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Testing for associations in big data faces the problem of 
multiple comparisons, wherein true signals are difficult to 
detect on the background of all associations queried. This 
difficulty is particularly salient in human genetic association 
studies, in which phenotypic variation is often driven by 
numerous variants of small effect. The current strategy to 
improve power to identify these weak associations consists 
of applying standard marginal statistical approaches and 
increasing study sample sizes. Although successful, this 
approach does not leverage the environmental and genetic 
factors shared among the multiple phenotypes collected in 
contemporary cohorts. Here we developed covariates for 
multiphenotype studies (CMS), an approach that improves 
power when correlated phenotypes are measured on the  
same samples. Our analyses of real and simulated data provide 
direct evidence that correlated phenotypes can be used to 
achieve increases in power to levels often surpassing the power 
gained by a twofold increase in sample size.

Performing agnostic searches for associations between pairs of variables in 
large-scale data, using either common statistical techniques or machine-
learning algorithms, faces the problem of multiple comparisons. This 
problem is particularly present in genetic association studies, in which 
contemporary cohorts have access to millions of genetic variants as well as 
a broad range of clinical factors and biomarkers for each individual. With 
billions of candidate associations, identifying a true association of small 
magnitude is extremely challenging. Standard analysis approaches cur-
rently consist of examining the data in one dimension (i.e., testing a single 
outcome with each of the millions of candidate genetic predictors) and 
applying univariate statistical tests—the commonly named genome-wide 
association study (GWAS) approach1,2. To increase power, GWAS relies 
on increasing the sample size to reach the multiple-comparisons-adjusted  
significance level. The largest studies to date, including hundreds of  

thousands of individuals across dozens of cohorts, have decreased the 
limit of detectable effect sizes. For example, researchers have reported 
genetic variants explaining less than 0.01% of the total variation in body 
mass index3.

In addition to the substantial financial costs of collecting and geno-
typing large cohorts, this brute-force approach has practical limits. 
More importantly, this approach does not leverage the large amount 
of additional phenotypic and genomic information measured in many 
studies. Joint analyses of multiple phenotypes with each predictor of 
interest (for example, multivariate analysis of variance (MANOVA) and 
MultiPhen)4–6 offer a gain in power but have three major drawbacks. 
First, a significant result can be interpreted only as an association with 
any one of the phenotypes. Although this information is useful for 
screening purposes, it is insufficient to identify specific genotype–phe-
notype associations6. Second, such analyses make the replication proc-
ess difficult, because association signals in the discovery sample depend 
on many parameters including the phenotypic correlation and the effect 
of the genotype on each phenotype. Third, joint tests have lower power 
than do univariate tests when only a small proportion of the phenotypes 
are associated with the tested genetic variant. This lower power is a 
simple problem of dilution: a small number of true associations mixed 
with many null phenotypes decreases the power.

In this work, we developed covariates for multiphenotype studies 
(CMS), a method that improves association-test power in multipheno-
type studies while providing the resolution of univariate tests. When 
testing for association between a genotype and a phenotype, CMS 
allows the other collected correlated phenotypes to serve as covari-
ates. The core of the method is a principled approach to selecting a 
set of these covariates that are correlated with the phenotype but not 
with the genotype, thereby decreasing phenotypic variance independ-
ently of the genotype and concomitantly increasing power. Via applica-
tion of CMS to simulated and real data, we found that CMS scales to 
thousands of phenotypes, produces gains in power equivalent to that  
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resulting from a two- to threefold increase in sample size, and outperforms  
other recently proposed multiphenotype approaches with univariate  
resolution, including a Bayesian approach (multivariate Bayesian impu-
tation-based association mapping (mvBIMBAM7)) and dimensionality-
reduction approaches (principal component analysis8 and probabilistic 
estimation of expression residuals (PEER9).

RESULTS
Covariates as a proxy for unmeasured causal factors
The objective of this work was to develop a method that keeps the 
resolution of univariate analysis in testing for association between 
outcome Y and candidate predictor X, but takes advantage of other 
available covariates C = (C1, C2,…Cm) to increase power. Consider 
the inclusion of covariates correlated with the outcome in a standard 
regression framework. This inclusion may increase the signal-to-noise 
ratio between the outcome and the candidate predictor when testing Y 
= X + CL, where CL  C. Selection of which covariates Ci are relevant to 
a specific association test is usually based on causal assumptions10,11. 
Epidemiologists and statisticians commonly recommend inclusion 
of two types of covariates in testing for association between X and 
Y: (i) those that are potential causal factors of the outcome and inde-
pendent of X and (ii) those that may confound the association signal 
between X and Y, i.e., variables such as principal components (PCs) 
of genotypes or covariates that capture undesired structures in the 
data that can lead to false associations12. All other variables that vary 
with the outcome because of shared risk factors are usually ignored. 
However, those variables carry information about the outcome and 
more precisely about the risk factors of the outcome. Because they 
potentially share dependencies with the outcome, they can be used 
as proxies for unmeasured risk factors. As such, they can be incorpo-
rated in CL to improve the detection of associations between X and Y. 
However, when these variables depend on the predictor X, using them 
as covariates can lead to both false-positive and false-negative results 
depending on the underlying causal structure of the data.

The presence of interdependent explanatory variables, also 
known as multicollinearity13, can induce bias in the estimation of 
the predictor’s effect on the outcome. We have recently discussed 
this issue in the context of GWAS adjusting for heritable covariates14. 
To illustrate this collider bias, consider first the simple case of two 
independent covariates U1 and U2 that are true risk factors of Y. In 
testing for association between X and Y, adjusting for U1 and U2 can 
increase power, because the residual variance of Y after the adjust-
ment is smaller while the effect of X is unchanged (Fig. 1a), i.e., the 
ratio of the outcome variance explained by X over the residual vari-
ance is larger after removal of the effects of U1 and U2. However, in 
practice, true risk factors of the outcome are rarely known. Consider 
instead the more realistic scenario in which U1 and U2 are unknown,  
but a covariate C, which also depends on those risk factors, has been 
measured. Because of their shared etiology, Y and C display a posi-
tive correlation, and when X is not associated with C, adjusting Y 
for C increases the power to detect (Y,X) associations (Fig. 1b). 
Problems arise when C is associated with X. In that case, adjusting Y 
for C biases the estimation of the effect of X on Y, thereby decreas-
ing the power when the effect of X is concordant between C and Y  
(Fig. 1c), and inducing a false signal when X is not associated with Y 
(Fig. 1d). The same principles apply when multiple covariates cor-
related with the outcome are included.

