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Summary
Muller et al. [1] have provided a strong critique of the Genome-Wide Association Studies (GWAS) of body-mass index
(BMI), arguing that the GWAS approach for the study of BMI is flawed, and has provided us with few biological insights.
They suggest that what is needed instead is a new start, involving GWAS for more complex energy balance related traits. In
this invited counter-point, we highlight the substantial advances that have occurred in the obesity field, directly stimulated by
the GWAS of BMI. We agree that GWAS for BMI is not perfect, but consider that the best route forward for additional
discoveries will likely be to expand the search for common and rare variants linked to BMI and other easily obtained
measures of obesity, rather than attempting to perform new, much smaller GWAS for energy balance traits that are complex
and expensive to measure. For GWAS in general, we emphasise that the power from increasing the sample size of a crude
but easily measured phenotype outweighs the benefits of better phenotyping.

In 2006, just before the first study that used GWAS for
identification of BMI related variants was published, many
researchers in the obesity field believed that we knew much
about how body weight was regulated [2], and its genetic
basis [3]. This confidence was born from the tremendous
advances that had followed the discovery of leptin over a
decade earlier [4]. In leptin, we had a candidate molecule

that had all the required characteristics of a signal from
body fat to the brain, consistent with a lipostatic control
system [5, 6] as originally envisaged by Kennedy in the
1950’s [7]. The pace of development of the field following
the discovery of leptin was remarkable, and in short order, it
was shown that leptin interacts with known neuropeptides
in the hypothalamus that regulate food intake, such as NPY
[8, 9] and the melanocortin system [10–12]. Further dis-
coveries of novel peptides secreted by the alimentary tract
[13, 14] seemed to make the picture complete. These gut
derived hormones appeared principally to interact with
centres in the brainstem to regulate short-term intake, while
the longer term regulation in relation to body weight was
orchestrated by the hypothalamus, and incoming signals
reflecting adiposity, such as leptin and insulin [2, 15–17]. It
was shown that there were humans with loss-of-function
mutations in the leptin gene [18] and the leptin receptor
gene [19] that had massively enhanced appetite and extreme
obesity, from an early age. The proof of principle that these
mutations were causal came from leptin repletion experi-
ments, where the obesity caused by the loss-of-function
mutations in the leptin gene could be completely reversed
[20, 21]. Additional discoveries of genes underlying rare
syndromes of monogenic obesity followed [22–26] and
these genes were generally all located among the known
elements of the standard model [27, 28]. Papers in special
issues of Nature in 2000 and 2006 describing this lipostatic
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model, and how the human genetic discoveries mapped into
the pathway, have become classics in the field, some cited
well over 3000 times [2, 3, 16, 29]. Hence, it seemed
eminantly plausible that polygenic obesity—the type of
obesity that underpins the genetic basis of obesity in the
general population, would be due to subtler variants in the
genome affecting the key players in the standard model.

Then came the first gene discovery from GWAS in 2007,
and the bubble was burst. Frayling et al. [30] described a
genetic variant in the first intron of a gene that virtually
nobody in the obesity field had ever heard of, that had a
major association with fat storage and the risk of obesity.
The gene was FTO. In fact when it was discovered, FTO
stood for 'Fused toes' from the gene’s supposed phenotypic
impact in mice, but the acronym was rapidly re-engineered
to become the 'FaT-mass and Obesity-related' gene (for
more details of the naming history, which is slightly more
complex, see [31]). The FTO paper by Frayling et al. [30]
has now been cited over 2000 times. The authors had found
a common variant in the first intron of FTO by searching for
genetic variants associated with diabetes using the GWAS
approach, but showed that FTO had a significant association
with the risk of diabetes only via its association with BMI. It
is no exaggeration that this discovery is a prime example of
one of Donald Rumsfeld’s famous quotations. This was
certainly one of the unknowns that we did not even know
was unknown. The FTO gene variants are associated with
differences in food intake [32–35] but not energy expen-
diture, and the gene encodes a 2-oxoglutarate dependent
nucleic acid demethylase [36]. Work in mice confirmed the
Fto gene may have functions related to energy balance
[27, 37] and it may be an amino acid sensor linked to
protein intake [38–40]. However, recent work suggests that
the genetic variants, while located in the first intron of
the FTO gene, may exert their effects via adjacent genes
at the locus, such as IRX3 [41].

