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Stature is affected by many polymorphisms of small effect in 
humans1. In contrast, variation in dogs, even within breeds, has 
been suggested to be largely due to variants in a small num-
ber of genes2,3. Here we use data from cattle to compare the 
genetic architecture of stature to those in humans and dogs. 
We conducted a meta-analysis for stature using 58,265 cattle 
from 17 populations with 25.4 million imputed whole-genome 
sequence variants. Results showed that the genetic architec-
ture of stature in cattle is similar to that in humans, as the 
lead variants in 163 significantly associated genomic regions 
(P <​ 5 ×​ 10−8) explained at most 13.8% of the phenotypic  

variance. Most of these variants were noncoding, includ-
ing variants that were also expression quantitative trait loci 
(eQTLs) and in ChIP–seq peaks. There was significant overlap 
in loci for stature with humans and dogs, suggesting that a set 
of common genes regulates body size in mammals.

Within each cattle population (Supplementary Table 1), the 1000 
Bull Genomes Run4 reference population of 1,147 whole-genome-
sequenced individuals was used to impute 630,000 SNP genotypes 
to 25.4 million whole-genome sequence variants4. A genome-wide 
association study (GWAS) for stature was performed in each popu-
lation separately (Supplementary Table 1)5,6. Meta-analysis across 
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the populations found genome-wide significant (P <​ 5 ×​ 10−8) 
sequence variants in 163 1-Mb regions (Fig. 1). The lead variants 
(most significant variants in each region) included 160 SNPs and 3 
indels (Supplementary Table 2).

Three approaches were used to validate the lead variants. 
Association of the variants with stature was tested in 30,175 
additional cattle with stature phenotypes from ten populations 
(Supplementary Table 3). In meta-analysis of these validation popu-
lations, 20 of 101 SNPs (the lead variants polymorphic in all pop-
ulations) were validated at P <​ 0.05, giving a false discovery rate 
of 25% (Supplementary Table 4). SNPs were also validated within 
each population, as some variants were polymorphic in one or only 
a small number of breeds. The majority of variants (53%; 86) were 
validated in at least one population, and 28 were validated in more 
than one population (11 expected by chance) (Supplementary Table 
4). The lead variants explained between 2.1% (Limousin) and 13.8% 
(Brown Swiss) of the phenotypic variation in stature (Table 1),  
significantly more than that explained by a random subset of the 
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Fig. 1 | Manhattan plot for the meta-analysis of bovine stature with  
n = 58,265 animals. For each SNP, the meta-analysis calculated a  
z statistic (and P value) from the weighted sum of z statistics from GWAS 
in each of the 17 contributing cattle populations, with weights proportional 
to the square root of the number of cattle in each GWAS (Supplementary 
Table 1)37. The red line is the genome-wide significance threshold at  
P =​ 5 ×​ 10−8. The most likely candidate genes in the most significantly 
associated regions are annotated where an obvious candidate could be 
identified. SNPs on odd-numbered chromosomes are in black and those on 
even-numbered chromosomes are in gray.

Table 1 | Proportion of phenotypic variation explained by 163 
lead variants in validation populations

Breed Country No. of 
animals

No. of 
lead SNPs 
polymorphic

Proportion of 
phenotypic 
variation 
explained by 
lead SNP

Simmental Ireland 1,913 146 0.052

Limousin Ireland 10,371 150 0.021

Hereford Ireland 595 137 0.027

Charolais Ireland 7,822 145 0.024

Angus Ireland 732 139 0.039

Angus Australia 676 125 0.054

Brown Swiss Switzerland 5,550 160 0.138

Holstein Australia 1,565 141 0.093

For Angus (Australia), Holstein (Australia) and Brown Swiss (Switzerland), we compared the 
proportion of variance explained by the lead SNP to the average variance explained by random 
subsets of 163 variants; this was 0.016 ±​ 0.003, 0.036 ±​ 0.004 and 0.119 ±​ 0.009, respectively.
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Fig. 2 | Validation of lead variants. a, The 163 lead variants predict 
differences within breeds between miniature and standard cattle. There 
were n =​ 4 miniature Angus animals, n =​ 2 miniature Hereford animals and 
n =​ 2 miniature Belted Galloway animals sequenced together with  
n =​ 48 standard Angus animals, n =​ 30 standard Hereford animals and 
n =​ 2 standard Belted Galloway animals. For miniature cattle, individual 
predicted height is plotted. For standard cattle, the values plotted are 
average predicted height, and standard errors are the s.d. of predicted 
height divided by the square root of the number of standard cattle for 
each breed. The average heights of standard and miniature cattle are 
approximately 116 cm and 108 cm; 120 cm and 105 cm; and 120 cm and 
110 cm for Angus, Belted Galloway and Hereford animals, respectively38–41. 
b, Standard and miniature Angus cattle. The three animals (back to front) 
correspond to animals from a selected high-growth line, a control line and 
a low-growth line. The low-growth line is the origin of miniature Angus 
cattle. Photo courtesy of R. Herd and P. Arthur (NSW Department of 
Primary Industries, Australia). c, Predicted average stature of seven breeds 
(not included in the original meta-analysis), where stature was predicted 
from the 163 lead SNPs and their effects, as compared to average reported 
stature for these breeds. The average reported stature was from three-
breed comparison studies39–41. Standard errors of breed average reported 
statures were approximately 6 cm.
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same number of variants where tested. This amount of variation 
is of a similar magnitude to the proportion of phenotypic variance 
explained by variants significantly associated with height in humans 
(~16%)1. The results are substantially different from those in dogs, 
where six loci have been reported to explain the majority of vari-
ance in body size2. However, the analyses in dogs have largely been 
across breeds, rather than within breeds (with one exception3). We 
estimated the proportion of variance accounted for by 17 loci previ-
ously identified in across-dog-breed analyses within a population of 
village dogs3, correcting for population structure and sex, and found 
that these 17 loci explained 13.5% of the variation in body size. This 
is of similar magnitude to the proportion of variance explained 
within cattle breeds by all 163 lead variants in cattle, suggesting that 
there may be some loci of larger effect in dogs.

