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Sequence variants that affect mean fasting glucose levels 
do not necessarily affect risk for type 2 diabetes (T2D). 
We assessed the effects of 36 reported glucose-associated 
sequence variants� on between- and within-subject variance 
in fasting glucose levels in 69,�42 Icelanders. The variant in 
TCF7L2 that increases fasting glucose levels increases between-
subject variance (5.7% per allele, P = 4.2 × �0−�0), whereas 
variants in GCK and G6PC2 that increase fasting glucose levels 
decrease between-subject variance (7.5% per allele, P = 4.9 
× �0−�� and 7.3% per allele, P = 7.5 × �0−�8, respectively). 
Variants that increase mean and between-subject variance in 
fasting glucose levels tend to increase T2D risk, whereas those 
that increase the mean but reduce variance do not (r2 = 0.6�). 
The variants that increase between-subject variance increase 
fasting glucose heritability estimates. Intuitively, our results 
show that increasing the mean and variance of glucose levels 
is more likely to cause pathologically high glucose levels than 
increase in the mean offset by a decrease in variance.

Despite recent advances in the genetics of T2D, understanding of the 
pathophysiology of the disease is still limited. Genome-wide associa-
tion studies have yielded over 80 variants that associate with T2D, 
fasting glucose levels and other glycemic traits2–6. Although there is 
overlap between loci that affect fasting glucose and those that affect 
T2D, the effects of variants on mean fasting glucose do not predict 
their effects on T2D1. Further, none of the eight variants that associ-
ate with hemoglobin A1c (HbA1c), but not fasting glucose, associate 
with T2D, although HbA1c values above 6.5% are used as a diagnostic 
criterion for T2D1.

Most reports on analysis of loci associated with quantitative traits 
have been confined to the effects of variants on the means of traits. 

However, variants can also affect the variability of traits (variance 
heterogeneity)7. Such loci have been reported for some human traits, 
including the major histocompatibility complex (MHC) region for 
rheumatoid arthritis8, FTO for body mass index (BMI)9, SLC2A9 for 
serum urate10, LEPR for C-reactive protein and ICAM1 for soluble 
ICAM1 (ref. 11), as well as for traits in other species like rats12, flies13 
and plants14. Further, variants can also affect the variability in meas-
urements taken from the same individual. We refer to these two types 
of variability as between-subject and within-subject variance. Here we 
estimate the variance effects of variants that have been associated with 
fasting glucose levels1 and examine how their effects on variance cor-
relate with their effects on T2D risk. We also estimate how the effects 
of these variants on variance affect heritability estimates.

We chip genotyped 117,548 Icelanders with glucose measurements 
performed at three laboratories (Fig. 1, Table 1, Supplementary Fig. 
1 and Supplementary Tables 1–4). Of the subjects, 8,797 (7.5%) had 
T2D or were on diabetes medication15. Furthermore, 366 individuals 
had type 1 diabetes (T1D). The primary glucose variance association 
analysis was performed on individuals with fasting glucose levels (set 
I). Additionally, we generated three data sets for secondary analysis; 
one comprising individuals with fasting and/or non-fasting glucose 
levels (set II) and the previously listed data sets I and II after excluding 
T2D and T1D cases and individuals on diabetes medication.

Of the 36 known variants associated with glucose levels1, 3 associ-
ated with between-subject variance consistently in all four analyses 
(P < 0.05/36 = 0.0014) (Fig. 1a and Supplementary Tables 3–5).  
One variant, rs7903146 in TCF7L2, is the strongest common T2D- 
associated variant2,16. The allele at this SNP associating with higher 
glucose levels and increased T2D risk was associated with greater 
between-subject glucose variance. In contrast, the alleles of rs560887 
in G6PC2 and rs2908289 in GCK that are associated with increased 
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glucose1 associated with less between-subject variance. The variant in 
G6PC2 does not associate significantly with T2D whereas the variant  
in GCK slightly increases T2D risk in the DIAGRAM Consortium  
(odds ratio (OR) = 1.04, P = 0.018; Supplementary Table 2).

We also estimated the effects of the 36 variants on the within-sub-
ject variance in glucose levels (Fig. 1b). The glucose-increasing alle-
les of three variants—rs560887 in G6PC2, rs6943153 in GRB10 and 
rs2908289 in GCK—associated consistently with less within-subject 
variance in all four analyses (Supplementary Tables 3–5).