By 2010, we had 32 known genetic variants, close to, but
seldom actually in the coding regions of genes, that were
discovered by GWAS for BMI [42]. Some of these variants
were located near to genes that would be anticipated to be
important from the classic model—such as in MC4R,
POMC and BDNF. However, many more of the variants
were associated with genes that were not part of the stan-
dard model that had engrossed everyone in the early 2000s.
Instead, they provided a diverse array of insights into how
weight regulation is so much more complex than we had
imagined it to be 10 years earlier. Several reviews have
been published summarising the likely functional nature of
FTO and the other main GWAS targets [31, 43] and the
success of the GWAS approach to obesity genetics [44].

A couple of examples will suffice to demonstrate that
GWAS has led us to completely novel genes, with unanti-
cipated functions, that would likely remain undiscovered

today without the GWAS approach. For instance, one of the
genes identified in early GWAS of BMI was neuronal
growth regulator 1 (NEGR1). This gene is highly expressed
in the brain, particularly the hippocampus—a region not
traditionally linked to food intake or energy balance reg-
ulation. Subsequently, however, it was shown to have high
expression in arginine vasopressin and oxytocin expressing
neurons in the hypothalamus. Knocking out the gene in
mice resulted in an effect on the amount of lean tissue, with
consequent impacts on energy expenditure [45]. Prior to
GWAS for BMI we had no notion of the involvement of
NEGR1 in regulation of energy expenditure. A second gene
identified by GWAS linked to BMI was the neuronal cell
adhesion molecule 2 (CADM2). Subsequent molecular
work in mice has confirmed an important role for this gene
in body-weight regulation [46, 47], which again would not
have been anticipated without the GWAS for BMI. Finally,
a more recent GWAS identified locus was the gene ade-
nylate cyclase 3 (ADCY3). Subsequent association studies
have identified functional variants in this gene in humans
that lead to increased risk of both obesity and type 2 dia-
betes [48, 49]. This gene is localised in expression to the
primary neuronal cilia [50] where it co-localises with the
melanocortin 4 receptor (MC4R). Some of the MC4R
mutations that lead to obesity impair the localisation of
MC4R to the cilia, while impairment of ADCY3 signalling
in the cilia also leads to increased body weight. This
involvement of cilia in weight control has derived from our
identification of targets from GWAS studies. These dis-
coveries stemming from GWAS identification of NEGR1,
CADM2 and ADCY3 provide a window into how GWAS
for BMI can facilitate novel discoveries in both previously
known, and unknown, pathways linked to obesity.

By 2016, the number of obesity genes discovered by
GWAS had expanded to 112 [51] and last year by per-
forming GWAS for BMI in different populations this
expanded to more than 200 [52]. So, what is the basis for
alleging that GWAS has not been useful? Muller et al. [1]
make some quite valid points, but others that we feel are
less cogent, and appear to have largely misconstrued the
goals of GWAS, and the factors that determine the success
of this approach. Before we address their argument, it is
worthwhile briefly summarising the GWAS approach, some
of its goals, and the factors that determine the success in
achieving these goals. For a more detailed consideration of
these topics, we refer readers to recent excellent reviews
[53, 54].

First, a key goal of GWAS is to provide an unbiased and
comprehensive search for causal biology. GWAS is not an
end point, but the start of a process. The associated variants
identify loci, but often do not point directly to the causal
variant or gene at the locus (as illustrated by the FTO
example mentioned above), nor do they explain the biology
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of the genes in the locus—all of which requires additional
work. GWAS provides the initial clues that would not
otherwise be available. One way to think about it is that
GWAS identifies flags along the genome that indicate
something nearby may be important.

Second, much of the heritable contribution to polygenic
traits such as measures of obesity are due to common var-
iation [55, 56]. Because common variation has avoided
negative selection through evolutionary pressure (as evi-
denced by the fact that it is common), the variants dis-
covered by GWAS almost certainly represent small tweaks
to biological pathways, and the effects of stronger pertur-
bations to the pathway (either genetic or pharmacological)
could easily have much larger and clinically significant
effects. This is exemplified by common variation at
HMGCR that has quite small effects on LDL-cholesterol
levels but nonetheless points to a useful drug target for
statins (which have much bigger effects than the common
variation). Similarly, rare and common variants can coexist
at the same gene (such as MC4R) and can have very dif-
ferent effect sizes, so the fact that a common variant has a
modest effect size does not speak to the biological impor-
tance of the gene where it resides. Rare variants, especially
rare coding variants, can be valuable discoveries to com-
plement GWAS. This value comes not from variance
explained (which, in most populations is small because of
the low allele frequency), but rather from the large impact
on biological pathways, making them useful experimental
tools, and the fact that coding variants can point specifically
to the correct gene.

