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An increasing number of studies that are widely used in the demographic research
community have collected genome-wide data from their respondents. It is therefore
important that demographers have a proper understanding of some of the methodolog-
ical tools needed to analyze such data. This article details the underlying method-
ology behind one of the most common techniques for analyzing genome-wide data,
genome-wide complex trait analysis (GCTA). GCTA models provide heritability esti-
mates for health, health behaviors, or indicators of attainment using data from unrelated
persons. Our goal was to describe this model, highlight the utility of the model for
biodemographic research, and demonstrate the performance of this approach under
modifications to the underlying assumptions. The first set of modifications involved
changing the nature of the genetic data used to compute genetic similarities between
individuals (the genetic relationship matrix). We then explored the sensitivity of the
model to heteroscedastic errors. In general, GCTA estimates are found to be robust
to the modifications proposed here, but we also highlight potential limitations of GCTA
estimates.

Introduction

Demographic research often describes the factors responsible for variation in population
health (Majer et al. 2013; Masters et al. 2014), health behaviors (Pampel and Denney
2011), birth outcomes (Fuller et al. 2014), and mortality (Ross, Masters, and Hummer
2012). Importantly, each of these outcomes has evidenced moderately sized heritability
estimates (e.g., Rice et al. 2014; Daw et al. 2013). Not only are most physical health mor-
bidities influenced by genetic factors common to family members (Pilia et al. 2006), but
so are health-related lifestyles such as smoking (Boardman et al. 2011), exercise (Bartels
et al. 2012; Mustelin et al. 2012), and birth outcomes, including birth weight, gestational
age (Clausson, Lichtenstein, and Cnattingius 2000), and even mortality (Wienke et al.
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2 B. W. Domingue et al.

2001). Given that genes influence nearly all of the outcomes of interest to demographers,
characterizing the relative contribution of genetic influences to health, health behaviors,
birth outcomes, and mortality is critical for demographic researchers.

Heritability is the traditional approach to quantifying genetic influence on a trait.
Heritability studies date back to Galton’s work in the nineteenth century (e.g., Galton
1869). During the pre-genomic era the workhorse for estimating heritability had been the
twin study, which utilizes family pedigrees. Currently there is a proliferation of genome-
wide data from unrelated individuals in large, representative, longitudinal data sources such
as the Health and Retirement Study, the National Longitudinal Study of Adolescent to
Adult Health (McQueen et al. 2015), and many other, more targeted, datasets such as the
Framingham Heart Study (Splansky et al. 2007). These studies have begun genotyping
respondents and providing information on single nucleotide polymorphisms (SNPs) across
the entire human genome. SNPs are common genetic variants and are the most convenient
form of genome-wide data available for use by nongeneticists (Guo and Adkins 2008).

Initially, SNP data were the backbone of genome-wide association studies (GWAS),
in which specific positions on the human genome are correlated with health phenotypes.
This technique generates hundreds of thousands of (and now several million) regression
estimates comparing genotype (e.g., zero, one, or two copies of the minor allele of the SNP)
to phenotype (e.g., height) for each SNP. Novel genetic associations with many diseases
have been found (Welter et al. 2014), but these individual loci only predict a small amount
of observed phenotypic variation. For example, the associations identified in a GWAS for
educational attainment (Rietveld, Medland, et al. 2013) explain only 0.02 percent of the
observed variation.

It is also possible to utilize genetic similarity, based on information from the entire
genome, among unrelated persons to decompose overall phenotypic variation into genetic
and environmental components. The most common maximum likelihood methods used in
these analyses are bundled in GCTA, a suite of software for genome-wide complex trait
analysis (Yang et al. 2010; Yang et al. 2011). Although alternative techniques exist for
computing such heritabilities (e.g., Ge et al. 2015), GCTA has been widely used and is
relatively straightforward.

