factors,
nonadditive genetic effects and even batch effects may also
contribute to variation in BVs. We also calculated heritability

estimates by each chromosome for these top 10 PCs
(Supplementary Fig. S4A) and found that the sum of the herita-
bility values explained by each chromosome is again highly
correlated with chromosome length (Supplementary Fig. S5A,
R2 = 49.6%, P-value = 2.48 × 10−4).

Similar to brain functional community analysis, we grouped
the brain regions into 10 modules according to their loadings
for the top 10 PCs. That is, we classified the regions correspond-
ing to the top 10 loadings of each component into 1 module.
Each region therefore can fall into more than 1 module. In our
analysis, most regions fell only into 1 (44 regions) or 2 (25
regions) modules. Supplementary Figure S6 shows the distribu-
tion of heritability estimates across these 10 modules. Again,
regions classified in modules corresponding to PCs that explain
more volume variation do not necessarily have higher herita-
bility estimates. As expected, regions in modules corresponding
to PCs with higher heritability estimates also have higher heri-
tability estimates.

Comparing UK Biobank Results With Results From
Other Datasets

The same analyses presented above in the UK Biobank were
conducted in 3 other datasets, namely ADNI, PNC, and PING
datasets. Due to smaller sample sizes, heritability estimates
from these 3 datasets have much larger variance than those
from the UK Biobank (Fig. 5, Supplementary Figs S7 and S8).
After multiple testing adjustment, we found few regions or PCs
to be significant at a false discovery rate of 0.05 in the 3 studies
(Supplementary Tables S8–S13).

However, some findings are indeed consistent. For example,
from each dataset, we observed the linear relationship between
chromosome length and the variance explained by each chro-
mosome. But the association tends to be weaker as the sample
size decreases (Fig. 2 and Supplementary Fig. S5).

Discussion
In summary, our extensive analyses across 4 imaging genetic
datasets support the following 5 important findings. First,
regional volumes are generally heritable. The majority of brain
regions are similarly heritable among females and among
males. Study samples used in this work vary from young (PING,
PNC) to middle-age/elderly participants (ADNI, UK Biobank).
Second, we observe omnigenic patterns where genetic variants
contributing to variations in BVs are widely spread across the
genome with one major evidence being the significant positive
linear relationship between chromosome-specific heritability
estimates and chromosome length. Third, because the SNPs are
sufficiently interconnected, genetic variants residing in CNS-
cell active and CNS-inactive chromatin regions explain similar
variation in BVs.

Fourth, through PCA, we demonstrated that the top PCs are
also highly heritable, but the amount of BV variation explained
by the PCs does not seem to be related to the heritability esti-
mates of these PCs. Fifth, the genetic influences are not uni-
formly distributed across the brain regions or brain functional
communities. Similar genetic control can be found among
regions within a small community and on pairs of regions in
the left and right hemispheres. Compared with ADNI, PNC, and
PING, UK Biobank can provide more stable estimates of herita-
bility with smaller standard errors.

We found that 65.9% of BV variability can be explained by
genetic variation of all common autosomal SNPs for UK
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Biobank subjects. Adjusting for BV, 39.3% of CSF volume vari-
ability is explained by genetic variation. Without BV adjust-
ment, the heritability estimates for GM (67.5%) are similar to
the estimates for BV (65.9%); after adjusting for BV, the herita-
bility estimates for GM are zero, suggesting that BV and GM
share the same or very similar genetic bases. For WM, however,
heritability estimates remain almost unchanged before and
after adjusting for BV (62.8% and 62.0%, respectively), indicating
that genes underlying WM are not general brain growth genes,
but rather more likely to be genes that specific control this par-
ticular brain structure and subregions. Our heritability esti-
mates are similar to those reported in Carmelli et al. (1998), Pol
et al. (2006), Kremen et al. (2010), and Bryant et al. (2013). We
have more clearly illustrated the different genetic bases behind
BV/GM volume and WM volume. Different from the intracranial
volume generated from the Freesurfer (Fischl 2012) software,
the BV provided by ANTs (Avants et al. 2011) is calculated as
the total volume of nonzero voxels within the brain mask,
which could be an limitation of our findings.

