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thus deflating the estimates of genetic influences and inflat-
ing the estimates of nonshared environmental influences. 
Although estimates of genetic and nonshared environmental 
influences from the standard biometric model were found 
to deviate from “true” values, the bias was usually smaller 
than 10% points indicating that the interpretations of find-
ings from previous twin studies are mostly correct.
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Introduction

Behavioral genetic designs provide a powerful tool for esti-
mating the relative contributions of heritable and environ-
mental influences on complex human traits (Plomin et al. 
2013). The most commonly used family-based behavioral 
genetic design is the twin study, which compares the similar-
ity of monozygotic (MZ) and dizygotic (DZ) twin pairs. Spe-
cifically, twin studies partition the variance of a measured 
phenotype into additive genetic (A), nonadditive genetic 
(D), shared environmental (C), and nonshared environmen-
tal (E) influences. Findings from twin studies have been 
shown to be highly consistent with almost every human trait 
influenced by genetic factors, including physical, medical, 
psychological and behavioral characteristics (Plomin et al. 
2016; Polderman et al. 2015; Turkheimer 2000). In general, 
twin studies play a critical role in understanding the nature 
of complex human behaviors.

Recently, concerns have been raised about twin studies 
and the basic assumptions of twin studies based, in part, 
on findings from epigenetic and molecular genetic stud-
ies (e.g. Burt and Simons 2014; Charney 2012; Gringras 
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fraternal (dizygotic: DZ) twins, twin studies are able to esti-
mate genetic and environmental contributions to complex 
human behaviors. Recently concerns have been raised about 
the accuracy of twin studies in light of findings of genetic 
and epigenetic changes in twins. One of the concerns raised 
is that MZ twins are not 100% genetically and epigenetically 
similar because they show variations in their genomes and 
epigenomes leading to inaccurate estimates of heritability. 
This article presents findings from a simulation study that 
examined the degree of bias in estimates of heritability and 
environmentality when the genetic and epigenetic similar-
ity of MZ twins differs from 1.00 and when the genetic and 
epigenetic similarity of DZ twins differs from 0.50. The find-
ings suggest that in the standard biometric model when MZ 
or DZ twin similarity differs from 1.00 or 0.50, respectively, 
the variance that should be attributed to genetic influences 
is instead attributed to nonshared environmental influences, 
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and Chen 2001; Lerner 2004). Epigenetic and molecular 
genetic studies have found that there is variation in MZ 
twin genomes and epigenomes, suggesting that they are not 
100% identical genetically and epigenetically (e.g. Bruder 
et al. 2008; Charney 2012). Furthermore, Charney (2012) 
has described several factors that may result in less genetic 
and epigenetic similarity in MZ and DZ twins than expected, 
including genetic mechanisms (e.g., retrotransposons, copy 
number variations), epigenetic modifications (e.g., histone 
regulation, DNA methylation), and reported effects of these 
mechanisms (see Table 1). For example, one study reported 
large-scale copy-number variations (CNV) among 19 MZ 
twin pairs with either concordant or discordant phenotypes, 
indicating genotypic diversity within MZ twin pairs (Bruder 
et al. 2008). There is also preliminary evidence that genetic 
differences in MZ twins may explain discordant phenotypes 
in MZ twins based on studies examining one or two pairs 
of MZ twins with specific disorders such as Williams syn-
drome (Castorina et al. 1997) and schizophrenia (Tsujita 
et al. 1998).

Epigenetic mechanisms regulate the transcriptional activ-
ity of genes without changing the DNA sequence (Goldberg 
et al. 2007; Jaenisch and Bird 2003). Several studies have 
found epigenetic differences within pairs of MZ twins and 
cross-sectional and longitudinal studies have indicated that 
epigenetic discordance of MZ twin pairs increases over time, 
suggesting inter- and intra-variability among MZ twin pairs 
(e.g., Fraga et al. 2005; Kaminsky et al. 2009; Ollikainen 
et al. 2010; Wong et al. 2010). Studies comparing epige-
netic discordance rates among MZ and DZ twin pairs have 
suggested genetic and environmental (including stochastic) 
influences on epigenetic variation (Bell and Spector 2011; 
Van Dongen et al. 2016; van; Dongen et al. 2012) and dif-
ferences in epigenetic profiles have been found to account 
for MZ twin discordance for a wide range of phenotypes, 
including schizophrenia and bipolar disorder (Castellani 
et al. 2015; Dempster et al. 2011; Kuratomi et al. 2008), 
although some of the findings are from studies examining 
one or two pairs of MZ twins. Findings like these have raised 
the question of whether MZ twins can truly be described 
as genetically and epigenetically identical (Charney 2012; 
Gringras and Chen 2001). This is a critical concern, as the 
classical twin design relies upon MZ twins sharing all of 
their segregating genes and DZ twins sharing half, on aver-
age. One of the concerns raised is that the variation in the 
genetic and epigenetic similarity in MZ twins will result in 
inaccurate estimates of heritability, because the MZ twins 
are not, in truth, genetically and epigenetically identical.