For the second validation approach, we exploited the fact that, 
for a number of cattle breeds, there are miniature cattle that are 
several s.d. smaller in stature than standard cattle, from recent 
strong selection. These animals are miniatures rather than dwarfs, 
as they do not display chondrodysplasia. In all three breeds where 
we had genome sequence data from standard cattle and minia-
tures, a prediction equation comprising the effects of the 163 lead 
variants correctly predicted that the miniature animals had sub-
stantially shorter stature, for all but one of the miniature animals 
(Fig. 2a,b). In the third validation approach, the same equation 
accurately predicted differences in stature between seven breeds 
that had sequence data but were not included in the meta-analysis 
(r2 =​ 0.80; Fig. 2c).

The most significant variant in the meta-analysis was a SNP in 
intron 3 of PLAG1 (AC_000171.1:g.25015640G>​T, rs109815800, 
association with stature P <​ 1 ×​ 10−104) on BTA14, one of eight 
putative causative mutations previously identified in or close to this 
gene7. PLAG1 initiates transcription of IGF2, a mitogenic hormone 
important for fetal growth and development, and has been impli-
cated in genetic variation of stature in humans as well as cattle1,7–9. 
In the population used by Karim et al.7, the eight candidate vari-
ants were in perfect linkage disequilibrium (LD). In our study with 
additional breeds and more animals, these SNPs were not in com-
plete LD (Supplementary Table 5) and SNP rs109815800 was more 
strongly associated with stature (P <​ 1 ×​ 10−104) than the others pro-
posed7. These results demonstrate the power of the meta-analysis 
conducted here to directly identify a small number of variants as 
putative causative mutations. While GWAS analysis with imputed 
sequence data has identified causal mutations in cattle, imperfect 
imputation (Supplementary Figs. 1–5) may result in the causal 
mutation not being identified as the most highly associated vari-
ant, especially if the variant is rare. Here the accuracy of imputation  

was >​0.9 for variants with a minor allele frequency (MAF) >​0.10 
and for most of the variants in the PLAG1 region (Supplementary 
Table 5; note that the rs109815800 variant was among those geno-
typed on the 630K array in some populations)10.

To investigate what type of variants affect stature in cattle, 
genome annotation, eQTL and ChIP–seq data were used. These 
analyses depend on at least an enrichment of our lead variants for 
causative mutations. Bootstrap resampling suggested that a rea-
sonable proportion of our variants could be causal and not merely 
linked with the causal variant (Supplementary Table 6). Of the 163 
lead variants, 5 were missense, representing a sevenfold enrich-
ment of missense variants among the lead variants as compared 
with what would be expected by chance (Table 2). The missense 
variants included one in HMGA2, a well-documented stature-
associated gene in humans. The protein encoded by HMGA2 regu-
lates the RNA-binding protein IGF2BP2 (IGF2-binding protein 2), 
which in turn enhances translation of the IGF2 gene11. Another 
missense variant was found in LCOR (ligand-dependent co-repres-
sor), which is broadly expressed in fetal and adult tissues to regu-
late development and homeostasis12–14. In many species, including 
humans, mice and rats (and cattle, this study), a small genomic 
region that includes LCORL (ligand-dependent nuclear receptor 
co-repressor like) and NCAPG (non-SMC condensin I complex 
subunit G) is associated with variation in height and body size1,15. 
Determining which of these two genes is responsible for variability 
in height has not been possible because of the close proximity of 
these genes and the high levels of LD among SNPs in these regions 
(also observed in this study). The identification in our study of a 
missense variant in LCOR, a gene with very high homology and 
potentially similar function to LCORL, as being associated with 
stature provides some evidence supporting LCORL as the causative 
gene in other species.

The majority of lead variants from the 163 stature-associated 
regions were not coding variants (Table 2), consistent with observa-
tions from GWAS for height in humans16. Eight of the 83 intergenic 
variants were located within bovine ChIP–seq peaks, more than 
expected by chance. ChIP–seq peaks were identified from H3K27 
acetylation and H3K4 trimethylation histone modification assays of 
bovine liver, which indicates that these variants may be in enhanc-
ers, repressors or promoters17.

To further investigate the hypothesis that many of our lead 
variants are regulatory, we performed an eQTL study using RNA-
seq data from white blood cells (WBCs) in 93 Holstein cows. 
Although gene expression in fetal tissue would be more informa-
tive than that in blood from mature cows for this study, recent 
evidence suggests a reasonable overlap of eQTLs across tissues18. 

