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ABSTRACT
Polygenic scores (PGS) summarize the genetic contribution of a person’s genotype

to a disease or phenotype. They can be used to group participants into different risk

categories for diseases, and are also used as covariates in epidemiological analyses. A

number of possible ways of calculating PGS have been proposed, and recently there

is much interest in methods that incorporate information available in published sum-

mary statistics. As there is no inherent information on linkage disequilibrium (LD) in

summary statistics, a pertinent question is how we can use LD information available

elsewhere to supplement such analyses. To answer this question, we propose a method

for constructing PGS using summary statistics and a reference panel in a penalized

regression framework, which we call lassosum. We also propose a general method

for choosing the value of the tuning parameter in the absence of validation data. In

our simulations, we showed that pseudovalidation often resulted in prediction accu-

racy that is comparable to using a dataset with validation phenotype and was clearly

superior to the conservative option of setting the tuning parameter of lassosum to

its lowest value. We also showed that lassosum achieved better prediction accuracy

than simple clumping and 𝑃 -value thresholding in almost all scenarios. It was also

substantially faster and more accurate than the recently proposed LDpred.
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1 INTRODUCTION

A vast number of twin studies as well as recent genome-wide

association studies have demonstrated that a large proportion

of the variance in liability to common diseases and human

traits is due to genetic differences between individuals

(Bulik-Sullivan et al., 2015; Polderman et al., 2015; Yang

et al., 2011). These studies have also made clear that only a

very small proportion of the total genetic contribution can be

unambiguously attributed to variation in particular loci of the

genome. The vast majority of such genetic contribution is thus

spread across the huge landscape of the genome, with many

loci each contributing a small, almost undetectable effect

on the phenotypes (Dudbridge, 2013, 2016). One important

source of evidence toward this conclusion is from studies

that examined the association of polygenic predictors of

diseases/traits, where it has been repeatedly found that Single

Nucleotide Polymorphism (SNPs) that are not themselves sig-

nificantly associated with the phenotypes can, by being aggre-

gated as a score, be very significantly associated with the phe-

notypes in different samples (Agerbo et al., 2015; Byrne et al.,

2014; Chang et al., 2014; Evans, Visscher, & Wray, 2009;

Machiela et al., 2011; Martin, O’Donovan, Thapar, Langley,

& Williams, 2015; Purcell et al., 2009; Ripke et al., 2013;

Speliotes et al., 2010; Stahl et al., 2012; Wei et al., 2009). A

particular remarkable demonstration is that persons with such

polygenic scores (PGS) for schizophrenia at the top 10 per-

centile of the population can be at more than 10 times the risk

of having the disease than those at the bottom 10 percentile

(Agerbo et al., 2015; Ripke et al., 2014) raising hope that one
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day a person’s risk for many common disease can be accu-

rately assessed simply by the examination of one’s genome.

Thus, there is considerable interest in the calculation of

such PGS in GWAS and genome-wide meta-analyses, where

they are also known as risk scores (Domingue et al., 2014;

Ripke et al., 2013), polygenic risk scores (e.g., Agerbo et al.,

2015; Byrne et al., 2014; Dudbridge, 2013; Euesden, Lewis,

& O’Reilly, 2015), and allelic scores (Burgess & Thompson,

2013; Evans et al., 2013). In a typical application, a unique

PGS is assigned to each individual based on the person’s geno-

type. The score summarizes the genetic contribution to a par-

ticular disease or phenotype for that individual given his/her

genotype. They are then used for testing of complex genetic

contribution due to multiple loci or even the entire genome, or

the examination of genetic correlation, or are used as a covari-

ate for the adjustment of genetic effects in a multiple regres-

sion model (Wray et al., 2014).

From a statistical perspective, PGS are weighted sums of

the genotypes of a set of SNPs. In most applications of PGS,

the weights are usually the SNPs’ individual regression coef-

ficients with the phenotype (e.g., Euesden et al., 2015; Pur-

cell et al., 2009; Wray et al., 2014). A critical issue is the total

number of SNPs that should be included in the PGS. Although

it is usually advisable to use a liberal 𝑃 -value cutoff in the

selection of SNPs to be included, the optimal 𝑃 -value cutoff

is generally unknown (Wray et al., 2014). As a result, in many

studies, PGS are constructed using a number of thresholds

(Byrne et al., 2014; Chang et al., 2014; Martin et al., 2015;

Purcell et al., 2009; Ripke et al., 2014), and there is at least

one piece of software developed to facilitate this (Euesden

et al., 2015). Generally, we focus on the 𝑃 -value threshold

that achieves the highest correlation/association with the phe-

notypes in a validation dataset that contains a measure of the

phenotype under study. This approach, however, becomes less

useful if the phenotype is not available in the target dataset.

Recently, Mak, Kwan, Campbell, and Sham (2016) sought to

overcome this problem by downweighting the usual weights

by the SNPs’ local true discovery rate, where the additional

downweighting or shrinkage factor can be estimated using a

data-driven approach. Although 𝑃 -value thresholds were not

needed, they showed that this leads to comparable predictive

performance with the best 𝑃 -value threshold.

Another issue with this standard approach to PGS calcula-

tion is that there is no account taken of the fact that SNPs are

in linkage disequilibrium (LD) with each other. If SNPs of a

particular locus that are in high LD with one another are all

included in the score, the contribution to the PGS due to that

locus will be exaggerated in the score. For this reason, it is

often recommended that SNPs be pruned before the applica-

tion of PG scoring, such that highly correlated SNPs within

a locus will have one or more removed (Purcell et al., 2009).