Interestingly, there are also published findings that dif-
ferences among the genome sequences and epigenome of 
MZ twins are rare (Baranzini et al. 2010; van Dongen et al. 
2012; Veenma et al. 2012; Weber-Lehmann et al. 2014). For 
example, one study examined genome sequence variations 

among three MZ twin pairs and failed to find evidence for 
any replicable differences (Baranzini et al. 2010). Although 
in the same study, epigenetic differences were evident in 
these three MZ twin pairs, these differences cannot explain 
disease discordance (Baranzini et al. 2010). Some research-
ers have argued that genetic and epigenetic differences 
between MZ twins are not related to heritability because 
these differences are acquired and not in the inherited DNA 
(Miller et al. 2012). These advocates continue to argue that 
MZ twins are not very different in measured genotypes, 
although they have acknowledged that DNA sequence (e.g., 
CNVs) and functional differences (e.g., methylation pat-
terns) can be potential sources for MZ twin discordance. In 
addition, other researchers have conceptualized epigenetics 
as a source of random effects on the phenotypes independ-
ent from standard genetic and environmental influences esti-
mated from the standard biometric model (Bell and Spector 
2011; Dolan et al. 2015). In a simulation study, Dolan et al. 
(2015) examined the consequences of ignoring this random 
effect and found that ignoring this randomness resulted in 
small but noticeable influences on the parameter estimates 
of the standard biometric models.

In sum, there are studies that have found genetic and epi-
genetic differences between MZ twins, although it is not 
clear how these differences may affect heritability estimates. 
Generally, the belief has been that if the actual genetic and 
epigenetic similarity between MZ twins is less than 100% 
heritability estimates are likely to be inflated (Handel et al. 
2010). The corresponding effects of these epigenetic and 
genetic differences on DZ twin similarity have not been 
considered. In the classical twin design, it is assumed that 
complex human traits are explained by genetic (e.g., addi-
tive and nonadditive) and environmental (e.g., shared and 
nonshared) influences. However, according to the findings 
from epigenetic and molecular genetic studies reviewed 
above, not only genetic influences, but also epigenetic (e.g., 
epigenetic regulation) influences affect human behaviors. In 
the current study, we assume that epigenetic influences work 
together with additive genetic influences to affect human 
behaviors. Therefore, in the current study, A is denoted as 
both additive genetic and epigenetic influences and thus the 
similarity of A in MZ twins refers to the additive genetic and 
epigenetic similarity in MZ twins. It should be noted that 
environments and stochastic factors also influence epigenetic 
effects, which is, however, not modeled in current study. 
The environments and stochastic factors were modeled in 
Dolan et al. (2015), where epigenetic effects were moder-
ated by both genetic and environmental influences (including 
stochastic errors). Because heritability and environmental-
ity (shared and nonshared environmental influences) are 
dependent upon the observed similarity of MZ and DZ twins 
and are estimated using the assumed genetic and epigenetic 
similarity, understanding the impact of deviations from the 
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expected genetic and epigenetic similarity in both MZ and 
DZ twins is important for understanding the impact, if any, 
of these deviations on these estimates.

The goals of the current study are to (1) examine the 
impact of genetic and epigenetic differences on both MZ 
and DZ twin similarities on heritability estimates and (2) 
discuss the implications for classical twin research. Specifi-
cally, we illustrate the degree of bias in estimates of herit-
ability and environmentality when genetic and epigenetic 
similarity of MZ twins differs from 1.00 as well as when 
genetic and epigenetic similarity of DZ twins differs from 
0.50. To estimate the impact of violating this assumption, 
we have conducted a series of simulations allowing for vari-
ation in the “true” genetic and epigenetic similarity of both 
types of twins. We have chosen uniform reduction of genetic 
and epigenetic similarity among MZ twins and DZ twins 
respectively, because of the simplicity of fitting the biom-
etric model. However, it should be noted that, the current 
model can also handle data with diversiform reductions of 
MZ and DZ twin correlations (additional information avail-
able on request).