Table 2 | Annotation of the most significant sequence variants in 163 genomic regions affecting stature in cattle

Annotation class No. of lead 
variants

Proportion of lead 
variants

Proportion of all variants in genome 
with this annotationc

Fold enrichment/
depletion

P valued

Intergenic variant 83 0.459 0.663 0.69 0.63

Upstream gene variant 11 0.061 0.035 1.74 0.33

5′​ UTR variant 1 0.006 0.0004 15.00 0.0002

Intron variant 55 0.304 0.261 1.16 0.59

Missense variant 5 0.028 0.004 7.00 0.01

Downstream gene variant 8 0.044 0.030 1.47 0.43

ChIP–seq peaksa 8 0.044 0.024 1.85 0.049

WBC eQTLb 10 0.055 0.003 18.33 0.00001

Annotations of the 163 lead SNP, the proportion of all sequence variants in 1000 Bull Genomes Run4 with the corresponding annotation, the level of enrichment or depletion for this annotation class in the 
163 lead variants, and the significance of enrichment/depletion from a chi-squared test. aChIP–seq peaks identified from H3K27 acetylation and H3K4 trimethylation histone modification assays of bovine 
liver17. bSee "White blood cell eQTLs" in the Methods for details. cFrom Run4 of 1000 Bull Genomes. dBased on a chi-squared test comparing the observed and expected number of variants in each class, 
with 1 degree of freedom.
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Ten lead stature-associated variants were also eQTLs in WBCs, 
representing an 18-fold enrichment over the number expected by 
chance (Table 2 and Supplementary Table 2). It is possible that the 
genome regions containing the lead variants may be enriched in 
eQTLs even if these eQTLs are functionally unrelated to stature, 
owing to non-random clustering of genes. We assessed evidence 
for a functional relationship (either pleiotropy or causality) with 
the HEDI (heterogeneity in dependent instruments) test19. Seven 
of the ten eQTL/stature-associated variants showed no hetero-
geneity of effect with LD, suggesting that these variants could be 
causal for both gene expression levels and stature or pleiotropic 
for these traits. One such variant, AC_000161.1:.g.32075456C>​T 

associated (P <​ 1 ×​ 10−5) with expression of IGF2BP3 (insulin-like 
growth factor 2–binding protein 3), is an interesting candidate, 
as the IGF2BP3 protein suppresses translation of the IGF2 gene 
during late fetal development20–24. The direction of effect for the 
variant was consistent with this mechanism—the allele associ-
ated with increased expression of IGF2BP3 was associated with 
decreased bovine stature.

We next investigated whether there was greater overlap of loci 
affecting stature in cattle and humans than would be expected by 
chance. Of the 92 genes overlapping or within ±​5 kb of the 163 lead 
variants, 11 were identified by Wood et al.1 as affecting stature in 
humans (Supplementary Table 2), more than expected by chance  
(P <​ 1 ×​ 10−12, chi-squared test). This test is stringent, as it requires 
the lead variant to be within or very close to the causal gene. QTL 
confidence regions (Supplementary Table 2) overlapped with 26 
of the genes identified as associated with stature or body size in 
humans and/or dogs (Supplementary Table 2). For example, vari-
ants in GHR, HMGA2, SMAD2, STC2, IGF1 and IGF1R are strongly 
associated with differences in size between dog breeds; of these 
genes, only GHR and SMAD2 were not found within the QTL con-
fidence intervals in our study3,25.

Considering many of the lead stature-associated variants were 
only segregating in one or two breeds (Supplementary Fig. 6), an 
interesting question arises as to whether the stature-associated vari-
ants are recent mutations (for example, arising after breed formation) 
or ancient standing variation recently fixed by selection or drift in 
some breeds. Aurochs were the wild ancestor of modern cattle. We 
investigated both the heterozygosity of our lead variants and stature 
prediction using the sequence of a 6,750-year-old Auroch genome26. 
Of the 163 lead variants, 134 had six or more reads covering the 
variant position and so could be called. Of these, 31 were heterozy-
gous. This result (close to the expectation for one animal if all lead 
variants were segregating in the population) indicates that many of 
the lead variants arose before domestication and certainly before 
breed formation (although it must be noted that only a proportion 
of our lead variants might be actual causal mutations). Interestingly, 
the predicted stature of the Auroch from our lead variants was 
greater than that for all but one of the modern breeds (Fig. 2c),  
consistent with the large skeletal size of Aurochs from the fossil 
record27. The hypothesis that most of the genomic variation affect-
ing stature is ancient standing variation rather than recent mutations 
is supported by the fact that, even for some of the variants with the 
largest effects, it is the ancestral allele rather than the derived allele 
that has the effect of increasing stature (Supplementary Table 2).  
The observation that some variants with an ancestral allele that 
increases stature still segregate in multiple breeds may also be due 
to the direction of selection for stature not being consistent across 
cattle breeds (effectively balancing the effects of selection). As cattle 
were domesticated, there was selection for reduced stature in com-
parison to wild Auroch populations (directly, as a correlated conse-
quence to selection for early sexual maturity, or both), as evidenced 
by bone lengths of ancient domestic versus contemporaneous wild 
cattle28,29. Selection for reduced stature continued until at least the 
fifteenth century, when northern European cattle measured less 
than 1 m in stature28,30. More recently, there has been very strong 
selection for increased stature in some breeds, with Holstein, Brown 
Swiss and Fleckvieh all increasing in stature by approximately 2 mm 
per year over the last decade31–33.

