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The high heritability of neuropsychiatric disorders (46.3% as a class)1 
is a tantalizing clue that genetics will finally provide a rigorous  
neurobiological framework for comprehending conditions that have 
evaded biological understanding for decades2. Heritability estimates 
indicate that inherited genetic variants contribute substantially to  
disease liability, often more so than early environmental influences or 
noninherited, de novo mutations, but clearly gene and environment 
usually contribute together (Fig. 1)2–6. Initial linkage and candidate 
gene studies of psychiatric disease often yielded inconsistent findings, 
as a result of limited power and difficulty accounting for systematic 
biases such as population stratification. When interpreting results 
from large-scale genomics studies, it is important to take statistical 
power into consideration7. So, in contrast to candidate gene studies,  
results from more recent, large-scale genome-wide studies have 
yielded much more robust results3.

The genetic architecture of psychiatric disease has received much 
attention and is the subject of several recent reviews2–6,8–10. Genetic 
variants associated with neuropsychiatric disease take several  
forms based on detection methodology and study design (Box 1 and 
Table 1)4. They can also be classified by effect size, which can be 
inferred from population genetics models that predict an inverse  
relationship between variant frequency and effect size11.

Hundreds of causal genetic variants with varying effect sizes 
have been robustly associated with neuropsychiatric disorders, 

with thousands more likely involved3,12–16. An essential next step is  
deciphering the biological impact of these variants. Here we  
discuss biological interpretation of genetic variation, focusing on rare 
variants of moderate to large effect and common variants with small 
effect. This genetics-driven approach has several advantages. First, 
genetics accounts for a majority of disease liability for many neu-
ropsychiatric disorders and is therefore expected to be a high-yield  
area of investigation (Box 2 and Fig. 1). Second, genetic variants  
indicate biological causality. Third, human genetics is grounded in 
human biology, which is especially important for neuropsychiatric 
phenotypes that may not be fully conserved across species. Finally, 
next-generation sequencing technology provides a near-complete 
survey of the genetic search space in an unbiased fashion at genome-
wide scale, circumventing many of the limitations in reproducibility 
that undermined earlier genetic approaches (Table 1).

Interpreting rare genetic variation
An early clue of the genetic contribution to major psychiatric  
conditions was their association with rare Mendelian syndromes, 
such as DiGeorge, Rett, or fragile X, each with characteristic mor-
phologic, cognitive, and neuropsychiatric phenotypes. The advent 
of chromosomal microarrays enabled the detection of copy number 
variation (CNV), submicroscopic deletions or duplications in DNA. 
More recently, whole exome sequencing (WES) and whole genome 
sequencing (WGS) have enabled the large-scale detection of rare, 
unique and private single nucleotide variants (SNVs), small chromo-
somal rearrangements (<50 kb), indels, and inversions. Chromosomal 
microarrays and WES have such a high yield in identifying genetic 
variants underlying neurodevelopmental disorders that they are 
becoming the standard of care for children with autism spectrum 
disorder (ASD)17.

Detection, association, and interpretation of disease-causing 
genetic variants have many challenges, largely driven by the rela-
tively high number of potentially disease-causing rare variants in 
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Hundreds of genetic loci increasing risk for neuropsychiatric disorders have recently been identified. This success, perhaps 
paradoxically, has posed challenges for therapeutic development, which are amplified by the highly polygenic and pleiotropic 
nature of these genetic contributions. Success requires understanding the biological impact of single genetic variants and 
predicting their effects within an individual. Comprehensive functional genomic annotation of risk loci provides a framework for 
interpretation of neurobiological impact, requiring experimental validation with in vivo or in vitro model systems. Systems-level, 
integrative pathway analyses are beginning to elucidate the additive, polygenic contributions of risk variants on specific cellular, 
molecular, developmental, or circuit-level processes. Although most neuropsychiatric disease modeling has focused on genes 
disrupted by rare, large-effect-size mutations, common smaller-effect-size variants may also provide solid therapeutic targets 
to inform precision medicine approaches. Here we enumerate the promise and challenges of a genomics-driven approach to 
uncovering neuropsychiatric disease mechanisms and facilitating therapeutic development.
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every genome18,19. Sequencing studies are rarely sufficiently pow-
ered to detect disease association at a variant level, given the vast size 
of the genomic search space and potential number of ultra-rare or 
even private variants. To improve power, gene-based approaches are 
often applied, in which association testing is performed after vari-
ants are aggregated at the gene level7. Formal statistical significance 
should be assessed at genome-wide thresholds and statistical evidence 
of association should not be superseded by biological plausibility 
or ‘functionality’.20 The genome of a random individual will have 
on average 100 loss-of-function or likely gene-disrupting variants  
(nonsense, frameshift, and splice-site mutations), approximately 
one of which will be de novo. Furthermore, every individual carries 
on average 20 completely inactivated genes19. Synonymous variants  
are far more common and are therefore usually set aside, although 
there is now evidence that synonymous variation can have gene 
regulatory functions and can contribute to disease risk21. Individual 
rare genetic variants must therefore be interpreted in the context of 
the specific locus’s or gene’s tolerance for mutations, evolutionary 
or selective constraint18, and population allele frequency20. Several 
bioinformatic tools exist that predict the deleteriousness of a given 
variant or tolerance for mutation at a gene level18,22, although this 
remains an area of active development.