When none of the covariates depend on the predictor (Fig. 1a,b), 
their inclusion in a regression can decrease the variance of the out-
come without confounding, thus the increasing statistical power while 
maintaining the correct null distribution. This gain in power can be 

easily described in terms of an equivalent sample-size increase. The 
noncentrality parameter (ncp) of the standard univariate chi-square 
test between X and Y is ncp nXY X Y X= × −( )p s p2 2 2/ , where n, sY

2  and 
p X

2  are the sample size, the total variance of the outcome Y, and 
the squared correlation between X and Y, respectively. When reduc-
ing sY

2  by a factor γ through covariate adjustment, and assuming 
that the effect of X on Y is small, so that s p sY X Y

2 2 2− ≈ , ncpXY can 
be approximated by n nX Y X Y× × = × ( )p s g g p s2 2 2 2/( ) ( / ) / . For example, 
when the covariates explain 30% of the variance of Y, the power of the 
adjusted test is equivalent to that when a sample size ~1.4-fold larger 
(as compared with the unadjusted test) is analyzed. When covariates 
explain 80% of the phenotypic variance—a realistic proportion in 
some genetic data sets examined below—the power gain is equivalent 
to that resulting from a fivefold increase in sample size (Fig. 2a).

Selecting covariates for each outcome–predictor pair
The central problem that must be solved is how to select a subset of 
the available covariates to optimize power while preventing induction 
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Figure 1  Variance components of adjusted variables. (a–d) Illustrations of 
the components of the variance of outcome Y before and after adjusting 
for other variables. The predictor of interest X is displayed in red. In a, 
the adjusting variables (U1 and U2) are true causal factors that have 
direct effects on Y; therefore, adjusting Y for U1 and U2 (thus yielding 
Yadj) decreases the variance of Y. In b, the true factors are not measured, 
but a variable C influenced by U1 and U2, is measured. Adjusting Y for 
C decreases the residual variance of Y but also introduces a component 
of the variance specific to C. In c, the covariate shares factors with Y but 
is also influenced by X. When the effect of X on C is concordant with the 
effect of X on Y, a power loss may be induced. In d, Y is not associated 
with the predictor, and adjusting for C can induce a false-association 
signal by introducing the effect of X into the residual of Y. 
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of false-positive associations between the outcome and the predictor. 
To perform this selection, all covariates associated with the outcome 
should be included except those also associated with the predictor. A 
naive solution would consist of filtering out covariates on the basis of 
a P-value threshold from the association test between each covariate 
and the predictor (for example, removing predictors with a predic-
tor–covariate association P <0.05). However, unless the sample size 
were to be infinitely large, type I covariates (covariates associated with 
the predictor) would be included. Furthermore, such a filtering would 
also imply that some type II covariates (covariates not associated with 
the predictor) would be removed because they would incidentally 
pass the P-value threshold. Interestingly, removing type II covariates 
by using this approach not only results in a suboptimal test but also 
induces an inflated false-positive rate (Supplementary Fig. 1). In 
brief, when the outcome and the covariate are correlated, a low predic-
tor–covariate P value implies a low predictor–outcome P value. As a 
result, the P-value distribution from the subset of predictor–outcome-
unadjusted statistics (those for which the predictor–covariate P value 
is below the threshold) is enriched for low P value, while the comple-
mentary subset of predictor–outcome-adjusted statistics is expected 
to be uniform, thus resulting in an overall inflation of type I error for 
the approach (Supplementary Note and Supplementary Fig. 2).

In this work, we developed CMS, a computationally efficient heu-
ristic to improve the selection of type II covariates while removing 
type I covariates. We present an overview of the approach, and com-
plete details of the algorithm are provided in the Online Methods and 
the Supplementary Note.

Let d̂  and b̂  be the marginal estimated regression coefficients 
between X and C, and between X and Y (not adjusted for C), respec-
tively, and let ĝ  be the estimated correlation between Y and C. Naive 
P-value-based filtering, i.e., unconditional filtering on d̂ , assumes that 
under the null (δ = 0), d̂  is normally distributed with E d̂( ) = 0  and 
variance 1/n, where n is the sample size. The central advance of CMS 
is to additionally use the expected mean and variance of d̂  conditional  
on b̂  under a complete null model (δ = β = 0)). We show that these can 
be approximated as: E ˆ ˆ ˆ ˆd b bg|( ) ≈  and var var nˆ ˆ ˆ ˆ ˆ ˆ /d b d bg g|( )≈ −( )= −( )1 2  
(Supplementary Note and Supplementary Fig. 3).

The bias observed from naive univariate P-value filtering 
(Supplementary Fig. 1) is induced by the misspecification of the 
expected mean and variance of the estimate of the predictor–covari-
ate effect when the predictor is associated with neither the outcome 
nor the covariates. The d̂  inclusion area for a P-value threshold of 
5%—i.e., if d̂  is outside the inclusion area, the covariate C is fil-
tered out—based on the unconditional distribution is illustrated 
in Figure 3a. Using the distribution of d̂  conditional on b̂  to select 
covariates is also a poor solution resulting in a deflated test statistic 
for b̂ , owing to an overestimation of the standard error of b̂  when 
adjusting for the selected covariates (Supplementary Table 1 and 
Supplementary Figure 4, which describe the simple case of a single 
covariate). The improvement from CMS is derived from defining the 
inclusion area as a combination of the unconditional and conditional 
distributions of d̂  (Fig. 3b,c). This procedure solves the inflation 
observed in Supplementary Figure 1 and leads to a valid test under 
the complete null model with a variable number of available covariates 
(Supplementary Fig. 3 and Supplementary Table 1).

Finally, to decrease the risk of false positives, the algorithm scales 
inclusion areas on the basis of the total amount of the outcome’s vari-
ance explained by Cl∈L and b̂ .  To further improve the performance 
of filtering covariates, we also considered the omnibus association 
test between Cl∈L and Y, which can be more effective when multiple 
covariates have small to moderate effects (Supplementary Note).