The Simulation Study

One objective of classical twin studies is to partition the 
variance of a measured phenotype (Y) into three compo-
nents: (1) additive genetic influences, (2) shared environ-
mental influences, and (3) nonshared environmental influ-
ences. One thing to note, in the current study, the variance 
of a measured phenotypes is partitioned into additive genetic 
and epigenetic influences, shared environmental and non-
shared environmental influences. For the simplicity of the 
models used in this simulation study, we do not include 

nonadditive genetic effects (epistasis and dominance) in the 
model. Let yijkm denote the observed phenotypic score at the 
mth observed variable (m = 1, 2, …, M) for the jth member 
within twin pairs (j = 1,2) of the ith twin pair (i = 1, 2, …, N) 
of type k (k = 1 for MZ and k = 2 for DZ). Then the biometric 
model is defined as: 

In the equation, Αijk is the additive genetic and epigenetic 
factor score of the jth member of the ith twin pair of type k; 
Cijk is the shared environmental factor score of the jth mem-
ber of the ith twin pair of type k and Eijk is the nonshared 
environmental factor score of the jth member of the ith twin 
pair of type k. am, cm and em denote the factor loadings of 
the mth phenotype on, respectively, the additive genetic and 
epigenetic factor Α, the shared environmental factor C and 
specific (nonshared) environmental factor E, while εijkm 
denotes measurement error.

In the standard biometric model, the genetic and epige-
netic factor correlation (genetic and epigenetic similarity) 
across MZ twin pairs is 1.00 and across DZ twin pairs is 
0.50: cor(Ai1k, Ai2k) = 1.00 if k = 1 and cor(Ai1k, Ai2k) = 0.50 
if k = 2. The correlation of shared environmental factors is 
1.00 and the nonshared environmental factors are not cor-
related for both MZ twin pairs and DZ twin pairs: cor(Ci1k, 
Ci2k) = 1.00 for k = 1 and k = 2 and cor(Ei1k, Ei2k) = 0 for 
k = 1 and k = 2. Figure 1 illustrates the path diagram for a 
standard biometric model. As shown in Fig. 1, the correla-
tion linking the two A latent factors is set to 1.00 for MZ 
twins and 0.50 for DZ twins, which defines the expected 
variance–covariance matrix for MZ and DZ twins. The cor-
relation linking the two C latent factors is set to 1.00 for both 
MZ and DZ twins when they are reared in the same home. 
There is no correlation between the two E latent factors 

(1)�ijkm = �m�ijk + �m�ijk + �m�ijk + �ijkm

Fig. 1  ACE path diagram. This 
path diagram is equivalent to 
the equation of the standard bio-
metric model. Factor loadings 
(or path coefficients: a, c, and e) 
rather than variance components 
(A, C, and E) are estimated



Behav Genet 

1 3

because, by definition, nonshared environmental influences 
account for differences between members of twin pairs.

In contrast to the fixed genetic and epigenetic factor cor-
relations in the standard biometric model, the alternative 
model sets the genetic and epigenetic factor correlations of 
MZ and DZ twins to be free parameters that need to be esti-
mated. The correlations of shared and nonshared environ-
mental factors of MZ and DZ twins are set to be the same as 
correlations in the standard biometric model. When fitting 
multivariate twin model, the alternative model is an identifi-
able model, which generates the standard deviation for each 
parameter estimate.

In the current simulation study, our aim is to examine the 
degree of bias in estimates of genetic, shared environmental 
and nonshared environmental influences when genetic and 
epigenetic factor correlation of MZ twins differs from 1.00 
and when genetic and epigenetic factor correlation of DZ 
twins differs from 0.50. Thus, in generating the data, we 
set the “true” level of genetic and epigenetic factor correla-
tion of MZ twins to vary between 1.00 and 0.80 (e.g., 1.00, 
0.90 and 0.80) and the “true” level of genetic and epigenetic 
factor correlation of DZ twins to vary between 0.50 and 
0.40 (e.g., 0.50, 0.45 and 0.40): cor(Ai1k, Ai2k) = 1.00, 0.90 
or 0.80 if k = 1 and cor(Ai1k, Ai2k) = 0.50, 0.45 or 0.40 if 
k = 2. We choose these values based on the reported genetic 
and epigenetic discordance within MZ and DZ twin pairs 
(see Table 1), which is moderate compared to some of the 
reported effects.

