
Common chronic diseases have complex, multifactor­
ial aetiologies that involve the interplay of both genetic 
susceptibility and environmental risk factors, which are 
broadly defined as lifestyle, behavioural, occupational or 
environmental exposures, and other health conditions. 
Historically, family-based linkage studies have led to the 
identification of rare high-penetrant mutations under­
lying some of these diseases, such as those in the breast 
cancer 1 (BRCA1) and BRCA2 genes for breast and ovar­
ian cancers, and in multiple genes involved in Lynch 
syndrome, which predisposes individuals to colorectal 
and other cancers. With these discoveries, genetic testing 
became part of the clinical management of individuals 
in high-risk families in whom there is a high disease 
burden caused by the variants. The cost of genetic test­
ing has declined following technological advances and 
the recent ruling by the US Supreme Court stating that 
genes cannot be patented; consequently, debate has now 
shifted towards the implications of performing genetic 
testing in the general population (for example, BRCA1 
and BRCA2 mutation testing)1,2. Debate has also begun 
on standards for the regulation and clinical utility of 
increasingly available commercial gene-panel tests, 
which may screen for high- to moderate-penetrance 
susceptibility variants for various diseases3–6.

As the majority of cases of common diseases do not 
occur in highly affected families, the development of 
broad public health strategies for disease prevention 
requires the identification of risk factors that contribute 
to the substantial burden of disease in the general popu­
lation. Recent genome-wide association studies (GWAS) 

have clearly shown that common single-nucleotide 
polymorphisms (SNPs) have important roles in defin­
ing susceptibility to common diseases. For any given 
disease, there could be a large number of underlying 
susceptibility SNPs, each exhibiting only modest disease 
association, but in combination they could explain a sig­
nificant portion of the variation in disease incidence in 
the general population. The success of GWAS indicates 
that gene-panel and whole-genome tests will continue 
to emerge in the future for the assessment of polygenic 
disease risks. This will require critical evaluation of 
both the statistical validity of the estimated risk and its  
potential clinical or public health utility.

The utility of genetic testing for disease prevention 
cannot be fully evaluated unless it is assessed along with 
environmental factors, which may not only be impor­
tant determinants of risk but could also be potentially 
modifiable through changes in lifestyle or appropriate 
interventions. Thus, there is a need for continuous 
development and evaluation of risk models that incor­
porate our expanding knowledge of the risk factors for 
diseases. Critical to this research are epidemiological 
prospective cohort studies that can take advantage of the 
increasingly available electronic medical records, tech­
nological advances in the collection and analyses of bio­
logical specimens, and big data management platforms 
and analytics. Steps are being taken towards attaining 
these goals, as demonstrated by the establishment of 
new cohorts and biobanks, including UK Biobank, 
China Kadoorie Biobank, the German National 
Cohort7, the American Cancer Society’s Cancer 
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Penetrance
The proportion of individuals 
in a population with a genetic 
variant who develop the 
disease associated with  
that variant. Common 
single-nucleotide 
polymorphisms (SNPs) are 
referred to as low-penetrant, 
as risk alleles typically confer 
modest risk.

Developing and evaluating polygenic 
risk prediction models for stratified 
disease prevention
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Abstract | Knowledge of genetics and its implications for human health is rapidly evolving in 
accordance with recent events, such as discoveries of large numbers of disease susceptibility loci 
from genome-wide association studies, the US Supreme Court ruling of the non-patentability of 
human genes, and the development of a regulatory framework for commercial genetic tests. In 
anticipation of the increasing relevance of genetic testing for the assessment of disease risks, this 
Review provides a summary of the methodologies used for building, evaluating and applying risk 
prediction models that include information from genetic testing and environmental risk factors. 
Potential applications of models for primary and secondary disease prevention are illustrated 
through several case studies, and future challenges and opportunities are discussed.
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Polygenic disease
A disease caused by a large 
number of underlying 
susceptibility genes.

Prospective cohort studies
Studies that collect information 
on potential risk factors 
(based on questionnaires, 
devices and biological samples) 
in a sample of healthy 
individuals and then 
longitudinally follow them to 
record future disease 
incidence. Information on risk 
factors can be updated 
longitudinally over time.

Heritability
The proportion of phenotypic 
variation attributed to 
genetic variation among 
individuals in a population.

Polygenic risk score
(PRS). A score for predicting 
disease risk, calculated as the 
weighted sum of risk alleles 
with the weights specified by 
association coefficients.

Prevention Study‑3 and the US National Institutes of 
Health’s Precision Medicine Initiative Cohort Program 
announced by President Obama in 2015.

In this Review, we provide an overview of the dif­
ferent steps for building and evaluating models to 
estimate the disease risks of individuals in the general 
population based on polygenic risk associated with 
common SNPs and environmental risk factors (FIG 1). 
We emphasize the importance of building absolute risk 
models for clinical applications. We review the criteria 
for evaluating the statistical validity and clinical utility 
of models. Using several recent examples from the lit­
erature, we illustrate potential applications of absolute 
risk models for primary and secondary disease pre­
vention. Future challenges and opportunities in risk 
modelling and in its translation to the clinic are also 
briefly discussed.

Risk stratification overview
In broad terms, the clinical utility of a risk model largely 
depends on its ability to stratify a population into cate­
gories with sufficiently distinct risks to substantially 
affect the risk–benefit balance of public health or clini­
cal interventions (FIG. 2). As illustrated below through 
several case studies, the evaluation of absolute risks — 
that is, the probability that an asymptomatic individual 
will develop the disease over a certain time interval — is 
critical for determining the risk–benefit implications for 
each individual. The absolute risk thresholds to deter­
mine how individuals should be assigned to distinct risk 
categories will depend on the risk–benefit implications 
of specific procedures in the underlying population. The 
uptake of recommendations for health interventions 
may also vary from individual to individual based on 
their personal preferences and values.

The risk stratification ability of a model depends on 
how much variation in estimated risk it can provide in an 
underlying population. In the absence of any known risk 
factor, the risk of all individuals may be estimated by the 
average risk for the whole population, potentially using 
data from population-based registries. Such a model for 
estimating risk, however, will not provide any variation 
in risk estimates across individuals and thus would not 
be useful for risk stratification. As more risk factors are 
identified for a disease and incorporated into a model, 
assigned risks will be more variable between individuals 
and a larger proportion of people could be identified as 
belonging to more extreme risk categories.

Heritability and polygenic risk scores
Estimates of heritability from different sources can be used 
to understand the limits of genetic risk stratification8,9. 
Notwithstanding the differences in various definitions 
of heritability based on the choice of scale used10, all 
measures of heritability essentially relate to the degree of 
variation in the ‘true’ polygenic risk score (PRS) for indi­
viduals in the underlying population. In this Review, the 
PRS of an individual is defined as a quantitative meas­
ure of the total genetic risk burden of the disease over 
multiple susceptibility variants. Risk associated with the 
true PRS, which is unobserved, is defined by a weighted 

combination of common, intermediate and rare variants 
that cause disease susceptibility, and by the interactions 
within and between these different types of variants. 
The ability of different types of variants and associated 
effects to contribute to risk stratification depends on their 
relative contribution to total heritability.