Third, most quantitative traits and common diseases
appear to be highly polygenic, meaning that, with occa-
sional exceptions, no individual locus will explain a large
fraction of heritable variation. The power for discovery
depends on the underlying genetic architecture, but the
field’s collective experience with hundreds of diseases and
traits suggests that sample sizes of tens of thousands are
nearly always required to make even a handful of dis-
coveries but that, after these initial discoveries, the number
of new loci tends to increase linearly or even more rapidly
with increasing sample size [57]. The key point that we
shall return to later is that sample size is the main deter-
minant to making discoveries in GWAS.

Returning to the arguments of Muller et al. [1], they
highlight the small amount of variation explained by
GWAS of BMI that have been completed to date. It is true
that despite these spectacular advances in discovery of
novel associated genes to BMI, and new insights into
biology, the genes identified by GWAS together explain
only 3–4% of the total variation in adiposity. Yet, we know
that the variation in BMI explained by genetics is around
50–75%, averaging around 65% [58, 59]. So, one might
argue (as they do) that the advance is actually rather modest.

Locke et al. [51] modelled the likely expansion in the
explained variation as more and more genes are added to the
list, and concluded that maximally 30% of the variation
might be tracked down to common variants.

Ultimately, with enough samples, we will end up with
thousands of common variants associated with obesity
(likely concentrated in many fewer loci, as many loci will
have multiple signals of association) [53, 54]. Each variant
will explain just a few grams difference in body weight.
This is actually how the great geneticist Fisher envisaged
polygenic traits being influenced by genetics in his ‘infini-
tesimal model‘. Although these variants, in aggregate, may
have some predictive power that could be clinically
important at some future time, it is important to reiterate that
the goal of GWAS is not solely to provide predictive power,
but mainly to provide a comprehensive, unbiased approach
to point out relevant, targetable biology. Moreover, it is
worth remembering that low explained variance may not
necessarily imply an absence of clinical utility. There are
scenarios where despite low variance explained there may
be sufficient predictability to more effectively schedule
patients into costly procedures. For example, theoretical
simulations have shown that using whole genome sequen-
cing to predict weight loss following bariatric surgery could
be useful in targetting surgery where it will be most effec-
tive, even if the explained variance in the trait is only
modest [60].

Perhaps then one of the greatest insights from GWAS is
not the individual genes but the overall picture of where
these genes act. In the context of BMI, for example, it is
clear that the bulk of discovered genes thus far are mostly
centrally (in the brain) rather than peripherally acting e.g.
[61].

Why has GWAS seemed to be so slow, then, at dis-
covering the variants that cause the majority of the variation
in body fatness (2% discovered vs 30% that should be
discoverable by GWAS)? Muller et al. [1] present what they
consider is the main reason, and advance what they suggest
is the way to get over this issue. We disagree with that
interpretation, and suggest here an alternative explanation
and way forwards. Despite the fact that GWAS of BMI
have yielded more associations (c. 200) than for most other
human polygenic traits and diseases, Muller et al. [1] sug-
gest the main reason why GWAS for BMI has provided so
little insight into the obesity problem is principally because
BMI is an extremely poor measure of obesity. Not only that,
but obesity—they suggest—is itself a complex outcome of
energy imbalance, which is dominated by the complex traits
of food intake and the multiple components of energy
expenditure, plus their interactions. We cannot possibly
hope they argue to capture this complexity by measuring
someone’s weight and height, and dividing one by the other
squared. Therefore, the whole GWAS for BMI approach
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has led us down a garden path to almost nowhere. If this is
the case, then why not just replace BMI with a more
accurate measure of adiposity? Instead, they argue, what we
need are actually GWAS studies of the complex energy
balance traits themselves. Their viewpoint is that only by
dramatically enhancing the phenotype that we are trying to
explain, do we stand any chance of understanding the
genetic basis of obesity. It is an articulate and well made
argument that, nevertheless, we think has flaws.