Such an approach, however, may well reduce the predictive

power of the PGS, as SNPs that are most predictive of the

phenotype may be pruned away. A recent suggestion that has

become very popular is that of clumping, which selectively

removes less significantly related SNPs to reduce LD (Wray

et al., 2014).

In principle, various machine learning methods or Bayesian

methods can be applied in the construction of PGS, as they

have been applied in the estimation of breeding values in ani-

mal studies (Abraham, Kowalczyk, Zobel, & Inouye, 2013;

Erbe et al., 2012; Habier, Fernando, Kizilkaya, & Garrick,

2011; Meuwissen, Hayes, & Goddard, 2001; Ogutu, Schulz-

Streeck, & Piepho, 2012; Pirinen, Donnelly, & Spencer, 2013;

Szymczak et al., 2009; Zhou, Carbonetto, & Stephens, 2013).

These methods do not require the assumption of SNP inde-

pendence or near independence, and have been shown to per-

form better than simple PGS in simulation settings. However,

their disadvantage is that they cannot be applied to summary

statistics. Researchers without access to large datasets are thus

unable to take advantage of the power offered by these stud-

ies or meta-analyses. A recent development in this direction is

Vilhjálmsson et al. (2015). The authors proposed an approxi-

mate Bayesian method known as LDpred that calculates PGS

based on summary statistics, using LD information from a ref-

erence panel. Such a development is particularly welcome due

to the ready availability of summary statistics from many con-

sortia, often calculated from tens to hundreds of thousands of

individuals.

In this paper, we present an alternative method based on

penalized regression. It is a deterministic method and a convex

optimization problem, and as such does not suffer from prob-

lems of nonconvergence, which is a possible problem with

LDpred. It is also substantially faster than LDpred, and in our

simulations achieved near-best prediction performance across

a wide variety of scenarios. As a side observation, it was also

found that LDpred did not achieve the improved prediction

performance claimed by the authors in our simulations. As

with any machine learning approach, our proposed method

requires the choice of a tuning parameter. This is particu-

larly difficult when we do not have raw data and hence cannot

perform cross-validation. Here, we offer a solution that can

potentially be applied more generally. The approach is pre-

sented in the methods section and we assessed its performance

by simulation studies. Insights gained from the simulations

are discussed.

2 MATERIALS AND METHODS

2.1 The LASSO problem in terms of
summary statistics
Given a linear regression problem

𝒚 = 𝑿𝜷 + 𝝐, (1)
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where 𝑿 denotes an 𝑛-by-𝑝 data matrix, and 𝒚 a vector of

observed outcomes, the LASSO (Tibshirani, 1996) is a pop-

ular method for deriving estimates of 𝜷 and predictors of

(future observations of) 𝒚, especially in the case where 𝑝 (the

number of predictors/columns in 𝑿) is large and when it is

reasonable to assume that many 𝜷 are 0. LASSO obtains esti-

mates of 𝜷 (weights in the linear combination of 𝑿) given 𝒚

and 𝑿 by minimizing the objective function

𝑓 (𝜷) = (𝒚 −𝑿𝜷)𝑇 (𝒚 −𝑿𝜷) + 2𝜆||𝜷||11 (2)

= 𝒚𝑇 𝒚 + 𝜷𝑇𝑿𝑇𝑿𝜷 − 2𝜷𝑇𝑿𝑇 𝒚 + 2𝜆||𝜷||11, (3)

where ||𝜷||11 = ∑
𝑖 |𝛽𝑖| denote the 1 norm of 𝜷, for a partic-

ular fixed value of 𝜆. In general, depending on 𝜆, a propor-

tion of the 𝛽𝑖 are given the estimate of 0. It is also a specific

instance of penalized regression where the usual least square

formulation of the linear regression problem is augmented by

a penalty, in this case 2𝜆||𝜷||11. LASSO lends itself to being

used for estimation of 𝜷 in the event where only summary

statistics are available, because if 𝑿 represent standardized

genotype data and 𝒚 standardized phenotype, divided by
√
𝑛,

then Equation (3) can be written as

𝑓 (𝜷) = 𝒚𝑇 𝒚 + 𝜷𝑇𝑹𝜷 − 2𝜷𝑇 𝒓 + 2𝜆||𝜷||11, (4)

where 𝒓 = 𝑿𝑇 𝒚 represents the SNP-wise correlation between

the SNPs and the phenotype, and 𝑹 = 𝑿𝑇𝑿 is the LD

matrix, a matrix of correlations between SNPs. As we can

obtain estimates of 𝒓 from summary statistics databases that

are publicly available for major diseases/phenotypes (see,

e.g., the list from Pasaniuc & Price, 2016) and LD hub

(http://ldsc.broadinstitute.org/), and estimates of

LD (𝑹) from publicly available genotype such as the 1000

Genome database (1000 Genomes Project Consortium, 2015),

Equation (4) suggests a method for deriving PGS weights as

estimates of 𝜷 by minimizing 𝑓 (𝜷).
An issue that surfaces when we substitute 𝑹 and 𝒓 with the

estimates derived from publicly available data is that the geno-

type 𝑿 used to estimate 𝑹 and 𝒓 will in general be different.