Simulated data analysis and method comparisons
We first assessed the performance of the proposed method through a 
simulation study in which we generated series of multiphenotype data 
sets over an extensive range of parameter settings (Online Methods 
and Supplementary Note). Each data set included n individuals 
genotyped at a SNP with the minor allele frequency (MAF) drawn 
uniformly from [0.05, 0.5], a normally distributed phenotype Y, and 
m = [10, 40, 80] correlated covariates C = (C1, C2,…Cm). Under the 
null, the SNP did not contribute to the phenotype, and under the 
alternate, the SNP contributed to the phenotype under an additive 
model. In some data sets, the SNP also contributed to a fraction  
π = [0%, 15%, 35%] of the covariates. These were the covariates that 
we sought to identify and filter out of the regression. We considered 
sample sizes (n) of 300, 2,000, and 6,000, and we varied rC

2 , the vari-
ance of Y explained by C, from 25% to 75%. We varied the effect of 
the predictor on Y and C, when relevant, from almost undetectable 
(median χ2 = 3) to relatively large (median χ2 = 20). For each choice 
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Figure 2  Examples of shared variance in real data and equivalent 
increases in sample size. (a) Equivalent increase in sample size as a 
function of the variance of the outcome explained by covariates, assuming 
initial sample sizes ranging from 100 to 10,000. (b,c) Distribution of 
variance explained by other variables for 79 metabolites from the PanScan 
study (b) and a random subsample of expression abundance estimates 
from 79 genes in the gEUVADIS study (c). The size of the bar corresponds 
to the total variance of each outcome explained by other available 
covariates, and the relative contributions of these covariates to each 
outcome are illustrated with different sets of random colors for each bar.
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of parameters, we generated 10,000 replicates and performed four 
association tests: (unadjusted) linear regression (LR), LR with cov-
ariates included based on P-value filtering at an α threshold of 0.1 
(FT), CMS, and an oracle method including only the covariates not 
associated with the SNP (OPT), which was the optimal test regarding 
our goal. We considered a total of 432 scenarios, and the type I error 
rate of CMS was well calibrated across parameter ranges (Fig. 4 and 
Supplementary Tables 2–4). Notably, we did not consider strategies 
including all Cl = 1…m variables as covariates, or ‘reverse regression’ 
(MultiPhen)5, because these approaches substantially inflate the type 
I error rate (Supplementary Fig. 5).

We compared the performance of CMS with those of other recently 
proposed multiphenotype approaches including mvBIMBAM. The 
CMS approach was more than 100-fold faster than mvBIMBAM, 
and the two methods showed similar accuracy when they were com-
pared with receiver-operating-characteristic curves (Supplementary  
Fig. 6). We also considered data-reduction techniques aimed at mod-
eling hidden structure. For each data set, we tested the association 
between the primary outcome and the genotype while adding PCs or 
PEER factors. We observed increasing type I error rates when increas-
ing the number of PCs or PEER factors in the model (Supplementary 
Fig. 7). Furthermore, at a fixed false-positive rate, when we applied 
CMS in addition to PEER factors, we found that CMS substantially 
increased the power above that gained from PEER (Supplementary 
Fig. 8 and Supplementary Note).

Real-data analysis
We first analyzed a set of 79 metabolites measured in 1,192 indi-
viduals genotyped at 668 candidate SNPs. We derived the correlation 
structure between these metabolites3 (Fig. 2b and Supplementary 
Fig. 9) and estimated the maximum gain in power that could be 
achieved by our approach in these data. The proportion of variance 
of each metabolite explained by the other metabolites varied between 
1% and 91% (Fig. 2b). This proportion was higher than 50% for 
two-thirds of the metabolites and was equivalent to that resulting 
from a twofold increase in sample size. For 10% of the metabolites, 
other variables explained more than 80% of the variance and corre-
sponded to a fivefold increase in sample size. In such cases, predictors 
explaining less than 1% of a metabolite’s variation can change from 
undetectable (power <1%) to fully detectable (power >80%) when 
CMS is applied.

We performed a systematic screening for the association between 
each SNP and each metabolite, using both a standard univariate 
linear regression adjusting for potential confounding factors and 
CMS to identify additional covariates. Overall, both tests showed 
correct P-value distribution (λGC ~1, (Supplementary Fig. 10a). 
We focused on associations significant after Bonferroni correction 
(P < 9.5 × 10−7 corresponding to the 52,772 tests performed). The 
standard unadjusted approach (LR) detected five significant asso-
ciations. In comparison, the CMS approach identified ten associa-
tions (Table 1), including four of the five associations identified 
by LR. In most cases, the P value of CMS was dramatically lower 
(1,000-fold smaller for rs780094 (alanine)). Comparing these results 
with those of four independent GWAS metabolite scans of larger 
sample size (study total n = 8,330 for Finnish15, 7,824 and 2,820 for 
Kooperative Gesundheitsforschung in der Region Augsburg (KORA) 
plus TwinsUK16,17; and 2,076 for Framingham Heart Study (FHS)18 
cohorts), we found that all metabolite–gene associations identified 
by only CMS replicated (Supplementary Table 5).

This analysis confirmed the power of CMS, highlighting its abil-
ity to identify variants with much smaller sample sizes than those 
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Figure 3  Conditional and unconditional distribution. Example of inclusion 
area based on the distribution of d̂ , the estimated effect between the 
predictor X and the covariate C under the null hypothesis of no association 
between X and C (δ = 0) and no association between X and the outcome Y 
(β = 0). (a) Standard 95% confidence interval (green area) corresponding 
to P <0.05 unconditional on b̂ . (b,c) Unconditional (blue curve) and 
conditional (pink curve) distribution of d̂ . CMS combines the two, setting 
an inclusion area (blue and pink shaded) while weighting both intervals 
by a factor depending on the correlation between Y and C, which equals 
0.5 in b and 0.8 in c. Plots were drawn on the basis of the assumption 
that all variables are standardized, with a sample size of 10,000, an 
overall explained variance of Y of 0.7, ˆ .b = 0 035 and a multivariate test of 
association between all covariates and Y with a P value (PMUL) of 0.3.
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required in the standard unadjusted approach. Interestingly, the only 
association identified by the unadjusted analysis (lactose and GC, P = 
6.1 × 10−7) and not confirmed by CMS (P = 6.3 × 10−6) was also the 
only one that did not replicate in the larger studies. Notably, in our 
analysis (Table 1), we followed an approach identical to that of the 
previous studies and did not adjust for either PCs or PEER factors9. 
However, adjusting did not qualitatively change the results. For exam-
ple, we considered adjusting for 5, 10, and 20 PCs and obtained 11, 15, 
and 17 hits for CMS and 9, 11, and 5 hits for LR with PC covariates 
(Supplementary Table 6). The overall replication rate was lower when 
PCs were included, in agreement with a potential higher false-positive 
rate, as observed in our simulations.