We include five phenotypes (y) in the model, thus m = 1, 
2, 3, 4, 5, which is a multivariate twin model with five phe-
notypes. In generating the data based on the model described 
above, we assign numerical values to the fixed parameters in 
the model. The variances of A, C and E are fixed at 1.00 and 
the variance of the measurement errors are set equal to 0.70: 
var[εijk1] = var[εijk2] = var[εijk3] = var[εijk4] = var[εijk5] = 0.70. 
The factor loadings of the genetic and epigenetic factors, 
shared environmental factors and non-shared environmental 
factors are chosen as follows:

a c e

Phenotype 1 2.0 1.0 1.0
Phenotype 2 2.0 1.5 1.0
Phenotype 3 2.0 1.2 1.8
Phenotype 4 1.0 1.5 1.4
Phenotype 5 0.8 1.0 2.0

These factor loadings are unstandardized and can repre-
sent factor loadings for A, C and E reported from various 
twin studies. The reliability for each phenotype is 0.90, 0.91, 
0.93, 0.88 and 0.89 respectively. Last, there are nine combi-
nations (conditions) of “true” genetic and epigenetic factor 
correlations across MZ twin pairs and across DZ twin pairs, 

where both factors (different genetic and epigenetic MZ cor-
relations and different genetic and epigenetic DZ correla-
tions) are fully crossed. 900 data sets are generated—each 
with 900 MZ twin pairs and 900 DZ twin pairs—for each 
condition.

The next step is to analyze the generated data using both 
the standard biometric model with fixed genetic and epi-
genetic factor correlations (1.00 for MZ twins and 0.50 for 
DZ twins) and the alternative model with freely estimated 
genetic and epigenetic factor correlations. The heritability, 
shared environmental influence and nonshared environ-
mental influence are estimated for five phenotypes under 
each combination of “true” genetic and epigenetic factor 
correlations across MZ twin pairs and across DZ twin pairs 
described above using both models. The standardized factor 
estimates are squared to provide the heritability  (a2), shared 
environmental  (c2), and nonshared environmental  (e2) esti-
mates. The NONLIS source code used in fitting the standard 
biometric model and the alternative model is specified in the 
appendix. For more information about the NONLIS pro-
gram, see https://quantdev.ssri.psu.edu/. Last, the estimated 
heritability, shared environmental influence and nonshared 
environmental influence from the standard biometric model 
and from the alternative model are then compared with 
the “true” heritability, shared environmental influence and 
nonshared environmental influence used in generating the 
data. To examine whether the estimated heritability, shared 
environmental influence and nonshared environmental influ-
ence under each condition are significantly different from 
“true” values, we also report the standard deviation of each 
estimate.

Results

Results From the Standard Biometric Model

We report the degree of bias in parameter estimates from the 
standard biometric model when compared with the “true” 
values and the standard deviation of each parameter esti-
mate. We also examine the effects of various factors on the 
degree of bias in parameter estimates. The “true” values and 
estimates of genetic, shared environmental and nonshared 
environmental factors from the standard biometric model 
for each phenotype are specified in the appendix.

Effects of Different Genetic and Epigenetic Factor 
Correlations of MZ Twins

For phenotype 1, as shown in Fig. 2, when genetic and epi-
genetic factor correlation between MZ twins is 1.00 and 
between DZ twins is 0.50, the  a2,  c2 and  e2 estimates do 
not differ from the “true” values. However, under other 

https://quantdev.ssri.psu.edu/
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conditions where genetic and epigenetic factor correlation 
between MZ twins is smaller than 1.00, all the estimates 
of  a2 and  e2 are significantly different from “true”  a2 and 
 e2 values. Specifically,  a2 is underestimated compared to 
the “true”  a2 value. The degree of bias in the  a2 estimate 
increases as the genetic and epigenetic factor correlation of 
MZ twins decreases. In contrast to  a2,  e2 is overestimated, 
the degree of bias in which increases as the genetic and epi-
genetic factor correlation of MZ twins decreases. Similar to 
 e2,  c2 is overestimated, compared to the “true” value for  c2, 
although the bias is significant only when genetic and epige-
netic similarity between MZ twins is 0.80, but not 0.90. For 
example, a 0.1 decrease in the genetic and epigenetic cor-
relation of MZ twins leads to roughly 8% points decrease in 
the heritability estimate, 5% points increase in the nonshared 
environmental influence estimate and 3% points increase in 
the shared environmental influence estimate.

