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COMPARISON OF THE BIOMETRICAL GENETICAL, MAVA, AND
CLASSICAL APPROACHES TO THE ANALYSIS OF

HUMAN BEHAVIOR1
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The techniques which can be used in the analysis of human behavior by the methods
of biometrical genetics are described and compared with those of the Multiple
Abstract Variance Analysis (MAVA), and other approaches. These techniques are
applied to a number of personality and cognitive measures using published data.
Underlying assumptions of the analyses used are discussed, and tests of significance
for departure from them are demonstrated. Although data were often inadequate,
the techniques provided new information on the gene action controlling the mea-
sures and on their evolution. The authors conclude that the outcome of the reanal-
yses indicates the unique value of the biometrical approach.

There are currently three alternative ap-
proaches to the genetical analysis of human
twin and familial data. There is what might be
termed the classical approach through correla-
tions between relatives, culminating in the
estimation of various ratios describing the rela-
tive importance of genetic and environmental
influences on trait variation. This approach
leads to ratios such as the // of Holzinger
(1929), the E of Neel and Schull (1954), and
the HR of Nichols (1965), each of which mea-
sures an aspect of the relative importance of
heredity and environment. There is the more
systematic and comprehensive approach of
the Multiple Abstract Variance Analysis
(MAVA) developed by Cattell (1960, 1965)
leading to both the estimation of nature: nur-
ture ratios, and an assessment of the importance
of the correlation between genetic and environ-
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mental influences within the family as well as
within the culture. This approach is open-
ended and based on the comparison of within-
and between-family variances of full- and
half-sib families, as well as monozygotic and
dizygotic twins. Finally, there is the biometri-
cal genetical approach initiated by Fisher
(1918), and extended and applied by Mather
(1949), which includes the first two approaches
as special cases, and attempts to go beyond
them to an assessment of the kinds of gene
action and mating system operating in the pop-
ulation. While the biometrical genetic approach
in psychogenetics has been used almost ex-
clusively and with considerable success in in-
vestigations with animals, it has not often been
used in the investigation of human populations.
It is the two previously mentioned methods,
which were specially developed for this purpose,
that have been employed with humans.

In view of the increasing awareness of the
power of biometrical genetics among those work-
ing in the psychogenetic area, it would seem
opportune to present an account of the appli-
cation of some of its methods to human data.
It is the purpose of this paper, therefore, to
illustrate the biometrical approach by refer-
ence to data collected and analyzed by a num-
ber of other workers, and to underline its
relationship to the other two approaches.
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WITHIN- AND BETWEEN-FAMILY
COMPARISONS

Let us consider data collected from n families
each consisting of m individuals. An analysis of
variance to compare the variation within and
between families leads to the following expecta-
tions :

Source

Between families
Within families

df Expected MS

where <rw2 is that part of the total variance (<TT2)
due to differences within families, and era2 is the
part due to differences between families.

Two approaches are current in biometrical
genetics : One is to estimate <rw2 and crs2 from
the analysis of variance, and the other is to
estimate directly from the data the average
variation within-families Fp, and the variation
between-family means Ff , where FF = mean
square within families, and Fj? = 1/m (mean
square) between families. Thus these two ap-
proaches are related as FF = rfw2, and Vv
= (<?w2 + md-R^/m. Clearly where m, the
family size, is very large FF = <?w2, and FF
= *B2.

In the MAVA approach, the er2s for specify-
ing the variation within and between families
are related to the above as follows :

ffw* MAVA = FF = (Tw2

<T(* MAVA = wFp = <7W
2 +

that is, the cr2s of MAVA are the corresponding
mean squares derived from the analysis of vari-
ance, but the between-family item is neither a
<r2 nor a simple function of a <r2.

Having estimated the Fs or o-2s by one of the
available systems, it is sometimes necessary to
express them as proportions of the total vari-
ation. Indeed some of these proportions are the
correlations of the classical approach. The total
variation in the biometrical genetical approach
is clearly 0-T

2 = o-w
2 + o-s2. In the MAVA ap-

proach, on the other hand, o-T
2 MAVA = 2o-w

2

+ ?M(TB2 which is not, of course, the total vari-
ation that we wish to partition among various
sources. However, this can be accommodated
in the special case of families of Size 1 (m = 2)
discussed by Cattell because of o-T2 MAVA

- 2(7B2 = 2<TT2.

Loehlin (1965) also gives an account of how
the a2MAVA are defined and their relationship
to cr2 as conventionally defined. For an account
of the use of fv and FF, see Mather (1949).

When discussing expectations in terms of bio-
metrical genetical models, in the general case,
it is more convenient to work in terms of the
<72s of standard analyses of variance, which are
independent of experimental design and family
size, rather than FF and FF, or cr2 MAVA, which
are not. On the other hand, when these expect-
ations are equated to observed values from a
specific set of data in order to estimate the
parameters of a model, the situation is reversed.
Both expected and observed values must now
be given in terms of FF and FF, which are in-
dependent of one another, rather than the o-2s,
which are not, in order that procedures based
on least squares may be used to estimate the
parameters in the model.

GENOTYPE-ENVIRONMENT MODELS

Following the decision to discuss the biomet-
rical genetical models in relation to the vari-
ance components cr\v2 and trs2, it is necessary to
consider the interpretation of their values in
terms of a model which adequately describes
the genetic and environmental contributions
to the total variation.

Thus while <rT
2 = <rw2 + ffa2, it also equals

<rG
2 + o-E2 + f(G,E) where <7G

2 = the genetic
variation, <rE2 = the environmental variation,
and f (G,E) = some function of genotypic and
environmental contributions, and may repre-
sent two distinct sources of variation. If geno-
typic and environmental contributions are cor-
related with respect to size and sign, f(G,E)
= 2 cov (G,E). However, if environmental de-
viations depend for their absolute size (irrespec-
tive of sign) on the particular genotypic
deviations paired with them, there is genotype-
environment interaction and f(G,E) = <rGE2-
While the effect of 2 cov (G,E) may be to in-
crease or decrease apparent <ro2 + fE2 the effect
of eras2 will always be to increase it.

While those who use the classical approach
through correlations are aware of the problems
created by f(G,E), this approach has, as yet,
been unable either to specify, detect, estimate,
or correct for the effects of this source of
variation.
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MAVA and biometrical genetics, on the
other hand, specifically recognize the effects of
f (G,E), and seek to specify them in the models
and to estimate these effects in the analysis.
However, the approaches are quite different in
a number of important respects. In the MAVA
approach all possible contributors to f (G,E) are
allowed for, but whether or not they are in-
cluded in the expectation for any particular <r2

MAVA is decided largely on a subjective as-
sessment of the likelihood that they will con-
tribute to it. When all possible sources of
f (G,E) are included, the number of parameters
in the models is raised to an almost unmanage-
able number and places the analysis beyond
the reach of most bodies of data. In the bio-
metrical approach the presence or absence of a
particular item in the expectation is decided by
the form of the expected contribution of genetic
and environmental components according to
invariable rules. However, the biometrical
genetical approach does not stop at this point,
for it poses the question whether or not the cor-
relation or interaction items in the models are
essential or redundant by means of a number of
statistical tests (scaling tests) that specifically
detect their presence.