The key insight embedded in the GCTA approach is that measured SNP-level vari-
ation can be used to estimate the genetic similarity between two unrelated individuals,
and this estimated genetic similarity can be compared to phenotypic similarity to produce a
heritability estimate. A number of scholars are beginning to utilize these techniques. Table 1
contains a range of heritability estimates produced using GCTA that may be of interest to
demographers. This is not intended as a comprehensive list of papers using GCTA that
have been published, but is rather meant to provide a description of the types of GCTA out-
comes that may be of interest to demographers and to illustrate the range of the associated
heritability estimates. The estimates are grouped into different categories of phenotypes.
One possible expectation might be for anthropometric phenotypes such as height to evince
larger heritabilities than behavioral traits such as nicotine use and alcohol consumption.
Height, for example, is driven largely by biology (outside of extreme nutritional environ-
ments), whereas decisions about nicotine and alcohol use are clearly influenced by peers
and broader society. Yet heritability estimates between the two sets of outcomes are fre-
quently quite similar. We also emphasize that heritabilities do not capture fundamental
unchanging biological mechanisms but are instead highly contextual. Dating back to at
least Feldman and Lewontin’s characterization of heritability estimation as “local pertur-
bation analyses” (1975, p. 1163), it has been understood that heritabilities are not fixed,
immutable quantities but are contingent upon the social world in which the relevant actors
are embedded.
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 3

Table 1
Heritability estimates from applications of GCTA

Outcome h2 (SE)
Sample
Size Reference

Anthropometric Phenotypes
Height 0.44 (0.09) 2,000 Speed et al. 2012
Height 0.35 (0.12) 3,154 Plomin et al. 2013
Height 0.32 (0.06) 6,379 Conley et al. 2014
Weight 0.42 (0.12) 3,154 Plomin et al. 2013
BMI 0.43 (0.10) 4,233 Boardman et al. 2015
BMI 0.31 (0.07) 6,320 Conley et al. 2014
Medical/Clinical Phenotypes
Type 1 Diabetes 0.73 (0.06) 2,000 Speed et al. 2012
Type 1 Diabetes 0.28 (0.04) 2,599 Lee et al. 2011
Type 2 Diabetes 0.35 (0.06) 2,000 Speed et al. 2012
Rheumatoid Arthritis 0.57 (0.06) 2,000 Speed et al. 2012
Crohn’s Disease 0.61 (0.08) 2,599 Lee et al. 2011
Crohn’s Disease 0.54 (0.06) 2,000 Speed et al. 2012
Coronary Artery Disease 0.39 (0.06) 2,000 Speed et al. 2012
Pediatric Obesity 0.37 (0.15) 3,152 Llewellyn et al. 2013
Hypertension 0.42 (0.06) 2,000 Speed et al. 2012
Parkinson’s Disease

(Early Onset)
0.15 (0.14) 7,096 Keller et al. 2012

Parkinson’s Disease (Late
Onset)

0.31 (0.07) 7,096 Keller et al. 2012

Parkinson’s Disease (All
Types)

0.27 (0.05) 7,096 Keller et al. 2012

Parkinson’s Disease 0.22 (0.02) 3,426 Do et al. 2011
Multiple Sclerosis 0.3 (0.02) 1,854 Watson et al. 2012
Cognitive Phenotypes
General Cognitive Ability 0.35 (0.12) 3,154 Plomin et al. 2013
General Cognitive Ability 0.29 (0.05) 6,609 Marioni et al. 2014
Nonverbal Cognitive

Ability
0.20 (0.11) 3,154 Plomin et al. 2013

Verbal Cognitive Ability 0.26 (0.11) 3,154 Plomin et al. 2013
Language Ability 0.29 (0.12) 3,154 Plomin et al. 2013
Intelligence (Age 7–12) 0.60 (0.26) 2,875 Trzaskowski et al. 2014a
Intelligence 0.51 (0.02) 3,511 Davies et al. 2011
Intelligence from

Childhood to Old Age
0.24 (0.20) 1,940 Deary et al. 2012

IQ (Age 12) 0.32 (0.14) 3,000 Trzaskowski et al. 2014b
IQ (Age 7) 0.28 (0.17) 3,000 Trzaskowski et al. 2014b
Psychological Phenotypes
Bipolar Disorder 0.59 (0.06) 2,000 Speed et al. 2012
Bipolar Disorder 0.37 (0.04) 2,599 Lee et al. 2011

(Continued)
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4 B. W. Domingue et al.

