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The rapid growth of human genetics creates countless opportuni-
ties for studies of disease association. Given the number of poten-
tially identifiable genetic markers and the multitude of clinical
outcomes to which these may be linked, the testing and valida-
tion of statistical hypotheses in genetic epidemiology is a task of
unprecedented scale1,2. Meta-analysis provides a quantitative
approach for combining the results of various studies on the same
topic, and for estimating and explaining their diversity3,4. Here,
we have evaluated by meta-analysis 370 studies addressing 36
genetic associations for various outcomes of disease. We show
that significant between-study heterogeneity (diversity) is fre-
quent, and that the results of the first study correlate only mod-
estly with subsequent research on the same association. The first
study often suggests a stronger genetic effect than is found by
subsequent studies. Both bias and genuine population diversity
might explain why early association studies tend to overestimate
the disease protection or predisposition conferred by a genetic
polymorphism. We conclude that a systematic meta-analytic
approach may assist in estimating population-wide effects of
genetic risk factors in human disease.
For each genetic disease association that we examined, a median of 9
studies (interquartile range 5–15) had been published. The main
comparisons of disease cases and controls were based on allele fre-
quencies (n=13), genotypes assuming recessive inheritance (n=16)
or various other contrasts of genotypes (n=7; Table 1). In 14 of 36
cases (39%), there was statistically significant heterogeneity5

between the results of the various studies on the same topic. The
odds of having statistically significant heterogeneity between the
studies of the same topic is greater when more studies were carried
out (odds ratio 1.15 per additional study, P=0.02). In the ten meta-
analyses with less than six studies each, we did not detect statistically
significant heterogeneity between the results of the included studies.
By contrast, we did detect statistically significant heterogeneity
between the combined studies in 7 of 9 meta-analyses with at least 15
included studies. The power of a meta-analysis to detect heterogene-
ity increases with additional studies; alternatively, publication bias
against studies with ‘negative’ or discordant results may be less
prominent in fields where more studies are eventually published.

When we compared the strength of the postulated genetic associ-
ation (as conveyed by the odds ratio) determined in the first study
or studies against that determined in subsequent research across the
36 topics, the correlation was modest (fixed-effects modeling6,
r=0.42, P=0.011; random-effects modeling7–9, r=0.51, P=0.002;
Fig. 1).The first study tended to give more impressive estimates of
disease protection or predisposition than subsequent research. This
occurred in 25 or 26 of 36 cases (P=0.029 or P=0.011) depending
on the modeling (fixed or random effects, respectively). Regardless
of the modeling, in eight cases the discrepancy between the first and

subsequent studies was beyond what would occur by chance alone
(P<0.05). In another two cases, the discrepancy was beyond chance
only when determined by fixed-effects modeling (Fig. 1a).

Figure 2a presents the eight meta-analyses in which the results
of the first study differed significantly beyond chance (P<0.05)
from those of subsequent research by both fixed- and random-
effects calculations. The typical situation is that a very strong
association is proposed by the first study, which becomes gradu-
ally less prominent or even disappears as more data accumu-
late10,11. Such behavior may suggest a spurious finding that is not
validated by subsequent research, an exaggerated finding that
eventually finds its appropriate measure or a gene effect that is
stronger in some subpopulations than in others.
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Fig. 1 Correlation between the odds ratio (OR) in the first study/studies and in
subsequent research. OR>1 suggests predisposition towards the disease,
whereas OR<1 suggests protection from the disease. Blue diamonds denote
statistically significant discrepancies beyond chance between first and subse-
quent studies (a, fixed effects; b, random effects).
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The first studies for these eight postulated associations appeared
in prestigious journals (five in journals with an impact factor higher
than 9.0; three in journals with an impact factor of 2.5–4.0), and
invariably showed strong associations, with odds ratios as large as
2.1–5.7 (suggesting strong genetic predisposition) or as small as
0.03–0.22 (suggesting strong genetic protection). The subsequent
studies targeting these same associations showed more marginal or
no statistically significant effects at all. The subsequent studies were
published in journals with lower average impact factors than the
first studies in four topics, or with similar average impact factors as
the first studies in another four topics.