Even after taking into account inheritance and the predicted  
functional severity of a mutation, causal ambiguity often still exists 
even in cases of de novo protein truncating mutations, resulting in the 
assignment of ‘variant of unknown significance’. Robustly identifying 
the most likely causal rare variants requires more complete genomic 
annotations (including the noncoding part of the genome) and exten-
sive population allele frequency databases from several populations 
(Fig. 2). A rare allele in one population may actually be common in 
another and without strong phenotypic consequences, substantially 
changing the interpretation of pathogenicity20. To confront this,  
several large-scale efforts have been made to aggregate population-
level genomic variation into searchable databases, including among 
others ExAC23, DGV, and ClinVar. As an example, variants that are not 
found in the ExAC database, which includes WES results from over 

60,000 unrelated adults without history of severe pediatric disease, 
are more likely to be deleterious23,24. Finally, the noncoding genome 
plays important regulatory roles, but is excluded from WES and has 
not been analyzed in the majority of published WGS papers. Having 
more comprehensive annotation of the noncoding genome in neural 
tissues is therefore a pressing goal of current research25. Standard 
pathway analyses should be applied only once variants have statistical 
support to avoid risk of false-positive results due to potential biases in 
these analyses, as well as inherent sensitivity to inclusion of spurious 
genes and population stratification (Box 3)7,26,27.

The fact that de novo loss-of-function variants are predicted  
to have high impact14,28 has made them attractive targets to study  
(see “Disease modeling” below). The vast majority of disease models  
have therefore been based on manipulation of genes harboring 
these alleles of large effect size29. However, most of these mutations  
are pleiotropic in nature, associated with variable but often severe 
abnormalities in multiple cognitive, medical, and behavioral domains. 
Understanding which molecular, anatomical, or physiological  
abnormalities relate to specific cognitive or behavioral phenotypes is 
difficult, and experiments that attempt to do so are rare. A notable 
recent example capitalized on an allelic series identified in SHANK3, 
in which two different loss-of-function variants have been associated 
with distinct clinical phenotypes in humans, namely schizophrenia 
and autism, albeit in only a few individuals30. Comparison of mice 
harboring orthologous mutations identified distinct neurobiological 
effects of the different variants, correlated with distinctive changes in 
prefrontal and striatal circuitry between models, a remarkable dichot-
omy30. Studying other alleles on different genetic backgrounds, and 
different genes showing similar phenotypic divergence in humans, 
as well as larger human cohorts with variable phenotypes associated 
with different alleles, will be necessary for appreciating the generaliz-
ability of these findings in mice to the observed divergence in disease 
mechanisms in humans.

Many high-penetrance rare mutations predispose to multi-
ple clinically distinct disorders, including intellectual disability,  
epilepsy, autism, schizophrenia28,31. For example, about one-third 
of individuals with 22q11.2 deletions will have ASD and one-third 
schizophrenia28,32. As such, mice carrying a deletion syntenic to  
the human 22q11.2 locus should be viewed as a general model of 
neurodevelopmental disease, rather than a single disorder. Disease-
associated CNVs have also been occasionally observed in apparently 
healthy carriers, for example in mothers with dup15q11–13 who pass 
the duplication to their affected children33. There is evidence that both 
genetic background and the environment can potentially have a large 
impact on the phenotypic outcome in these cases32,34. To account for 
this, it is prudent to conduct experimental manipulations at these loci 
on at least two genetic backgrounds. Furthermore, comprehensive 
clinical phenotyping of individuals with rare variants in the same 
locus will be essential to help decipher underlying neurobiological 
mechanisms35. Indeed, large-scale cognitive assessment of individuals 
carrying major-effect CNVs in the Icelandic population found sub-
stantially reduced performance in specific cognitive domains, even in 
carriers without a psychiatric diagnosis36. Neuroimaging has begun 
to elucidate the neuroanatomic and circuit-level impact of these rare 
variants, highlighting the promise of this bottom-up approach to 
mapping gene–brain–behavior relationships37. Furthermore, studying  
such people harboring the same mutation, but with different clini-
cal outcomes, is likely to be high yield36. Finally, measuring other 
forms of genetic variation within rare-variant carriers, such as  
polygenic risk, may provide a potential explanation for underlying 
pleiotropy, as recently shown in schizophrenia34.
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Figure 1 Genetic and environmental contribution to liability for 
neuropsychiatric disease. (a) ACE model liability estimates (see Box 2) are 
compiled for various neuropsychiatric disorders derived from large-scale twin 
and/or population-based studies. (b) Genetic contributions can be further 
partitioned by variant classes, including common, rare inherited, and rare 
de novo mutations. The contribution of de novo variants to disease liability 
is lower than their overall frequency in cases due to incomplete penetrance. 
Data are compiled from refs. 2,3,8–10,13,29,31,123,133–138.
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Another approach to disentangling mechanisms is to study allelic 
series of variants with different effects on the phenotype in one locus30. 
Here one would expect to see concentration of phenotypes within 
specific subcategories of variants: for example, milder phenotypes in 
patients with heterozygous or missense mutations in genes known to 
cause severe recessive disorders. The application of WES and WGS in 
larger populations will enable us to answer this question in more detail 
and will be a boon to genotype–phenotype studies in humans.

Interpreting common genetic variation
Genome-wide association studies (GWAS) have successfully identi-
fied thousands of common genetic variants associated with complex 
diseases (http://www.ebi.ac.uk/gwas/), including several hundred loci 
for neuropsychiatric disorders3,12,13,16,38,39. Population-level screen-
ing for common genetic contributions to human phenotypes is on the 
near horizon. Despite these GWAS successes, the number of resolved 
psychiatric disease genes remains small due to the difficulty identify-
ing the causal variant(s) and their functional impact.