Effects of Different Genetic and Epigenetic Factor 
Correlations of DZ Twins

Take phenotype 2 as an example. As shown in Fig. 3, 
when genetic and epigenetic factor correlation between 
MZ twins is 1.00 and between DZ twins is 0.50, 0.45 or 
0.40, the  a2,  c2 and  e2 estimates are within 95% confidence 
interval about the “true”  a2,  c2 and  e2 values. When genetic 
and epigenetic factor correlation between DZ twins is 0.45 
or 0.40, although there is a trend that  a2 is overestimated 
and  c2 is underestimated compared to the “true” values, 
the differences between the estimates and “true” values 
are not significant.
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Fig. 2  Bar graph showing the amount of bias in heritability, shared 
environment, and nonshared environment estimates from the stand-
ard biometric model for phenotype 1 when compared with the “true” 
values, when genetic and epigenetic factor correlation between MZ 

twins is 1.00, 0.90 and 0.80. Standard deviations of parameter esti-
mates from the standard biometric model are presented in the figure 
by the error bars attached to each column
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Fig. 3  Bar graph showing the amount of bias in heritability, shared 
environment, and nonshared environment estimates from the standard 
biometric model for phenotype 2 when compared with the “true” val-
ues, when genetic and epigenetic factor correlation between DZ twins 

is 0.50, 0.45 and 0.40. Standard deviations of parameter estimates 
from the standard biometric model are presented in the figure by the 
error bars attached to each column
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Effects of Different Combinations of Genetic 
and Epigenetic Factor Correlations of MZ and DZ Twins

As an example, we present the bias in parameter estimates 
for phenotypes 1 and 2 in Figs. 4 and 5. When genetic and 
epigenetic factor correlations of MZ and DZ twins are 
0.90 and 0.45/0.40 respectively,  a2 and  c2 estimates are not 
biased, while  e2 estimate is significantly larger than “true” 
value. As discussed before, a 0.1 decrease in MZ twins’ 
genetic and epigenetic similarity leads to the underestimate 
of  a2. In contrast, a 0.1 decrease in DZ twins’ genetic and 
epigenetic similarity leads to the trend in the overestimate of 
 a2. Thus, the bias in  a2 estimate is, in fact, smaller with 0.1 
decrease in the genetic and epigenetic similarities of both 
MZ and DZ twins than with 0.1 decrease in the genetic and 

epigenetic similarity of only MZ twins, as indicated in the 
current finding with nonsignificant deviation of  a2 estimate 
from “true” value. However, when genetic and epigenetic 
factor correlation between MZ twins decreases to 0.80,  a2 is 
underestimated and  e2 is overestimated.  c2 estimate is some-
what inflated, although the bias is not significant.

Effects of Different Magnitudes of Genetic and Nonshared 
Environmental Influences

In order to illustrate the effects of different magnitudes of 
genetic and nonshared environmental factors on the degree 
of bias in parameter estimates, we have compared the degree 
of bias in the estimates of  a2,  c2 and  e2 for phenotypes 1 and 
5 (see Table 2). For phenotype 1, the “true” values for  a2, 
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Fig. 4  Bar graph showing the amount of bias in heritability, shared 
environment, and nonshared environment estimates from the stand-
ard biometric model for phenotype 1 when compared with the “true” 
values, when genetic and epigenetic factor correlation between MZ 

twins is 0.9 or 0.8 and that between DZ twins is 0.45 or 0.40. Stand-
ard deviations of parameter estimates from the standard biometric 
model are presented in the figure by the error bars attached to each 
column
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Fig. 5  Bar graph showing the amount of bias in heritability, shared 
environment, and nonshared environment estimates from the stand-
ard biometric model for phenotype 2 when compared with the “true” 
values, when genetic and epigenetic factor correlation between MZ 