Subsequent studies have failed to validate the originally pro-
posed importance of dopamine receptor D3 gene polymor-
phisms for schizophrenia, of apolipoprotein E gene
polymorphisms for dementia in patients with Down syn-
drome, of angiotensinogen gene polymorphisms for essential
hypertension, of cytochrome p450 2D6 (CYP2D6) gene muta-
tions for Parkinson disease or of CYP2D6 metabolic status for

lung cancer. Subsequent studies have confirmed that glu-
tathione S-transferase M1 status may be important in suscepti-
bility to lung cancer, that dopamine receptor D2 gene
polymorphisms may confer some susceptibility to alcoholism
and that angiotensin-converting enzyme gene polymorphisms
may be involved in diabetic nephropathy; however, the
strength of the associations found by the subsequent studies is
significantly smaller than that postulated by the first studies for
each of these three subjects.

Conversely, in eight other topics the first study or studies did
not find a statistically significant difference between disease cases
and controls but, with the accumulation of further data, the
genetic association became formally statistically significant in the
meta-analysis. The results of the first study or studies did not dif-
fer significantly from those of the subsequent research. Trajecto-
ries of these cumulative odds ratios are shown in Fig. 2b. For
these eight topics, the first studies were published in journals
with impact factors between 1.1 and 10.2.

Table 1 • Characteristics of the meta-analyses of 36 genetic disease associations 