In particular, it will be more appropriate to write 𝑹 = 𝑿𝑇
𝑟
𝑿𝑟

to indicate that the genotype used to derive estimates of LD

(𝑿𝑟) will not in general be the same as the genotype that gave

rise to the correlations 𝒓. Writing Equation (4) as

𝑓 (𝜷) = 𝒚𝑇 𝒚 + 𝜷𝑇𝑿𝑇
𝑟
𝑿𝑟𝜷 − 2𝜷𝑇𝑿𝑇 𝒚 + 2𝜆||𝜷||11, (5)

however, would imply that (5) is no longer a LASSO prob-

lem, because it is no longer a penalized least squares prob-

lem. A minimum to (5) can still be sought, although the

solutions would often be unstable and nonunique, since 𝒚𝑇 𝒚 +
𝜷𝑇𝑿𝑇

𝑟
𝑿𝑟𝜷 − 2𝜷𝑇𝑿𝑇 𝒚 will not generally have a finite mini-

mum.

A natural solution to this problem is to regularize Equa-

tion (5). In particular, if we replace 𝑿𝑇
𝑟
𝑿𝑟 with 𝑹𝑠 = (1 −

𝑠)𝑿𝑇
𝑟
𝑿𝑟 + 𝑠𝑰 , for some 0 < 𝑠 < 1, then

𝑓 (𝜷) = 𝒚𝑇 𝒚 + 𝜷𝑇𝑹𝑠𝜷 − 2𝜷𝑇 𝒓 + 2𝜆||𝜷||11, (6)

will be equivalent to a LASSO problem.

Proof. First, we note that 𝒚𝑇 𝒚 is a constant and thus replacing
it with any other constant will not change the solution. 𝑹𝑠

is necessarily positive definite for 0 < 𝑠 < 1. This means that
there always exists 𝑾 and 𝒗 such that

𝑾 𝑇𝑾 = 𝑹𝑠, 𝑾 𝑇 𝒗 = 𝒓. (7)

Substituting (7) into (6) and replacing 𝒚𝑇 𝒚 with 𝒗𝑇 𝒗, we see
that (6) can be written in a form such as (2) and is therefore
a LASSO problem. □

Expanding (6) into

𝑓 (𝜷) = 𝒚𝑇 𝒚 + (1 − 𝑠)𝜷𝑇𝑿𝑇
𝑟
𝑿𝑟𝜷 − 2𝜷𝑇 𝒓

+ 𝑠𝜷𝑇 𝜷 + 2𝜆||𝜷||11, (8)

we note that (8) encompasses a number of submodels as spe-

cial cases. For example, when 𝑠 = 1, estimates of 𝜷 will be

equivalent to applying a “soft” threshold to the univariate cor-

relation summary statistics 𝒓 (as opposed to the “hard” thresh-

olds using 𝑃 -values.) In particular,

𝛽𝑠=1
𝑖

=

{
sign(𝑟𝑖)(|𝑟𝑖| − 𝜆) if |𝑟𝑖| − 𝜆 > 0

0 otherwise
(9)

(Zou & Hastie, 2005). Note that because there is a monotonic

relationship between univariate 𝑃 -values and unsigned corre-

lation coefficients (coming from the monotonic relationship

between correlation coefficients and 𝑡-statistics with 𝑛 − 2
degrees of freedom, Equation (15)), soft-thresholding using

correlation coefficients can be expected to be very similar to

𝑃 -value thresholding. Another feature is that when 𝜆 = 0, the

problem is similar to applying ridge regression to estimate 𝜷,

except for a constant scaling value. In most cases, the scale of

a PGS is irrelevant, since it is almost never directly used in

genomic risk prediction without appropriate scaling (e.g., in

So, Kwan, Cherny, & Sham, 2011). For a particular choice of

𝑠, therefore, Equation (8) results in genomic BLUP (best lin-

ear unbiased predictors; de Los Campos, Vazquez, Fernando,

Klimentidis, & Sorensen, 2013). When 𝜆 = 0 and 𝑠 = 1, the

estimated PGS becomes equivalent to simply using the entire

set of correlation estimates without shrinkage or subset selec-

tion.

Moreover, (8) is simply an elastic net problem (Zou &

Hastie, 2005), and thus can be solved using fast coordinate

descent algorithms (Friedman, Hastie, & Tibshirani, 2010) for

many values of 𝜆 at a time. In particular, using this algorithm,
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it is not necessary to compute the 𝑝-by-𝑝matrix 𝑿𝑇
𝑟
𝑿𝑟, which

would be extremely memory-consuming even for tens of thou-

sands of SNPs. Denoting 𝑿̃ =
√
1 − 𝑠𝑿𝑟, the solution to the

minimization of Equation (8) can be obtaining by iteratively

updating 𝛽𝑖 as

𝛽
(𝑡)
𝑖

=

{
sign(𝑢(𝑡)

𝑖
)|𝑢(𝑡)

𝑖
− 𝜆|∕(𝑿̃𝑇

𝑖
𝑿̃𝑖 + 𝑠) if |𝑢(𝑡)

𝑖
| − 𝜆 > 0

0 otherwise.

(10)

𝑢
(𝑡)
𝑖

= 𝑟𝑖 − 𝑿̃
𝑇

𝑖
(𝑿̃𝜷(𝑡−1) − 𝑿̃𝑖𝛽

(𝑡−1)
𝑖

) (11)

A more detailed proof of Equations (10) and (11) is

given in the supplementary materials. An R package that

carries out the estimation of 𝜷 is made available at

https://github.com/tshmak/lassosum. We made spe-

cial effort to allow estimation to be done directly on PLINK

1.9 (Chang et al., 2015) .bed files, eliminating the need to

load large genotype matrices into R.