GWAS does not identify a gene per se, but a region that is associ-
ated with disease status. When genome-wide significance is achieved 
(set at P < 5 × 10−8), the effective confidence interval surrounding a 
‘lead’ or ‘index’ SNP (with the lowest P-value in a given locus) is set by 
the surrounding region of linkage disequilibrium (LD), which spans 
on average ~40 kb, but is highly variable throughout the genome. 
Identifying the underlying ‘causal’ variant(s) within a target region, 
and its biological effect, is typically an enormous challenge. In schizo-
phrenia, for example, the strongest GWAS signal maps to the major 

histocompatibility complex (MHC) locus and spans several hundred 
genes12. Recent work elegantly dissects this locus to identify the likely 
causal variants within a few genes, including C4A (ref. 40), which we 
describe later in more detail.

A majority of common disease-associated genetic variation lies 
outside coding regions and is enriched in regulatory elements such 
as enhancers or promoters. Variants in these regulatory elements 
act to modulate the expression and splicing of distal gene targets, 
potentially with large effect. Regulatory elements also tend to act in 
a cell-type- and tissue-specific manner and can be inferred through 
evolutionary conservation, chromatin accessibility, and character-
istic histone marks (Box 3)41–44. Projects such as ENCODE45, the 
NIH Epigenetics Roadmap46, PsychEncode25 and GTEX47 are build-
ing tissue-specific atlases of human gene regulation. However, these 
annotations are generally derived from only a few individuals and are 
far from complete, especially in neural tissues, directly limiting our 
ability to annotate genetic variants relevant to human brain disorders. 
There also is substantial evidence that gene regulation can occur at 
long intrachromosomal distances48. Consequently, identifying the 
gene targets of regulatory regions is a challenging problem and an 
area of active investigation using both computational49 and experi-
mental approaches, such as HiC50. Gene targets can also be inferred 
statistically, relying on expression quantitative trait loci (eQTL; see 
“Integrative approaches” below), which identifies variants that are 
associated with changes in gene expression in a given cell type or 
tissue. Although most (~80% of) variants acting as eQTLs occur 
within 100 kb of their target gene, many loci act on genes hundreds 

Box 1 Large-scale genetic investigation of complex traits, such as neuropsychiatric disease 
Technological advances now enable cost-effective, genome-wide interrogation of genetic variation in large cohorts, but they necessitate careful  
power analysis and study design to maximize variant discovery (Table 1)7. Microarray-based platforms can detect structural anomalies such as CNVs 
or genomic rearrangements. SNP microarrays provide a cost-effective platform for common trait GWAS. A genome-wide SNP backbone coupled with 
imputation to an ancestry-matched reference panel enables efficient genomic coverage. Population-specific platforms have been developed, such  
as the PsychChip, which has higher density in regions associated with psychiatric disease, including rare CNVs and exome variants. Despite this, 
coverage remains incomplete and generally limited to common or previously identified rare variants. Massively parallel, high-throughput sequencing 
platforms identify variants with single-base-pair resolution and can theoretically capture the full range of allele frequencies (for example, common, rare, 
private) and variant types (SNVs, indels, CNVs). In WES, the ~1% protein-coding portion of the genome is captured and then sequenced, to reduce 
cost and bolster interpretability of identified variants. WGS surveys the entire genomic space, although coverage is still often incomplete because  
of difficulties mapping repeat-dense regions. Sufficient depth is critical to overcoming potential sequencing errors and capturing heterozygous SNVs. 
Sanger sequencing is often performed as a confirmatory test.
 Study design is an important factor when considering large-scale genetic studies. Case/control is a standard design that compares allele frequencies 
across a diverse set of cases and controls en masse. However, subtle biases (for example, population stratification) must be rigorously accounted for 
and inheritance patterns cannot be determined. Family designs that include a proband and both parents (‘trio’) can account for population stratification 
and identify inheritance patterns but are more difficult and expensive to collect. Filtering for de novo variants in a proband with unaffected parents can 
facilitate interpretation of pathogenicity. However, ‘unaffected’ parents may harbor incompletely penetrant mutations, especially for complex traits.

Table 1 Platforms for large-scale, genome-wide interrogation of genetic variation

Technology
Outcome measure in 

individual
Outcome measure in  

population Challenges to interpretation

Chromosomal  
 microarray

CNV Recurrence (1) Pleiotropy 

(2) Incomplete penetrance 

(3) Pathogenic gene(s) not directly identified

Genome-wide SNP  
 microarray

SNP 

Polygenic score

Genome-wide significant  
 index SNP or haplotype

(1) Identifying causal variant 

(2) Identifying functional effect of variant 

(3) Function of noncoding regions often not well established, especially in CNS

Whole exome  
 sequencing

(De novo) SNVs Gene burden test (1) Pathogenicity often difficult to establish unless multiple instances observed 

(2) Functional significance often unclear, especially for missense mutations

Whole genome  
 sequencing

SNPs 

(De novo) SNVs, indels

Gene burden test or  
 Recurrence

(1) Pathogenicity often difficult to establish unless multiple instances observed 

(2) Functional significance often unclear, especially for missense mutations 

(3) Function of noncoding regions often not well established, especially in CNS
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of kilobases away47,48,51. Once a regulatory effect such as an eQTL or 
physical promoter–enhancer interaction is confirmed experimentally, 
further conclusive evidence can be derived from showing that such 
relationships exist in human brain and are altered in the disease-
affected brain. Complementing such studies by investigating the 
effects of common disease-associated SNPs on human phenotypes, 
such as brain structure and function, can provide further insight into 
circuit mechanisms52.