Table 1
(Continued)

Outcome h2 (SE)
Sample
Size Reference

ADHD 0.42 (0.13) 1,040 Yang et al. 2013
Adult Antisocial Behavior 0.55 (0.41) 2,172 Tielbeek et al. 2012
Depression 0.19 (0.10) 4,233 Boardman et al. 2015
Major Depressive

Disorder
0.32 (0.09) 4,605 Lubke et al. 2012

Behavioral Disinhibition 0.19 (0.16) 3,452 Vrieze et al. 2013
Neuroticism 0.06 (0.03) 12,000 Vinkhuyzen et al. 2012
Borderline Personality

Features
0.23 (0.09) 7, 125 Lubke et al. 2014

Callous-Emotional
Behavior

0.07 (0.12) 2,930 Viding et al. 2013

Extraversion 0.12 (0.03) 12,000 Vinkhuyzen et al. 2012
Anxiety Related

Behaviors
0.01–0.12

(0.12)
2,810 Trzaskowski et al. 2013

Substance Dependency Phenotypes
Drug Use 0.22 (0.16) 3,452 Vrieze et al. 2013
Drug Dependence 0.36 (0.13) 2,596 Palmer et al. 2015
Dependence Vulnerability 0.33 (0.13) 2,596 Palmer et al. 2015
Problematic Drug Use 0.25 (0.13) 2,596 Palmer et al. 2015
Alcohol Consumption 0.16 (0.16) 3,452 Vrieze et al. 2013
Alcohol Dependence 0.12 (0.16) 3,452 Vrieze et al. 2013
Nicotine

Use/Dependence
0.18 (0.16) 3,452 Vrieze et al. 2013

Sociological/Health Behavior/Educational Phenotypes
Socioeconomic

Background
0.18 (0.05) 6,533 Marioni et al. 2014

Socioeconomic Status
(Age 2)

0.18 (0.12) 3,000 Trzaskowski et al.
2014b

Socioeconomic Status
(Age 7)

0.19 (0.12) 3,000 Trzaskowski et al.
2014b

Subjective Well-Being 0.05–0.10
(0.05–0.10)

11,500 Rietveld, Cesarini,
et al. 2013

Reporting Stressful Life
Events

0.3 (0.15) 2,578 Power et al. 2013

Self-Rated Health 0.18 (0.10) 4,233 Boardman et al. 2015
Moderate to Vigorous

Activity
0.17 (0.09) 4,244 Richmond et al. 2014

Sedentary Time 0.25 (0.09) 4,244 Richmond et al. 2014
Total Physical Activity 0.21 (0.10) 4,244 Richmond et al. 2014
Education 0.21 (0.05) 6,578 Marioni et al. 2014
Education 0.33 (0.10) 4,233 Boardman et al. 2015
Education 0.17 (0.07) 6,414 Conley et al. 2014
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 5

Although GCTA holds promise, great care needs to be used in the application of these
methods to obtain credible results. This article is meant, in part, to act as a guide for demog-
raphers who are potentially new to genetic analyses and are interested in conducting a
heritability study. It builds on the work of the GCTA development team (e.g., Visscher,
Yang, and Goddard 2010; Yang et al. 2010; Yang et al. 2011) and others (Conley et al.
2014) who are well aware of the need for caution in the application of these methods.
We begin by describing the method for an audience with minimal training in genetics.
We then present three empirical examples demonstrating the sensitivity of GCTA estimates
to certain “twists” in the typical approach to using this model. This work is not meant as a
critique of the model but is intended to illuminate how the method works and its potential
limitations.

The Method

The core insight underlying the estimation of heritability in both twin studies and with
GCTA is that if genetic variation accounts for some measure of phenotypic variation, then
more genetically similar pairs should be more phenotypically similar. Clearly, this depends
upon being able to measure genetic similarity. In twin, extended twin, or family studies, the
estimation of genetic similarity occurs only between family members and is trivial since the
family relationships are known and pairs receive their expected identity by descent (IBD)
value (e.g, 0.5 for full siblings and dizygotic twins, 0.25 for half-siblings, etc.). With GCTA,
we estimate genetic similarity between all pairs of unrelated individuals (with n unrelated
individuals, there are n2−n

2 possible pairs) on the set of genetic markers in question.1 We
emphasize that the metric for similarity used in GCTA is just one of many possible metrics
(Speed and Balding 2014 describe alternatives). Second, a restricted maximum likelihood
(REML) estimate of heritability is computed by comparing phenotypic similarity to genetic
similarity. We describe these steps in more detail in the following sections.