As may be seen later from the reanalyses of
data, these scaling tests allow us to suggest with
some confidence that very simple genetical
models are quite adequate to account for most
of the data. Moreover, where we cannot make
this assertion, we are in a position to judge the
kind of extension of the model needed better to
describe the data (see Example 2, Table 4), and
to avoid the pitfall of suggesting the need to
fit a complex model to data resulting from in-
adequate sampling of the population under
study (see Examples 3 and 4, Table 4). We can-
not emphasize too strongly the risk we feel is
involved in fitting complex models like those of
MAVA without first carrying out scaling tests
and tests of the adequacy of the sampling to
ensure that such models are either necessary or
appropriate. To fit a complex model to inade-
quate data may well lead to completely un-
founded conclusions. Together with the insight
that biometrical genetics provides concerning
gene action and the mating system of the popu-
lation, it is in providing these tests that the
chief value of the approach lies, as compared
with its alternatives.

Tests for Genotype-Environment Interaction

Numerous tests for this purpose have been
described for use with controlled plant and
animal breeding programs, but none, so far,
have been proposed for use with human data.
This omission, however, poses no insuperable
problems.

Suppose we have n families of monozygotic
twins, such that the twins in Family 1 have
scores tn and fa, those in family n being tn\ and
tnz, respectively. When the twins have been
reared together, fa — fa ... tn\ — tn%, each pro-
vides an estimate of the magnitude of environ-
mental influences within families. If all twin
pairs are affected to the same extent by the en-
vironmental influences within the family, then
tn — fa = tn — fa ... = 4,1 — tnt, within
sampling error. However, if twins in some fami-
lies react differently from those in other families
when exposed to the same environmental influ-
ences, or twins in some families are exposed to
different environmental influences than in other
families, then tn — fa 5^ . . . ^ tni — 4»a-

The sum of the twin scores tn + fa, hi +fa
. . . /„! + <ns, on the other hand, will differ if the
twins belonging to different families have differ-
ent genotypes, different family environments,
or both. If there is any interaction between
genotype, and within family environment, then
we should find a correlation between the twin
sums tn + fa etc., and the twin differences tn
— fa etc. over the n families.

If the twins have been reared apart the same
considerations will allow us to test for an inter-
action between genotype and environmental
differences between families. Thus we can de-
termine whether or not the assumption of in-
dependence of genotypic and environmental
influences is valid, and hence, whether or not
parameters of interaction between these in-
fluences should be included in the model.

The expected magnitude of the correlation
between the difference between twins (tn — fa)
etc. and their sums (tn + fa) etc., can be ex-
pressed in standard biometrical terms. Let us
take the simplest of all situations where the
twins differ by a single gene, A — a, in a random
mating population in which the gene frequen-
cies are equal. There are then three types of
twin pairs AA, Aa, and aa occurring with the
frequencies J :J :J. The genetic contributions to
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TABLE 1

SCALED EFFECT or A SINGLE Locus ON A
CONTINUOUSLY VARYING TRAIT

Genotype

AA
Aa
aa

Scaled effect of genotype

With dominance

mean + d
mean + /'
mean — d

Without dominance

mean + d
mean
mean — d

the mean scores of these three types of twins
will be +d, h, and — d, respectively. The gene
effects d, h, and — d may be seen in Table 1.
The item d clearly measures half the difference
between the two homozygous genotypes AA
and aa, while h measures the deviation of the
heterozygote from the average of AA and aa.
If there is no dominance then h = 0. A detailed
account of this basic scaling procedure may be
found elsewhere (Mather, 1949). Let us now
consider a simple environmental difference e\
acting within each family, and a single environ-
mental difference e% acting between families.
We will also allow the different genotypes to in-
teract quite differently with the environmental
differences. For example, the interaction be-
tween twins with genotype AA, (+</) will in-
teract with the within-family environmental
difference (d) to the extent gd\, and with the
between-family environmental difference (^2)
to an extent gdz. The values for heterozygous
twins Aa will be gh\ and ghz, respectively. We
then have 12 kinds of twin phenotypes mea-
sured about the mean of the homozygous
gentotypes, as shown in Table 2. Covarying

half the sums with half the differences of pairs
gives cov \ (fa + ^2) ('i — ̂ 2) = %dgdi + \hgk\
assuming that fa is always greater than fa, that
is, ei > gdi, or cov J (fa + fa) (fa - fa) = \hghi
if fa > fa, that is, e\ < gdi. liei > gdi, then the
covariance, and hence the correlation, will be
zero only if gdi = ghi = 0, or^dgdi = — %hght,
while if e\ < gd\ they will be zero only if
ghi = 0. Hence the existence of a covariance
is a useful guide to the presence of gdi
and ghi interactions between genotype and
environments.

It is possible to complicate this simple model
in a wide variety of ways without substantially
affecting the above conclusion.

In terms of MAVA the foregoing test may
be written as follows:

Expectation | (fa — fa) = we

Expectation J (fa + fa) — bh + wh + be

where

bh = between-family hereditary devia-
tion from the mean,

wh = within-family hereditary deviation
from the mean,

be — between-family environmental de-
viation from the mean,

we — within-family environmental devia-
tion from the mean, and

we\ means the size of u>e, irrespective of
its sign.

Notice that in MAVA no attempt is made to
specify gene action effects such as d and h.

TABLE 2

TWELVE TWIN PHENOTYPES ARISING PROM THE INTERACTION or GENOTYPE AND ENVIRONMENT

Twin
frequency

I A A

|Aa

Jaa

Phenotypes

Family

1
2

3
4

5
6

Mean

h

d + ei + gdi + e, + gd,
d + e, + gdi — e^ - ndi

li + e\ + glii + «•, + t>li2
li + ei + glii - ei - glit

— d + ei — gdi + e2 — gdi
—d + ei — gdi — e2 + gdz

i// + e, + ig/r,

it

d - ei - gdi + d + gd>
d — ei — gd, - e-< - grf2

li — ei — glii + e2 + glit
h - et - gin - e-i - glii

-d - et + gdi + e-i — gd-<
—d — ei + gdi — ei + gd«

\h - «i - Jg//i

J Sum

= l ( ' i -Ms)

d + e, + Kd->
d - e-< - gd.

It + e-, + gli,
li — e2 - gli'>

-d + e2- gd,
-d-ei + gd.

1*

i Differences

= J ( ' l - (!)

ei + gd,
et + gdi

e\ + Rlii
e\ + S/'i

e\ — A'rfi
«i — gdi

«i + $gli i
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Thus on the one gene simple biometrical model

Expectation covariance ^ (/i — /a) | (t\ + /a)

= cov (bh + w/0 | we + cov (Je) | we \

- %dgdi + %hghi + cov (e2) ej| .

Written in this way, cov («a) \ei\, which rep-
resents the interaction of family environmental
influences with those within the family, is seen
to be confounded with any genotype-environ-
ment interaction present. It will be observed
that in the previous treatment this effect has
been assumed absent.