We then considered genome-wide mapping of cis-expression 
quantitative trait loci (cis-eQTL) in RNA-seq data from the Genetic 
European Variation in Health and Disease (gEUVADIS) study. Gene 
expression is a particularly compelling benchmark, because the gold-
standard analyses already use an adjustment strategy to account for 
hidden factors in eQTL GWAS9,19. We used the PEER approach9 to 
derive hidden factors, because this method was applied in the origi-
nal analysis20. After stringent quality control, the data included 375 
individuals of European ancestry with expression estimated on 13,484 
genes, of which 11,675 had at least one SNP with a MAF ≥5% within 
50 kb of the start and end sites.

We observed that expression levels between genes were highly 
correlated (Fig. 2c), an ideal scenario for CMS. We first performed 
a standard cis-eQTL screening using LR, testing each SNP within  
50 kb of each available gene for association with the overall normal-
ized RNA level while adjusting for ten PEER factors, for a total of ~3.5 
million tests. Then we applied CMS to identify, for each test, which 
other genes’ RNA levels could be used as covariates in addition to 
the PEER factors. Both LR and CMS showed large numbers of highly 
significant associations (Supplementary Fig. 10b). For comparison 
purposes, we plotted the most significant SNP per gene obtained 
with the standard approach against those obtained with CMS (Fig. 5)  
and found that 2,725 genes had a least one SNP significant with both 
methods, whereas 56 genes were identified by only the standard 
approach. In contrast, 657 genes were found with only CMS, corre-
sponding to a 22% increase in detection of cis-eQTL loci. This result 
indicated that by being gene/SNP specific, CMS is a priori able to 
recover substantial additional variance, thus allowing for increased 
power (Table 2 and Supplementary Table 7).

To assess the validity of our results, we performed an in silico repli-
cation analysis, using two databases of known eQTLs21,22. We found 
that 35% of the SNP–gene associations found by both LR and CMS 
replicated. For the subset of association found by only CMS, the rep-
lication rate was 20%, a value similar to the 22% from the LR-only 
replication. The replication rate was 6% for genes without a CMS or 
LR association. The replications were primarily in a lymphoblast-
oid cell line (LCL; Table 2), and the replication rate for our study 
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Figure 4  Power and robustness quantile–quantile plots under the null and 
alternate distributions of P values from a series of simulations. (a–c) Four 
statistical tests are compared: a standard marginal univariate test (LR); 
the optimally adjusted test (OPT), which includes as covariates only the 
outcomes not associated with the predictor; CMS; and a univariate test 
that includes as covariates all outcomes with a P value for association 
with the predictor above 0.1 (FT). Gray boxes show the genomic inflation 
factor λGC for the null models (top) and the estimated power at an α 
threshold of 5 × 10−7 (to correct for 100,000 tests) for the alternative 
model (bottom). Null models also include the 95% confidence interval 
of the −log10(P values), displayed as a gray cone around the diagonal. 
Simulations were taken from 100,000 data sets including 10 (a), 40 (b), 
and 80 (c) outcomes (Nphe) under a null model (top), in which a predictor 
of interest is not associated with a primary outcome but is associated 
with 0%, 15%, or 35% of the other outcomes with probability 0.75, 0.2, 
or 0.05, respectively, and under the alternative (bottom), in which the 
predictor is associated with the primary outcome only. The variance of 
the primary outcome that could be explained by the other outcomes was 
randomly chosen from [25%, 50%, 75%] with equal probability.

Table 1  Identified signals from the association test between 79 metabolites and 668 candidate SNPs
Chromosome SNP Gene Outcome P value Known from study

PLR PCMS SSincr

1 rs477992 PHGDH Serine 6.2 × 10−5 1.4 × 10−7 2.15 KORA + TwinsUK16/FHS18

2 rs2216405 Near CPS1, LANCL1 Glycine  4.1 × 10−26  2.3 × 10−33 1.56 KORA + TwinsUK16/FHS18

Serine 3.7 × 10−5  6.4 × 10−10 1.76 KORA + TwinsUK16/FHS18

Creatine 7.6 × 10−8 4.8 × 10−9 1.34 KORA + TwinsUK16/FHS18

Acetylglycine 2.2 × 10−8 3.1 × 10−9 1.44 KORA + TwinsUK16

2 rs780094 GCKR Alanine 6.1 × 10−5 4.0 × 10−8 2.06 KORA + TwinsUK16/FHS18/Finnish15

4 rs1352844 GC Lactose 6.1 × 10−7 6.3 × 10−6 2.06

10 rs7094971 SLC16A9 Carnitine  2.9 × 10−10  1.1 × 10−15 2.01 KORA + TwinsUK16/FHS18

Acetylcarnitine 1.4 × 10−6  9.4 × 10−13 2.36 KORA + TwinsUK16

12 rs2657879 GLS2 Glutamine 3.1 × 10−5  4.2 × 10−10 2.50 KORA + TwinsUK16/Finnish15

16 rs6499165 SLC7A6 Lysine 2.6 × 10−5  7.5 × 10−10 3.00 KORA + TwinsUK16

There were 79 metabolites tested for association with 668 SNPs, for a total of 52,104 tests. The P-value threshold accounting for multiple testing was 9.5 × 10−7. Significant 
P values are indicated in bold. PLR, P value for the standard unadjusted univariate test of each single phenotype with each single SNP; PCMS, P value from the CMS algorithm; 
SSincr, equivalent sample-size increase achieved after adjustment for covariates selected by the CMS algorithm. The sample sizes of the replication were 8,330, 7,824, and 2,076 
for the Finnish15, KORA plus TwinsUK16,17, and FHS18 studies, respectively.
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was within the same range as the replication rate in previous LCL 
studies (Supplementary Table 8), thus confirming that a substantial 
number of the additional associations identified by CMS probably 
corresponded to real signal (Online Methods). Additional GC cor-
rection of the P values by using inflation factors from a quasi-null 
experiment (λLR = 1.01, and λCMS = 1.05; Supplementary Fig. 11) 
did not qualitatively change the results.