Additional evidence that sequence variants affecting stature have 
been subject to selection since domestication and breed formation 
comes from the finding that nearly 50% of the 163 variants are in 
selection signatures identified in 1000 Bull Genomes sequences34,35, 
representing a 30-fold enrichment as compared to random SNPs 
(Supplementary Fig. 7). Selection for stature is exemplified by 
selective sweeps for the same haplotype in five breeds for NCAPG–
LCORL and in ten breeds for PLAG1 (Fig. 3). The PLAG1 allele 
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the different colors represent different haplotypes35. For example, Angus is 
nearly fixed for the yellow haplotype at PLAG1, while Gelbvieh segregates 
for a number of different haplotypes. ANG, Angus; BBB, Belgian Blue; BRS, 
Brown Swiss; CHA, Charolais; FIN, Finnish Ayrshire; FLV, Fleckvieh; GEL, 
Gelbvieh; HER, Hereford; HOL, Holstein; JER, Jersey; LIM, Limousin; MNB, 
Montbeliard; NMD, Normande; RDC, Danish Red; SWE, Swedish Red.
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that increases stature is almost fixed in tall breeds (for example, 
Limousin, Charolais and Holstein), while in breeds of shorter stat-
ure the degree of fixation is variable (Jersey, Brown Swiss, Angus, 
Montbeliarde and Fleckvieh).

Our results show that the genetic architecture of stature within 
cattle breeds is highly polygenic, similar to the genetic architecture 
of stature observed in humans (and other complex traits in cattle36). 
Results of a new analysis of village dogs indicate that, within dog 
breeds, a larger number of loci are likely to be required to explain 
variation in body size than previously reported. Many of the loci 
associated with stature are shared across the three species, support-
ing the hypothesis that there are numerous common genes that 
regulate body size in mammals. These common genes include a 
striking number of regulators of expression of the IGF2 gene, which 
encodes a key hormone for fetal growth and development.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0056-5.
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Methods
Meta-analysis. Meta-analysis was performed on GWAS results from 17 
populations that represented eight Bos taurus breeds. Within each population, 
animals were genotyped with either the Illumina Bovine SNP50v2.0 (50K SNP) or 
BovineHD (777k) SNP array (with the majority genotyped with the 50K array). 
Genotype calls with a GenTrain score (GenCall) <​0.6 were excluded, including 
55 SNPs with duplicate map positions. Approximately 630,000 SNPs remained 
depending on population for the HD SNP and 43K BovineSNP50v2 SNP arrays. 
Some SNPs were reordered on the basis of their LD-mapped position, as described 
by Erbe42. Imputation of animals genotyped for 43,000 SNPs to 630,000 SNPs was 
performed with Beagle43, Minimac44 or Fimpute45 and was very accurate (>​0.95, as 
assessed by cross-validation)42.

All sequenced animals were used as a reference when imputing whole-genome 
sequence genotypes in each population.

Ancestral allele determination. To determine the ancestral allele, the following 
genome assemblies were used: (i) the cattle UMD3.1 reference genome sequence 
(Btau6 version) (see URLs); (ii) the bison (Bison_UMD1.0/bisBis1) genome 
assembly (bisBis1, University of Maryland) (see URLs); (iii) the sheep (Ovis aries) 
genome assembly (Oar_v3.1 version) (see URLs); (iv) the yak (Bos grunniens) 
genome assembly (Yak genome 1.1 version) (see URLs); and (v) the water buffalo 
(Bubalus bubalis) genome assembly (UMD_CASPUR_WB_2.0) (see URLs).

Pairwise alignments of the bovine genome sequence to the yak, water buffalo, 
bison and sheep genome sequences were carried out using the LASTZ sequence 
alignment program46 (see URLs for LASTZ documentation).

LASTZ was run with the parameters --nogapped (skip gapped extension when 
doing alignment); --notransition (do not allow any match positions in seeds to 
be satisfied by transitions); --step =​ 20 (offset between the starting positions of 
successive target words considered for potential seeds); --format =​ maf (specifies 
the output format (the maf format in our study)).

A custom Python script was subsequently used to predict the yak, water 
buffalo, bison and sheep putative ancestral allelic state of the 164 SNPs47. The script 
is available from the authors upon request.

White blood cell eQTLs. 360 Holstein cows from the ‘Novel Strategies to Breed 
Dairy Cattle for Adaptation and Reduced Methane Emissions’ Australian project 
were sampled during a 3-year project, 120 cows per year, in three batches of 40 
cows. Whole-blood cell samples were taken from all cows at the DEDJTR Ellinbank 
research facility at weeks 2 and 4 of the trial period, with approval from the 
DEDJTR Animal Ethics Committee (2013–14), as follows. Blood was collected by 
venipuncture of the coccygeal vein after routine morning milking and was processed 
according to the blood fractionation and WBC stabilization procedure in the 
protocol for the RiboPure Blood kit (Ambion by Life Technologies). Whole-blood 
cell samples were then transferred to the main laboratory on ice and stored at –20 °C.