Historically, family studies have long been used to 
assess the heritability of diseases, as underlying genetic 
components of variability are expected to determine, to 
a large extent, the correlation among disease statuses 
in related individuals. Recent developments in mixed-
model techniques11–14 have facilitated the estimation 
of various components of heritability using genome-
wide sets of markers. Intuitively, these methods use 
the marker sets to define a genetic distance, sometimes 
referred to as a kernel function, between pairs of indi­
viduals in the study sample. The regression relationship 

Figure 1 | Steps for building and evaluating absolute 
risk models for the general population. The flowchart 
shows the different steps involved in building and 
evaluating models for the estimation of disease risks of 
individuals in the general population based on polygenic 
risk associated with common single-nucleotide 
polymorphisms (SNPs) and environmental risk factors. 
Adapted with permission from David Check, US National 
Institutes of Health.
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Estimation of absolute risk

Projecting risk of developing disease over a specified 
time interval based on a subject’s risk factors (using 
relative risk models, distribution of risk factors, overall 
age-specific disease incidence and mortality rates in 
the target population).

Evaluation of model calibration

Comparison of the number of projected and observed 
disease diagnoses over a specified time period, within 
strata of people at different projected risk in prospective 
cohort studies.

Evaluation of public health utility

Evaluating effectiveness of primary and secondary 
prevention strategies tailored according to people’s 
levels of projected risk.

Discovery of risk factors

High-quality epidemiological studies with large sample 
sizes and refined and objective measurements of 
phenotypes and exposures are needed to identify novel 
risk factors (including genetic variation, environmental 
risk factors, biomarkers of exposure or internal dose).

2

Characterization of relative risk

Building of relative risk models that combine information 
on multiple risk factors (including polygenic risk scores, 
environmental risk factors and their interactions).
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Possible clinical decisions  

Possible risk factor profile

Lifetime absolute risk of breast cancer (%)

Near or lower than average risk (<15%)
Moderately increased risk (15 – 25%)
High risk (>25%)

• General advice on having a 
healthy lifestyle

• Mammography screening 
frequency tailored to risk

• Individual counselling in primary care and referral to 
secondary or tertiary care

• Enhanced screening and surveillance
• Chemoprevention and/or endocrine therapy
• Risk-reducing surgery (mastectomy, salpingo-oophorectomy)

• Lifestyle changes
• Frequent 

mammography 
screening

• Discuss preventive 
therapies 

• No family history of breast cancer, 
low to moderate polygenic risk, 
and none or few environmental 
risk factors

• Moderate to high polygenic risk with family history of breast cancer and many 
environmental risk factors, or known BRCA1 and BRCA2 or TP53 mutation carriers 
for very high risk

• No family history of 
breast cancer, 
moderate polygenic 
risk and several 
environmental risk 
factors

Ascertainment
Non-random selection of study 
participants, often arising in 
genetic studies owing to the 
selection of subjects based on 
personal and/or family history 
of disease.

Ethnically admixed samples
Samples from subjects who 
have inherited genetic materials 
from two or more previously 
separated populations.

Confounding
A false association between a 
disease and an exposure 
caused by the presence of a 
risk factor for the disease that 
is correlated with the exposure.

Case–control studies
Studies that sample subjects 
with and without a disease 
and collect information on 
potential risk factors in a 
retrospective fashion.

between the genetic and phenotypic similarity of pairs, 
after adjustment for ascertainment and relatedness of the 
subjects, can be used to estimate specific components 
of heritability depending on the set of genetic markers 
and the type of effects incorporated in the underlying 
kernel function. For example, pioneering techniques 
such as genome-wide complex trait analysis (GCTA) and 
various extensions have been recently used to analyse 
population-based GWAS and have shown that the addi­
tive effects of common variants explain a very substantial 
fraction of heritability across almost all common com­
plex diseases15–21. Furthermore, analyses of GWAS mark­
ers for related subjects and ethnically admixed samples 
have been used to obtain estimates of heritability, which 
include contributions of rare variants that are not tagged 
by GWAS markers in the general population22,23.

However, the use of estimates of heritability as a guide 
for the future potential of genetic risk-prediction models 
has several caveats. Estimates based on studies of famil­
ial aggregation could be biased owing to confounding 
by shared environmental factors. Nevertheless, mod­
elling of familial aggregation using different types of 
relatives with varying degrees of genetic separation 
(including monozygotic twins and dizygotic twins) has 
suggested limited contribution of shared environmen­
tal factors in familial aggregation of most diseases22,24,25. 
Estimates of familial risks that are widely reported in 
epidemiological cohort and case–control studies could 
be underestimated owing to the poor accuracy of self-
reported family history of disease. Case–control studies 
are also susceptible to biases away from the null owing 
to differential recall or knowledge of family history of 

Figure 2 | Hypothetical distribution of absolute risk for breast cancer. Risk stratification of the population based on a 
hypothetical distribution of the lifetime risk of breast cancer — that is, the probability that a woman in the population is 
diagnosed with breast cancer between the ages of 30 and 80 years. A comprehensive model including genetic and 
environmental risk factors can be used to obtain estimates of the absolute risk of individuals in the population. Women 
may make different lifestyle choices or decisions about possible preventive interventions depending on their level of risk 
and their personal values. The more spread the model-based distribution of risk in the population is, the larger the number 
of individuals the model will be able to assign to risk categories for which the risk–benefit implications of potential 
interventions could be different. BRCA1, breast cancer 1; TP53, tumour suppressor p53. Adapted with permission from 
David Check, US National Institutes of Health.
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Incidence rates
(Also known as hazard rates). 
The rates at which new 
diseases are observed in a 
population during a specific 
time interval (for example, 
between specific ages). 

disease reported by cases and controls26–28. Estimates 
of heritability using mixed-model techniques could 
also be biased owing to violation of modelling assump­
tions, mis-specification of disease rate and improper 
accounting for ascertainment in case–control studies29,30.

Estimates of heritability alone, even when they are 
unbiased, may not be a useful guide to assess the poten­
tial utility of risk stratification. For example, first-degree 

familial relative risks for a variety of cancers are quite 
similar and vary between 1.5 and 2.0 (REFS 31–34). Such 
measures of relative risk quantify the risk in individu­
als with a family history of disease relative to the risk 
in those without. For clinical applications, however, it 
is more crucial to assess the absolute risks of individ­
uals with and without a family history of disease. For 
the same degree of familial relative risk (explained, 
for example, by known genetic variants), much stronger 
stratification is possible for common diseases than for 
less common diseases. Furthermore, the utility of the 
PRS depends on other aspects of the disease, includ­
ing information on the residual effects of family his­
tory (that is, the effects of family history that cannot 
be explained by known genetic variants) and other risk 
factors, as well as the available strategies for reducing 
risk or for early detection of the disease.

In summary, unbiased estimates of heritability can be 
useful for understanding the theoretical limits of genetic 
risk-prediction models. The clinical utility of models, 
however, depends on various other factors, including the 
absolute risk of diseases and the available strategies for 
disease prevention in the population.

Building absolute risk models
Throughout this Review, we emphasize the importance 
of evaluating absolute risks in order to determine the 
clinical utility of risk models. Thus, it is useful to begin 
with a broad framework for developing absolute risk 
models and then to describe specific steps for model 
building and evaluation using this general framework. 
We focus on an epidemiological framework for model 
building in which risks are quantified in terms of under­
lying age-specific incidence rates of diseases based on the 
proportional hazard model (BOX 1).