In regional volume analysis, we obtained the heritability esti-
mates of 97 regions, showing that the regions are highly heritable
and genetic influences are not uniformly distributed across the
brain. Particularly, the heritability is estimated to be 53.1% on left
hippocampus, 49.2% on right hippocampus, 42.7% on left caudate,

32.7% on right caudate, 48.5% on left pallidum, 49.6% on right palli-
dum, 43.1% on left putamen, 48.8% on right putamen, 42.5% on
right amygdala, and 23.5% on left amygdala, all of them are statis-
tically significant after multiple testing adjustment and are within
the range of previously reported heritability estimates (Roalf et al.
2015; Ge et al. 2016; Greenspan et al. 2016; Patel et al. 2017;
Satizabal et al. 2017; Wigmore et al. 2017). To assess whether the
lower heritability is caused by smaller regional volume, we quan-
tify the concordance between the average volume sizes and herita-
bility estimates and find regional variation of genetic contribution
is observed among the regions with comparable average volume
sizes. In addition, we found strong evidence that the estimates
have a symmetric pattern across the left and right hemispheres.
Many left/right pairs of regions have similar estimates, consistent
with results from previous twin studies (Wright et al. 2002; Chen
et al. 2012). Our gender-specific analysis across all regions show
that the majority of additive genetic effects are shared between
female and male subjects (correlation = 0.638, Supplementary
Fig. S9). Several regions do have large gender differences in herita-
bility, such as left/right putamen, whose gender differences have
been previously reported (Guadalupe et al. 2017).

To further study the patterns of regional variations in heri-
tability estimates, we clustered the regions by their biological
functions. In brain functional network analysis, we grouped the
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97 regions into 18 nonoverlapping brain functional communities.
We found the community-wise variability in heritability across
these functional communities, while the genetic influences
widely prevail across the brain functional networks with compa-
rable degrees of control (heritability). The regions within each
community do not necessarily have similar heritability esti-
mates, depending on the linked community functions. We per-
formed PCA and found that the components explaining more
volume variations do not necessarily have higher heritability,
nor higher loadings on regions with higher heritability. This
makes sense because PCA is an unsupervised dimension reduc-
tion technique. Nongenetic factors or nonadditive genetic effects
that are not captured by SNPs also influence variation in BV.

The significant linear correlation between the variance
explained by a chromosome and the length of the chromosome
was observed on both the volumes and PCs. These patterns sug-
gest that genetic variants controlling regional BVs are rather
ubiquitously distributed across the genome. Similar findings
have been reported on other phenotypes, such as height, body
mass index, neuroanatomical phenotypes, and schizophrenia
(Yang et al. 2011; Lee et al. 2012; Toro et al. 2015; Fritsche et al.

2016; Shi et al. 2016; Kemp et al. 2017; Shan et al. 2017). To
explain this phenomenon, Boyle et al. (2017) proposed an omni-
genic hypothesis where most heritability can be explained by
effects of genes outside core pathways because gene regulatory
networks are sufficiently interconnected. We observed that the
CNS-active and CNS-inactive SNPs contribute similarly to herita-
bility of brain region volumes. This phenomenon can be intui-
tively explained by the hypothesis of sufficiently interconnected
SNPs proposed by (Boyle et al. 2017). However, the results should
be interpreted with caution because the number of SNPs outside
the CNS-active chromatin regions is larger than the number of
SNPs within the CNS-active chromatin regions.

Finally, we compared the results from UK Biobank with the
results from the other 3 datasets. The UK Biobank allows more
stable estimation of the magnitude of genetic determination of
the human brain. In ADNI, PNC, and PING, extreme estimates
such as 0.999 or 0 occurred for some regions (Fig. 5); these esti-
mates should not be interpreted as “true” heritability estimates,
but only indicate large or small heritability values for a region.
In UK Biobank, no such extreme estimates are observed, and
the heritability estimates range from 1.6% to 82.6%, with
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standard error approximately 0.07. Although SNP heritability
estimates are at the lower bound of (narrow-sense) heritability,
we observed many heritable brain regions using the UK
Biobank dataset, and the estimates are statistically significant
using a likelihood ratio test after multiple testing adjustment
(Benjamini and Hochberg 1995). For the other 3 datasets, how-
ever, few significant findings remain after multiple testing
adjustment. This different pattern may be explained by insuffi-
cient sample sizes in these 3 datasets or the fact that nonge-
netic factors may be very different in the corresponding study
populations.

Studying multiple (heterogeneous) populations and inte-
grating the results could provide more generalizable heritability
estimates and build the upper and lower bounds of heritability
with using both unrelated and related individuals. However, in
general this is a more challenging task, and particularly, the
population heterogeneity needs to be carefully addressed when
we seek for similar patterns across studies. For example, the
UK biobank are primarily middle/elderly ages (mean age 64),
whereas the PNC and PING cohorts are primarily adolescents
(mean age 21 and 12 years old, respectively). Very different pro-
cesses may play during these different age periods, and thus
adjusting age separately in each dataset may be insufficient for
accounting for such heterogeneity.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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