RNA was extracted from WBCs using the RiboPure Blood kit according to the 
manufacturer’s instructions. 112 Holstein cows were selected whose RNA integrity 
number was greater than 6, balancing for sire, number of lactations, days in milk 
and the sampling date. RNA-seq libraries were prepared using the SureSelect 
Strand Specific RNA Library Prep kit (Agilent) according to the manufacturer’s 
instructions. Each library was uniquely barcoded and randomly assigned to one 
of four pools and sequenced on a HiSeq 3000 (Illumina) in a 150-cycle paired-end 
run. 150-base paired-end reads were called with bcltofastq and output in fastq 
format. Sequence quality was assessed using FastQC. QualityTrim (see URLs) 
was used to trim and filter out poor-quality bases and sequence reads. Adaptor 
sequences and bases with a quality score less than 20 were trimmed from the ends 
of reads. Reads were discarded with mean quality scores less than 20, more than 
three no calls (Ns), greater than three consecutive bases having a quality  
score less than 15 or a final length less than 50 bases. Only paired reads were 
retained for alignment.

Paired RNA reads for each sample were aligned to the UMD3.1 bovine genome 
assembly using TopHat2, allowing for two mismatches48,49. Computer scripts were 
used to assess sequencing performance, library quality and alignment quality; 
these scripts are available from the authors upon request. Alignment files (.bam) 
for WBC libraries with >​12.5 million read pairs (after quality control filtering) and 
also having a mapping rate >​80% were retained for gene count matrix generation. 
Gene counts for the aforementioned alignment files were created using the Python 
package HTSeq50. Counts were combined to form a gene-by–sample count matrix. 
This count matrix was then normalized to take into account library size using the 
R software package, DESeq51.

Statistical analysis. Meta-analysis. Subsequently, GWAS was performed within 
each population on the imputed whole-genome sequence variants (SNPs and 
short insertions and deletions) using mixed linear models that included each 
population’s genomic relationship matrix (GRM), which were constructed with at 
least 630,000 SNPs (BovineHD chip) to account for population stratification and 
familial relationships. Association was tested by linear regression of phenotypic 
measures on the number of copies of the alternate allele, assuming additive 
effects. More details about the populations and individual GWAS can be found in 
Supplementary Table 1.

Variant effect and standard error of the effect from the GWAS were 
standardized for each population by dividing them by the phenotypic s.d. The 
GWAS results from individual populations for variants with a minor allele 
frequency (MAF) <​0.005 and/or an effect size of more than 5 s.d. from the mean 
were not included in the meta-analysis. In total, 58,265 animals were included in 
the meta-analysis of 25,406,107 variants, but the total sample size varied by variant. 
Meta-analysis was performed using the inverse-variance fixed-effects method in 
METAL with genomic control (for λGC, see Supplementary Table 1)37.

A QTL was defined as a chromosomal region where adjacent pairs of 
significant variants were less than 1 Mb from each other. Within each locus, the 
most significant variant was taken as the lead variant. From the lead variant within 
such a locus, a more conservative QTL locus was defined on the basis of a –log10 
(P value) drop off of 4, i.e., the difference between the –log10 (P value) of the lead 
variant and variants on either side moving further until all SNPs had a difference in 
–log10 (P value) from the lead SNP of greater than 4 (if the drop in –log10 (P value) 
was greater than 4, then decreased again, the procedure continued until all  
further SNPs had a difference in –log10 (P value) from the lead SNP of greater  
than 4). The maximum distance considered was 0.5 Mb on either side of the  
lead variant.

Validation. The 163 lead SNPs were validated in ten populations (Supplementary 
Tables 3 and 4). Phenotypes were corrected for fixed effects, including herd, age 
and year of measurement. Care was taken in selection of validation animals to 
ensure that none of the validation animals were the same as those used in the 
meta-analysis, nor were they full or half-siblings of these animals.

Sequence genotypes were imputed from 630,000 genotypes on all of the 
validation animals to test the significance of the SNPs. The model fitted within 
each population was

μ= + + +y X Zu eb1n

where y is a vector of phenotypes, 1n is a vector of ones, µ is the mean, X is a vector 
of genotypes for the tested lead variant, b is the effect of the variant, Z is a design 
matrix allocating phenotypes to animals, u is a vector of breeding values and e is 
a vector of random residuals. The breeding values u were assumed to be derived 
from a multivariate normal distribution σ~u GN(0, )g

2 , where G is the GRM (used 
to control for population substructure including familial relationships) and σg

2 is 
the additive genetic variance. The model was fitted in EMMAX5.

In three validation populations (Australian Angus, Australian Holstein and 
Swiss Brown Swiss), an additional analysis was performed to determine the 
proportion of variation explained by the 163 lead SNPs. Genotypes for the 163 lead 
SNPs were extracted, and a genomic relationship matrix was formed using these 
SNPs6. The proportion of variance explained by this matrix was determined by 
fitting the model

μ= + +y Zu e1n

where y is a vector of phenotypes, 1n is a vector of ones, µ is the mean, Z is a 
design matrix allocating phenotypes to animals, u is a vector of breeding values 
and e is a vector of random residuals. The breeding values u were assumed to be 
derived from a multivariate normal distribution σ~u GN(0, * *)g

2 , where G* is the 
GRM created from genotypes at the 163 lead SNPs and σ *g

2  is the additive genetic 
variance explained by the 163 lead SNPs. Variance components were estimated 
with ASREML52. To determine the proportion of variance expected to be explained 
by chance, another 163 SNPs with the same allele frequencies as the 163 lead 
variants were randomly sampled from the sequence data and the model above 
was fitted. This process was repeated five times, and the proportions of explained 
variance were averaged.