2.2 Selection of tuning parameters
As with standard elastic net problems, in any application, 𝜆

and 𝑠 need to be chosen. Generally, in the presence of a vali-

dation dataset, we can choose 𝜆 by maximizing the correlation

of the PGS with the validation phenotype data, just as it has

been done in the choice of a 𝑃 -value cutoff points in standard

PGS calculations (Euesden et al., 2015; Wray et al., 2014). In

principle, we can use this method to choose a suitable value

for 𝑠 also, although repeating the estimation over different val-

ues of 𝑠 is much more time-consuming. Thus in this paper,

we set 𝑠 to a few chosen values and examined whether they

are sufficient in arriving at a PGS with reasonable prediction

accuracy.

A more pressing problem is that validation phenotypes are

not often available. And here we try to simulate this procedure

in the following manner, which we refer to as pseudovalida-
tion in this paper. First, note that the correlation between a

𝑃𝐺𝑆(𝜆) ≡ 𝑿̃𝜷̂𝜆 and the phenotype 𝒚̃ in a new “test” dataset

with standardized genotype 𝑿̃ is

𝐶𝑜𝑟𝑟(𝑃𝐺𝑆(𝜆), 𝒚̃) =
𝜷𝑇
𝜆
𝑿̃
𝑇
𝑷 𝒚̃√

𝜷𝑇
𝜆
𝑿̃
𝑇
𝑷 𝑿̃𝜷𝜆𝒚̃

𝑇𝑷 𝒚̃

, (12)

where 𝑷 = 𝑰 − 𝟏𝟏𝑇 ∕𝑛 is the mean-centering matrix.

In the absence of validation data, 𝒚̃ is unavailable. Our

solution is to substitute 𝒓̂ for 𝑿̃
𝑇
𝑷 𝒚̃, where 𝒓̂ is a shrunken

estimate of the 𝒓, the observed correlation coefficient vector.

Since 𝑿̃
𝑇
𝑷 𝒚̃ can be interpreted as a correlation coefficient

only if 𝑿̃ is a standardized genotype matrix and 𝒚̃ standard-

ized phenotype, we replace 𝑿̃ with its standardized version,

𝑿̃0, and discard the constant 𝒚̃𝑇𝑷 𝒚̃ term, so as to maximize

the function

𝑓 (𝜆) =
𝜷𝑇
𝜆
𝒓̂√

𝜷𝑇
𝜆
𝑿̃
𝑇

0 𝑿̃0𝜷𝜆

(13)

over 𝜆. Here, following Mak et al. (2016), we calculated

𝑟̂𝑖 = 𝑟𝑖(1 − fdr𝑖), (14)

where fdr𝑖 is the local false discovery rate of SNP 𝑖. Although

Mak et al. (2016) estimated fdr𝑖 using maximum likelihood

and a nonparametric kernel density estimator, we found that

Strimmer (2008) provided a fast, nonparametric estimator for

fdr𝑖 that is constrained to be monotonic decreasing with |𝑟𝑖|,
and it is this approach that we have implemented in the simu-

lations.

2.3 Some notes on application
In the above, we have assumed that the SNP-wise correlations

(𝒓) will be available from the summary statistics. When these

are not available, we suggest pseudocorrelation estimates 𝑟𝑖
be derived by converting 𝑃 -values to correlation, using the

monotonic relationship between 𝑡-statistics and correlations:

𝑟𝑖 =
𝑡𝑖√

𝑛 − 1 + 𝑡2
𝑖

. (15)

In our simulations, this resulted in almost identical estimates

as using actual (Pearson’s product moment) correlations (sup-

plementary Fig. S1).

Another issue is that in the theory given above, we assume

that 𝑿 and 𝒚 have been standardized such that 𝒓 represent the

correlation coefficients between the genotype and the pheno-

type. We note that such standardization can be justified by the

fact that the LASSO is often performed on standardized vari-

ables (Hastie, Tibshirani, & Friedman, 2009; Li, Gui, Kwan,

Bao, & Sham, 2012; Yi, Breheny, Imam, Liu, & Hoeschele,

2014). However, when it comes to the construction of PGS,

we ought to use unstandardized coefficients as weights. To

convert standardized coefficients to unstandardized ones, we

can simply use the formula

𝛽unstandardized
𝑖

= 𝑟𝑖
sd(𝒚)

sd(𝑿𝑖)
. (16)

However, since sd(𝒚) and sd(𝑿𝑖) are generally unavailable,

we can use sd(𝒚̃) and sd(𝑿̃𝑖) from the validation data instead.

Using these also prevents any SNP from undue influence in

the overall PGS due to the division of sd(𝑿̃𝑖) close to 0, since

a SNP’s variance contribution is proportional to its variance

and the square of the coefficients.



MAK ET AL. 5

The third issue concerns the difference between the SNPs

with summary statistics and the SNPs that are included in the

reference panel. Often the reference panel may not contain all

SNPs with summary statistics. Equivalently, there may be no

variation within the panel for some SNPs. In LDpred, these

SNPs are discarded by default. However, we think that this is

not necessary, as it may result in the removal of SNPs that are

predictive of the disease/phenotype. An intuitive approach to

dealing with these SNPs is that we treat them as if they were

all mutually independent and apply soft-thresholding as in (9).

Equivalently, we let𝑿𝑟𝑖 for these SNPs to be a vector of 0, and

we augment Equation (8) by a term (1 − 𝑠)𝜷𝑇0 𝜷0,

𝑓 (𝜷) = 𝒚𝑇 𝒚 + (1 − 𝑠)𝜷𝑇𝑿𝑇
𝑟
𝑿𝑟𝜷 − 2𝜷𝑇 𝒓 + 𝑠𝜷𝑇 𝜷

+ (1 − 𝑠)𝜷𝑇0 𝜷0 + 2𝜆||𝜷||11, (17)

where 𝜷0 denotes the subvector of 𝜷 whose sd(𝑿𝑖) = 0, such

that the total ridge penalty for these parameters is 1.