twins is 0.9 or 0.8 and that between DZ twins is 0.45 or 0.40. Stand-
ard deviations of parameter estimates from the standard biometric 
model are presented in the figure by the error bars attached to each 
column
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 c2 and  e2 are 0.667, 0.167 and 0.167, respectively. For phe-
notype 5, the “true” values for  a2,  c2 and  e2 are 0.113, 0.177 
and 0.709. Hence, shared environmental influence accounts 
for roughly the same amount of the total variance in these 
two phenotypes. Genetic influence accounts for more of the 
total variance for phenotype 1 than for phenotype 5, whereas 
nonshared environmental influence accounts for more of the 
total variance for phenotype 5 compared to phenotype 1. The 
comparison of the estimates for phenotypes 1 and 5 indicates 
that the degree of bias in the estimates of  a2 and  e2 is much 
larger for phenotype 1 than for phenotype 5 under all the 
conditions. For example, for phenotype 1, when genetic and 
epigenetic factor correlation of MZ twins decreases 0.1, the 
estimate of  a2 reduces roughly 8% points in the standard bio-
metric model. However, for phenotype 5, the same amount 
of decrease in the genetic and epigenetic factor correlation 
of MZ twins only leads to a reduction of 3% points in the 
estimate of  a2 from the standard biometric model, indicating 
that the magnitude of genetic influence has a larger impact 
than nonshared environmental influence on the degree of 
bias in parameter estimates. The findings indicate that the 
degree of bias in the estimates of  a2 and  e2 is smaller for 
phenotypes where genetic influence accounts for less of the 
total variance compared to phenotypes where genetic influ-
ence accounts for more of the total variance when the degree 
of genetic and epigenetic similarity between MZ twins is 
less than 100%.

Effects of Different Magnitudes of Genetic and Shared 
Environmental Influences on Phenotypes

For phenotype 3, the “true” values for  a2,  c2 and  e2 are 
0.461, 0.166 and 0.373, respectively. For phenotype 4, the 
“true” values for  a2,  c2 and  e2 are 0.192, 0.432 and 0.376. In 
comparison of phenotypes 3 and 4 (see Table 3), nonshared 

environmental influence explains roughly the same amount 
of the total variance, but genetic influence explains more 
of the total variance and shared environmental influence 
explains less of the total variance for phenotype 3 than for 
phenotype 4. After comparing the degree of bias in the esti-
mates of  a2,  c2 and  e2 for phenotypes 3 and 4, we have found 
that the deviations of  a2 and  e2 (but not  c2) estimates from 
the “true” values are larger for phenotype 3 than for pheno-
type 4 under the condition that genetic and epigenetic simi-
larity between MZ twins is less than 100%. The comparison 
of phenotype 3 and phenotype 4 suggests that the magnitude 
of shared environmental influence has smaller impact on 
the bias of  a2 and  e2 estimates than genetic influence when 
the degree of genetic and epigenetic similarity between MZ 
twins is less than 100%. We have also examined phenotypes 
with high shared environmental influence (0.8), and the 
results are comparable to those phenotypes with moderate 
shared environmental influence presented here (additional 
results available on request).

Results From the Alternative Model

In the alternative model, all the estimated MZ and DZ twins’ 
genetic and epigenetic factor correlations are within 95% 
confidence intervals about the “true” genetic and epigenetic 
factor correlations used in generating the data. In addition, 
under all the conditions (different combinations of “true” 
genetic and epigenetic factor correlations of MZ and DZ 
twins), the estimates of genetic, shared environmental and 
nonshared environmental influences are not different from 
“true” values for all five phenotypes. Estimates of genetic, 
shared environmental and nonshared environmental factors 
from the alternative model for each phenotype are specified 
in the appendix in Supplementary material 1.

Table 2  The amount of bias in heritability, shared environment, and nonshared environment estimates from the standard biometric model for 
phenotypes 1 and 5 when compared with the “true” values

Std. standard deviation of heritability, shared environment and nonshared environment estimates, a2 additive genetic variance component, c2 
shared environmental variance component, e2 nonshared environmental variance component

Amount of bias Phenotype 1 Phenotype 5

Genetic and epigenetic 
factor correlation

a2 (std.) c2 (std.) e2 (std.) a2 (std.) c2 (std.) e2 (std.)