Defining absolute risk using underlying models 
for disease incidence rates has numerous advantages 
over modelling in other scales. Prospective cohort 
studies can be used to directly estimate disease inci­
dence rates and hazard ratio parameters after account­
ing for censoring due to loss to follow up or death35. 
Moreover, case–control studies can be used to obtain 
approximate estimates of the hazard ratio parameters 
under certain assumptions. Population-based incident 
case–control studies allow unbiased estimation of hazard 
ratios based on odds ratios that can be obtained from 
logistic regression analysis after adjusting for age using 
fine categories36. Case–control studies that include 
prevalent cases can lead to biased estimates of hazard 
ratio parameters if the risk factors for disease incidence 
are also related to survival following disease37. Case–
control studies that do not follow a population-based 
design can suffer from other types of selection bias due 
to non-differential participation of subjects by both 
risk factor and disease status38. For common suscep­
tibility SNPs, which have weak effects on risk and are 
typically not related to survival and the likelihood of 
study participation, estimates of odds ratios avail­
able from case–control studies are expected, in gen­
eral, to provide a good approximation for the hazard  
ratio parameters.

Box 1 | Incidence-based model for absolute risk of diseases

Models for evaluating absolute risk need to account for age, which is the strongest risk 
factor for many adult-onset chronic diseases. In epidemiological studies, disease risks are 
commonly modelled using the age-specific incidence rate based on the proportional 
hazard model35 of the following form:

I(a|Z) = I0(a) × exp( βkZk)Σ
K

K = 1

The model assumes that the conditional age-specific incidence rate of the disease, I(a | Z), 
defined as the probability of developing the disease at a particular age, a, given that a 
subject has been disease-free until that age, is given by the multiplicative effect of a set of 
risk factors, Z = (Z1,…, ZK), on the baseline hazard of the disease, (I0(a)). The set of variables 
in Z could include genetic and environmental risk factors, and their interaction terms. The 
associated hazard ratio parameters, exp(βk), quantify the corresponding effect sizes for 
individual factors, and the term:

 
exp( βkZk)Σ

K

K = 1

 is referred to as the underlying multivariate relative risk model.
Based on the above model, the probability that an individual who is disease-free at 

current age a will develop the disease over an age interval [a, s+a] can be defined as in 
REF. 113: 

Ra,a+s
 = ∫ I(u|Z) exp(−∫ {I(v|Z) + m(v|Z)}dv)du

a+s

a

u

a

where m(v|Z) is the age-specific mortality from other causes. In other words, the absolute 
risk of the disease over a specified age interval is defined by the sum (over all ages within 
the interval) of the probability that the subject will develop the disease at a given age, u, 
given that the person remains disease-free and does not die from other causes until then.

The development of an absolute risk model requires the synthesis of data from different 
sources. Prospective cohort studies can be used for direct estimation of hazard ratio 
parameters using the Cox partial-likelihood framework35. Moreover, incident case–
control studies can be used to approximate hazard ratio parameters based on odds ratios 
that can be obtained from logistic regression analysis36. Data from either representative 
cohort studies or population-based registries can be used to estimate the baseline rate of 
the disease35,113. For the application of models to general populations, it may be preferable 
to calibrate absolute risk models using disease rate information from population registries 
and the representative distribution of risk factors in the underlying population. The 
overall incidence rate of the disease, I(a), in a population is given by a weighted average of 
the covariate-specific incidence rate of the disease where the average is evaluated with 
respect to the underlying population distribution of the covariates. Mathematically, the 
relationship can be expressed as:

I(a) = I0(a)Ea
 {exp( βkZk)}Σ

K

K = 1

where the expectation, E, in general, needs to be computed with respect to the 
distribution of risk factor Z in the underlying population of subjects who are disease-free 
and did not die from other causes until age a. For relatively rare diseases, with fixed risk 
factors (such as single-nucleotide polymorphisms) that do not change over time and are 
unlikely to have large effects on either the disease or competing mortality, the 
distribution can be assumed to be constant with respect to age. Analogously, absolute 
rates of mortality from competing risks can be estimated from representative cohort 
studies and population registries.

The authors have developed and distributed a software tool, iCARE, that follows the 
basic steps described above for building absolute risk models by synthesizing information 
from different data sources.
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Proportional hazard model
A model for incidence rate that 
assumes a multiplicative effect 
of risk factors on the age-specific 
incidence rate of a disease.

Hazard ratio
The ratio of hazard rates (also 
known as incidence rates) 
between groups of subjects 
with different risk factor profiles.

Incident case–control 
studies
Case–control studies that 
aim to recruit representative 
samples of new cases that 
arise in a population during 
a specified time period.

Odds ratios
Quantitative measures of 
the strength of association 
between a binary disease 
end point and risk factors that 
can be estimated by logistic 
regression models.

Prevalent cases
The number of individuals 
with a disease condition in a 
population at a given time point.

Selection bias
Bias in risk estimates due to 
non-random selection of study 
participants. Case–control 
studies can be particularly 
prone to selection bias, as the 
likelihood of participation may 
be affected by both disease 
status and risk factor history.

Logit
The transformation  
log{p/(1–p)} where p is 
the probability of disease 
occurrence in a population.

Liability score
A score that represents the 
underlying progression of 
a disease through the 
accumulation of risks on a 
continuous scale. The risk of 
binary disease outcomes can 
be modelled by assuming the 
existence of an underlying, 
normally distributed liability 
score that leads to the 
manifestation of disease when 
it exceeds a threshold.

Probit
The transformation Φ–1(p) 
where Φ–1 denotes the inverse 
of the cumulative distribution 
function for a standard normal 
random variable and p is the 
probability of disease 
occurrence in a population.

The proportional hazard regression model for disease 
incidence provides a convenient way of building models 
for absolute risk by synthesizing data from various types 
of studies. These include cohort and case–control studies 
for the estimation of risk parameters and population-
based registries for the estimation of underlying disease 
incidence and competing mortality rates.

Choice of scale for multivariate risk. The assumptions 
underlying the proportional hazard model (BOX 1) require 
scrutiny. The model assumes that the effects of the covari­
ates (Z; BOX 1) are multiplicative (or additive after log 
transformation) with respect to the effect of age on the 
incidence rate of the disease. Similarly, if the covariate 
terms include only the main effects of individual risk fac­
tors, then the model implies that the effects of individual 
factors are multiplicative with respect to each other. The 
model can be extended to test for and incorporate inter­
action parameters that capture non-multiplicative effects 
between sets of risk  factors.

Some alternative models for specifying disease risk 
merit attention. The logistic regression model, widely 
used to analyse case–control studies, specifies disease 
risk in the logit scale. For incident case–control studies, 
odds ratio parameters in logistic models, when finely 
adjusted for age, can be used to approximate hazard ratio 
parameters of the proportional hazard model36. Liability-
threshold regression39, popularly used in statistical genet­
ics literature, models the effect of the risk factors on an 
underlying, normally distributed liability score. The model 
assumes that a disease is manifested when the liability 
score exceeds a certain threshold and corresponds to the 
use of the probit link function.

The liability threshold model closely resembles logistic 
regression in its functional form and thus requires similar 
assumptions. For example, an assumption of the additivity 
of multiple risk factors in the probit scale indicates that 
their effects are approximately additive in the logit scale 
and vice versa40. The regression parameters across the two 
models, however, may not be directly comparable owing 
to differences in standardization with respect to under­
lying phenotype variance. In particular, case–control sam­
pling affects the interpretation of regression parameters 
in the liability threshold model but not the interpretation 
of odds ratio parameters in the logistic regression model. 
However, because of similarities in their functional forms, 
it may be possible that risk scores (such as PRS) that are 
generated under one model can be transported into the 
other model after suitable calibration by scale factors.