Capturing polygenicity
The biological effect of individual common variants (or loci) in most 
cases will be very small4,53. Since individual common variants account 
for such a small proportion of disease liability, how can they be of use? 
One major insight came from the work of Visscher, Wray, and col-
leagues, who used quantitative genetic reasoning to demonstrate that 
one could capture the aggregate effect of genetic variants (polygenicity),  
many of which fail to meet highly conservative genome-wide signifi-
cance thresholds but nonetheless contribute to disease liability54. In 
schizophrenia, there are predicted to be over 8,000 disease-associated 
common variants13. A similar level of polygenicity is expected for 
virtually every major common neuropsychiatric disorder3. How this 
plays out in an individual patient is not yet known, and environmental 
factors (such as smoking55 or cannabis use56) potentially contribute. 
Indeed, it is clear that genome-wide significant loci represent the tip of 
the iceberg in terms of the biological signal captured by GWAS4,53,54. 

New approaches such as LD score regression57 can quantify the aggre-
gate ‘SNP heritability’ captured by common variants within a given 
study, which can then be used to calculate genetic correlations across 
disorders or with other traits of interest58, especially intermediate 
phenotypes59. An extension of this method can quantify the pro-
portion of heritability attributed to SNPs within various functional 
categories (such as enhancers for specific cell types)60. Conceptually 
similar, polygenic risk scoring (PRS) quantifies within an individual 
the aggregate effect of common variants for a given trait, typically 
calculated as the sum of trait-associated alleles across the genome, 
weighted by effect size61,62. PRS can be used to identify high-risk indi-
viduals for closer clinical assessment, phenotyping before disorder 
onset to better understand disease trajectory, or to stratify for clinical 
trials, choosing or refining treatments on the basis of genetic signal. In 
addition, PRS provides a continuous, quantitative measure of genetic 
load that can be correlated with phenotypic or endophenotypic  
measures, such as structural or functional neuroimaging63. However, 
PRS is likely to be population-specific and is limited by the power of 
the initial GWAS. There is urgent need to expand such studies to more 
diverse populations of African, Hispanic, and Asian descent, so that 
individuals within these populations can benefit from the promise 
of genetic advances.

In schizophrenia, PRS can currently capture ~7% of variance in disease 
liability in independent populations of European ancestry12. While far 
from complete, this translates into odds ratios of 8–20 when comparing  

Figure 2 Neurobiological framework for interpretation of individual disease-associated variants. (a) When considering a neurobiological framework for 
interpretation of disease-associated genetic variation, it is most important to begin with variants that meet genome-wide significance thresholds20.  
(b) Independent replication is also critical, which can be supported by prior reported associations in a clinical genetic database (for example, ClinVar)  
and by an appropriate observed frequency in large population reference databases (for example, ExAC). (c) Functional annotation differs for coding and 
noncoding variants, although some general principles apply to both (for example, inheritance, evolutionary conservation). For coding variants, the target  
gene is known and annotation is initially based on impact to the amino acid sequence. Synonymous mutations, often interpreted as neutral, can contribute  
to human disease risk by changing transcription factor or microRNA binding or by altering mRNA stability or secondary structure21. Nonsense, frameshift, 
and canonical splice site mutations are generally placed in the most deleterious, likely gene disrupting category, although their disease association must  
still be statistically supported. Interpretation of missense mutations is more difficult, relying typically on evolutionary constraint or by inferred disruption  
of protein structure or biochemical function22. Functional annotation of noncoding variants is a rapidly evolving area, but can be broadly conceptualized  
as (top) predicting a regulatory effect and (bottom) identifying target gene(s). Computational methods can predict the likelihood that noncoding regions act  
as enhancers, repressors, or insulators within a given tissue or cell line on the basis of epigenetic annotations49. Gene targets can be inferred through 
statistical frameworks such as eQTL or by mapping intrachromosomal physical binding interactions through chromosome conformation capture methods.  
(d) Predictions of the potential impact of a variant on the target gene should be experimentally validated. Gene-level disruption can be confirmed in a  
cell-based experimental system, as long as genomic and epigenetic context are considered. Model organisms with construct validity may also be useful. 
(e) Once the proximal biological effect of a disease-associated variant is determined, disease mechanisms can begin to be inferred through follow up 
investigation in preclinical or clinical settings. Performing comprehensive clinical and medical phenotyping of individuals harboring specific, known  
disease-associated variants will be especially important for mechanistic insight as well as future ‘genotype-first’ precision medicine approaches35. NHGRI, 
National Human Genome Research Institute; EBI, European Bioinformatics Institute; ATAC-seq, assay for transposase-accessible chromatin with sequencing; 
DHS, DNase I hypersensitivity sites; ChIA-PET, chromatin interaction analysis by paired-end tag sequencing; TSS, transcription start site; SIFT, sorting 
intolerant from tolerant; MAPP, multivariate analysis of protein polymorphism.

Box 2 Genetic architecture of neuropsychiatric disease 
A fundamental question for any complex human trait is the degree to which genetic or environmental factors influence phenotypic variance.  
Heritability (h2) refers to the proportion of phenotypic variance due to genetic factors and in the narrow sense is also referred to as additive genetic  
variance (A). Environmental factors can be partitioned into the common, shared environment (C) and the residual, nonshared environmental  
variance (E). While the common, shared environment can be difficult to precisely pinpoint, it is often interpreted as in utero and early childhood  
factors. Classically, twin studies have been used to estimate these various components, although more sophisticated statistical methods have been  
developed (for example, generalized linear mixed models)139. Importantly, de novo genetic variation, which can contribute substantially to disorders 
such as ASD or intellectual disability, is generally not captured in heritability estimates. Disease-associated genetic variation can be further partitioned 
by allele frequency and inheritance patterns. Common variants (minor allele frequency >0.5%) generally have small effect sizes with odds ratios <1.3. 
Rare variants, including CNVs, have much larger effect sizes (odds ratios typically 2–60), and yet penetrance for specific clinically defined disorders 
can vary widely. Mutations of larger effect size have been constrained by natural selection because of negative effects on reproductive fitness and  
therefore tend to be both rare and de novo. The contribution of common genetic variation to overall disease liability (for example, SNP heritability)  
can be estimated using genome-wide complex trait analysis (GCTA)140 or methods that partition heritability, such as LD-score regression (Fig. 1)57. 
Except for severe intellectual disability (IQ <50), current estimates indicate that rare variants contribute an order of magnitude less to overall disease 
liability than do common variants, although this varies across conditions.
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the highest vs. lowest decile groups, depending on population12. This 
finding was recently replicated in an independent UK population,  
in which PRS was found to account for 5.4% of variance in disease 
liability translating to an odds ratio of 7.7 between the highest and 
lowest deciles. As such, PRS is among the most strongly reproducible 
biological disease predictors to date64.