When the monozygotic twins have been
reared apart

Expectation covariance 2 (/i — /2) |(<i + h)
= cov (bh + wh) | we + be \

which is free of cov (be) \we\ bias. The ration-
ale underlying this test of genotype-environ-
ment interaction is precisely that which under-
lies the test involving inbred lines of animals,
and which detects genotype-environment in-
teraction through heterogeneity of within-
strain variances. In this case we are looking at
heterogeneity of within-twin standard devia-
tions caused by mean and standard deviation
being related. By plotting scatter diagrams of
J (h — tt) and 4 (t\ + /2), curvilinear covariance
may be detected and subsequently tested for in
addition to the simple linear covariance, thus
extending the scope of the test to cover many
possible forms of interaction.

Tests for Correlated Environments

If correlated environments exist, it can be
shown, following Loehlin's (1965) method for
deriving expectations of o-2 MAVA, that the
following expectations hold for o-T2 denned as
oV + o-B2 in the analysis of variance (which it
will be remembered is £<rT

2 MAVA).
For biological families raised together

cry,

For biological families raised apart (both
sibs separated)

where aw>?, aw? etc. are denned according to
Cattell (1960). Now except under exceptional
circumstances of internal balancing, these two
<TT2s will not be expected to be equal unless the
correlations contribute only an insignificant
amount of covariance to the respective total
variances.

Consequently, an F test for pooled erT
2 apart,

against pooled <rT
2 together, may be expected

to indicate the importance of correlated en-
vironments. The above expectations can be
complicated further by introducing placement
correlations, special twin environments, and
other types of family grouping without ap-
preciably affecting the above argument. Where
a number of o-T

2s are to be tested, conventional
tests for heterogeneity of variance may be
employed (Winer, 1962). A further test can be
made at the stage of fitting the model which is
described in the next section.

It should be pointed out these two tests for
the two kinds of f (G,E) are independent of each
other, for the contribution of 0-QE2 to <TT2s is the
same for all kinds of families, and so cannot lead
to heterogeneous total variances.

FITTING MODELS ASSUMING No f (G,E)

Models and Assumptions

In the absence of genotype-environment
interactions the total variation can be parti-
tioned between two components, the genetic
G, and the environmental E. However, when
we partition the total variation into oV and
<rB2 we must also paritition the total genetic and
total environmental parts into within- and
between-family portions. These we will desig-
nate:

Gi = within-family genetic component,
G2 = between-family genetic component,
Ei = within-family environmental

component,
E2 = between-family environmental

component.

These components have their direct equivalents
in the four MAVA components <rWA2, <rw,2, <rwe

2,
and <76e2, respectively. The expectations for the
o-w2s and <TB2s for three different kinds of fami-
lies are summarized in Table 3. The cumulative
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assumptions embodied in the expectations are: Heritability

1. No genotype-environment interaction,
2. No correlated environments,
3. G = Gi + G2, and
4. EIS and E2s are the same for all kinds of

families.

Assumption 1 can be tested before the model is
fitted for twins reared together and apart by
the methods described in the previous section
(see Tests for Genotype-Environment Interac-
tion). Assumptions 2, 3, and 4 can be tested,
simultaneously, before the model is fitted by
the heterogeneity, or otherwise of the oVs, by
an analysis of variance of the means for each
kind of family, and during the fitting of the
model by a "goodness-of-fit" test of the esti-
mated parameters.

To estimate the four parameters Gi, G2, Ei,
and E2, and to test the four assumptions, a
minimum set of data required comprises mono-
zygotic twins reared together (MZx) and
apart (MZA), and dizygotic twins reared to-
gether (DZf). This set provides six observed
<r2s which are sufficient to estimate four param-
eters and leaves two degrees of freedom for
testing the equality of the three total or2s.

This set is not, however, the only minimum
set of statistics which will lead to a solution, a
point we will return to in a future section of
this review (see Minimum Data).

TABLE 3

EXPECTATIONS OF VARIANCE COMPONENTS FOR THREE
KINDS or FAMILIES ACCORDING TO A

SIMPLE GENETICAL MODEL

Monozygotic twins reared together (MZr)

Fitting the model and obtaining estimates of
the parameters, however, is only the first step
in the interpretation. We must consider the
relationship of these parameters to heritability,
and to the nature of the gene action involved.
The only relevant heritability that can be ob-
tained from the type of model fitting described
so far is the so-called broad heritability of
quantitative genetics which is G/ (G + EI
+ E2), or (d + G,)/(G + Ei + E2), that is,
the proportion of the total variation due to all
genetic causes. This ratio has no equivalent in
either the classical or the MAVA approaches.
Nevertheless, the so-called heritabilities of the
classical approach can be expressed in terms of
the parameters of the biometrical model. For
example,

Holzinger's (1929):

Nichol's (1965) :

= 2Gi/(Gi+G2+E2)

Vandenberg's (1966) :

Monozygotic twins reared apart

These explicitly ignore important sources of
variation (H ignores Ga and E2, for example).
Similarly, the nature: nurture ratios of Cattell
are equivalent to a^/a^ = Gi/Ei and o-Wd

2/
i\,e — G2/E2. Thus, if we can obtain estimates
of Gi, G2, EI, and E2 or their MAVA equival-
ents, we can not only estimate the broad herit-
ability, but also the conventional heritabilities
//, HR, etc., derived from the classical ap-
proach. Furthermore, if we can estimate only
G, Ei, and E2 we can still estimate the most
useful heritability, broad heritability, even
though we can no longer obtain the less useful
H, HR, etc.

Dizygotic twins reared together (DZr)
or full sibs reared together (FSr)

<ri"=G,+G,+Ei+E,

The Minimum Data

It is, therefore, important to establish the
minimal experimental conditions under which
we can estimate GI, G2, EI, and E2, or G, EI,
and E2. These can be established by examining
the expectations in Table 3.
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provide two statistics and require three
parameters for their specification on the model.
However, two of the parameters, EI and E2,
cannot be separated. Hence, we can estimate
only G and (Ei + E2). This, however, is suffi-
cient to estimate the broad heritability alone
and none of the other heritabilities, but in doing
so it provides no test of the model. In the ab-
sence of genotype-environment interactions,
MZx and MZA provide four statistics whose ex-
pectations can be expressed in terms of three
parameters G, EI, and £2. We can, therefore,
not only obtain least-squares estimates of these
three parameters, but also have one degree of
freedom in hand which can be used to test the
equality of the total <r2s for twins reared to-
gether and twins reared apart. This procedure
effectively tests the adequacy of the model as
well as providing the estimates.

If instead we have MZr and DZx we again
have four statistics, but their expectations on
our model involve all four parameters. Further-
more, two of the parameters, G2 and £2, occur
only together in the expectations with the same
coefficients, and are therefore inseparable. We
can therefore estimate only Gi, EI, and (G2

+ E2), leaving one degree of freedom for test-
ing the equality of the total tr2s for the two
kinds of twins. We cannot estimate the broad
heritability, but we can estimate, as has long
been established empirically, H, HR, F, and
one of the two nature: nurture ratios of Cattell.

If we have the combination of MZ\ and DZx
we again have four statistics and four param-
eters, but we can obtain no joint solution of
the parameters. Indeed, all we can obtain is
the broad heritability from the monozygotic
data alone, that is, the dizygotic twins can add
nothing to the solution.