DISCUSSION
Growing collections of high-dimensional data across myriad fields, 
driven in part by the ‘big-data revolution’ and the Precision Medicine 
Initiative, offer the potential to gain new insights and solve open 
problems. However, when mining for associations between collected 
variables, identifying signals within the noise remains challenging. 
Although univariate analysis offers precision, it fails to leverage the 
correlation structure between variables. In contrast, joint analyses 

of multiple phenotypes increase power at the cost of decreased pre-
cision. Using both simulated and real data, we demonstrated that 
the proposed method, CMS, maintains the precision of univariate 
analysis but can still exploit global data structures to increase power. 
Indeed, in the data sets examined in this study, we observed up to a 
threefold increase in effective sample size in both the gene-expression 
and metabolite data as a result of the inclusion of relevant covariates 
(Supplementary Fig. 12).

CMS can be applied generally, but it is particularly well suited 
to the analysis of genetic data for several reasons. First, the genetic 
architectures of many complex phenotypes are consistent with a poly-
genic model with many genetic variants of small effect size that are 
difficult to detect with standard approaches23. Second, many corre-
lated phenotypes share genetic and environmental variance without 
complete genetic overlap24. Third, the underlying structure of the 
genomic data is relatively well understood, and there is extensive lit-
erature describing the causal pathway from genotypes to phenotypes 
through direct and indirect effects on RNA, protein, and metabolites 
(Supplementary Fig. 13 and Supplementary Note). Finally, when 
the predictors of interest are genetic variants, there is less concern 
regarding potential confounding factors. The only well-established 
confounder of genetic data is population structure, and this con-
founding can be easily addressed through standard approaches12. 
For other types of data, when the underlying structure of the data is 
unknown, the risk of introducing bias is high.

Several other groups have considered the problem of association 
testing in high-dimensional data while maintaining precision. In 
genetics, multivariate linear mixed models (mvLMMs) have dem-
onstrated both precision and increases in power when correlated 
phenotypes are tested jointly. However, mvLMMs exploit only the 
genetic similarity of phenotypes and are not computationally efficient 
enough to handle dozens of phenotypes jointly4. CMS leverages both 
genetic and environmental correlations and can be easily adapted to 
hundreds or thousands of phenotypes, as demonstrated here. Instead, 
we compared CMS with other more related approaches, including the 
Bayesian approach mvBIMBAM, and adjustment for hidden factors 
inferred from either principal component analysis or PEER. We found 
that mvBIMBAM and CMS had very similar accuracy, as measured 
by the area under the curve, whereas mvBIMBAM was approximately 
100-fold slower and was applicable to only a small number of phe-
notypes (fewer than ten). As for strategies that reconstruct hidden 
variables, we have found that they can induce false positives25, and 
they are suboptimal in comparison to CMS. Indeed, the gEUVADIS 
analysis showed a 22% increase in the detection of eQTL when it was 
applied in addition to PEER-factor adjustment.
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Figure 5  Analysis of the gEUVADIS data. Plot of −log10(P values) of 
the most significant SNP per gene obtained by CMS (y axis) and LR 
(x axis) from genome-wide cis-eQTL mapping of 11,675 genes in 375 
individuals from the gEUVADIS study. For illustration purposes, we 
truncated the plots at −log10(P value) = 30. Both CMS and LR were 
adjusted for ten PEER factors, and the CMS analysis also included 0–50 
additional covariates per SNP–gene pair tested. We considered a stringent 
significance threshold of 1.4 × 10−8 to account for the approximately 3.5 
million tests and derived the number of genes showing at least one cis-
eQTL with LR only (blue), CMS only (red), both approaches (turquoise), or 
neither approach (gray).

Table 2  Replication of association from the cis-eQTL screening in GEUVADIS
Approach No. disc.a SNPb % rep.c Replication per tissue

Fibr. LCL T cell Brain B cell Mon. Liv. Adi. Skin Blood

LR and 
CMS

2,725 LR 34.7% 1 737 4 27 20 69 33 137 125 185

CMS 35.9% 3 770 2 26 20 73 28 147 133 175

LR only 56 LR 21.8% 0 5 0 0 1 0 0 3 4 3

CMS 24.1% 0 8 0 0 1 0 0 2 2 3

CMS only 657 LR 20.2% 1 79 0 1 6 7 3 14 7 35

CMS 19.6% 1 78 0 1 5 6 2 16 11 35

None 8,237 LR 7.0% 1 185 1 2 9 38 10 61 53 245

CMS 7.2% 1 199 2 4 8 46 7 81 62 258
aNumber of SNP–gene associations with P values below the Bonferroni-corrected significance threshold. bSNP used for the replication analysis. cPercentage of SNP–gene association replicated, 
after removal of the discovery SNPs that could not be mapped. Fibr., fibroblast; mon., monocytes; liv., liver; adi., adipose. The per-tissue sum does not equal the number of hits times the per-
centage of replication, because a given association can be replicated in multiple tissues.
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There are several caveats to our approach. First, the proposed 
heuristic is conservative by design to avoid false-association signals, 
and so all the available power gain is not achieved. Second, although 
all performed simulations showed strong robustness, this method 
remains a heuristic, like other methods9,19. Ultimately, we recommend 
external replication to validate results and effect size, as is standard in 
genetic studies. Third, CMS is more computationally intensive than 
methods such as principal component analysis or PEER. Fourth, CMS 
assumes that the variables are measured and available on all samples. 
The current implementation includes a naive missing-data imputa-
tion, and simple-case-scenario simulations showed that this strat-
egy has a minimal effect on the robustness of CMS (Supplementary  
Fig. 14). However increasingly advanced approaches have been devel-
oped26. Fifth, although the principles that we leveraged are probably 
applicable to categorical and binary outcomes (logistic regression 
in ref. 27), our algorithm is currently applicable to only continuous 
outcomes. Sixth, for monogenic disorders, or phenotypes without 
intermediately measured endophenotypes, CMS is unlikely to result 
in power gains.