PRS can also be a powerful tool for identifying patient subgroups. 
For example, polygenic risk for bipolar disorder predicts manic symp-
toms in schizophrenia, but not other clinical symptoms, suggesting 
a distinct mechanistic underpinning for this symptom domain65.  
A similar approach was recently taken in inflammatory bowel disease,  

in which PRS can distinguish ulcerative colitis from Crohn’s disease 
and identify distinct subtypes of Crohn’s disease66. In ASD, LD score 
regression was recently used to demonstrate that genetic risk for  
deficits in social function fall along a continuous, bell-shaped dis-
tribution within the general population24, as previously predicted67. 
These studies demonstrate that quantification of polygenic risk  
coupled with systemic phenotypic assessment can facilitate new 
insights into disease biology.

However, a major challenge that remains is to understand the mech-
anisms by which multiple genetic risk factors of low individual effect 
size actually coalesce to increase disease risk. We emphasize the view 
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that systems biology and integrative approaches as described below 
are a necessary step in prioritizing potential disease mechanisms and 
drug targets for therapeutic development3,68. Such approaches pro-
vide platforms on which to understand convergence in disease and 
protective mechanisms from human population genetic data3,68.

Systems genetics
Some of the same technological advances that have enabled large-scale 
genetic investigation of complex diseases have also enabled systematic 
characterization of epigenetic, molecular, cellular, and circuit-level 
landscapes of the human brain across typical development25,69,70. 
These resources now enable comprehensive pathway-based, systems-
level approaches to articulating the neurobiological context in which 
genetic variation may exert its effects, as recently reviewed71. Perhaps 
most relevant for CNS disorders, disease relevant gene sets can be 
investigated for temporal, spatial, and cell-type specificity using large 
reference data sets. The BrainSpan69 and BrainCloud72 projects pro-
filed gene expression in hundreds of human brain samples across the 
lifespan, beginning with early fetal timepoints. Spatial patterns are cap-
tured in exquisite anatomic detail in adult73 and fetal74 human brain 
samples, as well as primate75, by the Allen Brain Institute. CNS cell-
type-specific transcriptomes have been defined using single-cell RNA 
sequencing (RNA-seq) or cell sorting methods in primate76, mouse77, 
and now human78. Overlapping the growing list of reproduced genetic 
hits in psychiatric disease with more refined cell-type-specific profiles 
is likely to provide key circuit-level insight into disease79.

Using these approaches, common genetic variation for schizo-
phrenia, bipolar disorder, and depression has been suggested to 
converge on pathways for histone methylation, immune signaling, 
and neuronal signaling, although this must be viewed as preliminary 
owing to the small number of known loci in this analysis80. Gene 
coexpression networks can identify modules of genes with predicted 
functional relationships at specific spatiotemporal timepoints in 

brain. Intersecting these modules with risk genes can yield insights 
into disease biology68,71,81,82. Clustering genes on the basis of experi-
mentally defined physical properties, such as protein–protein interac-
tions, can identify sub-networks of convergent biological processes, 
such as chromatin remodeling and histone regulation in ASD83–85. 
Combining protein–protein interaction, gene expression, and other 
data into truly integrated networks reflecting CNS function will be 
critical to understanding pathway convergence of manifold genetic 
risk variants in these disorders.

Integrative approaches
Allele-specific expression and eQTL studies link genetic variation 
with altered transcript expression. Sample size and tissue specifi-
city are critical limiting factors, as 10–45% and ~70% of eQTLs are 
predicted to be tissue and cell-type specific, respectively47,86. This  
has prompted several consortium-level efforts to generate eQTL 
databases of human brain, including GTEx47, UKBEC87, and 
CommonMind88, among others. As current human brain eQTL 
studies contain at most a few hundred samples, they remain vastly 
underpowered given a large statistical search space relating a dense 
map of genetic variation to expression of ~20,000 genes. Furthermore, 
as eQTLs are often highly cell-type specific86, tissue-level profiling of 
brain tissue homogenate likely obscures contributions from underly-
ing individual cell types.