If we have all three sets of data, dizygotic
and monozygotic twins, the latter reared to-
gether and apart, we have six statistics and four
parameters, and all four can be estimated by
least squares. The remaining two degrees of
freedom allow us to test the equality of the
three total o-2s, and hence the validity of the
model. With such data we are therefore in the
position to estimate the broad heritability, H,
HR, F, and both nature: nurture ratios. We
can, of course, indefinitely extend the approach
in this way to include more families of any kind,
but these are in excess of the minimal require-

ments for a solution. We shall return to this
point later.

A set of data which yields almost as much
information as the above minimal set, and
which is certainly far easier to collect, is com-
prised of MZT, DZT, and DZ twins (or sibs)
reared apart (DZA or FSx), the expectation for
this latter group being

*

o-w2 = Gi + Ei + E2

= G2

E2

This set yields estimates of GI, G2, EI, and E2

and allows tests of Assumptions 2, 3, and 4.
The test for genotype-environment interaction
(Assumption 1) is, however, incomplete, there
being a test for gd\ but not for gd^. However, in
view of the comparative ease of collecting
such a sample, this cannot be considered a seri-
ous flaw. Moreover, the increased precision al-
lowed by the larger sample size usually avail-
able makes this minimal set in some ways more
useful than that which includes MZA. It may
be objected that the use of sibs with monozy-
gotic twins is not legitimate since it introduces
an extra source of variation, that due to the
inevitable age difference between sibs not pres-
ent between the twins. This source of variance,
if it exists, will be a further contribution to the
heterogeneity of o-T

2s, and is therefore tested for
adequately during the procedures outlined
above. Analysis of variance could also be used
to detect this effect and an analysis of covari-
ance, with age as a covariate, could be carried
out prior to estimating the components of
variance.

Thus by reducing the total variation into its
within- and between-component parts, and
specifying their expected values in terms of
genetic and environmental components, we
achieve two things : (a) We can see unambigu-
ously how and why we can or cannot obtain
various heritabilities from the data available
and their relationships ; and (i) we can not only
achieve a biometrical genetical solution of the
data, but encompass en route every other solu-
tion that has been proposed such as H, HR, and
F, as given in the previous section (see Heri-
tability.}
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Gene Action

A further stage after converting the esti-
mates of G and E into heritabilities, etc., is to
attempt to relate them to the kind of gene
action involved. This is the point at which bio-
metrical genetics leaves all the other ap-
proaches including MAVA behind, because the
starting point of a biometrical model is the
nature of gene action and interaction. How-
ever, this is also the point at which the expec-
tations depend on important assumptions
about the kinds of gene action to be allowed for
in the models and about the mating structure
of human populations.

If we start with the simplest of all possible
models, namely, one that assumes that all
mating is at random (R), and all gene action is
additive (d), the total genetic variation
G = ^DR. In this expression DR = S 4uiVid?,
where Ui is the frequency of the increasing allele
at the 2th locus, and »< is the frequency of the
decreasing allele at the same locus, and Ui
+ 11 i = 1. The summation S is over all genes
which are contributing to the variation of the
character. In such a population G = Gi + G2

= |DR, and Gi = G2 = iDR. The broad
heritability in such a population is 5DR/(|DR

+ EI + E2), and the broad heritability equals
the narrow heritability because we have ex-
cluded nonadditive gene effects.

Furthermore,

Holzinger's H = iDR/(iDR + EI)

Nichol's HR = iDR/(iDR + E2)

Vandenberg's F = (iDR + Ei)/Et

and CattelPs nature :nurture ratios for within
and between families are Ei/JDR and E2/JDR,
respectively. None of these corresponds to the
broad heritability of the population.

If we now allow for dominance effects (h) of
the genes, the following changes must be made
in the above expectations :

G =
= S

Again, G = GI + G2 but Gi ̂  G2. In fact
Gi = iDs + &]*B and G2 = iDR + ^HR.
Consequently, GI — G2 = |HR. The broad
heritability = ($DB + jHH)/(iDB + JHR

+ EI + £2), which no longer equals the narrow

Nichol's

HR = (iDE + |HR)/(iDR + iHE

and Vandenberg's

P = (1DE + &HR + EO/Ei

heritability, this being iDR/(|DR + JHR + EI
+ E2).

However we can still estimate the narrow
heritability as well as the broad heritability if
we have estimates of Gi, G2, EI, and E2 and if
the model holds because |DR = 3G2 — Gi.
Then,

Holzinger's

E2),

which again do not correspond to any conven-
tional heritability estimates, and, for reasons
which will emerge later in this section, CattelPs
nature: nurture ratios have no equivalents on
this model using the method of estimation pro-
posed by Cattell.

Although this model can be extended again
to cover the complication of interactions be-
tween genes at different loci (see Fisher, 1918,
and Kempthorne, 1957, for accounts of non-
allelic interaction) these are unlikely to have
such important consequences as other possible
inadequacies of the model, such as the assump-
tion of random mating. The most likely causes
of deviation from random mating are (a) in-
breeding, due either to a higher frequency of
mating between relatives than expected under
random mating, or to a higher frequency of
mating than expected within small geographical
areas of the population; and (b) positive as-
sortative mating due to preferential mating of
like phenotypes. To be effective, that is, to
influence the genetical structure of the popu-
lation, assortative mating must not only be
preferential mating of like phenotypes, but also
of like genotypes. Hence, if it is effective it
leads to inbreeding. While, therefore, it is usual
to consider the consequences of inbreeding, that
is, mating between relatives independently of
the consequences of assortative mating, both
can be considered in terms of the homozygosity
to which they lead.

Where we can control the mating of the in-
dividuals in the population under investigation,
as we can with most animals, a past history of
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inbreeding or assortative mating creates no
great problem. By randomly mating indivi-
duals from the population, estimates of Gi and
62 may be obtained and random mating ex-
pectations of GI and 62 modified by including
/, the inbreeding coefficient of Wright (1951)
(see Dickinson & Jinks, 1956; Jinks & Broad-
hurst, 1965). However, where the mating struc-
ture of the population cannot be changed, as in
the case of humans, alternative methods must
be used. Probably the most satisfactory of
these approaches is that developed by Fisher
(1918). If we have a population in which pheno-
typic assortative mating is taking place for a
trait controlled by many genes of small effect,
then at equilibrium the total genetic variance
G will equal iDR + JHB + ±{A/(l - ,4)}DR

that is, the variance which would result from a
random mating population with the same gene
frequencies, JDR + JHR plus a fraction of DR,
^{A/(\ — .4)}DB which is produced by the as-
sortative mating. The constant A which has
been introduced refers to the correlation be-
tween additive deviations of spouses, and is a
simple function of their observed phenotypic
correlation p, the marital correlation. The A is
0 under random mating, and A = n as an
upper limit. The G will again equal Gi + Ga
and

With random mating GI > 62 by an amount
equal to JHB. With assortative mating and no
dominance Gi < 62 by an amount \{A/
(1 — 4)}DB. Thus a significant difference be-
tween Gi and G2 will unambiguously detect
either dominant gene action or assortative
mating, but Gi = Ga will not necessarily indi-
cate their absence since the effects of assorta-
tive mating and dominance will not necessarily
lead to a difference between GI and Ga when
both are present to the same extent. In the
absence of independent evidence of either
dominance or assortative mating, it is probably
reasonable, however, to accept Gi = Ga as
indicating predominantly additive gene action.
Where independent evidence of assortative
mating is available, for example, through an
observed marital correlation n, it becomes pos-
sible to estimate the level of dominance by first

estimating A, and then substituting into the
expressions for GI and G2, giving two equations
which can then be solved for DR and HR. A
number of ways of estimating A from ^ are
possible, that described by Fisher (1918) and
used by Burt and Howard (1956) being to put
A = 2rp.oM/(l + M) where rv.0 is the parent-
offspring correlation. However, 2rp.0/ (!+/")
is merely an expression for the narrow herit-
ability in an assortatively mating population
given by [iDB +\{A/(\ -^)}DR]AT

2, so
that an estimate of this heritability from what-
ever source enables us to estimate A as A =
(Heritability)/!.