The fourth issue concerns the application of pseudovalida-

tion to clumped data. We proposed above that 𝒓̂ be estimated

using (14) and that the local false discovery rates be estimated

using the procedure of Strimmer (2008). An important point

is that the method assumes that a sizeable proportion of the 𝒓

are in fact null. Under clumping, this may not necessarily be

the case, and we therefore suggest estimating fdr𝑖 and hence

𝑟̂𝑖 before applying clumping.

2.4 Simulation studies
We performed a number of simulation studies to assess the

performance of our proposed method, which we refer to in this

paper as lassosum. In our first simulation study, we used the

Wellcome Trust Case Control Consortium (WTCCC) Phase

1 data for seven diseases. We filtered variants and partici-

pants using the following QC criteria: genotype rate >0.99,

minor allele frequency >0.01, missing genotype per individ-

ual <0.01, SNP rsID included in the 1000 Genome project

(Phase 3, release May 2013) genotype data, with matching

reference and alternative alleles, on top of the QC done by

the original researchers (Wellcome Trust Case Control Con-

sortium, 2007). This resulted in 358,179 SNPs and 15,603

individuals, of which 2,859 were controls. In our first set of

simulations, we ignored the phenotype data and generated our

own based on the linear model

𝒚 = 𝑿𝜷 + 𝝐, (18)

where 𝑿 is the unstandardized genotype matrix, and 𝝐 ∼
𝑁(𝟎, 𝜎2𝑰) represents random error. The distribution of the

causal effects 𝜷 ≡ 𝑣𝑒𝑐({𝛽𝑖}) ≡ 𝑣𝑒𝑐({𝛽𝑗𝑘}) is generated using

a similar scheme to that described in Vilhjálmsson et al.

(2015):

𝛽𝑗𝑘 ∼

{
𝑁(0, 1) with probability 𝜋𝑗

0 with probability 1 − 𝜋𝑗,
(19)

𝜋𝑗 ∼ 𝐵𝑒𝑡𝑎(𝑃 (causal), 1 − 𝑃 (causal)) (20)

where 𝑗 denotes genomic regions and 𝑘 indices SNPs within

the region and 𝑖 is a general index for all SNPs in the database,

and 𝑝 is the expected proportion of causal SNPs across the

genome (note 𝐸(𝜋𝑗) = 𝑃 (causal)). Genomic regions were

defined using the 1,725 LD blocks obtained from the 1000

Genomes European (EUR) subpopulation, as provided by

Berisa and Pickrell (2015).

We derived standardized 𝜷 as

𝛽0
𝑖
= 𝛽𝑖

ŝd(𝑿𝑖)
ŝd(𝒚)

, (21)

and observed correlation coefficients as

𝒓𝑗 ∼ 𝑁(𝑹̂𝑗𝜷
0
𝑗
, 𝑹̂𝑗∕𝑛), (22)

where 𝑹̂ is the observed correlation matrix of the 𝑗th region

from the genotype 𝑿 and 𝑛 is the sample size. We set 𝜎2 =
V̂ar(𝑿𝜷) 1−ℎ

2

ℎ2
and ℎ2 = 0.5 in our calculation of 𝒚.

We randomly chose two 1,000 samples as two test datasets.

In the first dataset 𝑿(1), validation and pseudovalidation were

performed to determine the optimal value of 𝜆. This choice

of 𝜆 and/or 𝑠 was applied in the other test dataset 𝑿(2) in the

assessment of prediction accuracy. Prediction accuracy was

assessed by the correlation of the PGS with the true predictor

𝑿(2)𝜷. Except when assessing the performance of using dif-

ferent reference panels, we used the first test dataset 𝑿(1) as

the reference panel also.

In assessing the impact of using different reference pan-

els, we let the 1000 Genome East Asian (EAS) subpop-

ulation (𝑛 = 503) be our test dataset. We compared the

performance of using four different reference panels: (1) the

original sample that generated the summary statistics, (2) a

sample of 1,000 from the WTCCC, (3) the EUR subpopula-

tion from the 1000 Genome project, and (4) the EAS subpop-

ulation from the 1000 Genome project.

The above simulations were repeated 10 times and

were compared with the approach of 𝑃 -value thresh-

olding (with and without clumping) and LDpred. For

clumping, we used a window of 250 kb and an 𝑅2 of

{0.1, 0.2, 0.5, 0.8}. (see supplementary Note for a brief expla-

nation of clumping.) For 𝑃 -value thresholding, we used

the set of 𝑃 values {5𝑒−8, 1𝑒−5, 1𝑒−4, 1𝑒−3, 0.0015, 0.002,

0.0025, … , 0.995, 1} as possible 𝑃 -value thresholds. For

LDpred, we used the set of proportion of causal SNPs

{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}. The size of the window
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for LD calculation was calculated as the number of SNPs in

the dataset divided by 3,000, as recommended in the LDpred

paper. For 𝑃 -value thresholding and LDpred, we used a val-

idation dataset as well as pseudovalidation to select the best

threshold and proportion of causal SNPs, respectively.