Yet another approach to model disease risk could 
involve using the identity link function — that is, to model 
the effects of risk factors directly on the risk of the disease 
itself without any transformation. It has long been argued 
that testing for a departure from additivity under the iden­
tity link, referred to as additive interaction, can be useful 
for obtaining insights into the biological mechanisms of 
action of the risk factors, and also for assessing the public 
health impact of risk factor interventions41. Multivariate 
risk profiles generated by additive models under the iden­
tity link function can be very different from those under 
closely related proportional hazard, logistic and probit link 

functions. In particular, the absolute risk could increase 
(or decrease) much more rapidly with the increasing (or 
decreasing) number of risk factors under the latter 
types of models than under the identity link function42. 
Investigations of SNP‑by‑SNP and SNP‑by‑environment 
interactions using data from large GWAS generally sug­
gest that the assumption of multiplicative effects is often 
adequate and an additive model under the identity link 
can be soundly rejected43–46.

In summary, proportional hazard models and closely 
related logistic regression models specify the risk of dis­
ease on a multiplicative scale. Assumption of multiplica­
tive effects often provides reasonable initial models for 
specifying the joint effects of multiple risk factors.

Building a model for relative risk. Building a model of 
absolute risk first requires the development of a model for 
the multivariate relative risk (BOX 1) of the disease associ­
ated with a set of risk factors, termed Z (BOX 1). When 
simultaneously considering the risk associations of many 
different genetic markers, such as SNPs evaluated in 
GWAS, a parsimonious strategy could be to first develop 
a risk model for the SNPs through an underlying PRS 
variable and to then develop a model for the joint effects 
of the PRS and other risk factors. Such an approach could 
also be statistically efficient, as a model for PRS alone 
could be built based on data from GWAS, including multi­
ple studies with very large sample sizes for which detailed 
data on environmental risk factors may not be available.

GWAS-PRS. Information from large GWAS provides 
an opportunity for the development of risk models that 
incorporate SNPs. A critical step towards this effort is the 
development of an optimal PRS defined by the combi­
nation of SNPs that yield the best predictive model for 
a given disease. GWAS heritability estimates for many 
diseases indicate that SNPs have significant potential for 
risk prediction using the underlying true PRSs that cap­
ture the precise effects of all the SNPs; however, such a 
model could be built only if an infinite amount of data 
was available. In practice, we can only hope to build an 
imperfect PRS owing to the imprecision associated with 
model building algorithms and imperfect tagging of the 
underlying causal variants by marker SNPs.

All algorithms for constructing PRSs have two essen­
tial elements. The first is a procedure for ‘variable selec­
tion’ to determine which SNPs need to be included in 
the model. The second is a procedure for the estimation 
of coefficients, or weights, that will be attached to the 
selected variables. Statistical imprecision in both of these 
steps can cause the predictive ability of the GWAS-PRS 
to fall short of that of the true PRS (BOX 2). Mathematical 
power analysis indicates that the challenge is particularly 
severe in GWAS because the total heritability could be 
distributed over thousands, and in some cases tens of 
thousands, of common SNPs each with extremely small 
effects47–51. Under such extreme polygenic architecture, 
selection of the true set of susceptibility SNPs for the 
model is particularly challenging, and the rate of improve­
ment in the precision of the model, as a function of sample 
size, is expected to be slow (FIG. 3). The extreme polygenic 
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architecture of many common diseases indicates that the 
predictive performance of the PRS will slowly improve in 
the future with increasingly large studies and will reach 
a plateau only after GWAS reach huge sample sizes that 
could involve hundreds of thousands of individuals.

Incorporating disease association information for SNPs. 
Despite the inherent limitations of GWAS-PRS that are 
associated with sample size, it is worthwhile to investi­
gate the optimal PRS that could be constructed based 
on a given set of GWAS data. The simplest and most 

Box 2 | Risk distribution and discrimination with true and estimated PRS for a rare disease

Let D denote the disease status for a rare disease and PRST denote the underlying true polygenic risk score (PRS), expressed 
in log-risk scale:

Pr(D = 1|G) = exp(PRST) 

The parameter σ2 = Var(PRST) can be referred to as the heritability of the disease in the log-risk scale. If it can be assumed 
that PRST is distributed normally in the population, then the distribution of PRST in cases will also follow a normal 
distribution with the same variance (σ2) but with the mean shifted rightward by a value that is also equal to σ2 (see the 
figure, part a). In other words, the degree of separation in the distribution of PRST between cases and controls is 
determined by the heritability (σ2) itself. Thus, measures of the discriminatory ability of models, such as the area under the 
curve (AUC), have a one‑to‑one relationship with heritability8.

Now suppose that PRSE denotes an ‘estimated’ value of PRS that could be obtained from a model built from empirical 
studies. By definition, PRSE will be imperfect compared to PRST owing to various types of errors. For example, in a typical 
PRS that is built based on data from genome-wide association studies (GWAS), the errors could come from the inability of 
common SNPs to tag all underlying causal SNPs, and from statistical imprecision in algorithms of SNP selection and 
coefficient estimation owing to the finite sample size of current GWAS. The risk stratification ability of PRSE depends on 
the key quantity47:

r = c/s

where s2 = Var(PRSE) and c = Cov(PRSE, PRST).
In particular, if we assume that PRSE is normally distributed in the underlying population, its distribution in cases will also 

follow a normal distribution with the same variance but the mean now shifted by c instead of s2 (see the figure, part b). 
Intuitively, the covariance term c will increase as the PRSE includes more ‘signal’ terms that contribute to true genetic risk 
(PRST) irrespective of the inclusion of ‘noise’ terms that are unrelated to the PRST. However, inclusion of more noise terms 
will increase the variance of PRSE (s

2) and will thus dilute the discrimination of the distribution between cases and controls.
Furthermore, as the true odds ratio of the disease is given by:

logPr(D = 1|PRSE)/(D = 0|PRSE) = c/s2 × PRSE 

a calibration factor c/s2 needs to be multiplied by PRSE if it is to be used as an unbiased estimation of risk. Once PRSE is 
calibrated, the variability of the estimated score is r2, which also determines its discriminatory ability (see the figure, part c). 
Adapted with permission from David Check, US National Institutes of Health.
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Figure 3 | Effect-size distribution for susceptibility markers and implications for risk prediction. True effect-size 
distribution of individual single-nucleotide polymorphisms (SNPs) and predictive power of polygenic risk scores (PRSs) 
under two distinct models (model 1 (panel A) and model 2 (panel B)) for the genetic architecture of breast cancer. The total 
heritability explained by the additive effect of SNPs from genome-wide association studies (GWAS), termed narrow-sense 
GWAS heritability, is assumed to be the same (sibling relative risk ~1.4) between the two models, but the number of 
underlying susceptibility SNPs over which the heritability is dispersed is allowed to be different. The estimates of GWAS 
heritability and the value of M = 4,241 as the number of underlying, independent susceptibility SNPs are obtained 
empirically based on an analysis of effect-size distribution using summary-level results available from the DRIVE (discovery, 
biology, and risk of inherited variants in breast cancer) project of the Genetic Associations and Mechanisms in Oncology 
(GAME‑ON) Consortium. Under this model for effect-size distribution (panel A), a single-stage GWAS study including 
59,000 cases and an equal number of controls is expected to lead to the discovery of the same number of susceptibility 
SNPs for breast cancer as has been reported to date. The value of M = 1,000 is chosen to represent a hypothetical effect-size 
distribution where the same degree of GWAS heritability is explained by a smaller number of SNPs (panel B). In both models, 
it is assumed that the PRS is defined by the additive effects of SNPs reaching genome-wide significance (P < 5 × 10−8). The 
different coloured lines in panel Aa and panel Ba represent the power curve for the detection of SNPs at a genome-wide 
significance level as a function of effect size for studies of different sample sizes (numbers of cases/number of controls; 
K = 1,000). The different coloured lines in panel Ab and panel Bb show the expected receiver operating characteristic curves 
for PRSs that were built based on studies of different sample sizes and a PRS that can be built based on infinite sample size, 
thus explaining GWAS heritability. Comparison of panel Ab with panel Bb illustrates that when the number of underlying 
susceptibility SNPs is larger, the effect sizes are smaller, the average power of detecting individual susceptibility SNPs is 
lower, and the discriminatory ability of PRSs improves at a slower rate with sample size. AUC, area under the curve. 
Adapted with permission from David Check, US National Institutes of Health.
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Genome-wide significance
A stringent level of statistical 
significance, often set at 
p – val = 5 × 10–8 for 
genome-wide association 
studies (GWAS) of common 
variants, for the avoidance of 
false positives.

Linkage disequilibrium
(LD). The non-random 
association of alleles at 
different loci, frequently 
measured by r2, the square of 
the genotypic correlation 
between two single-nucleotide 
polymorphisms (SNPs).

Pleiotropic analysis
Analysis to identify variants 
associated with two or more 
distinct phenotypic traits.

popular approach is to select SNPs based on the signif­
icance of the individual association test statistics, and 
then weight the SNPs in the PRS according to the cor­
responding estimated regression coefficients, such as log 
odds ratio parameters from an underlying model. Many 
genetic risk-prediction studies48,52–59 have investigated the 
risk stratification ability of the PRSs that include inde­
pendent SNPs reaching genome-wide significance levels in 
existing studies. These studies show that such SNPs, with 
the exception of those in the human leukocyte antigen 
(HLA) region associated with autoimmune disorders, 
typically provide small to modest discriminatory ability.

It may be possible to improve the predictive power 
of a PRS by the inclusion of additional SNPs that are 
below the genome-wide significance level. An inclusion 
threshold that is more liberal than the genome-wide sig­
nificance level allows the contribution of ‘signals’ from 
additional susceptibility SNPs at the cost of adding noise 
from SNPs that are not truly associated with the disease 
(BOX 2). In theory, the optimal threshold in which the 
signal-to‑noise ratio is balanced to yield the best predic­
tive power depends on the sample size of the discovery 
GWAS and the genetic architecture of the trait47. In prac­
tice, the optimal threshold can be determined based on 
the performance of the model in an independent sample, 
or using cross-validation techniques. For many com­
mon complex diseases, such as certain cancers, type 2 
diabetes and heart disease, both theoretical evaluation 
(based on inferred effect-size distributions) and empiri­
cal assessment (using large GWAS) suggest that the 
gain in predictive ability from an optimized threshold is 
likely to be modest at current sample sizes47. More nota­
ble gains have been observed for diseases like schizo­
phrenia, bipolar disorder and multiple sclerosis, which 
are highly heritable and have an extremely polygenic 
architecture, possibly involving tens of thousands of 
susceptibility SNPs60–63.

Handling of correlated SNPs in the calculation of 
PRSs requires particular attention. Inclusion of cor­
related SNPs that do not contain independent signals 
can significantly reduce the predictive performance of 
models64. A common method for dealing with this prob­
lem is association-informed linkage disequilibrium (LD)-
based pruning, which is implemented in the popular 
whole-genome association analysis toolset PLINK65. 
This method involves sorting SNPs based on the strength 
of association signals, then removing the SNPs that are 
in linkage with the strongest signal within LD regions. 
Typically, a fairly stringent threshold (for example, 
r2 < 0.05) is needed to remove the detrimental effects of 
correlation. Stringent LD‑pruning, however, can also 
reduce the predictive power of PRSs by eliminating sus­
ceptibility SNPs that are in LD but contain independent 
association signals. Multivariate methods that allow the 
modelling of independent associations accounting for 
LD have been shown to improve the performance of 
PRS models in some settings66. In summary, building an 
optimal PRS based on GWAS requires careful consid­
eration of sample size, the threshold for SNP selection, 
weight assignment for selected SNPs and the underlying 
linkage disequilibrium.

Incorporating external information. Incorporation of 
various types of external information, including pleio­
tropic, functional and annotation information, to priori­
tize SNPs may improve the predictive power of PRSs. 
A variety of closely related mixed models, Bayesian meth­
ods and penalized regression methods allow the incor­
poration of external information to inform ‘priors’ for 
effect-size distribution in the analysis of GWAS data67–70. 
Typically, in these methods, the log odds ratio association 
parameters are assumed to have a symmetric distribu­
tion with a mean of zero and the spread defined by one 
or more variance component parameter or parameters, 
depending on the complexity of the model. In these 
methods, the underlying prior allows ‘shrinkage’ of the 
estimated association coefficients of the SNPs towards 
the null value to provide a better trade-off between bias 
and variance, both of which contribute to PRS impreci­
sion. The degree of shrinkage depends on the form of 
the prior. For example, although a single normal model 
for effect-size distribution imposes the same degree of 
shrinkage for all SNP coefficients, a two-component nor­
mal mixture model allows some coefficients to be shrunk 
to a lesser degree than others, to allow for the possibility 
that a fraction of SNPs have relatively large effect sizes69.

As the optimal shrinkage towards the null depends 
on the true nature of the effect-size distribution, no 
method that assumes a particular form of prior will 
perform most effectively for every genetic architecture. 
Empirical-Bayes type methods that allow data-driven 
flexible modelling of effect-size distributions can be 
expected to perform robustly across different settings. 
Information from pleiotropic analysis, functional annota­
tion, and expression- and methylation-quantitative traits 
loci can all be incorporated in a structured manner to 
form differential priors for the associations of different 
SNPs. Various recent studies have demonstrated that the 
use of well-informed priors, including information on 
both pleiotropic and functional annotation, can acceler­
ate the discovery of susceptibility loci compared to more 
agnostic approaches that have dominated GWAS analysis 
to date71–74. In addition, recent studies have shown that for 
some psychiatric disorders and two autoimmune diseases 
(Crohn disease and ulcerative colitis), each with a strong 
genetic correlation, pleiotropic information can substan­
tially improve the performance of genetic risk prediction 
models for individual traits75,76. Although recent herita­
bility partitioning studies have demonstrated that specific 
functional categories of SNPs are strongly enriched for 
common diseases77, the impact of functional annotation 
on the performance of polygenic risk prediction models 
needs extensive empirical investigation in the future, 
especially as sample sizes increase and more refined 
external information becomes available.