ID Disease/outcome Gene (polymorphism) – Genetic contrasta Contrast type Subjectsb (studies)
1 MI ACE (insertion/deletion) – DD vs. DI + II genotype 18,664 (15)
2 IHD ACE (insertion/deletion) – DD vs. DI + II genotype 21,876 (17)
3 ICVD ACE (insertion/deletion) – DD vs. DI + II genotype 11,394 (6)
4 poor clozapine response HTR2A (102T/C) – CC vs. CT+TT genotype 733 (6)
5 poor clozapine response HTR2A (H452Y) – YY vs. HY+HH genotype 676 (5)
6 vascular disease MTHFR (677C/T) – TT vs. CC genotypec 6,947 (23)
7 lung cancer CYP2D6 (deficient oxidation) – poor metabolizers vs. others genotype 5,162 (14)
8 dementia in Down syndrome APOE (ε2/ε3/ε4) – allele ε2 vs. ε3+ε4 allele 1,130 (9)
9 schizophrenia DRD3 (Bal1) – 11+22 vs. 12 genotypec 5,121 (25)
10 bipolar affective disorder MAOA (Fnu4HI) – allele 1 vs. 2 allele 962 (3)
11 bipolar affective disorder MAOA (CA) – allele 122 vs. others allele 1,932 (7)
12 bipolar affective disorder TH (tetranucleotide repeat) – allele 1 vs. others allele 2,901 (8)
13 unipolar affective disorder TH (tetranucleotide repeat) – allele 1 vs. others allele 1,128 (3)
14 NIDDM KCNJ11/KIR6.2-BIR (E23K) – KK vs. EK+EE genotype 888 (4)
15 lung cancer GSTM1 (gene deletion) – null/null vs. others genotype 9,724 (21)
16 lung cancer CYP1A1 (4889A/G) – GG vs. AA+AG genotype 2,392 (6)
17 lung cancer CYP1A1 (MspI) – +/+ vs. others genotype 4,263 (12)
18 MI SERPINE1/PAI1 promoter (4G/5G) – 4G/4G vs. 5G/5G genotypec 1,910 (10)
19 Parkinson disease CYP2D6 (1934G/A) – allele 4 vs. others allele 7,029 (14)
20 essential HTN AGT (M235T) – allele T235 vs. M235 allele 4,698 (6)
21 cancer HRAS/HRAS1 (rare alleles) – rare vs. common alleles allele 8,542 (24)
22 left ventricular hypertrophy ACE (insertion/deletion) – allele D vs. I allele 8,186 (12)
23 bladder cancer NAT2 (slow acetylation alleles) – slow/slow vs. others genotype 5,836 (20)
24 ICVD APOE (ε2/ε3/ε4) – allele ε4 vs. others allele 3,632 (9)
25 nonsyndromic cleft lip TGFA (TaqI) – allele 2 vs. 1 allele 5,272 (9)
26 alcoholism DRD2 (TaqIA) – allele A1 vs. A2 allele 3,826 (15)
27 ischemic stroke ACE (insertion/deletion) – DD vs. DI + II genotype 2,160 (6)
28 diabetic nephropathy ACE (insertion/deletion) – II vs. ID+DD genotype 5,393 (20)
29 NTD MTHFR (677C/T) – TT vs. TC+CC genotype 1,033 (4)
30 NTD (mother) MTHFR (677C/T) – TT vs. TC+CC genotype 1,160 (4)
31 NTD (father) MTHFR (677C/T) – TT vs. TC+CC genotype 815 (3)
32 IHD APOE (ε2/ε3/ε4) – ε4/ε3+ε4/ε2+ε4/ε4 vs. ε3/ε3 genotypec 8,962 (9)
33 IHD LPL (D9N) – ND vs. DD genotypec 2,022 (3)
34 IHD LPL (N291S) – SN vs. NN genotypec 13,115 (4)
35 IHD LPL (S447X) – XS vs. SS genotypec 4,067 (5)
36 alcoholic liver disease CYP2E/CYP2E1 (RsaI) – allele c2 vs. others allele 4,178 (9)
aThe various polymorphisms are named according to commonly used nomenclature. For ID 7, 15 and 23, some of the included studies inferred genotype from
phenotype determinations. ACE, gene encoding encoding for angiotensin-converting enzyme; AGT, gene encoding angiotensinogen; APOE, gene encoding
apolipoprotein E; CVD, cerebrovascular disease; CYP, gene(s) encoding cytochrome P450; DRD2/DRD3, gene encoding dopamine receptor D2/D3; GSTM1, gene
encoding glutathione-S-transferase M1; HRAS/HRAS1, gene encoding v-Ha-ras Harvey rat sarcoma viral oncogene homolog; HTN, hypertension; HTR2A, gene
encoding 5-hydroxytryptamine receptor 2A; ICVD, ischemic cerebrovascular disease; IHD, ischemic heart disease; KCNJ11/KIR6.2-BIR, K+ inwardly rectifying chan-
nel/β-cell inward rectifier, subfamily J, member 11; LPL, gene encoding lipoprotein lipase; MAOA, gene encoding monoamine oxidase A; MI, myocardial infarc-
tion; MTHFR, gene encoding methylenetetrahydrofolate reductase; NAT2, gene encoding N-acetyltransferase 2; NIDDM, non-insulin-dependent diabetes
mellitus; NTD, neural tube defect; SERPINE1/PAI1, gene encoding serine proteinase inhibitor, clade E, member 1/plasminogen activator inhibitor 1; TGFA, gene
encoding transforming growth factor A; TH, gene encoding tyrosine hydroxylase. bWhen the comparison is based on allele frequencies, then the number refers
to the total number of typed alleles in the comparison rather than the number of subjects. cThe comparison is based on a contrast of genotypes assuming a gene
effect other than recessive.
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In 12 other topics the first study or studies had
not found statistical significance and this contin-
ued to be the case at the end of the meta-analysis.
Finally, in the last eight subjects, the first study or
studies had reached statistical significance and
subsequent research did not disagree beyond
chance; however, in only four of the eight was
there formal statistical significance for the genetic
association at the end of the meta-analysis.