A second validation approach evaluated whether the prediction equation 
comprising the effects for the 163 lead SNPs from the meta-analysis could  
predict the differences in stature between standard and miniature cattle from  
the same breed. Stature was predicted as β∑ =

p2 i i i1
163 , where pi

 was the average  
allele frequency of miniature or standard animals for the ith SNP and βi  was the 
effect of the SNP from the meta-analysis. There were four miniature Angus, two 
miniature Hereford and two miniature Belted Galloway cattle each sequenced  
to approximately tenfold coverage. SNP genotypes were called in these animals 
using the same pipeline that was used for the 1000 Bull Genomes project6.  
In the original experiment where the miniature Angus cattle were bred, the mature 
weight and height of cows were 497 ±​ 6 kg and 115.7 ±​ 0.6 cm for the standard line 
and 418 ±​ 6 kg and 108.3 ±​ 0.6 cm for the miniature line38. For miniature  
Belted Galloway animals, the breed specification is “bulls at 10 to 12 months  
of age to be no more than 110 cm at hip height; maximum height for showing, 
at any age, is 125 cm at hip. Females at 10 to 12 months of age to be no more 
than 105 cm at hip height; maximum height for showing, at any age is 120 cm at 
hip” (Miniature Herefords; see URLs). This compares to standard female Belted 
Galloway animals that have an average hip height of 126 cm, with an s.d. of 2 cm 
(see URLs). For miniature Hereford animals, the desired height for the breed is 
100 cm, although bulls up to 110 cm in height have been registered by the breed 
association (see URLs). This compares to a standard Hereford with an average 
height of 120 cm39.
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In the third validation approach, the average height of seven breeds was 
predicted from their whole-genome sequences and compared to height reported in 
three experiments measuring the height of these breeds38–40. There were two Dexter 
sequences, 33 Charolais sequences, 10 Belgian Blue sequences, 59 Brown Swiss 
sequences, 34 Gelbvieh sequences, 31 Limousin sequences and 5 Piedmontese 
sequences. Allele frequencies for each breed calculated from these sequences were 
used in the prediction equation β∑ =

p2 i i i1
163  with the terms defined as above.

Proportion of variation accounted for by 17 previously identified loci within village 
dogs. We reanalyzed the village dog dataset from Hayward et al.3. The dataset 
we analyzed included 330 village dogs measured for body weight. Using 160,727 
variants, the first ten principal components of the GRM were derived and fitted 
in a multiple regression model to account for population structure within the 330 
dogs (five principal components were significant). Sex was also fitted as a fixed 
effect. The multiple regression model included the 17 SNPs (fitted simultaneously) 
identified in Hayward et al.3 and in other publications in other dog breeds as 
having a significant effect on body size. The proportion of variance explained by 
the markers was calculated as α σ∑ − ∕= p p2 (1 )i i i i p1

17 2 2, where σp
2 is the phenotypic 

variance of weight (with the effect of sex and the principal components removed), 
pi is the allele frequency of the ith SNP and αi

2 is the allele substitution effect of  
the ith SNP.

Bootstrap analysis. Bootstrap sampling was performed to contribute evidence 
that the lead variants could be causative mutations. We recorded the proportion 
of bootstrap samples in which the lead variant from the original meta-analysis 
remained the lead variant in the bootstrap sample. Bootstrap sampling was 
performed by sampling 17 populations with replacement from the 17 populations 
used in the meta-analysis. Once the 17 populations were sampled, the meta-
analysis was rerun for the 25.4 million variants using METAL37 as described above. 
There were 100 bootstrap samples.

eQTL analysis. Whole-genome sequence data were imputed into 630,000 (imputed 
from 43,000) genotypes for the cows using the bull whole-genome sequences in 
Run4 of the 1000 Bull Genomes project. After removing variants that had a MAF 
less than 0.05 for the cows in the experiment, 10.4 million variants remained. 
Only genes that were expressed in WBCs for more than 25% of the cows were 
analyzed, to avoid spurious associations due to very low read counts. For each of 
11,089 genes that satisfied this criterion, association of expression level (sequence 
counts) with all of the variants on the chromosome that contained that gene was 
tested (ignoring trans effects on other chromosomes). That is, 11,089 genome-
wide association analyses were run, with up to 690,000 variants (for example, 
for chromosome 1, there were this many sequence variants tested for each gene). 
Association testing was performed with EMMAX5, fitting the GRM among cows to 
control for population structure, fixed effects of parity, days in milk, sampling day 
and RNA sequencing batch. Read counts were transformed as log(x +​ 1), where x 
was the read count of a particular gene for a cow.

On average, 56 million reads were generated per WBC library. On average, 
88.4% of reads passed quality control, of which an average of 91.73% mapped to 
the reference genome. Quality filtering after alignment to the reference genome 
resulted in 15 samples being excluded from the count matrix (owing to very low 
counts as compared to other samples).

We used the experiment-wise false discovery rate—the proportion of 
significant variants that are actually false positive results—to determine which 
threshold was appropriate when testing individual SNPs. If a threshold of P <​ 1 ×​ 
10−5 was used, the false discovery rate was 1.3% (Supplementary Table 7), which 
seemed reasonable.

Although 73,840 significant variants were detected at the P <​ 1 ×​ 10−6 
threshold, they were associated with only 659 genes. This indicates that multiple 
variants, in strong LD, are detecting the same eQTL.

There was a trend for the most significant variant to be closer to the gene for 
which the expression level was the phenotype (Supplementary Fig. 8).