On the basis of a T2D meta-analysis (12,171 cases and 56,862 controls  
of European ancestry)2, 22 of the 36 variants with an effect on mean 
fasting glucose levels also associate with T2D. However, their effects 
on fasting glucose levels and T2D risk were weakly correlated (r2 = 0.02  
between the effect on the mean (β) and log(OR), P = 0.21; an F test 
was performed in all regression analysis) (Fig. 2a). Interestingly, 
the effect of a variant on between-subject variance in fasting glu-
cose combined with its effect on mean fasting glucose predicted the 
effect of this variant on T2D much better than the effect on the mean 
alone (r2 = 0.61, P value for adding effect on between-subject vari-
ance = 5.7 × 10−8). Even on its own, the effect on between-subject  

variance predicted the T2D effect reasonably well (r2 = 0.38,  
P = 3.3 × 10−5) (Fig. 2b). Therefore, variants that increase both the 
mean and between-subject variance of glucose levels increase the 
risk of T2D more than variants that increase the mean but reduce the 
between-subject variance.

The effect on within-subject glucose variance was a worse predic-
tor of T2D risk than the effect on between-subject variance (r2 = 0.24) 
(Supplementary Table 6), and it did not improve prediction of T2D 
beyond the mean and between-subject effects (P = 0.091).

Interaction between sequence variants and environmental fac-
tors such as nutrition is a possible source of between-subject vari-
ance11. It has previously been reported that heterogeneity in T2D 
associations is introduced by BMI17,18. We estimated the interac-
tion effects between the 36 glucose-associated variants and BMI 
on fasting glucose (n = 39,986). The interaction effects were 
correlated with the between-subject variance effects (r2 = 0.12,  
P = 0.020) (Supplementary Fig. 2 and Supplementary Table 7). 
These results show that the effects of variants are affected by envi-
ronment, although only a small fraction of the effects on between-
subject variance are mitigated through interaction with BMI.

table 1 summary of the data
n measurements T2D T1D Age YOB

n Mean Q1 Median Q3 Mean Range n % n % Mean s.d. Mean s.d.

Fasting glucose levels (set I)

 Male 28,981 5.8 5.0 5.5 6.2 3.0 1–55 3,296 11.4 76 0.3 61.6 15.2 1947.4 16.1

 Female 40,161 5.4 4.8 5.2 5.7 3.0 1–94 3,059 7.6 78 0.2 59.0 17.1 1950.5 18.1

All glucose levels (set II)

 Male 51,911 6 5 5.6 6.5 8.2 1–234 4,676 9.0 185 0.4 62.9 16.2 1943.9 16.7

 Female 65,637 5.6 4.8 5.3 6.0 7.8 1–280 4,121 7.3 181 0.3 60.3 18.2 1946.6 18.7

HbA1c (first measurement)

 Male 18,107 5.8 5.2 5.5 5.9 – – 3,041 16.8 56 0.3 60.1 15.1 1948.9 15.8

 Female 22,945 5.6 5.2 5.5 5.8 – – 2,676 11.7 47 0.2 56.9 17.2 1952.1 17.7

T2D, type 2 diabetes; T1D, type 1 diabetes; YOB, year of birth; Q1, first quartile; Q3, third quartile.
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Figure 1 Effects of 36 published fasting-glucose-associated variants on between-subject and within-subject variance in fasting glucose levels and 
between-subject variance in HbA1c levels. Effects on variance are given for the allele that increases fasting glucose levels (supplementary table 3). 
Variants are colored blue if they significantly decrease the variance and red if they significantly increase it (likelihood-ratio test, P < 0.05/36 = 0.0014). 
(a) Effects on between-subject variance in fasting glucose (log(αBS)) and 95% confidence intervals for the estimated effects. (b) Effects on within-
subject variance in fasting glucose levels (log(αWS)) and 95% confidence intervals for the estimated effects. (c) Effects on between-subject variance in 
HbA1c (log(αBS)) and 95% confidence intervals for the estimated effects.
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An undetected secondary variant can create a variance effect for 
the primary variant. However, secondary signals at the loci associ-
ated with between-subject variance had no impact on variance effects 
(Supplementary Table 8). Another possible source of effects on 
between-subject variance is interaction between loci. For the three 
variants associated with between-subject variance, we found no inter-
action (Supplementary Table 9).