We focused on association screening and aimed at optimizing 
power and robustness. However, the selection of covariates per-
formed by CMS might carry information about which covariates 
operate through specific SNPs. Future work will explore whether 
output from CMS can generate hypotheses on the underlying causal 
model. There are other additional improvements not specific to CMS 
that are worth exploring. In particular, when multiple phenotypes are 
considered as outcomes, then a multiple-testing-correction penalty 
must be selected to account for all tests across all phenotypes. In this 
study, we applied a Bonferroni correction, not accounting for the 
correlation between outcomes; this is a conservative correction, and 
more powerful approaches are possible28.

Large-scale genomic data have the potential to answer important 
biological questions and improve public health. However, those 
data come with methodological challenges. Many questions, such as 
improving risk prediction or inferring causal relationships rely on 
the ability to identify associations between variables. In this study, 
we provide a comprehensive overview of how leveraging shared 
variance between variables can be used to fulfill this goal. Building  
on this principle, we developed the CMS algorithm, an innovative 
approach that can dramatically increase statistical power to detect 
weak associations.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
The CMS algorithm. We developed an algorithm to select relevant covariates 
when testing for association between a predictor X and an outcome Y. For a set 
of candidate covariates C = (C1, C2,…Cm), the filtering is applied on d̂l  and Pl, 
the estimated marginal effect of the predictor X on Cl and its associated P value, 
respectively. It uses four major features: (i) rC

2 , the total amount of variance 
of Y explained by the C; (ii) ˆ ˆ ˆ )( ,g g glu l

2 2, the estimated effect of each Cl m∈…1  on 
Y from univariate and joint models, respectively; (iii) b̂ , the estimated effect 
of X on Y from the marginal model Y ~ α + βX; and (iv) PMUL, the P value for 
the multivariate test of all Cl = 1…m and X, which is estimated with a standard 
multivariate approach (MANOVA).

Filtering is applied in two steps, using the aforementioned features and 
additional parameters described thereafter. Step 1 is an iterative procedure 
focusing on PMUL. It consists of removing potential covariates until PMUL 
reaches tMUL, a P-value threshold set to 0.05 by default. This step is effective 
at removing combinations of covariates with strong to moderate effects but 
may potentially leave weakly associated covariates.

Step 2 is also iterative and uses covariates preselected at step 1. It consists of 
deriving two confidence intervals, ∆l.cond and ∆l.un, for the expected distribu-
tion of d̂l  conditional on b̂  under a complete null model (δl = 0 and β = 0),  
and the unconditional distribution of d̂l , respectively. The unconditional 
distribution of d̂l  can be approximated as N ( , / )0 1 n , and the conditional 
distribution is 

ˆ ˆˆ ˆ( , ( )/ )g gb gN 1 2− n ,

where ĝ  is the estimated correlation between Y and C (Supplementary 
Note). The inclusion area for each d̂l  is defined as the union of ∆l.cond and 
∆l.un, which are determined from the conditional and unconditional distri-
butions, ˆ ˆ ˆ ),( ,g g grC lu l

2 2 2 , b̂ , and distribution-specific weights wu and wc, which 
we further introduced to improve power and robustness. Specifically, 

∆l l l u l l uw w. . . . .,un un un un un= − × + × m s m s

 and 

∆l l cond l c l l cw w. . . . .,cond cond cond cond= − × + × m s m s ,

 where 

( , ). .m ml lun cond  and ( , ). .s sl lun cond  

are the unconditional and conditional means and s.d., respectively.
The weights wu and wc are always less than two and shrink the size of the 

inclusion area. To obtain (wu, wc), we first set  an ad hoc stringency param-
eter 

ˆ ˆ ˆ. ( ) ( )/ ,g g gw P rST MUL C lu l= × × − × −0 1 1 12 2 2  

which decreases as ˆ ˆ,g grC l
2 , and the ̂ ˆg g lu increase, thus making the inclusion 

area smaller, because the covariate Cl being considered explains more of 
the variance of Y. The purpose of this parameter is to decrease the risk of 
false positives, because bias is enhanced when the residual variance of the 
outcome is decreased14. This phenomenon is illustrated in Figure 3, in  
which the unconditioned inclusion area from CMS is smaller than that for 
the standard approach.

As b̂  increases, the likelihood of the true β being null decreases, and we 
want wc, and the conditional interval ∆l.cond to shrink to zero. We use a simple 
linear function for wc with a transition that corresponds to the point where the 
95% CI of the observed b̂  and ˆ |d dl l = 0  stop overlapping. When all variables 
are standardized, the former CI is approximately equal to 

ˆ /b ± 2 n X

whereas the latter equals 

0 2± / n

 Thus, the proposed  transition point corresponds to ˆ / ( )b = 4 sqrt n . Expressed 
as chi squared, it equals:

c b sb
2 2 16= × =ˆ n

We set 
w w fc ST c= ( )( )min , cb

2
 

and 
w w fu ST u= ( )( )min , cb

2  

where fc cb
2( ) and fu cb

2( )� vary between 0 and 2, and are defined to linearly 
scale with respect to this transition point (Supplementary Note).

Altering the transition point or scaling the inclusion interval can increase the 
risk of false positives or decrease power (Supplementary Figs. 15–17). We chose 
the CMS parameters conservatively to prevent false positives; however, alterna-
tive approaches such as cross-validation may identify parameters that increase 
the power of CMS while maintaining a calibrated null distribution. Interestingly, 
the omnibus association test between Cl∈L and Y had very little effect on the 
overall performance (Supplementary Fig. 17) with the parameters used here.

Finally, because of multicollinearity, the estimated γl can vary substantially 
depending on which other covariates Ck≠l are already included in the model. 
As a result, γl cannot be estimated from a marginal model such as Y ~ γlCl. To 
address this issue, we implemented the selection of covariates into an itera-
tive loop in which ˆ ˆ ˆ ˆg g g g= …( )1 m  terms are reestimated from a joint model 
each time a candidate covariate is excluded. The complete CMS algorithm is 
provided in the Supplementary Note.