Selection signature analysis. Genome scans for selection were performed using 
FLK34 and hapFLK35, two tests that identify regions of high differentiation between 
populations. Fifteen populations were considered, listed in Supplementary Table 8, 
and unrelated animals were selected within each population. Selection was done by 
excluding animals found as outliers from their reported breed, on the basis of their 
principal-component analysis coordinates. Then, within each breed, unrelated 
animals were selected on the basis of the GRM kinship coefficients, computed 
using GCTA6.

FLK and hapFLK were calculated with hapFLK software (see URLs), using 
ancestral allele information to root the population tree. P values were estimated for 
each test using procedures documented with the software. q values were calculated 
using the qvalue R package, and SNPs corresponding to a false discovery rate of 5% 
were called significant.

Enrichment analysis. An enrichment analysis among GWAS hits was performed 
based on a stratified FDR approach53. FLK P values for all SNPs were divided into 
two sets: a set of GWAS hits and the set of non-GWAS hits. Within each set, the 

proportion of true positives (1 – π0) was estimated with the qvalue R package. The 
enrichment in the GWAS set as compared to the non-GWAS set was calculated as 
the ratio of the GWAS hits value to the non-GWAS hits values. The same approach 
was used for lead variants with the 163 SNPs in place of all GWAS hits.

To assess the significance of the enrichment of selection signatures in cattle 
GWAS hits, the same procedure was applied to human GWAS regions. We 
extracted human GWAS hits from the human GWAS catalog (see URLs)54. We 
considered only the 35 traits that had more than 150 hits in the GWAS catalog, to 
match our 163 lead variants. For each trait, we used the reported closest genes to all 
GWAS hits to map the human association to the cattle genome, using Ensembl and 
RefSeq annotations of UMD 3.1. This allows, for each human trait, the definition 
of a set of homologous cattle genes within which we retrieved FLK P values. In 
the set of SNPs included in these genes, we estimated the enrichment in selection 
signatures as explained above. Results of the analyses are given in Supplementary 
Table 9. Only human traits with enrichment >​1 are shown.

Tests for detection of known causal mutations affecting fat and protein percentage 
in the milk of dairy cattle. We performed association tests between the imputed 
sequence variant genotypes and protein percentage and fat percentage in milk 
in Holstein, Fleckvieh and Brown Swiss cattle. The known mutations included a 
mutation in the growth hormone receptor gene (GHR; encoding p.Tyr279Phe, 
chromosome 2054), a mutation encoding p.Ala232Lys in the DGAT1 gene55 on 
chromosome 14 and a mutation encoding p.Tyr851Ser in the ABCG2 gene56 on 
chromosome 6. The GHR mutation segregates in Holstein, Fleckvieh and Brown 
Swiss, the DGAT1 mutation segregates in Holstein and Fleckvieh, and the ABCG2 
mutation segregates at very low frequency in Holsteins only.

The analysis is presented in Pausch et al.10. However, figures demonstrating 
that imputed sequence data could discover known causative mutations were not 
presented in that the manuscript and are presented here. 214 Brown Swiss and 345 
Holstein animals were genotyped using the Illumina BovineHD BeadChip that 
comprises 777,962 SNPs. All other animals were genotyped using the Illumina 
BovineSNP50 BeadChip that comprises 54,609 SNPs. The Brown Swiss, Holstein 
and Fleckvieh animals were imputed to higher density using FImpute45 (Brown 
Swiss) and Minimac44 (Holstein and Fleckvieh). The final dataset included 573,650 
and 564,374 autosomal SNPs. Sequence variant genotypes were imputed in 6,777 
Fleckvieh, 5,204 Holstein and 1,646 Brown Swiss animals using the 1000 Bull 
Genomes Run4 multi-breed reference population with Minimac44. Association tests 
were performed between imputed sequence variant genotypes on chromosomes 6 
and 20 and daughter-derived values for protein percentage, and on chromosome 
14 and daughter-derived values for fat percentage. Association testing was carried 
out with EMMAX5 using the ‘-Z’ flag to consider predicted allele dosages for the 
imputed sequence variants.

URLs. Australian Galloway Association, http://www.galloway.asn.au/
miniaturegalloways.html; Belted Galloway Society, http://www.beltie.org/breed-
surveys-data.php; Miniature Herefords, http://www.miniatureherefords.org.au/; 
Bos_taurus_UMD_3.1/bosTau6 assembly of the cow genome, http://hgdownload.
soe.ucsc.edu/goldenPath/bosTau6/bigZips; Bison_UMD1.0/bisBis1 assembly of the 
bison genome, http://hgdownload-test.cse.ucsc.edu/goldenPath/bisBis1/bigZips; 
sheep reference genome Oar_v3.1, https://www.ncbi.nlm.nih.gov/assembly/
GCF_000298735.1; Bos mutus isolate yakQH1 genome, https://www.ncbi.nlm.nih.
gov/nuccore/AGSK01000000; water buffalo reference genome UMD_CASPUR_
WB_2.0, https://www.ncbi.nlm.nih.gov/assembly/GCA_000471725.1/#/st; LASTZ, 
http://www.bx.psu.edu/miller_lab/dist/README.lastz-1.02.00/README.lastz-
1.02.00a.html; QualityTrim, https://bitbucket.org/arobinson/qualitytrim; hapFLK 
software, https://forge-dga.jouy.inra.fr/projects/hapflk; human GWAS catalog, 
https://www.ebi.ac.uk/gwas/.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. Sequence for miniature cattle can be found at NCBI BioProject 
PRJNA238491 (1000 Bull Genomes project).