To validate these variance effects, we analyzed a sample of 10,437 
Iranians with 44,470 fasting glucose measurements from the prospec-
tive Tehran Lipid and Glucose Study19. We replicated the association 
of the variants in TCF7L2, GCK and G6PC2 with between-subject 
variance and the association of the G6PC2 and GCK variants with 
within-subject variance (Supplementary Tables 5 and 10).

HbA1c reflects the average plasma glucose concentration over 3 
months, and an HbA1c value above 6.5% is used as a diagnostic cri-
terion for T2D15. HbA1c measurements were available for 41,052 
Icelanders with genotype information (Table 1 and Supplementary 
Table 1). The number of measurements per subject was correlated 
with HbA1c. Therefore, we only used the first measurement for each 
subject in our analysis.

The pattern of effect for the 36 markers on between-subject 
HbA1c variability is consistent with the results for fasting glucose  
(Fig. 1, Supplementary Fig. 3 and Supplementary Table 11). Of  
the 36 variants, the variants in TCF7L2 and G6PC2 were associ-
ated with between-subject variance (4.5% increase per allele, P =  
4.5 × 10−5 and 6.9% decrease per allele, P = 4.0 × 10−10, respectively;  

a likelihood-ratio test was performed in all genome-wide associa-
tions). As for fasting glucose, the effect on between-subject variance 
in HbA1c increased the prediction accuracy of the effect on T2D  
(r2 = 0.54 for the mean only, r2 = 0.77 for the mean and between- 
subject variance effect, P value for adding the between-subject vari-
ance effect = 1.4 × 10−6) (Fig. 2c,d and Supplementary Table 6e).

Eight variants have been reported to affect HbA1c without affect-
ing fasting glucose, none of which have an effect on T2D1,20. These 
variants associate with red blood cell homeostasis and iron metabo-
lism (Supplementary Table 12). Interestingly, the HbA1c-increasing  
allele for all eight markers lowered between-subject variance 
(Supplementary Figs. 4 and 5, and Supplementary Table 13), of 
which two were significantly associated with lower between-subject 
variance (P < 0.05/8 = 0.0063): rs10159477[G] in HK1 was associated 
with 5.1% lower variance per allele (P = 0.0024) and rs6474359[T] in 
ANK1 was associated with 8.0% lower variance per allele (P = 0.0044). 
The increase in the mean was offset by lower variance for carriers of 
these variants, and these individuals are therefore less likely to have 
high HbA1c measures. This may explain why carriers of these HbA1c-
increasing variants are not likely to be misclassified as diabetic20.

We constructed genetic risk scores (GRSs), based on the 36 variants, 
for both mean and between-subject variance of fasting glucose levels. 
Both GRSs were associated with T2D (P < 3.1 × 10−39; Fig. 3 and 
Supplementary Table 14). Adding the GRS for between-subject vari-
ance to the GRS for the mean increased residual Nagelkerke’s pseudo-
r2 from 0.4% to 1.0% (P = 5.4 × 10−67; Supplementary Table 14).  
Similarly, GRSs based on the 36 variants for glucose levels and the 
8 variants for HbA1c measures were associated with T2D (P < 3.4 
× 10−28; Fig. 3 and Supplementary Table 14). This shows that the 
effects of variants on between-subject variance have an impact on 
genetic T2D risk prediction that is comparable to that from their 
effects on the mean.

The heritability of a trait is the fraction of variance attributable to 
genetics. Classical estimates of heritability ignore the impact of vari-
ants on phenotypic variance. Most heritability estimates are based on 
relating the correlation between relative pairs to the genetic sharing 
between relatives21. Correlation between relatives corresponds to the 
ratio of their covariance and the geometric mean of their phenotypic 
variances. Variants that affect variance will have a substantial impact 
on the denominator. However, their effect on covariance is unpredict-
able. In our data, we had fasting glucose measures and genotypic infor-
mation for 35,965 sibling pairs and 38,527 parent–offspring pairs. To 
investigate the effect of variants on the covariance between relatives, 
we calculated the covariance for genotype-concordant relative pairs 
and estimated the relationship between genotype and covariance. For 
the 36 variants associated with glucose levels, the mean covariance 
trend in siblings and parent–offspring pairs correlated positively with 
the between-subject variance effect (r2 = 0.22, P = 2.1 × 10−3) (Fig. 4a 
and Supplementary Table 15). If the increase in covariance per allele 
was higher than the variance effect, the correlation was also increased 
and the variants therefore also increased the estimated narrow-sense 
heritability. The variant in TCF7L2 had the strongest trend of 17.6% 
increased covariance (P = 4.1 × 10−4) (Fig. 4b). The between-subject 
variance effect of TCF7L2 was 5.7% per allele, and the correlation was 
therefore increased by 11.3% per allele.