Simulations. We simulated series of genetic and phenotypic data sets under 
a variety of genetic models to interrogate the properties of the proposed test. 
Each data set included n individuals genotyped at a SNP, a normally distributed 
phenotype Y, and m = [10, 40, 80] correlated covariates C = (C1, C2,…Cm). 
Genotypes g for each of the individuals were generated by summing two sam-
ples from a binomial distribution with probability uniformly drawn in [0.05, 
0.5] and then normalized to have mean 0 and variance 1. Under the null, the 
SNP does not contribute to the phenotype, and under the alternate, the SNP 
contributes to the phenotype under an additive model. In some data sets, the 
SNP also contributes to a fraction π = [0%, 15%, 35%] of the covariates. Those 
were the covariates that we sought to identify and filter out of the regression. 
The remaining variance for each phenotype, which represents the remain-
ing genetic and environmental variance, was drawn from a m+1-dimensional 
multivariate normal distribution with mean 0 and variance σC. In instances in 
which this matrix was not positive definite, we used the Higham algorithm29 
to find the closest positive definite matrix. The diagonal of the covariance 
matrix was specified as 1 minus the effect of g (if relevant) such that the total 
variance of each phenotype had an expected value of 1.

We considered sample sizes (n) of 300, 2,000, and 6,000, and we varied rC
2 ,  

the variance of Y explained by C, from 25% to 75%. We varied the effect of 
the predictor on Y and C, when relevant, from almost undetectable (median 
χ2 = 3) to relatively large (median χ2 = 20). For each choice of parameters, 
we generated 10,000 replicates and performed four association tests: (unad-
justed) LR, LR with covariates included on the basis of P-value filtering at an 
α threshold of 0.1 (FT), CMS, and an oracle method including only the covari-
ates not associated with the SNP (OPT), the optimal test regarding our goal. 
For each null model, we derived the genomic inflation factor30 λGC, whereas  
for the alternative model, we estimated power at an α threshold of 5 × 10−7 
to account for the 100,000 tests performed. All tests were two sided. Results 
for each of the 432 scenarios considered are presented in Supplementary 
Figures 18–44.

To comprehensively summarize the performance of the different tests 
across these scenarios, we randomly sampled subsets of the simulations to 
mimic real-data sets while focusing on a sample size of 2,000 individuals  
and a total of 100,000 SNPs tested. For null models, we assumed that two-
thirds (66%) of the genotypes were under the complete null (not associ-
ated with any covariate, π = 0), whereas 27% were associated with a small 
proportion of the covariates (π = 0.15), and the remaining 7% were highly  
pleiotropic (π = 0.35).
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We compared the performances of CMS against those of other recently pro-
posed multiphenotype approaches, including mvBIMBAM, a Bayesian approach 
to classifying the outcome as directly associated, indirectly associated, or unas-
sociated with the predictor. The main advantage of the mvBIMBAM approach 
is that it proposes a formal theoretical framework that, similarly to structural 
equation modeling, explores a wide range of underlying causal models. However, 
there is a large computational cost, and the approach is currently limited to the 
analysis of a relatively small number of traits (fewer than ten). We therefore per-
formed our comparison by using small-scale simulated data (ten phenotypes).

Other potential alternatives to CMS are data-reduction techniques for mod-
eling hidden structure. These methods have been widely used for the analysis 
of molecular phenotypic data, with a primary goal of removing confounding 
effects8,9,19. We examined principal component analysis because it has been 
widely used and is still one of the most commonly used approaches8, and a 
more complex factor-analysis-inspired method (PEER), which has outper-
formed similar methods9. We simulated series of large multivariate data sets 
under a null model, in which a genotype is associated with multiple variables 
but not the primary outcome of interest (i.e., in the presence of type I covari-
ates). For each data set, we tested the association between the primary outcome 
and the genotype while adding PCs or PEER factors (Supplementary Fig. 7) 
and found an increasing type I error rates after increasing the number of PCs 
or PEER factors in the model.

Previous studies have also shown that including fixed effects can improve 
power over dimensionality-reduction approaches that incorporate these same 
variables31, probably as a result of the shrink that is applied when these meth-
ods jointly fit effect sizes of multiple correlated variables. To investigate the 
power gains available to CMS when PCs/PEER factors are used, and assuming 
that type I error is controlled, we simulated data under an alternative model 
of true association but in the absence of type II covariates to avoid the afore-
mentioned issue. We applied CMS in addition to a variable number of PEER 
factors and found that CMS can substantially increase the power above that 
gained from PEER (Supplementary Fig. 8).

Metabolite data. Circulating metabolites were profiled by liquid chromatog-
raphy–tandem mass spectrometry (LC–MS) in prediagnostic plasma from 453 
prospectively identified pancreatic cancer cases and 898 controls. The subjects 
were drawn from four US cohort studies: the Nurses’ Health Study (NHS), 
Health Professionals Follow-up Study (HPFS), Physicians’ Health Study (PHS) 
and Women’s Health Initiative (WHI). Two controls were matched to each 
case on the basis of year of birth, cohort, smoking status, fasting status at the 
time of blood collection, and month/year of blood collection. Metabolites 
were measured in the laboratory of C. Clish at the Broad Institute by using 
the methods described in Wang et al.32 and Townsend et al.33. A total of 
133 known metabolites were measured; 50 were excluded from analysis 
because of poor reproducibility in samples with delayed processing (n = 32),  
CV >25% (n = 13), or undetectable levels for >10% subjects (n = 5). The 
remaining 83 metabolites showed good reproducibility in technical replicates 
or after delayed processing33. Among those, 79 had no missing data and were 
considered further for analysis. Additional details of these data can be found 
in ref. 34. Genotypic data were also available for some of these participants. 
A subset of 645 individuals from NHS, HPFS, and PHS had genome-wide 
genotypes data as part of the PanScan study35. Among the remaining partici-
pants, 547 have been genotyped for 668 SNPs chosen to tag genes in inflam-
mation, vitamin D, and immunological pathways. To maximize sample size, 
we focused our analysis on these 668 SNPs, which were therefore available 
in a total of 1,192 individuals. The in-sample MAFs of these variants ranged 
from 1.1% to 50%. The metabolite levels were approximately Gaussian after 
adjustment for the confounding factors and were therefore not transformed 
further (Supplementary Fig. 45). We first applied standard linear regression 
testing of each SNP for association with each metabolite while adjusting for 
five potential confounding factors: pancreatic cancer case–control status, age 
at blood draw, fasting status, self-reported race, and sex. We then applied the 
CMS while also including the five confounding factors as covariates. All tests 
were two sided.