Nevertheless, psychiatric GWAS studies have found enrichment of 
brain-specific eQTL among disease-implicated SNPs as a class, sug-
gesting that intersection with these regulatory data sets may provide 
important biological insights39. Critical steps moving forward will be 
to intersect GWAS-implicated disease variants with large-scale eQTL 
studies, followed by verification of the significance (and directionality)  
of predicted functional relationships through case-control transcrip-
tome profiling. Recent innovative studies have begun to directly 
integrate GWAS and eQTL data to perform transcriptome-wide  

Box 3 Lessons in reproducibility 
Psychiatric genetics is susceptible to false positive results, a problem amplified by frequent comorbidities, overlapping symptoms and limited  
biomarkers. The candidate gene era was fraught with false positives, which have been limited by genome-wide analyses3. However, in the era of whole 
exome and genome sequencing, nonpathogenic rare and private variants will be identified in every individual genome, so extra care must be taken to 
avoid overinterpretation of results7,20.
 Replication is critical; genotypes and phenotypes between discovery and replication sets should be comparable. For example, an early genetic  
finding in schizophrenia was a linkage peak including the DTNBP1 locus. Replication studies measured different markers around DTNBP1 without 
imputation to a common reference, each defining a different haplotype as the risk allele, with no concordance of findings141. And indeed, the largest 
schizophrenia GWAS to date has failed to find any association near the DTNBP1 locus.
 In case/control studies it is critical to account for all potential biological (for example, age, sex) and technical confounds, especially those related  
to experimental design, such as batch effects. For example, a study profiling gene expression in cell lines derived from subjects of European and  
Asian ancestry reported that 25% of genes were differentially expressed across ethnicities, which was claimed to reflect common genetic variation142.  
However, these results disappeared after accounting for a strong group × batch confound143. Similarly, a recent high-profile GWAS of longevity  
reported 33 genome-wide significant SNPs, which were able to predict lifespan in an independent cohort with a remarkable 77% accuracy144.  
This study was later retracted after it was determined that a batch effect likely accounted for the signal.
 Subtle differences in allele frequencies between subpopulations within case and control groups (termed “population stratification”) or (cryptic) 
relatedness among subjects can also introduce significant bias. A recent study claimed to predict a diagnosis of ASD with a remarkable ~70% accuracy 
using only 237 common SNPs, but did not properly account for population stratification, as claimed145. Rather, these SNPs were strongly associated 
with ethnicity differences between subjects, and did not predict ASD status146. Similarly, a recent paper claimed to identify eight genetically defined 
subtypes of schizophrenia in 4,196 patients and 3,827 controls, but did not account for population stratification147. One should be concerned that, 
without explicit correction, these results are driven by ancestry or other hidden confounds.
 Finally, rare variants are present in every genome, can have a predicted functional effect without actually being pathogenic, can segregate with traits 
owing to hidden factors (for example, linkage disequilibrium), or can aggregate by chance in affected family members. A recent paper reported a new 
Mendelian form of multiple sclerosis caused by a rare mutation in NR1H3, identified in two multiplex families with a severe form of the disease148. 
The authors also show that the purported disease variant causes transcriptional dysregulation of NR1H3 and its target genes. However, a study with  
13-fold larger sample size found no such association. Rather, the results can be accounted for by a previously identified genome-wide significant  
common multiple sclerosis variant in moderate LD ~400 kb away149. Potential pathogenic variants should be assessed in large population-scale  
databases whenever possible, and evidence of a biological effect in a model system does not provide evidence for genetic association.
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association studies, which have the potential to provide powerful gene-
centric insights into disease mechanisms89,90. On balance, however,  
we note that overlap of eQTL and disease association peaks does not 
provide evidence of a causal relationship to disease, since linkage 
disequilibrium acts on both signals and some degree of overlap is 
expected by chance alone. Furthermore, eQTL studies may be less 
statistically conservative in correcting for multiple comparisons than 
GWAS, leading to a higher propensity for false positive results91.

Similar approaches exist for defining the landscape of epigenetic 
regulation of gene expression, which represents an additional layer of 
biological complexity44. Major psychiatric risk genes include CHD8, 
which encodes a chromatin remodeling enzyme associated with ASD 
and macrocephaly35, and SETD1A, which encodes a histone methyl-
transferase and was recently associated with schizophrenia, develop-
mental delay, intellectual disability, and epilepsy92. Common genetic 
variants for schizophrenia and bipolar disorder have also been linked 
to histone methylation, albeit less directly80. Recent, in-depth charac-
terization of the spatial and developmental trajectory of methylation 
in human brain demonstrated that schizophrenia-associated variants 
strongly overlap with fetal brain methylation-QTL signals70,93. Similar 
approaches are being undertaken for histone acetylation QTL94, for 
example, as part of PsychEncode25.

Partitioning the GWAS SNP heritability from schizophrenia  
and bipolar disorder on the basis of functional categories defined  
by these epigenetic signatures identified strong CNS enrichment for 
common genetic variation in both disorders and fetal brain, specifi-
cally in schizophrenia60,95. Concordantly, genetic variants conferring  
risk for schizophrenia so far seem enriched in fetal prefrontal cortex 
gene coexpression networks81,82. These results suggest that fetal brain 
development represents one critical window during which genetic 
risk factors for certain specific neuropsychiatric disorders exert  
their effects.

Finally, the most powerful approaches will integrate multiple  
orthogonal data sets to assess differing levels of genetic, epigenetic,  
and neurobiological regulation. An exemplary recent example of  
this type of approach was the investigation of the top genome-wide 
significant locus in schizophrenia, spanning the highly complex  
MHC region40. This work combined fine mapping of this locus in 
schizophrenia with a newly generated reference of structural haplo-
types to predict that disease-associated variants function by increasing 
expression of the complement component 4A gene (C4A) in brain.  
The role of C4A was verified using gene expression profiling in schizo-
phrenia brain samples, and the C4 protein was shown to regulate 
synaptic pruning in a rodent model, identifying one of the causal 
neurobiological mechanisms contributing to disease risk. Integrative 
approaches have also been undertaken to characterize other GWAS loci 
in schizophrenia—for example, identifying risk variants that function 
as eQTL and map to enhancer regions encoding the L-type calcium 
channel CACNA1C95.