Estimating Genetic Similarity

The genetic similarity Ajk between individual j and individual k is estimated as (Equation 3,
Yang et al. 2011; Equation 5, Yang et al. 2010)

Ajk = 1

N

∑

i

(
xij − 2pi

)
(xik − 2pi)

2pi (1 − pi)
(Eq. 1)

where N is the number of available genetic markers, i indexes these markers, xij and xik

are the number of minor alleles at SNP i for individuals j and k, respectively, and pi is the
minor allele frequency.2 Genotypes are effectively standardized so that the sample variance
is independent of allele frequency. At this stage, it is important to pause to note the conse-
quences of the fact that the genetic similarity is estimated based on the full set of N markers
and not the subset of causal variants that would, ideally, be of interest. The dilemma is that
one does not know the set of true causal variants. The causal variants are unlikely to be

1GCTA analyses nearly always focus on SNPs rather than other genetic variants. In this article,
genetic markers and variants will be used interchangeably for SNPs.

2Diagonal elements of A (when j = k) are inbreeding coefficients. We do not discuss them further
here since they are of marginal interest in the estimation of heritability (see Yang et al. 2011 for
information on their calculation).
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6 B. W. Domingue et al.

a random sample of markers. In particular, they are likely to be a sample with relatively
low minor allele frequencies (see Yang et al. 2011). This has implications, as the quality of
the heritability estimate based on Ajk will only be as good as the approximation of Ajk to
the genetic similarity on the causal variants. For polygenic traits based on many common
variants, heritability estimates based on Ajk should be accurate. However, traits associated
with rare variants are not a good target for GCTA analyses (see Zuk et al. 2014 on working
with rare variants).

Estimating Heritability

The model for decomposing phenotypic variation is

y = Xβ + g+ ∈ (Eq. 2)

where X is an optional matrix of covariates, g is a vector of random effects, and ∈ is a
vector of errors each with variance σ 2∈ Standard assumptions regarding ∈ apply, namely
that it is independent of X and g. The genetic similarity matrix A enters here through the
assumption that

g ∼ Normal
[
0, σ 2

g A
]

(Eq. 3)

where A is the matrix of similarity estimates. Heritability is defined as a ratio of the variance
of genetic effects to the total variance:

σ 2
g

σ 2
g + σ 2∈

(Eq. 4)

Heritability is intuitive in Eq. 4 in the sense that we see it is the fraction of total variance
accounted for by genetic random effects.

Eq. (2) is estimated using REML. REML is preferred to normal maximum likelihood
(ML) estimation, since it leads to improved estimation of variance components (Harville
1977). In contrast to ML estimation, REML focuses on a likelihood function that is inde-
pendent of nuisance parameters and should, therefore, provide more reliable variance
parameter estimates. Additional details on the estimation technique used here can be found
in Gilmour, Thompson, and Cullis (1995).

Key Data Requirements

GCTA should only be applied to a sample that has already been through a quality control
(QC) process, including pruning for missingness, minor allele frequency (MAF) thresholds
(e.g., an MAF below 0.05, a common threshold for identifying an SNP as a “common”
rather than a “rare” variant), and Hardy-Weinberg equilibrium.3 Dichotomous traits may
require even stricter controls (Lee et al. 2011). Statistical power is an important aspect of

3Hardy-Weinberg equilibrium (HWE) occurs when observed genotypes match expected
genotypes given a particular minor allele frequency. If the minor allele a has frequency p, then the
genotype frequencies should be p2 (for homozygous minor allele aa), 2pq for the heterozygotes
(e.g., ab and ba), and q2 for the homozygous major allele. Deviations from HWE are used to detect
genotyping errors, deviations from random mating, and genetic drift.
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 7

GCTA (Visscher et al. 2014), and while an online tool4 is available for this purpose, a rule
of thumb is that at least 5,000 respondents are needed to detect heritability less than 0.2
(see Figure 3 in Visscher et al. 2014). It is also important that the data be composed of
genetically homogeneous respondents. This is due to the sensitivity of Eq. 1 to population
stratification in which allele frequencies may differ across socially defined racial and ethnic
groups (i.e., pi in Eq. 1 changes substantially across groups). The significance of this issue
is shown quite clearly in Figure S5 of Domingue et al. (2014), which demonstrates that
black spouses from the Health and Retirement Study are estimated to have extreme genetic
similarities as a result of the fact that the majority of the sample is made up of non-Hispanic
whites. That is, small and typically meaningless differences in minor allele frequencies
among non-Hispanic black and white populations for certain portions of the human genome
translate to excessive levels of similarity among same-race groups that may have important
implications for the interpretation of heritability estimates.