We illustrate, in the first example on IQ (see
Fitting the Modef),a, very simple iterative proce-
dure for estimating DB, HR, a.nd%{A/(l — A ) }
DR using A = (Heritability)ju to obtain A.
This method, which uses only estimates of GI,
G2 and does not rely on rp,0, a statistic likely to
be biased upwards by common parental and
offspring environments, leads to estimates very
close to those obtained by Burt and Howard
(1956) using rp.0. A further method using rp.0
(or covariance p.o where <r2s are being used) is
also illustrated. This latter method has the ad-
vantage over that used by Burt and Howard in
that if fp.o is biased, then a conservative esti-
mate of HB is obtained and sensitive tests of
significance are available for HB, DR, and \{A/
(1 — A)}DR, whereas with other methods no
tests of significance are possible. A similar ap-
proach to that of Fisher was developed by
Wright (1921). Unfortunately, Wright did not
allow for the presence of dominant gene action
in his model, and so it must be deemed inferior
to that of Fisher. Jensen (1967) has recently
proposed a method allowing for the effects of
assortative mating which involves the assump-
tion that a previously random mating popu-
lation has, in a single generation, had imposed
upon it a degree of assortative mating. Under
this model, which also ignores the effects of
dominance, and appears to be restricted to a
single gene effect, the correlation between sib-
lings may rise from a possible maximum of 0.5
for a random mating population to 0.66 for an
assortatively mating population, where the
marital correlation n = 1.0, that is, where,
with respect to a single gene, the mating system
has changed from random mating to the ex-
treme inbreeding situation of selfing. On this
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model with human populations very small,
effects are to be expected from assortative mat-
ing. On the other hand, with Fisher's model we
may expect quite large effects, the sib correla-
tion for fj, = 1.0 rising from a possible maximum
of 0.5 to 1.0, a perfect correlation. In view of the
highly restrictive assumptions implicit in Jen-
sen's model, it may lead to quite misleading
results where many genes are involved and as-
sortative mating has been taking place for
more than a single generation.

Having established the presence of dominant
gene action, it remains to discover whether it is
uni- or bidirectional in nature, this last step
being perhaps the most important one in view
of the implication for the evolutionary history
of the trait. Traits which show strong direc-
tional dominance have probably been subject
to strong directional selection during evolution,
whereas those showing no dominance, or ambi-
directional dominance have been selected for an
intermediate optimum (Broadhurst & Jinks,
1966; Bruell, 1967; Fisher, Immer, & Tedin,
1932; Fulker, 1966; Mather, 1953; Roberts,
1967). Thus the current presence and direction
of dominance indicates whether an intermedi-
ate or extreme level of expression of the trait
has, in the past, been adaptively superior.

With controlled mating or using inbred lines
it is a simple matter to determine the direction
of dominance, but, unfortunately, with human
populations there is a dearth of methods for
measuring its direction. However, two would
seem feasible. Perhaps the most direct method
for detecting the direction of dominance is to
examine the scores of children of consanguine-
ous matings, for example, progeny resulting
from cousin marriages. If we take a group of
offsprings from nonconsanguineous matings,
having first equated mean parental scores for
this and the consanguineous group, then the
mean of the offspring of the consanguineous
group should show inbreeding depression if
directional dominance is present.

The exact difference between the two groups
is given by the equation

and

/ = Wright's inbreeding coefficient.

M, = Mo -
where

Mi — mean of inbred offspring,

MO = mean of noninbred offspring,

This formula would almost certainly apply very
closely in the presence of a certain amount of
assortative mating. We provide an example of
this method in a subsequent section of this re-
view. The second method is perhaps more
easily applied, since it involves only scores for
ordinary families of size three or more. Fisher,
Immer, and Tedin (1932) showed that a num-
ber of the third moments of populations de-
rived from two inbred lines, may, in the ab-
sence of genotype-environment interaction
(which they refer to as "metrical bias") be
used to detect the direction of dominance. Un-
fortunately, when the expectations of these
third moments are derived for random mating
populations, where unequal gene frequencies
almost certainly exist, the effects of directional
dominance and unequal gene frequencies can-
not be disentangled. There appears, however, to
be one exception, the mean skewness of within-
family scores. Under random mating this has
the expectation fc3 = — 32uWd%. The ka is
negative where there is dominance for high ex-
pression of the trait, and positive where domi-
nance is for low expression. The ks is calculated
from the mean of {n/ (n — 1) (n — 2)} 2 (x — x)*
for each family of size n, (n > 2). Other possi-
bilities involving third degree statistics may
exist which we have not explored. The effect of
assortative mating on this expectation is not
known, but is expected to be small. For both
these tests legitimate and sensitive tests of
significance exist.

Further Statistics

In the types of families considered so far,
namely, monozygotic and dizygotic twins, we
have seen that our biometrical parameters Gi,
Gj, EI, and Ea are directly relatable to the tr2

MAVA for within- and between-family hered-
ity and environment, respectively. However,
this relationship breaks down if we consider
other types of families because they are inade-
quately specified on the MAVA system. For
example, whereas, assuming random mating
and only additive and dominance effects of the
genes, we can specify all the purely genetic con-
tributions to the <rw2s and o-B

2s of twins and full



APPROACHES TO GENETICS OF BEHAVIOR 321

siblings in terms of G, GI, and Ga where

G = |DB + |HR,

Gi = iDR-
and

G2 =

we cannot specify the <rw2s and o-B
2s for half-

siblings. For them we require two new geneti-
cal components, G3 and 64. Even in this simple
situation G3 = iDR + JHR and G4 = JDR.
Indeed only when HR is zero, that is, there are
no dominance effects of the genes, can the gene-
tic contribution to the variation within and be-
tween half-sib families be specified in terms of
Gi and Ga, and under these conditions Gi = Ga
= G3 = 64. Thus Cattell's specification of
half-sib families in terms of awt? and ow* im-
plicitly assumes both random mating and genes
with additive effects only. All the indications,
both from the data analyzed later in this paper,
and from the data analyzed by MAVA, are
that the conditions under which the Gs are
equal may not occur in practice. Should it
prove necessary to extend the models to in-
clude other types of relationships, for example,
cousins, parent-offspring, uncle-niece, etc.,
further types of Gs, which again are not equal
under likely conditions, will have to be intro-
duced. The value of these further statistics lies
in the increasing power of the model to predict
gene action since each G has an expectation in
terms of DR, HR, and, if assortative mating is
taking place, in terms of / or A as well.