We have shown that variants in TCF7L2, GCK, G6PC2 and GRB10 
that affect mean fasting glucose levels also associate with variance 
in glucose. The variance effects remain after the removal of diabetic 
cases and individuals on diabetes medication. The two variants that 
lower between-subject variance do not associate with T2D risk, and 
their variance effect is thus not driven by a diabetes medication. 

0.3

0.2

0.1

0.0

–0.1

0.00 0.05 0.10 0.15 –0.10 –0.05 0.00 0.05 0.10

–0
.0

2
0.

00
0.

02
0.

04
0.

06
0.

08

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

–0
.0

8
–0

.0
6

–0
.0

4
–0

.0
2

0.
00

0.
02

0.
04

0.
06

HbA1c, mean effect HbA1c, BS variance effect

r2 = 0.33r2 = 0.54

r2 = 0.02 r2 = 0.38TCF7L2

TCF7L2TCF7L2

TCF7L20.3

0.2

0.1

0.0

–0.1

Fasting glucose, mean effect Fasting glucose, BS variance effect

G6PC2 G6PC2

G6PC2 G6PC2

GCKGCK

Lo
g(

T
2D

 O
R

)

Lo
g(

T
2D

 O
R

)

a b

c d
Lo

g(
T

2D
 O

R
)

Lo
g(

T
2D

 O
R

)

Figure 2 Effects of 36 published fasting-glucose-associated variants 
on fasting glucose and HbA1c, and between-subject variance in fasting 
glucose and HbA1c versus their effects on type 2 diabetes risk. Effects on 
fasting glucose were estimated in the Icelandic data, while effects on T2D 
risk were obtained from a T2D meta-analysis2 (T2D-GENES Consortium, 
GoT2D Consortium, DIAGRAM Consortium; see URLs) (supplementary 
tables 2, 3 and 11). Effects are given for the allele that increases fasting 
glucose levels. Variants are colored blue if they significantly decrease 
variance and red if they significantly increase it (P < 0.05/36 = 0.0014). 
(a) Fasting glucose mean effect (β) against log(T2D OR). (b) Fasting 
glucose between-subject variance effect (log(αBS)) against log(T2D OR). 
(c) HbA1c mean effect (β) against log(T2D OR). (d) HbA1c between-
subject variance effect (log(αBS)) against log(T2D OR).
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Conversely, removal of diabetic cases could create a variance effect in 
the presence of an effect on the mean, although we do not observe this 
phenomenon in our data. It is, however, likely that variants’ effects on 
variance are at least partly due to their interaction with other variants 
and/or with environmental factors. This hypothesis is supported by 
the correlation between the variants’ between-subject variance effects 
and their interaction with BMI.

We have also shown that variants that increase both mean fasting 
glucose levels and between-subject glucose variance increase T2D 
risk more than variants that increase fasting glucose but reduce the 
between-subject variance. These results largely account for the appar-
ent discrepancy between the effects of variants on fasting glucose and 
their effects on T2D risk. This result is intuitively appealing, as T2D is 
primarily a disease of too high glucose; variants that increase both the 
mean and variance for glucose are more likely to be associated with 
pathologically high glucose levels than variants that only increase the 
mean or even have an increase in the mean offset by lower variance.

The variants in GCK, G6PC2 and TCF7L2 all affect fasting glu-
cose levels, but their effects on T2D risk are not proportionate to 
their effects on glucose22. This may reflect different roles in glucose 
regulation. GCK and G6PC2 encode enzymes that regulate glucose 
homeostasis, effectively establishing the glucose set point. Variants 
that increase mean glucose through these proteins will be countered 
by pressure to keep the glucose level within the physiological range, 
leading to reduced variance associated with these variants both within 
and between subjects. Similarly, variants that associate with increased 
HbA1c but not fasting glucose or T2D all associate with erythro-
cyte physiology and iron homeostasis and, where significant, lower 
HbA1c variance. Overall, this indicates low tolerance for variability 
in homeostatic regulation. In contrast, the variant associated with 
the highest variance in glucose levels is located in TCF7L2, which 
encodes a transcription factor that is thought to affect glucose levels 
through complex regulation of beta cell mass and function23. This 
variant affects beta cell response to glucose, leading to greater sen-
sitivity to the environment and, thus, greater variability in glucose 
levels among carriers.