Modelling joint effects. Once an optimal PRS has been 
developed, the next task is to develop a model for haz­
ard ratios associated with the joint effects of the PRS 
and other risk factors for a disease. This requires the 
characterization of risk (hazard ratios) associated with 
individual factors and the exploration of possible inter­
actions (non-multiplicative effects) between these factors. 
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Recall bias
Bias in risk estimates that 
could arise in case–control 
studies owing to differential 
recall or reporting of disease 
status by study participants.

Multiplicative interactions
Presence of the non- 
multiplicative effects of 
multiple factors on the risk 
of a disease. Absence of 
multiplicative interaction 
implies that the risk ratio 
parameter associated with 
one factor does not depend 
on that of the other factors.

Ideally, data from prospective cohort studies should be 
used to estimate the risk associated with lifestyle, behav­
ioural and environmental factors. Such estimates can be 
affected by various types of selection and recall bias when 
data from case–control studies are used. However, care­
fully conducted population-based incident case–control 
studies, such as those nested within well-defined cohort 
studies, could provide valid estimates of the risk associ­
ated with such factors. Furthermore, tests for multiplicative 
interactions, which are less sensitive to selection bias78, 
may be performed based on broader sets of studies. 
Typically, logistic regression methods are preferred for 
the evaluation of multiplicative interactions. For case–
control studies, if it can be assumed that environmental 
risk factors are independent of the SNPs in the under­
lying population, then case-only and related methods 
can be used to increase the power of tests for gene–
environment interactions79–81. To date, post-GWAS epi­
demiological studies of gene–environment interactions 
have generally reported multiplicative joint associations 
between low-penetrant SNPs and environmental risk 
factors, with only a few exceptions.

Accounting for family history in risk models is impor­
tant, as a PRS typically can explain only a fraction of the 
disease risk associated with family history. In models 
developed for the general population, family history is 
often modelled as a simple binary variable that indicates 
the presence or absence of the disease among first-degree 
relatives of study subjects. The use of more extended fam­
ily history information, including age of disease onset, 
could improve the risk stratification ability of models 
especially in clinical settings that involve counselling of 
highly affected families82,83. Furthermore, models in such 
settings can be improved by incorporating information 
on carrier status for rare high-penetrant mutations in 
major genes — for example, mutations in BRCA1 and 
BRCA2 for breast and ovarian cancers. Although the 
same basic framework as described above can be used 
for the development of such extended models, data from 
affected families, in whom the mutations are relatively 
common, will be needed to reliably estimate hazard 
ratios associated with these mutations and explore their 
interactions with other factors, including PRS.

It is important to note that tests for multiplicative 
interactions, or any other form of interaction, may not 
be significant because of insufficient power. Model 
misspecification owing to the omission of gene–gene 
or gene–environment interactions, although unlikely 
to have a major impact on discriminatory ability84, can 
affect the calibration performance of models. Therefore, 
goodness-of‑fit tests should be performed when assessing 
the adequacy of models. As knowledge of risk estimates 
is likely to be most relevant for subjects at extreme levels 
of high or low risk, evaluating the adequacy of risk mod­
els at the extremes of risk requires special attention for 
clinical applications43.

In summary, the development of models for the joint 
effect of PRS and other risk factors requires characteriza­
tion of the risk associated with individual factors, explo­
ration of interactions and testing of the goodness of fit of 
the selected models. Data from various types of studies, 

including cohort and case–control studies, and affected 
families could be used, but careful consideration is needed 
to avoid the effects of selection or recall biases.

From relative to absolute risk. As described earlier, the 
proportional hazard regression model provides a con­
venient framework for building models for absolute 
risk. Once a model for relative risk is built, evaluation of 
absolute risk requires estimation of the baseline hazard, 
which is the incidence rate of the disease associated with 
a baseline risk profile, with respect to which relative risks 
are estimated. Data from either representative cohort 
studies or population-based registries can be used to esti­
mate the baseline rate from the underlying overall rate of 
disease (BOX 1).

When evaluating absolute risk, it is important to 
adjust for competing risks of mortality, especially at older 
ages when the risk of dying from other causes could be 
high; typically, overall mortality rates are used, assum­
ing that the disease and risk factors being studied have 
modest effects on overall mortality within a population. 
More sophisticated risk-factor-dependent models for 
mortality could also be built from cohort studies and 
could be incorporated into models for risk prediction for 
specific  diseases85.

Whenever possible, the use of disease and mortality 
rates available from population-based registries is rec­
ommended to ensure the generalizability of absolute risk 
models to the underlying populations. If relative risks 
could be assumed to be applicable to different ethnic 
populations, then models for absolute risk could be 
quickly adapted by simply incorporating registry-based 
information on the underlying disease incidence and 
mortality rates. Furthermore, population-based registries 
can be used to assess secular trends in disease incidence 
and mortality rates, and to appropriately update absolute 
risk models over time.

Risk model evaluation
Once a model for absolute risk has been built, both its 
calibration and risk stratification ability must be evaluated.

Evaluation of model calibration. Calibration of a model 
refers to its ability to produce unbiased estimates of risk 
for subjects in different risk factor profiles in the under­
lying population. Model calibration needs to be evalu­
ated in a representative sample that is independent of 
the studies that contributed to the model building pro­
cedure. Ideally, prospective cohort studies are needed to 
compare the observed and predicted number of incident 
cases over specified time intervals. Subjects can be clas­
sified into strata based on their predicted risks, and the 
observed and expected number of cases can be compared 
within these different strata to evaluate the calibration of 
models at different levels of risks. Graphical displays for 
visual inspection and formal tests for goodness of fit86 can 
be used to assess model calibration. Nested case–control 
studies, in which subjects are sampled from well-defined 
cohorts, can also be used in calibration studies, as sam­
pling weights can be used to recover the underlying 
disease incidence rate in the cohort.
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Absolute risk models may be miscalibrated in a 
number of different ways, resulting in over- or under­
estimation of risks. A model may produce an unbiased 
estimate of the overall risk of the cohort, but it may be 
miscalibrated for certain risk strata. Such a pattern could 
arise if the baseline risk has been estimated by calibrat­
ing the model using a representative disease rate for the 
overall population, but the underlying model for relative 
risk has been misspecified. By contrast, a model may con­
sistently over- or underestimate the risks for different risk 
strata if the underlying disease incidence rate that is used 
is not representative of the population for which the pre­
diction is desired. A recent study, for example, found that 
a number of different risk calculators for heart disease 
that were developed based on older cohorts overesti­
mated the disease risk in individuals from a multi-ethnic, 
contemporary cohort87.

As the calibration of models can vary by ethnic and 
demographic factors, birth cohort and calendar time, it 
is important that validation studies for established risk 
models continue to be conducted for relevant popula­
tions (that is, those groups for which the models may 
be used in clinical applications). It is also important that 
models are developed in a flexible way so they can be 
easily updated using new information on risk factors and 
disease incidence rates as it becomes available. As a single 
study may not have all the relevant information, keep­
ing models up to date in the future will require synthetic 
model-building procedures that allow the integration of 
information from multiple data sources.

Assessing risk stratification. Once a model is found to 
be valid in assessing risk — that is, well calibrated for 
an underlying population of interest — it needs to be 
further assessed for its utility in clinical or public health 
applications. As noted earlier, the clinical utility of a well-
calibrated model generally depends on how much spread 
of risk the model can provide for the underlying popu­
lation of interest. However, the exact criteria based on 
which the utility of the model should be evaluated, on its 
own or relative to others, depend heavily on the clinical 
application under consideration.