Because summary statistics are often calculated from large

sample sizes and for a large number (often around 10 million)

of SNPs, we also attempted to carry out simulations using a

larger dataset. In particular, we wanted to see whether clump-

ing is an efficient strategy for data reduction, as the speed of

lassosum suffers with such a large number of SNPs. For this

purpose, we first identified SNPs from the summary statis-

tics derived in the meta-analysis of Okada et al. (2014) for

rheumatoid arthritis (RA) that were common with those in the

1000 Genome dataset. We then generated our own summary

statistics using the above method (Equations (18)–(22)), using

the EUR subsample of the 1000 Genome dataset as a base.

This resulted in a dataset of 8,270,298 SNPs. We used the

EUR subsample as the reference panel and the EAS subsam-

ple of the 1000 Genome dataset as the test sample to assess

the predictive performance.

Finally, we assessed the performance of lassosum using

real summary statistics from large meta-analyses. Summary

statistics were downloaded from five publicly available

resources: Bipolar disorder (https://www.med.unc.edu/
pgc, Sklar et al. (2011), 𝑛(cases) = 7, 481, 𝑛(controls) =
9, 250), coronary artery disease (http://www.cardiogram
plusc4d.org, Nikpay et al. (2015), 𝑛(cases) =
60, 801, 𝑛(controls) = 123, 504), Crohn’s disease (http://
ibdgenetics.org/downloads.html, Liu et al. (2015),

𝑛(cases) = 22, 575, 𝑛(controls) = 46, 693), RA (http://pl
aza.umin.ac.jp/∼yokada/datasource/software.htm/,

Okada et al. (2014), 𝑛(cases) = 14, 361, 𝑛(controls) =
43, 923), and Type 2 diabetes (http://diagram-co
nsortium.org/, Mahajan et al. (2014), 𝑛(cases) =
26, 488, 𝑛(controls) = 83, 964). The performance of PGS

derived using lassosum and other methods were assessed

using the WTCCC data. Because all these meta-analyses

included the WTCCC as one of the studies, PGS derived

using these summary statistics directly would overfit the

data. To overcome this problem, we attempted to isolate

the non-WTCCC components of the summary statistics by

reversing the fixed-effects meta-analysis equations:

𝛽meta =
𝛽𝑠∕𝜎2𝑠 + 𝛽𝑠̄∕𝜎

2
𝑠̄

1∕𝜎2
𝑠
+ 1∕𝜎2

𝑠̄

(23)

1
𝜎2

meta

= 1
𝜎2
𝑠

+ 1
𝜎2
𝑠̄

, (24)

where 𝛽𝑠 and 𝜎𝑠 denote the log odds ratio and standard error

from the WTCCC study and 𝛽𝑠̄ and 𝜎𝑠̄ the contribution to

the meta-analysis apart from WTCCC. SNPs with negative

𝜎2
𝑠̄

were set to have zero effect size. 𝑃 -values were derived

from 2(1 − Ψ−1(|𝛽𝑠̄∕𝜎𝑠̄|)) and converted to correlations using

(15). Prediction accuracy of the summary statistics-derived

PGS were assessed by the area under the ROC curve (AUC)

statistic when used to predict disease status in the WTCCC

dataset with the relevant disease and the 2,859 controls. The

testing sample was also used as the reference panel. In all the

above analyses, we carried out estimation by LD blocks as

defined by Berisa and Pickrell (2015).

3 RESULTS

Our WTCCC simulations were performed with summary

statistics sample sizes of 10,000, 50,000, and 250,000, respec-

tively. We used two values for 𝑃 (causal), the expected pro-

portion of causal SNPs: 0.1 and 0.01. 𝑃 (causal) = 0.01
represents a scenario where there are fewer causal SNPs and

effect sizes are larger. Conversely 𝑃 (causal) = 0.1 represents

a scenario where causal SNPs have smaller effect sizes and

are more spread out over the genome. Supplementary Fig-

ure S2 displays the performance of lassosum with different

values of 𝜆 for one of the simulations. It can be seen that in

all the simulation scenarios, the general pattern is that pre-

dictive performance increases with 𝜆 up to a point and then

decreases, often rapidly. Using a validation dataset or alterna-

tively pseudovalidation is usually effective in helping us select

a value of 𝜆 that is close to the optimal. Comparing different

values of 𝑠, the shrinkage parameter, we see that the maximum

attainable correlation is generally lower for 𝑠 = 1, the sce-

nario where lassosum reduces to soft-thresholding, that is,

where information on LD is ignored, except when 𝑛 = 10, 000
and 𝑃 (causal) = 0.1. In addition, 𝑠 = 0.5 and 𝑠 = 0.2 usually

gives better performance than 𝑠 = 0.9.

In Figure 1A, we give the average prediction performance

over 10 simulations, comparing the use of pseudovalidation

and a validation dataset with phenotype data as well as using

the minimum 𝜆 value of 0.001. We use 𝜆 = 0.001 for compar-

ison because it is shown in supplementary Figure S2 that in

general the prediction performance of lassosum approaches

a constant as 𝜆 tends to 0, whereas when 𝜆 approaches 1, the

performance drops sharply. Thus, using 𝜆 close to 0 repre-

sents a conservative, safe option, and as noted before 𝜆 = 0
is equivalent to ridge regression. When 𝑠 = 0.2 or 0.5, the

performance of pseudovalidation was very similar to using

a real validation phenotype. Both approaches were clearly

superior to the conservative option of setting 𝜆 = 0.001.