Only 2% of the heritability of fasting glucose levels is attributable 
to the effect of the 36 glucose-associated variants on mean levels. 
We have shown that variants that increase between-subject variance 
create positive covariance between individuals beyond their effects 
on the mean, increasing heritability estimates based on correlation 
between relative pairs. The effect of these markers on heritability is 

substantial and so is their contribution to the missing heritability of 
fasting glucose levels. Further, the effects of variants on the variability 
between individuals in glucose and HbA1c levels are as important for 
genetic risk prediction as the effects of variants on the mean.

URLs. T2D-GENES Consortium, GoT2D Consortium, DIAGRAM 
Consortium (2016-09-12), http://www.type2diabetesgenetics.org/.
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variants. (b) HbA1c GRS based on the 36 fasting-glucose-associated 
variants and 8 HbA1c-associated variants.
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Figure 4 Covariance between genotype-concordant relative pairs.  
(a) Effects of 36 published fasting-glucose-associated variants on 
between-subject variance in fasting glucose levels and their glucose level 
covariance trends in pairs of relatives (supplementary table 15). Effects 
are given for the allele that increases fasting glucose levels. Variants are 
colored blue if they significantly decrease the variance and red if they 
significantly increase it (P < 0.05/36 = 0.0014). (b) Estimated covariance 
and correlation of fasting glucose measurements among pairs of relatives 
with the same genotype at TCF7L2 and the 95% confidence intervals for 
the covariance and correlation estimates.
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oNLINe MeThoDS
Study subjects. Iceland. Measurements of glucose levels were available 
for a total of 117,548 Icelanders genotyped using Illumina chips. All study  
participants provided informed consent, and the study was approved by  
the Data Protection Commission of Iceland and the Icelandic National 
Bioethics Committee.

Iran. The Iranian subjects are part of the ongoing Tehran Lipid and Glucose 
Study19, including 10,437 Iranians with 44,470 fasting glucose measurements 
genotyped using Illumina chips. All study participants provided informed 
consent. The study has been approved by the National Research Council of the 
Islamic Republic of Iran (no. 121) and has been performed with the approval 
of the Human Research Review Committee of the Endocrine Research Center, 
Shahid Beheshti University (M.C.).

SNP selection. The 36 fasting-glucose-associated variants were identified 
in a genome-wide association meta-analysis of up to 133,010 individuals of 
European ancestry without diabetes, including individuals genotyped using 
the Metabochip1.

Whole-genome sequencing. The process used for whole-genome sequencing 
of the 8,453 Icelanders and the subsequent imputation have been described 
in a recent publication24.

Association testing. Mean effect. Both fasting and non-fasting glucose 
measurements were transformed to a standard normal distribution using a 
rank-based inverse-normal transformation within each sex and each source 
separately and adjusted for age at measurement using a generalized additive 
model25. For each SNP, a classical linear regression, using the genotype as an 
additive covariate and mean glucose levels per subject as a response, was fit 
to test for association.

Between-subject variance effect. For each SNP, we fit a normal model where 
the mean glucose level per subject was regressed against the genotype and 
the between-subject variance was assumed to change multiplicatively with 
the genotype so that for non-carriers, heterozygotes and homozygotes the 
between-subject variance was assumed to be σ2, αBSσ2 and a sBS

2 2, respectively 
(Supplementary Note).

Within-subject variance effect. For each SNP, we fit a normal model 
where glucose level measurements were regressed against the genotype and 
the within-subject variance was assumed to change multiplicatively with 
the genotype so that for non-carriers, heterozygotes and homozygotes the 
within-subject variance was assumed to be σ2, αWSσ2 and a sWS

2 2, respectively 
(Supplementary Note).