Even among a racially homogeneous groups of respondents, there may still be a con-
cern that population stratification is biasing the results. Figure 2 of Nelis et al. (2009)
suggests that even among racially homogenous groups, population stratification remains.
One standard technique for adjusting for such population stratification is through the inclu-
sion of principal components (Price et al. 2006). Such an approach was taken in the original
study of height (Yang et al. 2010), and it is probably prudent to consider such adjustments.
However, principal components may also adjust for meaningful differences (in terms of the
trait in question) between individuals and thus may lead to underestimated heritabilities.
We would thus encourage users to report adjusted and unadjusted estimates of heritability
when appropriate (i.e., when the values differ).

Caveats

The GCTA approach bypasses our lack of knowledge regarding the true causal variants by
assuming that these causal variants are distributed throughout the genome in such a way that
an estimate of genome-wide similarity is a suitable proxy for similarity on the causal SNPs.
It is important to note that this logic only applies to certain traits. Alzheimer’s is an inter-
esting counterexample. The e4 allele of APOE is well known to be a strong genetic risk for
developing Alzheimer’s (Genin et al. 2011). For carriers of e4, the probability of develop-
ing the disease is substantially elevated compared to noncarriers, regardless of their overall
genetic similarity to fellow carriers. For complex traits that are completely polygenic (e.g.,
the causal variants are large in number but weak in effect size), it is reasonable to inquire
how consistent estimates of genetic similarity are over different sets of markers that might
be used to compute heritability. This is the empirical focus of Example 1 (see next section).

Although we still have only limited knowledge about the variants that underlie complex
traits, over the last 10 years there has been a large-scale hunt for the genetic variants that
underlie specific diseases, traits, and other attributes such as education (Rietveld, Medland,
et al. 2013). The key technique in linking phenotype and genotype is the previously dis-
cussed GWAS approach. Given that we now have a large number of GWAS results, it
is natural to inquire about potential changes in GCTA estimates if estimates were com-
puted based on genetic similarities from SNPs known to be associated with the relevant
outcome. We use information from a GWAS on height to inquire about the sensitivity of
GCTA estimates to causal variants that are known to underlie a trait in Example 2 (see next
section).

4See http://spark.rstudio.com/ctgg/gctaPower/.
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8 B. W. Domingue et al.

Estimation of Eq. 2 is premised on additional assumptions that one might question. Just
as in the case of a simple linear model, one key assumption underlying estimation is that
the errors are of constant variance (i.e., homoscedastic). Heteroscedasticity is a common
problem in applied settings that typically leads to incorrect estimates of standard errors.
Given that GCTA focuses on a ratio containing the estimated error variance, heteroscestas-
ticity could have important implications here. We examine the consequences for heritability
estimates if the error term is heteroscedastic in Example 3.

Examples

The following examples rely upon data from non-Hispanic white adults (born between 1900
and 1970, but with the majority born between 1930 and 1940) in the Health and Retirement
Study (HRS).5 DNA samples were collected via buccal swabs in 2006 and via saliva sam-
ples in 2008. Genotype calls were then made based on a clustering of both datasets using the
Illumina HumanOmni2.5-4v1 array. Details on this process can be found online at the HRS
website. After standard quality control procedures (e.g., removing SNPs that were missing
in more than 5 percent of samples, MAF below 1 percent, failure to meet Hardy-Weinberg
equilibrium; complete details are available upon request), we retained 1,698,845 SNPs.
From this sample of SNPs, the main genetic similarity estimates were computed based
on 1,473,658 SNPs (comprising only autosomal SNPs, which were also pruned slightly
because of a second MAF filter imposed by GCTA) for 4,950 non-Hispanic whites (those
from the full sample of non-Hispanic whites who had no missing data on several key vari-
ables). With this sample, we obtained reasonable heritability estimates: cognition 0.23,
height 0.40, weight 0.25, and educational attainment 0.33 (all standard errors are 0.09,
which is to be expected given Figure 1 of Visscher et al. 2014).6