Considering all 36 topics, the odds of finding a
statistically significant discrepancy between the
first and subsequent research is greater when more
studies were carried out on the same issue, when
the sample size of the first study or studies was
smaller and when there was only a single first pub-
lication that had highlighted a clearly defined
genetic contrast (Table 2). A small sample size of
the first publication and a large number of studies were independent
predictors of reaching discrepancies. We noted statistically signifi-
cant discrepancies in 5 of 7 cases in which the first publications had a
sample size of less than 150, compared with 3 of 29 when the sample
size of the first study or studies was more than 150. Furthermore, we
observed such discrepancies in 4 of 9 meta-analyses in which at least
15 studies had been published, whereas we documented no discrep-
ancies among the 10 meta-analyses with 5 or fewer reports.

In summary, genetic association studies require cautious repli-
cation—an issue for both linkage and association studies. For
linkage studies, other investigators have shown that replication is
problematic under conditions of heterogeneity12,13. Pooling or
Bayesian approaches with raw data may offer advantages14–16,
and data availability for such analyses would require coordinated
efforts at an international level. Heterogeneity in the strength of
an association is common even between studies of seemingly
similar populations, which may differ in parameters that are not
yet known or in parameters that the original studies have not
captured. Meta-analysis may detect previously unrevealed diver-
sity, and this should be pursued in subgroup analyses of raw data

and in future studies. The evaluation of subgroup effects (such as
racial differences or gene–environment interactions) is difficult17

and requires large numbers of subjects18.
We should also consider sampling biases19: given the large set of

possible genetic associations probed by investigators worldwide,
the most prominent findings represent an extreme sample and
associations may be less extreme in new studies. Publication bias20

and time-lag bias21 are also possible: small studies with ‘negative’
statistically non-significant results may take longer to be pub-
lished than ‘positive’ statistically significant studies21. Estimates of
the size of a genetic effect may be inflated, if based only on a single
study with impressive results. Finally, in some cases there may be
large statistical uncertainty in the first study. Often genetic associ-
ations of disease are of modest magnitude (an odds ratio <2 or
>0.5) and single studies are underpowered to detect them. Many
studies of disease association are actually interested simply in gene
detection rather than in estimating the size of the effect associated
with a particular gene. Isolated statistical significance does not
guarantee a genetic association, and lack of formal statistical sig-
nificance does not exclude the possibility of an association.

Fig. 2 Evolution of the strength of an association as more
information is accumulated. The strength of the associa-
tion is shown as an estimate of the odds ratio (OR) without
confidence intervals. a, Eight topics in which the results of
the first study or studies differed beyond chance (P<0.05)
when compared with the results of the subsequent studies.
b, Eight topics in which the first study or studies did not
claim formal statistical significance for the genetic associa-
tion but formal significance was reached by the end of the
meta-analysis. Each trajectory starts at the OR of the first
study or studies. Updated cumulative OR estimates are
obtained at the end of each subsequent year, summarizing
all information to that time (random effects). The horizon-
tal axis (total genetic information) shows the total number
of subjects genotyped with one of the contrasted geno-
types, or the total number of typed alleles when specific
allele frequencies are compared between disease cases and
controls. Abbreviations are listed in Table 1.
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Table 2 • Predictors of statistically significant discrepancies between the first and subsequent studies 
of the same genetic association

Predictor of discrepancy Univariate regressions Multivariate regression
OR (95% CI) P value OR (95% CI) P value

total number of studies (per study) 1.17 (1.03–1.33) 0.020 1.18 (1.02–1.37) 0.028
sample size of first studies (doubling) 0.42 (0.17–0.98) 0.046 0.44 (0.19–0.99) 0.050
single first study with clear genetic contrasta 9.33 (1.01–86.3) 0.044 NS NS