Disease modeling
Many powerful basic research tools now exist that can guide mecha-
nistic insight into disease-associated genetic variation, ranging from  
in vivo animal models to in vitro culture systems of human fetal neuron 
progenitor cells, adult induced pluripotent stem cell–derived neurons, 
and cerebral organoids96,97, each with advantages and limitations29. 
Caution is always warranted, as insights from behavioral and circuit-
level analyses related to human higher cognition and behavior are 
limited by evolutionary divergence. Even at a molecular level, some 
genes and signaling pathways are not well conserved between humans 
and rodent models98,99. In addition, genetic risk alleles for psychiatric 

disease may converge on human-specific transcriptional processes, or 
pathways that are not well preserved in lower organisms100–102.

Classic model organisms used for molecular genetics have pre-
dominantly consisted of fruit fly (Drosophila melanogaster), zebrafish 
(Danio rerio), and mouse (Mus musculus), owing to the relative ease of 
genetic manipulation and potential for high throughput investigation. 
Recent advances in genome engineering have facilitated the creation 
of transgenic rat103 and primate104 models of neuropsychiatric disease, 
limiting throughput but enabling investigation of more complex neu-
ral circuitry105. Model organisms have historically been used to inves-
tigate the effect of rare, deleterious variants or Mendelian syndromes 
associated with neuropsychiatric disease. Common genetic variants 
are much more difficult to model in animals as most lie in regulatory 
regions poorly conserved across species. Transgenic mice have been 
used to model major effect forms of autism (including mutations in 
FMR1, TSC1, TSC2, CNTNAP2, and MeCP2), as well as copy-number 
variation (16p11.2, 22q11.2, and dup15q11), as recently reviewed29. 
Adult rescue of phenotypic deficits has been demonstrated in major 
gene mouse models of neurodevelopmental disorders, such as fragile 
X syndrome, tuberous sclerosis and Rett syndrome, providing hope 
for treatment. However, analogous treatments in the human clini-
cal populations have largely failed, for largely unknown reasons106. 
Similar models of rare variants have been investigated in flies, includ-
ing loss-of-function mutations in the FMR1 homolog dmfr1 (ref. 107), 
and zebrafish, such as cntnap2 mutants108. Notwithstanding the above 
caveats, major advantages of in vivo models include the ability to 
directly interrogate complex circuit-level alterations, to assess basic 
cognitive phenotypes, to measure and manipulate neurodevelopmen-
tal processes, and to perform large-scale genetic or pharmacologic 
screens, among others. Modeling of 16p11.2 deletion syndrome in 
mice, for example, has enabled circuit-level phenotypic dissection, 
identifying a number of abnormalities in the physiology and function 
of the basal ganglia109. Molecular genetic dissection of this locus in 
zebrafish implicated a single gene in this region, KCTD13, as mediat-
ing the underlying neuroanatomic phenotype110. However, the region 
is complex and it is likely that other genes in this region contribute to 
the broader cognitive and behavioral phenotypes.

Recent developments in stem cell biology have enabled the in vitro 
generation of human neurons, providing a greatly needed experimen-
tal platform for phenotypic characterization and drug screening97. 
Much of the excitement centers on the potential for creating patient-
derived ‘virtual biopsies’ for a tissue is inaccessible to direct investiga-
tion. Characterizing neurons derived from human induced pluripotent 
stem cells from subjects with known penetrant mutations111 and those 
without established genetic causes of disease both have value. In the 
latter, the likely causal heterogeneity requires higher numbers than are 
typically studied to yield generalizable results112. Advantages of this 
approach include the ability to capture polygenicity, incorporation of 
genetic background, ability to investigate human-specific biological 
processes, and potential for high throughput assays113. Pharmacologic 
screening is thereby possible for patient-derived mutations114, presag-
ing future precision medicine approaches. One limitation is that until 
we are able to develop mechanistic knowledge based on our genetic 
findings, it is not clear what relevant cellular or molecular phenotypes 
should be screened for in vitro29. Systematic approaches, such as gene 
expression profiling, are likely a good starting point and, critically, 
can be used to quantify the relative maturity, variability, cellular, and 
regional identity more rigorously than individual markers115. Other 
technical hurdles include line-to-line heterogeneity, a limited number 
of neuronal cell types that can be differentiated, and an inability  
to form complex circuits. More sophisticated approaches have recently 

©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



1404  VOLUME 19 | NUMBER 11 | NOVEMBER 2016 nature neuroscience

r e v i e w

been undertaken to address some of these limitations, including  
the development of cerebral organoids112 and human cortical  
spheroids96, which exhibit a cytoarchitectural structure with cortical 
lamination, incorporate neuronal and glial cell types, form functional 
synapses, and display spontaneous electrical activity. Considering 
genetic background effects, a final critical factor is sample size,  
which can be partially mitigated using either unaffected family  
members as controls or isogenic lines in which the genetic risk alleles 
have been corrected.

Pathways to precision health
Moving forward, how can we translate genetic hits into mechanistic 
insight to reinvigorate a stalled CNS drug development pipeline116? 
The genomics era has instilled much optimism in this regard117, having  
recently identified new causal pathways in schizophrenia40, new 
genetic predictors of treatment response in bipolar disorder118, and 
genetic risk factors for serious side effects of psychotropic medica-
tion119, among others. It is notable that most of these advances are 
the product of large-scale collaborative approaches120.