Subjects in the data sets were related, causing the χ2 test statistic to have 
mean >1 and median >0.675. We used a subset of 640,250 common SNPs to 
estimate the inflation factor λ and computed all P values by dividing the corre-
sponding χ2 values by λ to adjust for both relatedness and potential population 
stratification26. For the fasting glucose data set (I), λ = 1.14, and λ = 1.21 when 
estimating between-subject and within-subject variance effects, respectively.

BMI interaction effect. For each SNP, we fit an interaction regression model, 
using the genotype, BMI and the interaction term between the genotype and 
BMI as covariates and mean fasting glucose levels as the response. Both glu-
cose levels and BMI measurements were transformed to a standard normal 
distribution using a rank-based inverse-normal transformation within each 
sex and each source separately and adjusted for age at measurement using a 
generalized additive model25.

Thresholds for significance. In the set of 36 variants, significance thresholds for 
between-subject and within-subject variance effect were set to control the false dis-
covery rate at 5% using standard Bonferroni correction (P < 0.05/36 = 0.0014).

Trend analysis. We assessed the relationship between the effects of sequence 
variants on mean and variance effects on glucose levels and their effect on T2D 
(log(OR)) using the following models:

A. T2D effect versus glucose mean effect: log(OR) = y1β + ε;
B. T2D effect versus glucose between-subject variance effect: log(OR) = 

y2log(αBS) + ε;
C. T2D effect versus glucose mean and between-subject variance effect: 

log(OR) = y1β + y2log(αBS) + ε;
D. T2D effect versus glucose mean effect, between-subject variance effect 

and the interaction between glucose mean and between-subject variance 
effect: log(OR) = y1β + y2log(αBS) + y3(β × log(αBS)) + ε;

E. T2D effect versus glucose within-subject variance effect: log(OR) = 
y4log(αWS) + ε;

F. T2D effect versus glucose mean and within-subject variance effect: 
log(OR) = y1β + y4log(αWS) + ε;

G. T2D effect versus glucose mean, between-subject variance and within-
subject variance effect: log(OR) = y1β + y2log(αBS) + y4log(αWS) + ε

where β is the glucose mean effect, αBS is the between-subject variance 
effect and αWS is the within-subject variance effect. All models were fitted 
with a simple weighted linear regression where each variant was weighted 
by f(1 − f), where f is the minor allele frequency of the variant, such that 
rare variants have less weight in the computation than common variants. 
The estimates and measures of goodness of fit are given in Supplementary 
Table 6.

Genetic risk scores. GRSs were constructed for both fasting glucose and 
HbA1c levels by combining the effect allele counts for the selected variants 
weighted by either the estimated mean effect or the between-subject variance 
effect of each allele on the trait.

Heritability. The correlation between close relative pairs is usually used to 
estimate heritability21. To assess how much variants effecting between-subject 
variance can contribute to heritability estimates, for each SNP, we estimated 
the covariance between siblings having the same genotype. Then, we per-
formed a weighted linear regression between the estimated covariance and 
the genotype to assess the covariance trend. We weighted by the number of 
siblings having the genotype divided by the squared phenotypic variance given 
the genotype (Supplementary Note). This was repeated for parent–offspring 
pairs. The correlation between relatives is the ratio of their covariances and 
the geometric mean of their phenotypic variances. The correlation trend was 
therefore computed as the ratio of the covariance trend and variance trend 
(Supplementary Note).

A Life Sciences Reporting Summary for this paper is available.

Code availability. The code used to detect between-subject and within-subject 
variance effects is available as Supplementary Code.

Data availability. The authors declare that the data supporting the findings 
of this study are available within the article, its supplementary information 
files and upon request.

24. Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic 
population. Nat. Genet. 47, 435–444 (2015).

25. Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–310 
(1986).

26. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 
997–1004 (1999).
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    Experimental design
1.   Sample size

Describe how sample size was determined. The sample size was determined by how many glucose measurements was 
available to us from the three laboratories in Iceland. 

2.   Data exclusions

Describe any data exclusions. Data was excluded for subjects under 18 years old. 

3.   Replication

Describe whether the experimental findings were reliably reproduced. We replicated our findings in an Iranian dataset.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

NA

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

NA

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. We used R to analyze the data and produce figures along with custom 
code. 
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For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell line was used.

b.  Describe the method of cell line authentication used. No eukaryotic cell line was used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell line was used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

See Study subjects chapter in Methods
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