Nobody will argue with the suggestion that BMI can be a
poor measure of adiposity at the individual level. There are
countless individual examples that show the fallacy of using
BMI to indicate how fat someone is. In particular, indivi-
duals with very high muscularity may have very low body
fat, yet their BMIs place them among the obese category.
An Internet favourite is the actor Arnold Schwartznegger,
who when he was a competing Mr Universe entrant, had a
BMI above 30, but less than 10% body fat. Single examples
are interesting anecdotes, but do not make a good scientific
case, because most people in a typical cohort are not Mr.
Universe competitors: the vast majority of people with a
high BMI actually have obesity. It is true that comparison of
adiposity measured by dual-energy x-ray absorptiometry
(DXA) and BMI (Fig. 1) in over 13,000 individuals
involved in NHANES showed that for example a man with
a BMI of 25 might have a body fatness anywhere between
10 and 35% [62]. It is a mistake, however, to equate these
individual discrepancies with the use of BMI in GWAS. In
GWAS, we are attempting to link genetic polymorphisms to
adiposity at the population level–not the individual level.
So, the issue is not how poor BMI might be as a measure of
adiposity for any given individual, but how good it is on
average–and the answer is pretty good. The average
levels of body fatness rise consistently with the BMI
(red lines in Fig. 1), hence at the population level BMI gives
a fair reflection of adiposity. With large enough samples,
the noise added by poor individual correspondence of
BMI to actual adiposity is more than overcome by increased
power.

The problem with their suggestion is that the success of
GWAS for any polygenic trait, including BMI, or other
measure of adiposity, depends on the number of variants
contributing to the trait, the heritability explained by com-
mon variation and, most critically, the sample size. Thus,
even if we could measure adiposity accurately or engage in
complex phenotyping of weight loss/gain phenotypes, that
would not be enough to achieve more discoveries relevant
to obesity unless we could achieve sample sizes comparable
to those readily available for BMI (currently in the mil-
lions). In fact, their proposed approach has been tried with
many alternative measures of obesity, and most of the dis-
coveries emerging from these refined phenotypes were also
discoverable by the much larger studies of BMI [63, 64].

We suggest that this is why, when people follow up
SNPs derived from GWAS from BMI in smaller popula-
tions, but using more accurate methods such as DXA or CT
scanning, they generally find evidence that these SNPs do
play a role in adiposity. If the individual discrepancies of
BMI to adiposity were important, this might not happen.
Validation studies using more accurate methods would
show the BMI derived genes from GWAS to have no effect.
They seldom do. Most critically, BMI has a major advan-
tage for such association studies, where power is the lim-
iting factor for discovery, and that is it is cheap to measure
(and hence, routinely measured). It is easily possible to
measure the BMI of a hundred subjects in a single day with
the cost only of paying a technician who has had a few
hours of training, and a room for them to do it. Even traits
where the measurement lasts less than an hour (e.g. resting
metabolic rate), but depends on sophisticated equipment,
accumulating sufficient samples to perform GWAS involves
a mammoth effort and yet routinely achieves relatively
modest sample sizes compared with the sample for BMI.
We may contrast this with the more sophisticated measures
proposed by Muller et al. [1] as phenotypes that should be
adopted for future GWAS studies. In particular, they focus
on weight change phenotypes, that may be separated into
weight loss and weight gain components that would not

Fig. 1 Body-mass index in
relation to the level of body fat
measured by DXA. Data
generated in NHANES and
published by Romero-Corral
et al. (2008). Two things are
clear form this picture. a at any
given level of BMI the level of
body fatness varies enormously.
Yet (b) the average population
level of body fatness (in red)
tracks the level of BMI closely
(if not via a linear model)
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necessarily be symmetrical. Hence, subjects would need to
be exposed to carefully controlled dietary manipulations,
which are generally only possible in a residential setting,
linked to sophisticated quantification of changes in their
body composition (both lean and fat compartments) over
the time course of the intervention. A single measurement
might take weeks to complete. The costs and impositions of
such phenotyping mean that it will only be possible to
maximally accumulate a few thousand suitably char-
acterised individuals. Such a small sample is highly unlikely
to provide any positive hits in a GWAS protocol because
the power obtained by increased complexity and accuracy
of phenotyping is much less than the power afforded by
increased sample size. When it comes to GWAS, sample
size is the limiting factor on discovery. Since phenotypic
complexity limits attainable sample size, the traits envi-
saged by Muller et al. [1] are unlikely to yield many (if any)
useful hits.