When 𝑠 = 0.9 or 𝑠 = 1, pseudovalidation was still clearly

superior to setting 𝜆 = 0.001 for 𝑛 = 10, 000 and 𝑛 = 50, 000
and 𝑃 (causal) = 0.01. In all simulations, the performance of

𝑃 -value thresholding was similar to the use of lassosumwith

𝑠 = 1. Thus, “soft-thresholding” and “hard-thresholding”
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F I G U R E 1 In all of the plots, mean and standard deviation of the correlation of the PGS with the true predictor are plotted. (A) Comparing the

use of a validation dataset with phenotype data and pseudovalidation in selecting the tuning parameter 𝜆. (B) Comparing the performance lassosum, 𝑃 -

value thresholding (p-thres), 𝑃 -value thresholding with clumping (C + T), and LDpred. (C) The effect of using different reference panels on lassosum.

sum stats: The same data from which the summary statistics were simulated, WTCCC sample: a sample of 1,000 from the WTCCC; EUR, European;

EAS, East Asian reference panel from 1000G

appeared to give similar performance. We also observed that

lassosum with 𝑠 = 0.2 or 𝑠 = 0.5 tended to give the best

performance overall. In our implementation of lassosum,

the computation time for 𝑠 = 0.2, 0.5, and 0.9 were similar

(supplementary Figs. S4 and S5). Thus, it is reasonable to

maximize over 𝑠 also using either a validation phenotype or

pseudovalidation when using lassosum. In Figure 1B, we

compare the performance of lassosum with clumping and

𝑃 -value thresholding, as well as with LDpred. For lassosum,

we optimized over both 𝜆 and 𝑠 = {0.2, 0.5, 0.9, 1}. For com-

parison, we optimized over 𝑃 -value thresholds and clumping

𝑅2 = {0.1, 0.2, 0.5, 0.8, no clumping}. For LDpred, we opti-

mized over𝑃 (causal) = {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}.

For 𝑃 -value thresholding, clumping led to a noticeable

increase in prediction accuracy, except when 𝑃 (causal) = 0.1

and 𝑛 = 10, 000. However, in all scenarios, lassosum was

superior to clumping and thresholding. The result was similar

whether the method was optimized using a validation dataset

or pseudovalidation. We found that LDpred did not appear

to have the claimed advantage over 𝑃 -value thresholding in

our simulations. At first, we thought this might be because

the size of the reference sample used was only 1,000, smaller

than the recommended size of at least 2,000 in the paper.

However, we found that the performance of LDpred did not

improve even when the sample size of the reference panel

(and test panels) were set to 5,000 (supplementary Fig. S3).

A possible criticism of our simulations so far is that we per-

formed lassosum by LD blocks defined by Berisa and Pick-

rell (2015), while the summary statistics were also simulated

by the same LD blocks. To address this issue, we repeated
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the analysis using blocks with roughly the same number of

SNPs spread uniformly across the genome. The number of

blocks were made equal to the number of blocks given by

Berisa and Pickrell (2015), but the boundaries were different.

This would allow lassosum to adjust for LD within blocks,

but not LD across blocks in the boundary regions. We also

compared it to the scenario when lassosum was carried out

by chromosomes. The results are presented in supplementary

Figure S4. It can be seen that lassosum by LD blocks and

uniform blocks had nearly identical predictive performance.

Thus, the advantage that lassosum had in our simulations by

sharing the same blocks by which the summary statistics were

generated was negligible. The relative poor performance of

lassosum when carried out by chromosomes is likely due to

confounding by chance correlations between SNPs over long

distances that are not in fact in LD.

In Figure 1C, we examined the effect of using different ref-

erence panels when using lassosum. We generated the sum-

mary statistics using the entire WTCCC sample, and used

four different reference panels for our LD information: (1) the

original WTCCC sample that generated the summary statis-

tics, (2) a sample of 1,000 from the WTCCC, (3) the EUR

subpopulation from the 1000 Genome project, and (4) the

EAS subpopulation from the 1000 Genome project, which

also served as the test sample. It was found that for the small

sample size (𝑛 = 10, 000) scenario the use of the different ref-

erence panels made relatively little difference to predictive

performance. However, as sample size increased, using the

true sample that generated the summary statistics led to

noticeably improved predictive performance. For many sce-

narios, using the 1000 Genome EUR sample as the reference

panel led to a similar performance as using the original sum-

mary statistic sample. A clear advantage for using the sum-

mary statistics sample was only shown in the scenario with

the most power (𝑛 = 250, 000 and 𝑃 (causal) = 0.01). Using

the wrong (EAS) reference sample was clearly inferior when

the sample size was above 50,000, but it was still better than

simple 𝑃 -value thresholding.

Next, we examined the performance of lassosum in a

larger simulated dataset with around 8 million SNPs, with a

focus on clumping, to see whether prefiltering by clumping

can be an effective method in reducing the number of SNPs in

the analysis. The sample size for the summary statistics was

set to 200,000. Six levels of clumping (𝑟2 = 0.01, 0.05, 0.1,

0.2, 0.5, and 0.8) were applied to the data, using a window

size of 250 kb, resulting in around 190,000, 330,000, 430,000,

610,000, 1,170,000, and 1,940,000 SNPs respectively. (The

actual number depends on the simulations.) We did not per-

form LDpred for 𝑟2 > 0.2 because it was too time and memory

intensive. In Figure 2A, we present the results from this sim-

ulation. Here, we see that clumping was beneficial in improv-

ing prediction performance for 𝑃 -value thresholding, and the

best performance was achieved with an 𝑟2 of 0.5 or 0.8. For

lassosum, performance decreased with increasing level of

clumping (decreasing 𝑟2). lassosum with no clumping gave

the best performance overall. LDpred performed poorly in this

simulation, likely because the reference panel size was too

small.