Example 1: Sensitivity of Genetic Similarity to the Set of SNPs

Heritability estimates rely upon genetic similarity, which may be sensitive to the choice of
markers. We first chose SNPs that were pruned from the full set to ensure that they were
in linkage equilibria (for different thresholds). Linkage disequilibrium arises when genetic
markers at nearby locations are correlated as a result of the fact that large segments of DNA
are inherited together. Although genetic similarity is frequently computed via sets of mark-
ers that have not been pruned for linkage disequilibria (LD), Speed and Balding (2014,
p. 8) note that the use of multiple SNPs in regions of high LD can have consequences
for heritability estimates. We also considered randomly chosen sets of markers that were
10 percent, 30 percent, and 50 percent of the full sample of SNPs. Given the underlying
philosophy of GCTA, heritability estimates based on reasonably large subsamples of mark-
ers should be similar to those based on the full sample of markers. This requires that the
different samples of markers produce similarity estimates that are highly correlated.

Table 2 presents the correlations between the genetic similarity estimates (greater than
0.025, as might be used in a heritability analysis) based on the various sets of markers.
We focus on the correlations between the similarity estimates from the full set of mark-
ers and the similarity estimates from the various subsets (the bolded column). To begin
with, consider that the genetic relationship values for all persons i and j are correlated

5Specifically, the RAND fat files, available at http://www.rand.org/labor/aging/dataprod/
enhanced-fat.html.

6All variables except educational attainment were taken from Wave 8.
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 9

Figure 1. GWAS-informed GCTA heritability results for height. The heritabilities are computed for
different sets of markers. The “ns” lines are based on only those markers with a p value above the
given p-value threshold (not significant markers), while the “s” lines are based on only those markers
with a p value below the given p-value threshold (significant markers) for which the p value for each
marker is taken from a large GWAS on height (Wood et al. 2014). Confidence intervals are omitted
since they are consistent. Standard errors for “ns” estimates are less than 0.02 for p-value thresholds
of 1e-04 and below, and less than 0.07 for larger thresholds. The standard GRM pruning threshold of
0.025 is not included, since it leads to the exclusion of large numbers of sample participants in cases
using relatively small (e.g., fewer than 100,000) markers.

at 0.57 when we examine their genetic similarity based on all SNPs compared to their
genetic similarity using only SNPs that are not in LD using the most conservative thresh-
old. However, when we increase the r2 threshold from 0.01 to 0.2, the correlation jumps
from 0.57 to 0.75. Increasing the threshold again to 0.5, the correlation rises to 0.88. These
values can be interpreted using a comparison to correlations between the full set of markers
and a random subset of markers. When we compute genetic similarities based on random
subsets of SNPs, the correlations are generally high (> 0.9), except for the 10 percent sam-
ple. Nevertheless, even when we only use 10 percent of the SNPs, we present relationship
estimates that are correlated with the overall genetic relationship matrix (GRM) at a value
of 0.83.

We now turn to the impact of the differences in the estimates of genetic similarity on
the estimated heritability. To address this, we computed heritability estimates for height
based on the various sets of SNPs (italicized column of Table 2). We dropped any pair with
a relationship greater than 0.025, since these are typically excluded in the calculation of
heritability. The full set of markers produces an estimate of 0.40, which, it should be noted,
is identical to the estimate in the original GCTA paper (Yang et al. 2010). The 10 percent
random sample of SNPs produces a substantially lower estimate of 0.31, but the 30 percent
and 50 percent samples produce estimates much closer to 40 percent. Interestingly, the sets
of markers pruned only modestly for LD produce slightly higher estimates of heritability,
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 11

Figure 2. Comparison of true ratio of genetic to total variance to GCTA estimates (with and without
control for the variable associated with the heteroscedastic error) in presence of heteroscedastic errors.

with the exception of the rather extreme case of r2 = 0.01. Although the rise isn’t large,
this effect has also been observed (Vilhjalmsson et al. 2015) in the context of genetic risk
scores (indices derived from GWAS studies meant to predict a given phenotype; see Belsky
et al. 2013 for a review of this method). When the LD pruning threshold is quite strin-
gent (0.01), the heritability estimate is only 0.1. Thus, by calculating genetic similarity
using only SNPs that are independent of one another, we reduce the heritability estimate
by roughly three-quarters. However, this estimate is based on a relatively small number of
SNPs (N = 61,904). The next example continues to examine the sensitivity of heritability
results to the choice of SNPs, but with the subsample of SNPs chosen in a different manner.