BioSample accession numbers are as follows: SAMN05861856, 
SAMN05861898, SAMN05861943, SAMN05861857, SAMN05861944, 
SAMN05861858, SAMN05861899, SAMN05861859, SAMN05861900, 
SAMN05861901, SAMN05861860, SAMN05861945, SAMN05861902, 
SAMN05861903, SAMN05861861, SAMN05861862, SAMN05861863, 
SAMN05861946, SAMN05861864, SAMN05861865, SAMN05861866, 
SAMN05861904, SAMN05861905, SAMN05861906, SAMN05861907, 
SAMN05861947, SAMN05861867, SAMN05861948, SAMN05861908, 
SAMN05861909, SAMN05861910, SAMN05861868, SAMN05861911, 
SAMN05861912, SAMN05861949, SAMN05861950, SAMN05861951, 
SAMN05861913, SAMN05861869, SAMN05861914, SAMN05861915, 
SAMN05861870, SAMN05861916, SAMN05861917, SAMN05861871, 
SAMN05861872, SAMN05861873, SAMN05861918, SAMN05861874, 
SAMN05861919, SAMN05861875, SAMN05861876, SAMN05861920, 
SAMN05861877, SAMN05861878, SAMN05861921, SAMN05861879, 
SAMN05861880, SAMN05861922, SAMN05861881, SAMN05861952, 
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SAMN05861882, SAMN05861953, SAMN05861923, SAMN05861924, 
SAMN05861925, SAMN05861883, SAMN05861926, SAMN05861927, 
SAMN05861928, SAMN05861954, SAMN05861955, SAMN05861956, 
SAMN05861957, SAMN05861958, SAMN05861884, SAMN05861885, 
SAMN05861929, SAMN05861886, SAMN05861887, SAMN05861959, 
SAMN05861888, SAMN05861960, SAMN05861930, SAMN05861961, 
SAMN05861931, SAMN05861932, SAMN05861889, SAMN05861933, 
SAMN05861934, SAMN05861935, SAMN05861890, SAMN05861891, 
SAMN05861892, SAMN05861893, SAMN05861894, SAMN05861936, 
SAMN05861937, SAMN05861962, SAMN05861938, SAMN05861939, 
SAMN05861963, SAMN05861940, SAMN05861941, SAMN05861895, 
SAMN05861896, SAMN05861942, SAMN05861964, SAMN05861897.

RNA sequence for the eQTL experiment can be found under BioProject 
PRJNA305942, SRP067373: SAMPLE 210004817-W2-Blood-RNA, SRS1206435; 
SAMPLE 210004817-W2-Milk-RNA, SRS1206437; SAMPLE Y10ST0027-W2-
Blood-RNA, SRS1206444; SAMPLE Y10ST0027-W2-Milk-RNA, SRS1206446; 
SAMPLE Y10ST0106-W2-Blood-RNA, SRS1206447; SAMPLE Y10ST0106-W2-
Milk-RNA, SRS1206629.
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For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Materials and Methods.  Sample size was chosen based on previous genome wide association 
studies in humans and cattle, which suggested effects of individual SNP on stature would be 
small.  Therefore a very large sample size was used (58,265) so that small effect sizes could 
be detected

2.   Data exclusions

Describe any data exclusions. Materials and methods.  Animals were screened based on SNP call rates, as described in 
previous publications

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Independent validation studies with very large numbers of animals (as many as in the in the 
original discovery experiment) were conducted to determine if the results could be 
replicated.  

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization was used, field data was used

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

No blinding, field data was used

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Existing software was used, including Fimpute, Beagle3, Minimac, METAL, EMMAX, ASREML. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

Materials and Methods.  Sequence for miniature cattle can be found at Bioproject 
PRJNA238491 (1000 bull genomes project), Biosample accession numbers are: 
SAMN05803879, BTAUGLWAUSF000000AG0134, SAMN05803880 
BTAUGLWAUSF000000AG0135, SAMN05803881, BTAUHERAUSF000000AG0137, 
SAMN05803882 BTAUHERAUSF000000AG0139, SAMN05803883 
BTAUDXTAUSM000000AG0144, SAMN05803884 BTAUAANAUSF000000AG0149, 
SAMN05803885, BTAUAANAUSF000000AG0150, SAMN05803886 
BTAUAANAUSM000000AG0152, SAMN05803887 BTAUAANAUSM000000AG0154, 
SAMN05803888, BTAUDXTAUSF000000AG0156. 
RNA Sequence for the eQTL experiment can be found at Bioproject PRJNA305942, 
SRP067373, SAMPLE 210004817-W2-Blood-RNA, SRS1206435, SAMPLE 210004817-W2-Milk-
RNA, SRS1206437, SAMPLE Y10ST0027-W2-Blood-RNA, SRS1206444, SAMPLE Y10ST0027-
W2-Milk-RNA, SRS1206446, SAMPLE Y10ST0106-W2-Blood-RNA, SRS1206447, SAMPLE 
Y10ST0106-W2-Milk-RNA SRS1206629.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Not applicable

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Not applicable

b.  Describe the method of cell line authentication used. Not applicable

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

The eQTL experiment described in the paper was approved by the Department of Economic 
Development, Jobs, Transport and Resources Animal Ethics Committee (2013-14).  All other 
data was collected for routine genetic evaluation.  

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Not applicable
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