Historically, many studies have assessed models based 
on their discriminatory ability — that is, how much sepa­
ration they can produce in the distribution of risks among 
individuals who will develop the disease in the future 
compared to those who will not (BOX 2). The area under 
the curve (AUC), which is defined as the probability that 
a randomly selected individual with a disease will have a 
higher risk than a randomly selected individual without 
the disease, is a commonly used summary statistic for 
assessing the discriminatory ability of models. AUC values 
of 50% and 100% correspond to models with no and per­
fect discriminatory power, respectively. For most common 
complex diseases, common susceptibility SNPs identified 
through GWAS alone provide low (AUC < 60%) to mod­
est (AUC = 60–70%) discriminatory ability. Estimates of 
GWAS heritability indicate that common SNPs alone 
may not lead to models with very high discriminatory 
ability (AUC > 80 or 90%) for common complex diseases; 
however, substantial scope for improvement remains.

As the AUC does not have a direct clinical interpre­
tation, researchers have recently attempted to define 
alternative, more clinically relevant criteria for evaluating 
risk models. For applications that target high-risk indi­
viduals for screening, one may evaluate the proportion of 
populations and the proportion of future cases that may 
be identified, based on a model, as exceeding a certain 
risk threshold88,89. To maximize benefit and minimize 
harm associated with unnecessary screening and other 
procedures, an ideal model should be able to identify a 
small fraction of the overall population that will give rise 
to the majority of future diseases. Models with modest 
discriminatory ability, such as those involving PRS for 
breast cancer52, can identify a substantial fraction of the 
population that could be at meaningfully higher risk than 
the general population. However, the majority of cases in 
a population can still arise outside the groups identified 
as being at high risk, unless the discriminatory ability of 
the underlying model is high90.

To evaluate the added value of new risk factors incor­
porated into a model, it has been increasingly common 
to carry out an ‘assessment of reclassification’. Specific 
risk thresholds that affect clinical decision making may 
be used to cross-classify subjects based on risk strata that 
have been assigned according to an existing model and 
a new model. Several types of net reclassification indi­
ces (NRIs) have been proposed to quantify the degree 
to which the new model can provide more accurate 
classification — that is, shift the disease cases to higher-
risk categories and the controls to lower-risk categories91,92. 
These summary measures, however, are generally abstract 
in nature and do not directly relate to any measure of net 
benefit achieved by the use of a new model at a popula­
tion level. Measures of NRI have also been proposed for 
comparison of models in the absence of pre-specified 
risk thresholds; however, this approach has faced severe 
criticism because of its tendency to produce false-positive 
results regarding improved performance of models with 
additional factors93,94. In summary, the clinical utility of 
models depends on the degree of risk stratification they 
can produce for the population, and the optimal criterion 
for evaluating risk stratification depends on the clinical 
application under consideration.

Case studies
In this section, we discuss case studies that illustrate the 
potential value of polygenic risk prediction in stratified 
or precision approaches to disease prevention. For this 
purpose, we have chosen four diseases with varying 
lifetime risks in the US population, varying levels of 
knowledge on risk factors and with different strategies 
available for primary prevention (that is, prevention 
of the development or delay of the onset of disease) 
and secondary prevention (that is, strategies for early 
detection and prevention of disease progression). Each 
study examined genetic risk based on previously vali­
dated SNPs that have achieved genome-wide signifi­
cance. Supplementary information S1 (table) shows the 
study designs, the methods used in different steps for 
model building and validation, and the criteria used 
for evaluating the clinical utility of the models.
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Coronary heart disease. Coronary heart disease (CHD) 
is a common but preventable disease in many instances, 
as many causes are known and can be modified. Advice 
to adopt a healthy lifestyle (for example, a healthy diet, 
healthy weight, low or no alcohol use, adequate physical 
exercise and avoidance or cessation of smoking) to lower 
the risk of CHD applies to the general population, as it 
has clear health benefits with regard to multiple diseases 
and has no associated harms. In this context, risk assess­
ment could be used to identify individuals at elevated 
risk who could benefit most from these lifestyle changes 
or from initiating preventive treatment with statins. For 
instance, the joint American College of Cardiology and 
American Heart Association Task Force recommend 
treatment with statins to reduce low-density lipoprotein 
(LDL) cholesterol levels for the primary prevention of 
CHD in individuals with a 10‑year risk of CHD that is 
7.5% or higher95.

The potential value of knowledge on genetic risk was 
nicely illustrated by a recent study that reanalysed sev­
eral statin prevention trials by risk stratification based 
on a 27‑SNP PRS96. The study showed that taking statins 
reduces the absolute risk of CHD to a greater extent in 
individuals at higher compared to lower polygenic risk. 
For instance, after 6 years of follow up in the ASCOT 
(Anglo-Scandinavian Cardiac Outcomes Trial) primary 
prevention trial, the risk of developing CHD was reduced 

following statin therapy from 3.0% to 1.9% (1.1% abso­
lute risk reduction (ARR)) among individuals in the 
lower quintile of genetic risk, whereas it was reduced 
from 6.6% to 3.6% (3.0% ARR) among individuals in the 
highest quintile of genetic risk (FIG. 4). This translates into 
an almost threefold reduction in the number of people 
needed to prevent one CHD event in high- versus low-risk 
groups. Estimates of ARR can be affected if the underlying 
incidence rate of disease in the studies is not represent­
ative of the general population. To assess the potential 
risk reduction achievable for the general population, one 
may use hazard ratio parameters associated with the joint 
effect of PRS and treatment categories from these trials, 
and then obtain estimates of absolute risk by calibrating 
the model using external population-based estimates of 
disease incidence rate.

Breast cancer. Breast cancer is common in women in the 
United States and other Western countries, and its inci­
dence rates are now rapidly increasing in many develop­
ing countries. There are multiple risk scores for predicting 
breast cancer risk in the general population; however, their 
discriminatory accuracy is limited and additional risk 
factors usually result in small improvements in the AUC97.

A recent study evaluated the risk stratification ability of 
a 77‑SNP PRS for breast cancer52. Instead of evaluating the 
AUC, the study examined a related but more meaningful 

Figure 4 | Role of polygenic risk in determining absolute risk reduction for coronary heart disease and bladder 
cancer achievable by modification of environmental risk factors. Ten‑year risk of coronary heart disease associated 
with statin therapy (panel a) and 30‑year risk of bladder cancer associated with smoking status (panel b), across genetic 
risk categories defined by the polygenic risk score (PRS) distribution.  Brackets indicate the absolute risk reduction (ARR) 
between treatment or exposure groups for subjects in different PRS categories. The tables show the ARR and relative risk 
reduction (RRR) between treatment or exposure groups (panel a, statin versus control group; panel b, former versus 
current smokers), across PRS categories. The studies illustrate that subjects at higher polygenic risk may benefit more (that 
is, have a greater reduction in absolute risk) from risk-reducing interventions, such as statin therapy or smoking cessation. 
Data in panel a from REF. 96. Data in panel b from REF. 101, American Association for Cancer Research.
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measure of the value of risk models — the ability to iden­
tify individuals in the population who have crossed clin­
ically relevant risk thresholds. For instance, women in 
the United Kingdom are invited to start mammographic 
screening when they turn 47 years old, which corresponds 
to a 2.4% 10‑year risk threshold, as this is the average risk 
for women at this age. The study found that women in 
the top 10% of genetic risk, according to the 77‑SNP PRS, 
would reach this risk threshold in their early 30s, whereas 
women in the bottom 10% of the polygenic risk would 
remain below this threshold throughout their lifetime 
(FIG. 5). Thus, information on genetic risk, in addition to 
family history, is more effective than an age-based crite­
rion in guiding decision making on when mammographic 
screening should be initiated98. Another recent study used 
published estimates of odds-ratio association parameters 
for SNPs and non-genetic risk factors to develop a ‘syn­
thetic’ risk model under the assumption of multiplicative 
effects. This study showed that risk models could also be 
relevant for communicating risks and benefits to individ­
uals regarding decision making, such as taking menopau­
sal hormone therapy or preventive endocrine therapies99. 
Both of these models, however, require further evalu­
ation of model calibration in independent prospective 
cohort studies.