gEUVADIS data. The gEUVADIS data20 consist of RNA-seq data for 464 
LCL samples from five populations in the 1000 Genomes Project. Of these, 

375 are of European ancestry (CEU, FIN, GBR, and TSI), and 89 are of 
African ancestry (YRI). In these analyses, we considered only the European-
ancestry samples. Raw RNA-sequencing reads obtained from the European 
Nucleotide Archive were aligned to the transcriptome by using UCSC anno-
tations matching hg19 coordinates. RNA-seq by expectation-maximization 
(RSEM)36 was used to estimate the abundance of each annotated isoform, 
and total gene abundance was calculated as the sum of all isoform abundance 
values normalized to one million total counts or transcripts per million 
(TPM). For each population, TPM values were log2 transformed and median 
normalized to account for differences in sequencing depth in each sample.  
A total of 29,763 genes were initially available. We removed those that 
appeared to be duplicates or that had low expression (defined as log2(TPM) 
<2 in all samples). After filtering, 13,484 genes remained. The genotype data 
were obtained from the 1000 Genomes Project Phase 1 data set. We restricted 
the analysis to the SNPs with a MAF ≥5% that were within ± 50 kB from 
the gene tested for cis effects. A total of 11,175 genes had at least one SNP 
that matched those criteria. We performed standard cis-eQTL screening, first  
applying standard linear regression while adjusting for ten PEER factors. We 
then applied CMS while including the same PEER factors as covariates. All 
tests were two sided.

When running CMS, we performed prefiltering of the candidate cov-
ariates. More specifically, for each gene analyzed—referred to as the target 
gene—we restrained the number of candidate covariates (gene other than the 
target) to be evaluated. First, we aimed at avoiding genes whose expression 
was more likely to be associated with some of the SNPs tested because of a 
cis effect, because such genes were more likely to induce false signal. Thus, 
all genes in physical proximity to the target genes (≤1 Mb) were excluded. 
Second, we aimed at decreasing the number of candidate covariates (13,484 
minus 1, a priori), because most of them were likely to be uninformative and  
because our simulation showed that for small sample size, CMS would have 
low robustness if the number of candidate covariates were too large. To do so, 
we performed an initial screening for association between the target and all 
other genes and used the top 50 showing the strongest squared correlation 
with the target.

We performed an in silico replication analysis by using two databases of 
known eQTLs. The first database included results from 15 publicly available 
studies (excluding the European gEUVADIS) from multiple tissues21, and a 
second one included eQTLs in whole-blood samples from a joint analysis of 
seven studies22. Summary statistics were not available for every SNP; instead, 
these databases listed all SNPs found at an FDR of 5% in each study. Therefore, 
we were not able to perform a standard replication study and instead compared 
the replication rate of CMS and LR in these databases. Notably, we expected 
a smaller replication rate for LR only and CMS only compared with those 
identified by both approaches, because the last group includes variants with 
the largest effects, whereas the first two correspond to associations of smaller 
magnitude. Finally, we performed a quasi-null experiment in which we tested 
for trans effects by using random SNPs from the genome, assuming that most 
of those would be under the null.

Variance explained in multiple regressions. We plotted the variance of a set 
of outcomes Y = (Y1,…YK) that could be explained by covariates in the data, 
i.e., how much of the variance of Yi could be explained by Yj≠i (Fig. 2b,c). For 
illustration purposes, we also approximated the individual contribution of 
each Yj≠i covariate. In brief, we standardized all variables and estimated g j

2,  
the proportion of variance of the outcome explained by each Yj≠i from the 
marginal models Y Yi j j i~g ≠ , and rmodel

2 , the total variance of Yi explained by 
all Yj≠i jointly, from the model 

Yi j K j i~ ,g Y = … ≠1
 

Then, we derived vij, an approximation of the relative contribution of each Yj≠i 
to the variance of Yi  as follows: 

v rji
j

k i k
= ×

≠∑
g
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Notably, this is an arbitrary rescaling of the real contribution of the Yj≠i vari-
able. Indeed, the correlation between all Yj≠i induces multicollinearity in the 
regression, and it follows that 

g kk i r2 2 model≠∑ .

Missing data. The current version of the algorithm includes a naive impu-
tation strategy for missing data that consists of replacing missing values of  
candidate covariates with their mean values, thereby avoiding the sharp 
decrease in sample size that might arise if the proportion of missing values 
is too large. Notably, the inference was performed per predictor–outcome 
pair and only for the covariates, whereas we did not infer missing values for 
the outcome or the predictor tested. The imputation did not strongly affect 
the robustness of the test (Supplementary Fig. 14), although large-scale (i.e., 
≥50% of missing values) random missingness appeared to slightly deflate the 
test statistics from CMS.

Code availability. An implementation of the approach is freely available at 
https://github.com/haschard/CMS/.

Data availability. The gEUVADIS RNA-sequencing data, genotype data, 
variant annotations, splice scores, quantifications, and QTL results are freely 

and openly available with no restrictions at http://www.geuvadis.org/. The 
metabolite data that support the findings of this study are available from the 
corresponding author upon reasonable request. A Life Sciences Reporting 
Summary for this paper is available.

https://github.com/haschard/CMS/
http://www.geuvadis.org/
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    Experimental design
1.   Sample size

Describe how sample size was determined. NA

2.   Data exclusions

Describe any data exclusions. NA

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We performed in-silico replications for the two real data analyses.  Both replication 
analyses were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

NA

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

NA

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

An implementation of the approach is freely available at https://github.com/
haschard/CMS

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

NA

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

NA

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. NA

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

NA

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

NA

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

NA

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

NA
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