Example 2: Incorporation of GWAS Information

For some traits, such as height, there is now high-quality information available about
which SNPs “matter.” Thus, we can use published GWAS results to decide which SNPs
to include in the GRM, and heritability estimates can be limited to markers with signif-
icant p values (Wood et al. 2014). To use the results from this GWAS, we first selected
a set of 842,889 SNPs that are in both the GWAS and our genetic database of SNPs.
Based on these SNPs, we estimated a GCTA heritability for a height of 0.34, which is
reduced from the original estimate of 0.40 using the full set of markers, but still signifi-
cant (SE = 0.077).7 This is an important observation (consistent with Example 1), because
although we eliminated roughly 50 percent of the SNPs, the heritability was only reduced

7As noted previously, it is a standard practice in GCTA to remove individuals from pairs with
estimated genetic similarities greater than 0.025 (in the metric established by Eq. 1) to ensure that
no closely related (e.g., parent–offspring, siblings, etc.) individuals are included. Such individuals
may share a common environment that may bias the resulting heritability estimate. However, we
do not include such a threshold here because of the fact that the changing number of markers has
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12 B. W. Domingue et al.

by roughly 20 percent. This bolsters support for the GWAS results, but also highlights
that much of the information across the genome is not necessary for reliable indicators of
heritability.

For a given p-value threshold, we designate two sets of markers. The first set of
markers, those with a p-value greater than the threshold, are designated “ns” (for “not
significant”). These are the markers that are unassociated with height, as judged by the
p-value threshold from the height GWAS (Wood et al. 2014). The second set of markers,
those markers with p values less than the threshold (e.g., those SNPs that are deemed to be
associated with height), are designated by “s” (for “significant”). Consider Figure 1. The
horizontal line shows the GCTA heritability of 0.34. The other two lines show the GCTA
estimates for the “ns” and “s” SNPs using a range of thresholds (the p-value threshold and
the number of markers for each set of SNPs are shown on the x-axis). At the far left, we start
with a threshold of 1e-100. This is an extreme threshold (only 21 SNPs reach such a level of
significance), and the heritability computed for the 842,868 “ns” markers is very nearly the
original estimate. The estimate of the heritability from the “ns” markers above the threshold
stays above 0.25 until the 0.05 threshold. Even after the removal of 312,733 SNPs at the
0.5 threshold, there is still a statistically significant heritability “ns” estimate of 0.17. This
is noteworthy, since we have removed any marker remotely associated with height. The fact
that GCTA does not explicitly utilize information related to causal SNPs is very clear.

Now let us consider the curve associated with heritability estimates from the “s”
markers. The 21 markers that are the most predictive of height produce genetic similarity
estimates that lead to a heritability estimate of 0.004. This is not surprising, since collec-
tively these markers predict only a very small amount of variability of height. One can
observe a slow rise in the estimated heritability of height as the p-value threshold is relaxed
(so that increasing numbers of SNPs fall in the “s” category). The curves cross around the
0.05 threshold, meaning that similarities in height are better explained by similarities on the
150,148 SNPs below this threshold rather than by the 692,741 SNPs above this threshold.

Example 3: Heteroscedastic Outcome

In many empirical settings, the assumption of a constant error variance is questionable.
To probe the performance of GCTA in such cases, we simulate an outcome in which the
variance of the errors is a function of an individual’s height. We generate data using

y = 0.5∗height + g+ ∈ (Eq. 5)

where ∈i is normally distributed with variance e(α•heighti) ∗ σ 2
ε (where height is standard-

ized). The degree of heteroscedasticity is controlled via α (note that when α = 0, the
errors are homoscedastic) such that there is a greater variance in the ∈i for tall individ-
uals. This has clear implications for the definition of heritability, since Eq. 4 depends on
σ 2

e . We fix σ 2
g = 1 and control the level of heritability via σ 2

e (increasing this variance
decreases heritability, and vice versa). In our simulation, we use the observed ratio of the
variability of the genetic component to the total observed variability (these quantities are
available only because the data are simulated and thus completely known) as a metric for
heritability, but advise the reader that this ratio is not identical to the GCTA definition.

major implications for the number of pairs that fall below this threshold. We did remove 347 individ-
uals from these analyses, such that the original set of genetic similarity estimates are all below the
0.025 threshold.
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Genome-Wide Estimates of Heritability for Social Demographic Outcomes 13

Indeed, the quantity of interest in GCTA is poorly defined because of the nonconstant error
variance. Thus, instead of exact recovery, we focus on the relevant patterns.