MZ = 0.90 DZ = 0.50 − 0.085 (0.036) 0.037 (0.034) 0.047 (0.013) − 0.037 (0.017) 0.026 (0.022) 0.012 (0.019)
MZ = 0.80 DZ = 0.50 − 0.177 (0.041) 0.073 (0.037) 0.104 (0.017) − 0.068 (0.015) 0.047 (0.023) 0.022 (0.019)
MZ = 1.00 DZ = 0.45 − 0.024 (0.030) 0.024 (0.028) − 0.001 (0.010) 0.012 (0.018) − 0.010 (0.021) − 0.001 (0.018)
MZ = 0.90 DZ = 0.45 − 0.059 (0.033) 0.008 (0.030) 0.050 (0.013) − 0.025 (0.017) 0.015 (0.021) 0.012 (0.019)
MZ = 0.80 DZ = 0.45 − 0.148 (0.038) 0.040 (0.033) 0.106 (0.017) − 0.060 (0.015) 0.038 (0.023) 0.023 (0.019)
MZ = 1.00 DZ = 0.40 0.042 (0.026) − 0.041 (0.025) − 0.003 (0.010) 0.022 (0.018) − 0.017 (0.020) − 0.004 (0.018)
MZ = 0.90 DZ = 0.40 − 0.038 (0.031) − 0.009 (0.027) 0.047 (0.014) − 0.015 (0.017) 0.007 (0.021) 0.010 (0.019)
MZ = 0.80 DZ = 0.40 − 0.123 (0.035) 0.019 (0.030) 0.103 (0.017) − 0.052 (0.016) 0.030 (0.022) 0.022 (0.020)
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Discussion

In the current simulation study, we examined the degree 
of bias in parameter estimates from the standard biometric 
model when the genetic and epigenetic similarity of MZ 
twins differs from 1.00 as well as when the genetic and epi-
genetic similarity of DZ twins differs from 0.50. The find-
ings suggest that the variance that should be attributed to 
genetic influences is instead attributed to nonshared environ-
mental influences. In other words, the bias in the standard 
model, as compared to a model using “true” genetic and 
epigenetic similarity of MZ and DZ twins, results in deflated 
estimates of genetic influences and inflated estimates of non-
shared environmental influences. The implications of these 
findings for classical twin research are discussed below.

First, for phenotypes with high heritability, genetic influ-
ences are underestimated (usually no more than 10% points) 
if the degree of genetic and epigenetic similarity between 
MZ twins is less than 1.00. In other words, heritability 
estimates using a standard biometric model for phenotypes 
with high heritability provide conservative estimates of 
heritability. The “true” heritability for these phenotypes is 
likely to be higher than reported. In contrast, violation of this 
assumption has little impact on phenotypes with low herit-
ability. Estimates for genetic, shared, and nonshared envi-
ronmental influences on phenotypes with low heritability do 
not change if the assumption is violated. Accordingly, the 
interpretations of heritability estimates using the standard 
biometric model reported in the literature are mostly correct.

Second, nonshared environmental influences are overes-
timated when MZ twin pairs are not genetically and epige-
netically identical. This may help to explain the difficulty 
in finding systematic sources of nonshared environmental 
influences despite the fact that twin studies have consistently 
reported substantial nonshared environmental influences 

for almost every human trait (Plomin and Daniels 1987). 
Several genetically informative longitudinal studies, such 
as the Nonshared Environmental and Adolescent Develop-
ment (NEAD) project (Reiss et al. 2000), were designed 
to examine nonshared environmental influences. However, 
these studies have made little progress in identifying the 
systematic causes of the nonshared environmental influ-
ences (Reiss et al. 2000; Turkheimer and Waldron 2000). 
One possible explanation is that the causal effect of a single 
nonshared environmental event is too small to detect; only 
the cumulative effects of multiple nonshared environmental 
events can cause noticeable differences between MZ twins 
(Plomin and Daniels 1987; Turkheimer and Waldron 2000). 
Another explanation indicated by the current findings is that 
nonshared environmental influences are, in fact, smaller than 
suggested by twin research using the standard biometrical 
model. It should be noted, however, that the bias in estimates 
of nonshared environmental influences is relatively small, 
making it less likely that this is the best explanation for the 
difficulty in identifying systematic sources of nonshared 
environmental influences.