A related question that remains is how to prioritize genetically iden-
tified biological targets for development of new medicines. To date, 
such efforts have disproportionately focused on the mutations with the 
largest effect sizes, which are easier to identify, interpret, and model 
in preclinical settings. However, there is evidence that small effect-
size (typically common, inherited, polygenic) and large-effect size 
(typically rare, noninherited) variants converge on distinct biological 
processes. In ASD, for example, inherited variants converge largely on 
postnatal synaptic processes, whereas de novo loss-of-function variants 
are enriched for developmental regulation and chromatin modification 
pathways15,71. A potential interpretation is that more highly penetrant 
mutations disproportionately disrupt the robustness of the neurode-
velopmental trajectory to an environmental or genetic perturbation 
(‘canalization’)121. This would explain the association of rare variation 
with more severe and pleiotropic syndromes including intellectual dis-
ability, epilepsy, and ASD. This would also predict that clinical disease 
specificity is guided by distinct factors, such as environmental or com-
mon variants, in accordance with recent evidence34.

We propose that genes and pathways affected by common variants 
may be at least equally, if not more, amenable to therapeutic inter-
vention than those disrupted by high penetrance mutations (Box 4). 
First, the small effect size of common variants suggests that disease 
risk is inherently modifiable and that ‘protective’ environmental expo-
sures in the form of biological intervention could prevent disease or 
reduce risk. Second, common variation by definition is present in 
a larger proportion of the population and therefore is likely more 
generalizable. Third, for most neuropsychiatric disorders, common 
variation is predicted to contribute more substantially to disease 
liability than highly penetrant mutations, often by an order of mag-
nitude31,122,123. Finally, in other complex disorders, successful new 
drug targets can often be retrospectively substantiated by genome-
wide significant variants (Table 2)124. In hyperlipidemia, for exam-
ple, targets of statins (HMGCR) and the new class of lipid-lowering 
PCSK9-inhibitors (PCSK9) are among the top GWAS-identified risk 
variants125, although these targets were discovered before the GWAS 
era. There are enormous challenges to targeting common variants 
using traditional methods. First, we need to better characterize com-
posite genetic risk in individuals—what common and/or rare risk 
variants are necessary and sufficient to cause disease in an individual. 
Individual genetic subtypes of a disorder could be identified on the 
basis of convergent risk profiles defined by population scale WGS, 
thus stratifying patients by their underlying biology65,66.

High-throughput precision health approaches are gaining traction 
and may provide an additional platform through which to validate 
potential drug targets. Phenome-wide association studies, which 
integrate clinical and genomic data to identify genotype–phenotype 
relationships on the basis of electronic medical records, offer great 
promise126,127 as evidenced by pharmacogenomic-based predictors 
of drug efficacy128. Other powerful new approaches include compu-
tational drug repositioning129,130, integrating, for example, a data-
base of known drug targets with GWAS-implicated disease loci131 

Box 4 FDA-approved medications supported by
common-variant association
Nearly all classes of medications currently used to treat neuropsy-
chiatric disease were discovered by serendipity and target the same 
molecular pathways as their prototypes, developed decades ago116. 
Novel therapeutic targets are greatly needed and genetics provides an 
avenue for their identification117. Preclinical drug development has 
historically favored targets based on rare, moderately penetrant genetic 
variants, which are easier to identify, interpret, and investigate in model 
organisms. Although this has been successful in some cases, the recent 
dismal approval rate of candidate drugs entering clinical trials for neu-
ropsychiatric disorders suggests that alternative approaches may  
be needed106. We argue that pathways enriched for common genetic  
variation should receive more attention for drug development. In support 
of this, we have surveyed the literature for examples of FDA-approved 
medications that are supported by GWAS-identified targets (Table 2). 
While most of these drugs were developed before the GWAS-era, their 
targets can be retrospectively validated by genome-wide significant loci 
associated with disease risk. One can extrapolate from these successes 
to predict that additional pathways enriched for common variation  
from disease GWAS can identify future efficacious drug targets131.  
We note that this is neither prospective nor a formal statistical analysis 
assessing enrichment of approved drugs acting on GWAS-identified  
targets. However, others have estimated that genetic evidence as a 
whole could double the success rate of clinical drug development124.

Table 2 FDA-approved medications supported by GWAS variants

Disease
Lead  

GWAS SNP
Genetic  
locus

FDA-approved medication 
Drug class

Psoriasis rs9988642 IL12R–IL23R Ustekinumab 

Biologic

Hyperlipidemia rs12916 HMGCR Many 

Statin

Hyperlipidemia rs2479409 PCSK9 Alirocumab 

Biologic

Type 2 diabetes rs1801282 PPARG Many 

Thiazolidinediones

Type 2 diabetes rs5219 KCNJ11 Many 

Sulfonylurea

Osteoporosis rs9533090 TNFSF11  
(RANKL)

Denosumab 

Biologic

Osteoporosis rs7751941 ESR1 Many 

Selective estrogen  
receptor modulator

Schizophrenia rs2514218 DRD2 Many 

Antipsychotic

Rheumatoid  
 arthritis

rs2228145 IL6R Tocilizumab 

Biologic

Rheumatoid  
 arthritis

rs3087243 CTLA4 Abatacept 

Biologic

See Supplementary Table 1 for further details.
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or with the transcriptomic profile of a drug from resources such as 
the Connectivity Map132. With large enough samples, the goal is that 
phenome-wide association studies will allow dissection of genetic 
contributions to specific phenotypes that, when combined, produce 
a specific clinical syndrome. Finally, the importance of environmen-
tal factors (such as gut microbiota) is becoming increasingly real-
ized. Once genetic risk factors and pathways are accounted for, it will 
become possible to more systematically query the impact of the envi-
ronment and its interaction with genetics. This approach has shown 
recent success in dissecting the role of smoking55 and cannabis56 use 
on risk of schizophrenia. As such, the knowledge imparted by under-
standing genetic contributions to disease risk can serve as a causal 
anchor, magnifying the power of follow-up studies and providing a 
strong foundation for finally unraveling the complex brain–behavior 
relationships underlying neuropsychiatric disease.
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