FITTING MODELS WHEN THERE
is f (G,E)

Correlated Environments

Cattell (1960) and Loehlin (1965) have
covered this topic at length so that we confine
ourselves to a few comments. Although we ac-
cept that the kind of model MAVA proposes is
in general appropriate, we suggest that the
model fitting procedure be modified to accom-
modate a least-squares estimation procedure.
This will help ensure that no superfluous terms
are retained in the model. Nonsignificant items
could be dropped from the model and the sim-
plest adequate model fitted. In any case, it
would seem (Loehlin, 1965) that rwitweawh<rw<> and
awi? are inseparable, so these must be fitted as a
single compound term (o-^2 -f-

The investigation of gene action would seem to
be very difficult if significant correlations such
as rwhwe exist.

Genotype-Environment Interaction

When f(G,E) is due to <roE8 we have two
courses open to us. The simplest is to rescale
the data so as to minimize the interaction. In
general the strength of the transformation will
be indicated by the form of rjdiff {sum- For
monozygotic twin groups, for example, with a
strong linear relationship, scores may be trans-
formed from x to "Vx, where n = a number be-
tween 1 and 2. When the correlation detects a
linear relationship between ^sum and Jdiff2,
transformation of x to log x is indicated. How-
ever, although rescaling is possible, it may be
more rewarding to pursue the analysis and
interpretation of the interactions.

Since this requires the fitting of a model
which allows for the effects of the interactions,
this alternative requires data from many more
types of relationships than does the fitting of
the simpler model. With only MZ? and MZA

it is not possible to partition the interactive
components from the environmental ones al-
though the genetic component can still be esti-
mated without bias, provided, of course, that
separated twins are randomly distributed across
environments.

Values of G, EI + GEi, and E2 + GE2 may
be obtained by the procedure adopted for esti-
mating G, Ei, and E2 in the absence of inter-
action, and the broad heritability may be pre-
cisely estimated by G/(G + EI + GEi + E2

+ GE2). It is perhaps worth noting that the
argument that the possible presence of genotype-
environment interaction invalidates the parti-
tioning of variance approach to the nature:
nurture problem is not entirely correct. The
proportion of variance which is purely genetic
in origin may be estimated, whether interaction
is present or not.

To partition G into GI and G2 in order to
investigate gene action and the possibility of
assortative mating, one further group (DZA) is
necessary since the expectations for this group
are <rw

2 = Gi + EI + GEi + E2 + GE2, and
(TB2 = G2. As in the expectations for MZA (see
Table 3) the between-family component is un-
biased by components of genotype-environ-



322 J. L. JINKS AND D. W. FULKER

ment interaction when individuals are ran-
domly distributed across all possible environ-

ments. FromGi, G2, EI + GEi, and E2 + GE2,
appropriate forms of broad and narrow herit-
ability may be obtained simply by replacing E2

by E2 + GE2, and EI by EI + GEt in the previ-
ous formulas. The biometrical interpretations
of these two heritability ratios as that portion
of total variance, which is genetic and that
which is available for selection, respectively,
still hold.

The complete separation of the six compon-
ents in the model may not, however, be possi-
ble for it would appear that EI and GEi are
inevitably confounded in the presence of family
groupings (Mather & Morley-Jones, 1958).

The features of family structure which lead
to the confounding of GEi with EI are precisely
those which lead to the inevitable confounding
of <TWI? and 2rwuwe<rWh<rwe that Loehlin (1965) had
noticed in the MAVA equations. However we
can separate E2 and GE2 by adding a further
group to the MZx, MZA, and DZA, namely un-
related individuals reared together (Hr), since
the expectations for this group are crw2 = G
+ EI + GEi + GE2, and <7B

2 = E2. In this
case it is the random grouping of genotypes
which allows an unbiased estimate of Ej. Al-
though GEi cannot be estimated from the ex-
pectation of family variances, we can gain some
insight into its likely size by using the variance
of within-family deviations about the mean
of such deviations, for MZx, as an upper bound
for GEi, and the product of this upper bound
with the square of the coefficient of correlation
used in the detection of GEi as setting a lower
bound. These are only very rough indications,
however, since the upper bound will be inflated
by the sampling variance of eis and the lower
bound will account for the linear portion only
of the interaction.

The cumulative assumptions in the model
extended to include genotype-environment
interaction are

1. No correlated environments
2. Gi -|- G2 = G
3. The EIS, E2s are the same for all kinds of

families.

A fourth assumption, that the GE2s and GEis
are the same for all types of families follows
from Assumptions 2 and 3.

These assumptions can be tested simultane-
ously by all tests for the equality of <rT

2s, and
Assumptions 2 and 3 further by the analysis of
variance of the means. It should, perhaps,
again be emphasized that while correlated en-
vironments distort the <TT2s, GEi and GE2 do
not, the total interaction being the same for all
kinds of families. A further investigation of
genotype-environment interaction could be
undertaken by partitioning GEi into GiEi and
G2Ei, and GE2 into GiE2 and G2E2.

However, only the components of GE2 may
be estimated. These components can be inter-
preted in terms of gene action (Mather &
Morley-Jones, 1958), and would seem to mimic
Gi and G2 in reflecting dominance and assorta-
tive mating. That is, in the presence of domin-
ance GiE2 > G2E2, and in the presence of as-
sortative mating the reverse is expected,
G2E2 > GiE2. To estimate Gi, G2, (Ei + GiEi
+ G2Ei), E2, GiE2, and G2E2 the addition to
the above four kinds of families of DZi be-
comes necessary.

The expectation for DZx is: oV = G + (Ei
+ GiEi + G2EO + GiE2, and o-B

2 = G2 + E2
+ G2E2. The terms inside the parentheses are
inseparable. To estimate these six parameters
it is only necessary to substitute GjE2 and
G2E2 in the place of GE2 in previously given
expectations and to use least squares. There
will be eight statistics and six parameters
leaving 2 df for assessing the adequacy of the
model.

One point perhaps worth mentioning in the
estimation of genotype-environment inter-
action is that although it biases only environ-
mental components, given that appropriate
groups are chosen, in some cases it will bias
genetic components if certain groups are used
and undetected interaction is present. Estima-
tion of Gi, G2, Ei, and E2 from MZT, MZA, and
DZx will lead in fact to estimates of the fol-
lowing :

(G, + GiE2),

(G2 — GiE2),

(Ej + GiEi + GiE2),
and

(E, + GiE2 + G2E2),

respectively. Thus although broad heritability
is still unbiased, because G = (Gi + GiE2)
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+ (G2 — GiE2) = Gi + G2, assessment of
gene action becomes uncertain.

Both Correlated Environments and Genotype-
Environment Interaction

Certainly the simplest course open to the in-
vestigator faced with the problem of both cor-
related environments and genotype-environ-
ment interaction is to rescale his data in an at-
tempt to reduce the interaction to an insigni-
ficant level. Then if correlated environments
still exist (and, in general, rescaling would not
be expected to remove their effects), MAVA
expectations can be fitted in the usual manner.