Third, there is some question about the small effects 
of shared environmental influences, compared to genetic 
and nonshared environmental influences, on complex 
human behaviors reported from previous twin studies. 
Some researchers have argued that shared environmen-
tal influences are underestimated in the biometric mod-
els, especially when basic assumptions underlying the 
biometric models are violated (Burt and Simons 2014; 
Dickens and Flynn 2001). This has led some to call for 
abandoning behavioral genetic studies (Burt and Simons 
2014). However, studies reporting small effects of shared 
environmental influences are most often focused on per-
sonality and cognitive ability in adults. In contrast, recent 
studies, including meta-analysis, have examined shared 

Table 3  The amount of bias in heritability, shared environment, and nonshared environment estimates from the standard biometric model for 
phenotypes 3 and 4 when compared with the “true” values

Std. standard deviation of heritability, shared environment and nonshared environment estimates, a2 additive genetic variance component, c2 
shared environmental variance component, e2 nonshared environmental variance component

Amount of bias Phenotype 3 Phenotype 4

Genetic and epigenetic 
factor correlation

a2 (std.) c2 (std.) e2 (std.) a2 (std.) c2 (std.) e2 (std.)

MZ = 0.90 DZ = 0.50 − 0.081 (0.031) 0.022 (0.029) 0.059 (0.018) − 0.059 (0.025) 0.028 (0.029) 0.031 (0.018)
MZ = 0.80 DZ = 0.50 − 0.165 (0.033) 0.048 (0.030) 0.118 (0.019) − 0.111 (0.023) 0.054 (0.028) 0.058 (0.018)
MZ = 1.00 DZ = 0.45 0.021 (0.028) − 0.021 (0.026) − 0.001 (0.015) 0.024 (0.028) − 0.024 (0.031) 0.000 (0.017)
MZ = 0.90 DZ = 0.45 − 0.060 (0.029) 0.001 (0.026) 0.059 (0.017) − 0.037 (0.026) 0.007 (0.030) 0.030 (0.018)
MZ = 0.80 DZ = 0.45 − 0.141 (0.032) 0.024 (0.028) 0.117 (0.019) − 0.089 (0.024) 0.033 (0.029) 0.056 (0.019)
MZ = 1.00 DZ = 0.40 0.038 (0.025) − 0.034 (0.022) − 0.003 (0.017) 0.042 (0.026) − 0.039 (0.029) − 0.002 (0.017)
MZ = 0.90 DZ = 0.40 − 0.044 (0.028) − 0.014 (0.024) 0.058 (0.019) − 0.023 (0.026) − 0.007 (0.028) 0.030 (0.018)
MZ = 0.80 DZ = 0.40 − 0.124 (0.031) 0.007 (0.026) 0.117 (0.020) − 0.076 (0.024) 0.019 (0.028) 0.057 (0.018)
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environmental influences in child and adolescent psy-
chopathology and parenting and found moderate and sig-
nificant contributions of shared environmental influences 
(Burt 2009; Klahr and Burt 2014; Neiderhiser et al. 2004). 
In addition to these studies, the findings from the current 
simulation analyses do not support the arguments about 
the underestimation of shared environmental influences. 
Instead, the current findings indicate that a decrease in the 
genetic and epigenetic similarity across MZ twins leads 
to a somewhat overestimation of shared environmental 
influences. When genetic and epigenetic similarity of DZ 
twins is smaller than 0.50, although there is a trend that 
shared environmental influences are underestimated, the 
bias is small. The findings indicate that the decrease in 
genetic and epigenetic similarity of DZ twins leads to 
minor changes in parameter estimates, especially when it 
is combined with the decrease in genetic and epigenetic 
similarity of MZ twins.

Fourth, although the bias in parameter estimates from 
the standard biometric model is small, it is possible to 
more accurately estimate parameters. In the current study, 
the alternative model estimated genetic and epigenetic 
similarities of MZ and DZ twins and applied the estimated 
genetic and epigenetic similarities to parameter estimates. 
It was shown in Molenaar et al. (2012) that the genetic 
and epigenetic similarities are identifiable parameters in 
the multivariate biometric model. As a result, the alterna-
tive model works very well. The genetic and epigenetic 
similarities of MZ and DZ twins and parameter estimates 
for each phenotype are nearly the same as the “true” val-
ues used in generating the data, suggesting the alternative 
model with estimated genetic and epigenetic similarities 
is a promising alternative biometric model.

In sum, although parameter estimates from the stand-
ard biometric model deviate from “true” values when the 
genetic and epigenetic similarity of MZ twins differs from 
1.00 and when the genetic and epigenetic similarity of 
DZ twins differs from 0.50, the bias is not large and the 
interpretations drawn from the standard biometric model 
are mostly correct. Thus, the violation of the assumption 
that MZ twins are genetically identical and DZ twins are 
50% genetically identical on average does not invalidate 
the standard biometric model and heritability estimates.
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