There are two additional issues. The first is that
decomposing 'obesity' into components of energy balance
may not necessarily throw up hits that have useful func-
tionality with respect to obesity. This is because variations
in the components of energy balance do not necessarily feed
directly into variation in susceptibility to obesity, as they
interact in complex ways [65]. For example, there have
been many studies that have aimed to diagnose the genetic
basis of physical activity (reviewed in [66]). Physical
activity is obviously a component of energy balance that is
potentially linked to energy expenditure and thereby obe-
sity. Yet, very few of the genetic variants that are linked to
physical activity are also linked to BMI. Hence, the insights
from these studies into the aetiology of obesity is relatively
small. Moreover, a fundamental assumption of GWAS is
that the traits in question have a genetic basis to start with.
This is a reasonable assumption because almost all traits
that have been examined do have some heritability,
including traits that one might not immediately imagine
would have a genetic contribution, such as political con-
servatism [67] and religiosity [68]. A salient question,
however, is how much do genetic factors contribute to the
observed variability in a given trait. For most of the traits
proposed by Muller et al. [1], we do not know if they are
highly heritable or not (but see Bouchard et al. [69] for an
exception). This is a serious problem because we may
embark down a path of GWAS discovery for an expensive
phenotypic trait that has only a very small genetic con-
tribution to be discovered. Another major advantage then of
BMI is that all the heritability estimates for ‚obesity‘ were
actually originally performed using BMI as the trait
[58, 70–72]. We know it is heritable, we know that the
genetic variation in the trait is relatively high, and hence we
also know there are lots of things to be discovered. For the
traits proposed by Muller et al. [1] this knowledge of the

magnitude of heritability is lacking. Hence, when the first
GWAS rolls in with no hits, we will not know if that is
because there is an insufficient sample of characterised
individuals to deliver the required power, and simply more
effort is needed—or if this is a trait for which there is only
low heritability and few genetic variants to be found at any
sample size.

We do not wish to underplay the enormous task that
GWAS throws up in trying to understand the biological
basis of the identified polymorphisms. Understanding how
these individual variants translate into biology is likely a
decades long task. This is particularly so when the variants
are non-coding. This appears to be the case even when the
SNP is intronic and one would imagine it has an effect in
the gene where it is located e.g. FTO [41]. Progress is likely
to be much more rapid when analysis focuses on coding
variants via exome sequencing, and loss-of-function muta-
tions, than when the SNP is located in a non-coding region
[73]. Recent effort has therefore tended to focus much more
into such coding variants (e.g. sequencing by the UK Bio-
bank of more than 100,000 individuals). However, that is
not a problem unique to GWAS for BMI. It will be a pro-
blem also for GWAS of the more complex traits proposed
by Muller et al. [1].

How should we advance? A key issue highlighted by
Muller et al. [1] is to understand why the common variants
likely explain a limited percentage of the total genetic
variance evaluated from classical heritability studies. This
problem may be overstated [56], since the amount of
unexplained variation is likely small for many polygenic
traits. However, BMI is somewhat an outlier in this respect.
We suggest this is not due to the poor BMI phenotype.
Instead, the reason may be that as human populations
fragmented after leaving Africa, local populations became
isolated, and important mutations happened in relatively
small groups. These might have been maintained by
selection or possibly by drift [33, 74]. What this means is
that what remaining unexplained variation there is may
actually reside in variants that are rare, when examined at
the global population level, and hence never rise to sig-
nificance at in a GWAS, but are more common in small
populations (for general arguments on relative contributions
of rare and common variants see 55). An example is a recent
study of the Samoan population [75]. This work showed
that a genetic variant adjacent to the the CREB/RF gene,
which is rare in the general global population occurs in 45%
of Samoans can explain alone about 2% of the variation in
obesity in this population. A single 'rare variant' mutation
that explains as much as each of the common variants thus
identified combined.

This potential role of rare variants filling the gap between
known heritability and the variance explained by common
variants identified by GWAS is supported by a recent
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association study using exome sequencing, which showed
that 14 rare variants have large effects on adiposity,
including one rare variant, which had a 7 kg impact on body
weight [73]. These variants were identified using an exome
genotyping chip. Unfortunately, to reliably detect non-
coding rare variants requires sequencing to about 30-fold
depth, which is currently prohibitively expensive, and hence
why the approach at the moment has been to use exome
genotyping. Of course, one might argue that if 30-fold
sequencing depth costs as much as complex phenotyping,
then why is this any better an approach. The answer is that
while the costs of sequencing follow Moore’s law, the costs
of complex phenotyping follow the retail price index.
Hence, what we dream to do in genomics today, is tomor-
row’s reality. In contrast, complex phenotyping is always an
expensive dream. Interestingly the rare variant explaining 7
kg differences in body weight from exome sequencing is in
MC4R [73], and 2 other variants from the same study were
in GIPR both of which were important players in the ori-
ginal standard model [3]. So things may eventually come
full circle, and it may be that these rare variants reside
predominantly in the standard model components, as most
people originally expected them to 10 years ago.

In conclusion, GWAS for BMI is not a broken paradigm,
but a treasure trove of biological discovery that has served
us well. It is not perfect, but has many advantages over
alternative suggested approaches. We demur from the sug-
gestion that it needs a 'reboot'.
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