If a full model is required including GEs and
rfc.es then the expectations become very com-
plex. We not only have the MAVA and inter-
active components to add to the model, but
extra correlations to account for the correla-
tions of the genetic and environmental devia-
tions with the interactive ones. However, some
simplifications may be possible by assessing
the relative importance of the various compon-
ents before fitting the model and dropping
terms of negligible importance. Moreover,
since within-family heredity correlations and
Ei and GEi are inseparable, some kind of sim-
plified model has to be fitted in any case. Until
it is clear that such complications as substanti-
ally correlated environments and considerable
genotype-environment interaction exist simul-
taneously, it would not seem worth formulat-
ing the expectations. Cattell (1963) has pro-
posed a method for introducing a scale factor k
into the MAVA expectations to allow for geno-
type-environment interaction effects, a device
which might prove useful for amending the bio-
metrical genetical expectations as well. It
would appear, however, that this form of cor-
rection is, in principle, little different from re-
scaling the original data before entering the
analysis, a procedure which might well lead to
a much simpler form of analysis. Before leaving
the subject of f(G,E) it would seem worth
making a few general points concerning its
importance.

We have seen that if GE exists, it tends to
bias components in such a way as to make cor-
rections to heritability formulas automatic.
Thus for the purposes of predicting the results
of selection, either artificial or natural, the pos-
sible presence of GE is unlikely to lead to in-

correct predictions. A similar argument would
seem to hold for correlated environments.
When they exist, the confounding of the covar-
iance appears to be with the genotypic com-
ponents so that for such predictors of popula-
tion dynamics as heritabilities the correct
answer is again obtained.

What would seem to be crucial in deciding
whether or not to separate correlated environ-
ment covariance from the genotypic variance
is whether or not the correlated effects are
likely to be separable in practice. Cattell (1963)
has argued persuasively for their importance,
and examined with considerable ingenuity how
they could arise. However, it is still not clear to
us that many of the kinds of processes that he
describes are meaningfully separated from the
direct effects of genotype. To give one brief
example: An innately intelligent person may
well select his environment so as to produce
positive rwhwe, and likewise a dull person may
produce the same correlation by selecting less
stimulating features of his environment. But is
not this a more or less inevitable result of geno-
type? To what extent could we ever get a dull
person to select for himself an intellectually
stimulating environment to the same extent
as a bright person might? Even when these cor-
relations exist because of the pressure of others
on an individual, it is not clear to what extent
the correlation can be manipulated. Perhaps
it can to some extent by such drastic procedures
as intensively coaching the dull, and drastically
depriving the intelligent, but the effect on the
correlation is still not entirely clear. We need
much more evidence concerning the effects and
causes of correlated environments in order to
decide their importance. In the meantime it
might prove more realistic to adopt a "black
box" approach, as suggested by Roberts (1967),
and to consider all genotype correlated effects
as truly genotypic and the residual effects as
environmental, especially as regards effects
operating within the family.

The concept of the modifiability of genotypes
leads to an important distinction between the
two sources of f (G,E). Both correlated environ-
ments and genotype-environment interaction
modify genotypes and alter their relative dif-
ferences, but they achieve this in quite different
ways. The presence of correlated environments
means that the relative differences between
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genotypes have been altered by supplying to
them, or perhaps more importantly, allowing
them to accrue to themselves, precisely those
environmental encounters needed to produce
the relative differences observed in the pheno-
type. Each genotype has had a unique set of
environmental encounters. In the case of nega-
tive correlation of environments, genetic differ-
ences are in a sense self-correcting so that in-
dividuals tend to become alike, a process Cat-
tell has referred to as "coercion to biosocial
norm" (1963). Where, as in the case of intelli-
gence-test scores, the correlation seems likely
to be positive, genotypic differences are ac-
centuated. In either case, each individual
genotype gets a unique environmental "treat-
ment." As we have suggested, the implications
of this process for devising methods to manipu-
late genotypes are not clear.

The presence of genotype-environment inter-
action, on the other hand, indicates a much
simpler process in which the relative differences
between genotypes are altered, not by provid-
ing each with a unique environment, but by
supplying all with one of a number of possible
uniform environments. By changing the regi-
men for all, the relative differences between all
genotypes will be altered. This simpler process
clearly has implications for social engineering.
In the presence of correlated environments, en-
vironmental encounters would have to be re-
distributed, each according to the genotype's
requirements, in order to effect change. This
may not only be impossible, but, even if possi-
ble, quite unacceptable socially. In the presence
of genotype-environment interactions, one
particular set of environmental encounters,
uniformly applied, may achieve the required
change in relative differences. Moreover, if the
genotype-environment interaction is detected
by the correlation method previously described,
the direction of change is also indicated. Un-
fortunately, an apparent lack of evidence of
substantial genotype-environment interaction
in intelligence-test scores strongly suggests that
none of the range of environments provided by
our society is likely uniformly to produce a high
(or low) level of intelligence. The importance of
trying to detect genotype-environment inter-
action in different societies, as a means of as-
sessing their relative efficacy in achieving this
end, is clearly indicated.

THE CLASSICAL APPROACH THROUGH
CORRELATIONS

The intraclass correlations used in the
classical approach (Burt, 1966; Fisher, 1918;
Huntley, 1966; Husen, 1959; Newman, Free-
man, & Holzinger, 1937), are formally equiva-
lent to variance components with the restric-
tion that each of the <rT

2s of the groups used has
been brought to a common base.

We have seen that f = <7B
2/(<7n2 + <rw

2) or
<TB2/<7T2, where the symbol f refers to the esti-
mate of r and (hj2 to the estimate of <7B2, etc., r
is, therefore, simply o^2 expressed as a fraction
of the total variance for that group. Thus we
are able to fit genetical models to rs in the same
way that we are able to fit them to cru2 and cr\v2-

For example:
G Ei E2

MZT, r = I 0 1

MZA, r = 1 0 0

EI being obtained as 1 — G — £2. The G, EI,
and £2 have unique solutions because the corre-
lation brings all statistics to a common base of
1, and so a least-squares solution is not required.
The Gi, 62, EI, and £2 may be found by
adding DZx.

Gi G2 Ei E2

MZT, r=l 1 0 1

MZA, r = 1 1 0 0

DZT, r = 0 1 0 1

Again, EI = 1 — Gi — G% — £2, and again a
least-squares estimation is not required. Fur-
ther groups could be added to detect further
parameters, G3, 64, etc., as previously specified
and the detection of gene action and assortative
mating attempted. Also, GE parameters may
be fitted by adding further groups. In fact, any
parameters which do not lead to inequality of
the o-T2s may be allowed into the model.

Using f instead of o-2s assumes equality of
<rT

2s, so that all failures of the model which
lead to their inequality must be assumed ab-
sent, given adequate sampling. These, as we
have seen, are

1. Gi + G2 ̂  G
2. EIS and E2s not equal for all groups
3. Correlated environments

Failure to test for the presence of these effects
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in their data by those who use this approach—
although, of course, they could do so by pre-
liminary tests for heterogeneous variances—
will prospectively bias all the parameters in a
highly complicated way depending on any
relative inequalities of <TT2s present. Rather
than attempt to bring this correlational ap-
proach in line with biometrical genetics and
MAVA it would seem simpler to abandon it and

work in terms of the variance components erw2

and era2 directly. However, as we shall see, it
can be useful for the purpose of reanalysis of
published correlations provided, we bear in
mind its limitations.