Comparisons are based on random-effects calculations. Odds ratios (OR) and 95% confidence intervals (CI) are derived from logistic regressions. The multivariate
model is derived with backward elimination of variable according to likelihood ratio criteria. OR >1 suggests an increasing probability of finding significantly dis-
crepant results beyond chance (P<0.05) between the first and subsequent studies. NS, not significant. aThe single first study proposed a specific allele contrast or
a specific genotype contrast to be the one reflecting the differential disease susceptibility.
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Methods
Definitions. We considered meta-analyses of disease association studies that
had been based on human genetic markers other than HLA alleles. A Med-
line search (last update December 2000) used the terms ‘polymorphism(s)’
and  ‘genetics’, and ‘meta-analysis’ as type of publication. Meta-analyses with
discrete outcomes qualified if (i) the outcome was related to a genetic marker
(ii) detailed data were available for constructing 2×2 tables for each individ-
ual study (number of disease cases with and without the marker, number of
controls with and without the marker) and (iii) data had been published in at
least two different years. When a published report examined several genetic
markers or several clinical outcomes, we considered separately each genetic
marker and outcome. We obtained qualitatively similar results in analyses
selecting only one outcome (the one with the largest number of tested sub-
jects). We considered different polymorphisms of the same gene as separate
genetic markers. When there were several meta-analyses on exactly the same
association, we generally retained only the most updated one, provided it
had adequate data for each of the included studies.

We screened in detail 51 reports of meta-analyses and excluded 25 of
them (more recent similar meta-analysis available, n=19; lack of detailed
data for individual studies, n=5; publication of all pertinent studies in the
same year, n=1). Twenty-six meta-analysis reports were eligible (Web
Notes A and B), addressing 36 genetic associations across 370 studies
(Web Note C). When the genetic marker had more than two categories
(such as AA homozygosity, Aa heterozygosity, aa homozygosity), we con-
sidered the comparison of the two categories that had been proposed orig-
inally in the first study in the field. One or both of the compared categories
could be combinations of different genotypes (for example, Aa heterozy-
gosity and aa homozygosity). When it was not clear which was the most
important genetic contrast and when several ‘first’ studies were published
in the same year in different journals, we selected the genetic contrast pro-
posed by the meta-analysis. If several comparisons were carried out even
by the meta-analysis, we used an a priori algorithm (which selects geno-
type contrasts over allele frequency comparisons, and genotype contrasts
based on recessive inheritance over other genotype contrasts). For data
presented only in abstract form and for unpublished data, we imputed
publication to occur after the meta-analysis. We always considered the
first study or studies for the specific genetic association, as well as all the
other subsequent studies included in the meta-analysis. In 27 cases, there
was an easily identifiable first study (Web Note B); in the other 9 cases,
2–10 studies had been published close to each other in the same year in
different journals, and we therefore estimated their summary odds ratio
by fixed- and random-effects models.

Modeling. We estimated between-study heterogeneity in each meta-analy-
sis by the Q statistic; Q is traditionally considered to be significant for
P<0.10 (ref. 5). Summary odds ratios calculations used the Mantel–Haen-
szel fixed-effects model6 and the DerSimonian and Laird random-effects
model7,9. Detailed graphs for each eligible meta-analysis are provided in
the Supplementary Information (Web Figs. A1–A36). Fixed-effects models
assume that all studies aim at evaluating a common truth and results differ
by chance alone. Random-effects models anticipate that the studies may
have genuine differences in their results9; thus, they also incorporate a
between-study variance in their estimates. Random-effects models are gen-
erally more conservative (that is, they provide wider confidence intervals
when there is between-study heterogeneity5). Fixed-effects models may be
inappropriate if there is genuine heterogeneity in the size of genetic effects
across subpopulations. Random-effects models are thus preferable, but
they assume a certain distribution for the effect sizes that may be difficult
to validate.

We estimated the Spearman rank-correlation coefficient between the
odds ratios of first and subsequent studies across all the topics considered.
We examined whether the results of the first published studies on a given
association were significantly different beyond chance from the results of
the subsequently published studies by using a z-score, as described previ-
ously22. We also constructed recursive cumulative meta-analysis plots that
trace the evolution of the summary odds ratio as more data accumulate
over time on the same topic10,11. Finally, we examined with logistic regres-
sions23 whether the number of studies, the sample size of the first study or
studies and the availability of a single first study with a clearly proposed
genetic contrast influenced the occurrence of statistically significant dis-
crepancies between the results of the first and subsequent studies.

Note: Supplementary information is available on the Nature Genetics
web site (http://genetics.nature.com/supplementary_info/).
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