In Figure 2B, we present the results for using real sum-

mary statistics from five large meta-analyses to predict

phenotypes in the WTCCC data. In all cases, the use of

pseudovalidation resulted in a PGS that is close to the max-

imum AUC across all tuning parameters, and was clearly

superior to using 𝜆 = 0.001. For BD, CAD, CD, and RA,

the performance of lassosum, LDpred, and clumping and

thresholding were similar, although a slightly higher AUC

was observed for lassosum. For T2D, the maximum AUC

was surprisingly achieved by 𝑃 -value thresholding without

clumping.

In supplementary Figures S5 and S6, we plot the average

time taken to run lassosum on our computer cluster, using

1 core for each analysis. In general, running times for dif-

ferent values of 𝑠 were similar, although lower values of 𝑠

led to slightly longer running times. However, running times

increased exponentially both with the number of participants

(supplementary Fig. S5) and the number of SNPs (supplemen-

tary Fig. S6). Nonetheless, it was still substantially faster than

LDpred. Although LDpred typically requires hours to run,

lassosum took only minutes.

4 DISCUSSION

In this paper, we have proposed the calculation of PGS using

a penalized regression approach using summary statistics and

examined its performance in simulation experiments. Our

proposed approach, lassosum, in general appeared to give

better prediction than 𝑃 -value thresholding with or without

clumping as well as the recently proposed LDpred, for which

we failed to demonstrate the claimed superior performance

over 𝑃 -value thresholding. Clumping was beneficial for 𝑃 -

value thresholding in most scenarios but not for lassosum.

In some scenarios, clumping actually decreases the predic-

tive power of 𝑃 -value thresholding, such as in our simulations

with 𝑃 (causal) = 0.1 and 𝑛 = 10, 000.

Compared with LDpred, we showed that lassosum is not

only more accurate but also a lot faster. Running lassosum
on a reference panel of around 300,000 SNPs and 1,000 indi-

viduals typically takes only several minutes without parallel

processing. Even when using a reference panel with 8 mil-

lion SNPs and 500 participants, lassosum took around 15

min without parallel processing for each value of 𝑠. The time

taken was similar to that for clumping in PLINK 1.9 and

therefore lassosum had similar speed to clumping and 𝑃 -

value thresholding when run with a small reference sample

size. Increasing the sample size of the reference panel will



MAK ET AL. 9

F I G U R E 2 (A) Performance of lassosum in a large simulated dataset with 𝑛 = 200, 000 using different clumping levels in relation to 𝑃 -value

thresholding and LDpred. Mean and standard deviation of the AUC of the PGS with the true disease status are plotted. (B) Performance of lassosum
vs. other methods when using real summary statistics data from meta-analyses. Predictive accuracy was assessed by prediction in the WTCCC dataset

after the contribution from WTCCC was removed from the summary statistics. p-thres, 𝑃 -value thresholding without clumping; C + T: 𝑃 -value

thresholding with clumping

generally increase prediction accuracy also, although this

comes at a cost of exponentially increasing running times. In

our simulations, we found that gains in prediction accuracy

from a larger reference panel were usually modest. We are

currently working on a parallel implementation of lassosum
and this should be available by the time the article is accepted

for publication.

Another contribution from this paper is the method of

pseudovalidation, which can be applied to any PGS method

that requires a tuning parameter. We showed that it is effective

in selecting a parameter value that is close to the optimum.

Not surprisingly, having a validation dataset with phenotype

data generally provides an even more reliable method for

selecting the tuning parameter. However, in the event where

this is unavailable, pseudovalidation offers an alternative.

Recently, PGS were often used to assess genetic correlation

between two diseases. Oftentimes, the tuning parameter

(or 𝑃 -value threshold) used in the PGS was chosen by

maximizing over the correlation of the PGS with another

disease (e.g., Krapohl et al., 2015). We have not examined

the performance of using this approach to select the tuning

parameter, although it is likely that there will be bias in

estimation of correlations due to winner’s curse.

Although we have focused on the performance of

lassosum as a method, we note that it is more generally an

instance of penalized regression. Potentially, other penalties
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can be used in place of 𝜆||𝜷||11 in Equation (2), which can

lead to even better prediction. We chose the LASSO penalty

because of its simplicity. Other similar methods that can also

be solved using the fast coordinate descent method of Fried-

man, Hastie, Höfling, and Tibshirani (2007) include the non-

negative garotte, LAD-LASSO, and Grouped LASSO.

Some limitations of the present study are worth bearing in

mind when considering these results. For example, summary

statistics may be inflated due to population stratification in

the data where they are generated. As summary statistics are

often derived from meta-analyses, it is also possible that there

is underlying heterogeneity in effect sizes. How these impact

PGS calculation is currently unknown.

Recently, methods for conducting GWAS have moved

beyond the single-disease paradigm. Often, multiple related

diseases are analyzed together to give improved power for

detection of GWAS signals (Andreassen et al., 2013; Chung,

Yang, Li, Gelernter, & Zhao, 2014; Korte et al., 2012; Li,

Yang, Gelernter, & Zhao, 2014; Zhou & Stephens, 2014). Fre-

quently, these new methods operate in the Bayesian frame-

work resulting in Bayes factor or posterior probability of

associations (or alternatively local false discovery rates) for

each SNPs. In principle, we can translate these into 𝑃 -values

(Stephens & Balding, 2009) and thus make use of additional

information to improve PGS predictive performance. Like-

wise, additional information gained in the consideration of

functional annotations of the genome (Kichaev et al., 2014;

Pickrell, 2014; Schork et al., 2013) can be incorporated sim-

ilarly. The simplicity of lassosum makes it an ideal frame-

work from which more complex methods can be developed.
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