Colorectal cancer. The US Preventive Services Task 
Force100 recommends colorectal cancer (CRC) screening 
for men and women from the age of 50 to 75; enhanced 
screening is recommended for those at elevated risk owing 
to family history of CRC, inflammatory bowel disease or 
suspected hereditary CRC syndromes. One CRC study 

Figure 5 | Role of polygenic risk in determining the optimal age of initiation for screening of breast and colon 
cancers. Age at which the risk of developing breast cancer reaches 2.4% (panel a) or the risk of developing colon 
cancer reaches 0.68% (panel b) over the next 10 years, for women at different levels of polygenic risk, with and without 
a family history of the disease. The risk levels of 2.4% and 0.68% correspond to the average population 10‑year risk of 
developing each disease for women at the currently recommended starting ages for screening in the countries where 
the original studies were conducted (that is, 47 years old for breast cancer in the United Kingdom, and 50 years old for 
colorectal cancer in the United States). The studies illustrate that the risk threshold for screening is reached at earlier 
ages for subjects with higher genetic risk, defined by the polygenic risk score (PRS) and a family history of the disease. 
Data in panel a from REF. 52. Panel b adapted with permission from REF. 53, Elsevier.

investigated the utility of 27 SNPs, together with informa­
tion on family history and endoscopy records, to guide the 
recommendation of screening53. 

The study showed that, despite its low discriminatory 
ability (AUC < 60%), risk determined by the 27‑SNP 
PRS in combination with family history can have a sub­
stantial impact on the age at which individuals reach 
the average absolute risk of a 50‑year-old individual; 
this threshold was reached 10 years earlier for indi­
viduals at the top 10% of genetic risk (42 years in men 
and 47 years in women) than for those at the bottom 
10% of genetic risk (52 years in men and 58 years in 
women) (FIG. 5). The risk stratification ability of PRSs 
for CRC is currently lower than that for breast cancer 
because of the much larger number of SNPs associated 
with the latter condition. Identification of additional 
SNPs, together with consideration of known environ­
mental risk factors, can be expected to improve the risk 
stratification ability of CRC risk models in the future. 
An improved estimation of the risk of developing CRC 
would allow individuals to make more informed deci­
sions on CRC screening, aided by the advice of their 
doctors. Undergoing screening is a personal decision 
that needs to take into account the potential benefits of 
early detection as well as the potential costs, such as the 
potential complications of colonoscopy.

Bladder cancer. In contrast to breast and colorectal can­
cers, bladder cancer is relatively uncommon with a very 
strong environmental causal component — primarily, 
cigarette smoking and occupational exposures — 
and there is no existing screening programme at the 
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population level. Therefore, the most effective means 
of prevention are smoking cessation and occupational 
safety measures.

A recent study evaluated whether the impact of smok­
ing prevention and/or cessation on bladder cancer risk 
could be different for subjects with different genetic 
risks, as defined by a PRS that used information from 
12 genetic variants (11 SNPs and 1 deletion)101. The study 
showed that the potential benefit from smoking cessa­
tion, in terms of a 30‑year ARR, is substantially more 
pronounced among individuals with higher genetic risk 
than those with lower genetic risk (FIG. 4). By contrast, 
measures of relative risk reduction (RRR) were similar 
for subjects in the top and bottom groups of genetic 
risk, illustrating the value of absolute risk measures in 
the context of prevention. In particular, ARR estimates 
indicated that 8,200 cases of bladder cancer could be pre­
vented if smoking cessation occurred in 100,000 men in 
the upper PRS quartile, whereas 2,000 cases would be 
prevented by a similar effort in the lowest PRS quartile. 
Thus, these analyses indicate that genetic information 
could potentially be used for targeted smoking cessa­
tion programmes that are not applicable to the whole 
population — for example, because of associated costs. 
However, the authors also noted that, before making any 
recommendations, the impact of genetic stratification 
on other smoking-related diseases, such as lung cancer 
and cardiovascular diseases, should be considered along 
with the acceptability and ethical aspects of using genetic 
information in public health interventions.

Future directions
Future polygenic risk models will need to include dis­
ease susceptibility variants that have a wide range of allele 
frequencies, including common, low-frequency and rare 
variants. Clearly, rare and high-penetrant variants in 
known major genes, such as those in BRCA1 and BRCA2, 
will have an important role in determining the disease 
risk of individuals in highly affected families. In the near 
future, large-scale sequencing and imputation-based 
association studies will provide a more comprehensive 
assessment of the role of rare and low-frequency variants 
that may confer more moderate risk to diseases. Although 
the number of discoveries of these types of variants has 

been quite limited to date102–104, some studies indicate that 
rare and low-frequency variants have the potential to 
explain a substantial fraction of the heritability and, thus, 
variation of disease risks in the general population105. The 
underlying genetic architecture of complex diseases with 
respect to rare and low-frequency variants is likely to be 
as polygenic as has been observed for common vari­
ants. Therefore, studies of very large sample sizes will be 
required for the discovery of sufficiently large numbers 
of such variants to make a meaningful contribution to 
genetic risk prediction models.

Unlike genetic variants, environmental risk fac­
tors can change over the lifespan of individuals. Thus, 
repeated measurements of environmental risk factors or 
risk biomarkers will be needed to provide a risk assess­
ment for diseases associated with both long-term aver­
age exposure levels and trends in exposure levels over 
time. Prospective cohort studies with longitudinally 
measured risk factor data will be needed for the devel­
opment of dynamic models for risk prediction. Research 
is also needed on statistical methodology for the devel­
opment, validation and application of risk models with 
time-dependent risk factors.

Improvements in models, through the incorporation 
of polygenic risk and possibly other predictive factors, 
to identify people at different levels of risk for develop­
ing diseases, could be translated into improvements in 
primary and secondary prevention by tailoring inter­
ventions according to risk. However, important questions 
will need to be addressed on how this approach could 
work in practice within the current health systems106. 
This will require: addressing organizational, legal and 
ethical factors that affect risk perception; acceptance 
and adoption of new risk-stratified programmes that 
use genetic information107–109; identifying the optimal 
service delivery mechanisms, including (but not limi­
ted to) cost-effectiveness and cost–benefit evaluations 
of alternative implementation plans110,111; educating and 
training health professionals in developing new risk com­
munication tools and facilitating the implementation of 
risk-based strategies of intervention112; and conducting 
feasibility studies for implementation plans and, when 
possible, randomized trials to directly evaluate the impact 
of new programmes on health outcomes.
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http://www.cancer.org/research/researchtopreventcancer/
currentcancerpreventionstudies/cancer-prevention-study-3
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