Figure 2 compares the variance ratio discussed previously (solid line) to GCTA esti-
mates that do not (dashed line) and do (dotted line) include height as a covariate. The
three sets of estimates consistently move together. The GCTA estimate when the control
is included tends to be closer to the observed ratio of variances than the estimate without
the control, but again we caution that the observed variance here is a somewhat amor-
phous quantity since the error variance is nonconstant. Importantly, the baseline estimates
of heritability from GCTA (estimates that do not include height as a predictor) are robust to
heteroscedasticity. There may not always be an identifiable correlate of the error variance,
so it is reassuring to know that relatively reliable information regarding heritability can still
be recovered in such cases.

Discussion

The examples considered here help to illustrate two key points about GCTA . First,
Examples 1 and 2 illustrate the fact that GCTA is a method for computing heritability
based on genome-wide similarity. Example 1 illustrates the relative consistency of results
as long as sufficient samples of SNPs are used. Example 2 illustrates the fact that one does
not need to include SNPs thought to be causal for GCTA to estimate heritability. Of course,
if too many of these SNPs are removed, the estimate may start to suffer (note the decline
in the “ns” line toward the right of Figure 2). Second, Example 3 suggests that GCTA esti-
mates are relatively robust to heteroscedasticity. Intuitively, there is reason to be concerned
about heteroscedasticity, since GCTA is based on estimates of variance components. While
GCTA estimates are likely to overestimate heritability in the presence of heteroscedasticity,
the bias does not seem extreme, and relevant information regarding heritability may still be
obtained.

This article adds to the evidentiary base regarding GCTA’s performance in the face of
violations of the underlying assumptions. An additional concern is that genetic similarity
may be associated with environmental similarities. If that is the case, then these environ-
mental similarities could be the true cause of phenotypic similarities between respondents,
rather than the genetic similarities studied via GCTA. Other research (Conley et al. 2014)
has considered this possibility. The environments studied in that research (e.g., childhood
urbanicity and parental education) did not seem to bias GCTA estimates for other, putatively
heritable, outcomes such as height. Later research (Conley et al. 2015) has tried to explore
this issue further in a more nuanced manner by decomposing the correlation between parent
and offspring education levels into genetic and environmental components, but has focused
on genetic predisposition toward educational attainment (as determined by an educational
polygenic risk score) rather than GCTA heritability.

There are several additional applications of GCTA that this article does not explore.
We focus here on two: heritability by environment and bivariate analyses. There is ample
reason to think that the relative influence of genotype on phenotype varies across environ-
mental context. GCTA allows one to model the effect of environment on heritability, but
the ability to adjust for environmental differences is not a cure-all. The relevant environ-
ments may be unknown, unobserved, or poorly measured. Even when there is a promising
candidate for the appropriate environment, GCTA analyses suggesting environmental dif-
ferences must be interpreted with caution. For example, if environmental differences are
associated with, say, ethnic differences, then population stratification could be an issue.
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14 B. W. Domingue et al.

In such a case, LD patterns between the causal SNPs and other markers across the two eth-
nic groups may be different. It could also be the case that genetic or phenotypic variation
may be constrained in one environment relative to the other. For that matter, the phenotype
could be measured with less fidelity in certain environments. All of these scenarios could
potentially lead to HxE findings via GCTA and yet would not necessarily indicate that there
is truly a difference in the influence of genotype across environment.

Finally, bivariate GCTA models (Lee et al. 2012) are an interesting method for engag-
ing in genetically informed demographic research. This method yields an estimate of
genetic correlation (rG) between two traits that indicates whether an observed correlation
between traits, such as height and weight, is due to common genetic factors. For example,
Boardman, Domingue, and Daw (2015) used this method to show that a non-negligible
proportion of the correlation between education and self-rated health appears to be con-
founded with genes that influence both traits. Such genetic associations may underlie many
variables frequently considered in demographic inquiry, and a failure to account for these
associations may lead to forms of omitted variable bias.
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