EXAMPLES—REANALYSIS

The eight phenotypes chosen to illustrate
the procedures outlined in the previous section

TABLE 4

DESCRIPTION or DATA CHOSEN FOR ILLUSTRATIVE REANALYSIS

Number Phcnotype Description of test used Data available Source

Neuroticism

Extra version

Intelligence

Intelligence

Intelligence
quotient

Educational
attainments

Intelligence
quotient

Intelligence
quotient

Intelligence
quotient

Self-rating questionnaire, con-
structed for Shields' study and
similar to the Maudsley
Personality Inventory

Same as above

Synonyms section (Set A) of Mill
Hill Vocabulary Test (Form B,
1948)

Dominoes Intelligence Test. Non-
verbal 20-minute test similar
to Raven's progressive matrices

Group test standardized by the
London Revision of Terman-
Binet Intelligence Scale

Group test devised for use with
London school children, includ-
ing reading, spelling, and
arithmetic items. (Burt, 1921)

IQ Scores deriving from a number
of tests, preference given to
individual tests administered
at age 14

Japanese version of the Wechsler
Intelligence Scale for Children

Stanford-Binet Intelligence Scale
and Otis Group Intelligence
Scale

MZr(29 F and 14 M pairs of
subjects)
MZA(26 F and 14 M pairs
of subjects)

DZT(16 F pairs of subjects)

Same as above

MZr(24 F and 12 M pairs of
subjects)

MZA(2S F and 15 M pairs of
subjects)

MZr(23 F and 11 M pairs of
subjects)

MZA(24 F and 14 M pairs of
subjects)

Correlations only for:
MZT(95 pairs of subjects)
MZA (S3 pairs of subjects)
DZr(127 pairs of subjects)
FST(264 pairs of subjects)
FSA(151 pairs of subjects)
Uf(136 pairs of subjects)
Parents and offspring

(numbers unknown)
Husband and wife

(numbers unknown)

As above, (excluding last two
correlations)

Sibs together (689 families;
size > 3)

1511 inbred children (/= A);
1608 control children (/ = 0)

MZA(19 pairs of subjects; both
sexes)

Shields (1962)

Shields (1962)

Shields (1962)

Shields (1962)

Burt (1966);
Burt & Howard

(1956)

Burt (1966)

Reed & Reed
(1965)

Spuhler (1967)

Newman,
Freeman, &
Holzinger
(1937)

Note.—Abbreviations are: M = male; F =» female.
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of this paper are listed in Table 4. None of these
sets of data is wholly satisfactory to illustrate
our point of view. In some cases critical groups
were nonexistent, or numbers in them small,
and in others the raw scores were not available.
However, the examples given cover a wide
range of the practical problems of analysis and
interpretation, in spite of their often severe
limitations.

Neuroticism

The first trait chosen is neuroticism (Shields,
1962). The trait was measured by means of a
38-item self-rating questionnaire designed to
give a measure of both neuroticism and extra-
version. The questionnaire was specially con-
structed for the study by H. J. Eysenck, and is
apparently similar to the Maudsley Personality
Inventory (MPI). In so far as the trait in this
example resembles neuroticism as measured by
the MPI, it refers to a general emotional in-
stability with a tendency to neurotic break-
down under stress, and is the name Eysenck
gives to a broad, second order factor which, to-
gether with an independent factor labeled
Extraversion, accounts for most of individual
differences in the personality domain (Eysenck,
1960b). Unfortunately, however, it is not
known how closely Shield's (1962) test and the
MPI resemble each other.

Data from the following pairs of twins were
available: 43 pairs of MZT, 40 pairs of MZA,
and 16 pairs of DZ-r. Unfortunately the groups
of males were very small, and only the female
data approached a satisfactory volume for ade-
quate analysis. In general, we have included
the male data, where they agree with the fe-
male, in order to provide replication and aug-

TABLE 5

ESTIMATES OF THE VARIANCE COMPONENTS FOR THREE
KINDS OF FAMILIES (NEUROTICISM)

TABLE 6

TABLE OF MEANS AND VARIANCES FOR THE
FOUR KINDS OF FAMILIES (NEUROTICISM)

Type of
family

MZT

MZA

DZT

Variance
component

V?
FF
F?
FF
Vf
FF

Estimate

Female

11.0819
8.1207

14.5608
9.6635

11.7828
13.8552

Male

.

—
14.7307
5.0000

—
—

Type of family

MZr
female

MZA
female
male

DZT
female

Mean

9.7241

11.8558
10.7143

10.3282

Variance

15.0191

19.2018
16.7778

17.8002

mentation of them. Where there was serious
disagreement between male and female data,
the males were discarded. In consequence, our
conclusions apply more reliably to females
than to males. However, as may be seen, the
agreement between sexes was satisfactory on
the whole.

Analysis of variance and estimates of variance
components. The first step is an analysis of
variance to obtain the within- and between-
family variances. For the female MZi- we have
29 pairs, that is, 58 individuals giving 57 df of
which 28 are for variation between families and
29 for the variation within families. This gives
a between-family MS — 22.1638, with expecta-
tion (TW

2 + 2<7B
2, and a within-family MS

= 8.1207, with expectation o-w2- From the
preceding we can see that there is a significant
between-family variance (F for 28/29, df
= 2.73, p = .01) and

= n.0819

yF = = 8.1207

The corresponding analyses of variance for the
other kinds of twins yield the estimates of
FF and FF listed in Table 5. One group, the
14 pairs of male MZT, fails to yield a significant
between-family MS, unlike the female data,
and was omitted from subsequent analysis.
For this group and this trait there would ap-
pear to have been inadequate sampling of be-
tween-family differences.

Testing the assumptions. If the individuals in
the samples of the four types of families have
been drawn at random from the same popula-
tion, they should have the same means and
variances. This is readily ascertained from the
means and variances of the four samples listed
in Table 6. An analysis of variance to compare
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the four means is given in Table 7. This analy-
sis shows that while there are differences be-
tween families, there are no overall differences
between the types. The types can be approxi-
mately partitioned into the three orthogonal
comparisons shown. We see there is no evidence
of a sex difference in the one group which allows
such a comparison. We can therefore regard the
two sexes in the MZA group as providing two
replicate samples from this group, which in
turn allows us to assess the error of estimation
in fitting the biometrical models. There is some
suggestion that twins reared apart are slightly
more neurotic than those reared together, but
the significance level is borderline. There is no
evidence that monozygotic twins differ from
dizygotics.

Turning to the variances in Table 6, we find
no evidence of significant differences, although
the slight differences tend to parallel the differ-
ences in the means, a fact suggesting that what
differences there are result from a slight cur-
tailment of the distribution rather than from
any other causes. Overall, therefore, there is
no compelling evidence for regarding the four
kinds of families as samples from different popu-
lations.

The second assumption to test is the possible
importance of f (G,E) in these data. To test for
genotype-environment interaction we calculate
the product-moment correlation between fam-
ily sums and differences for the monozygotic
twins. For MZT, rH = 0.1489 which accounts
for 2% of the variation and fails to reach sig-
nificance. We conclude therefore that there is no
evidence of GEi. For MZA, raa = 0.0583, sug-
gesting that GEz is not present in these data
either. To test for evidence of the correlated
environments of MAVA, we must see if the
variance of separated families differs from that
when the twins were reared together.

The total mean variances are

All twins together <rT
2 = 13.8644 for 117 df

All twins apart crT
2 = 18.1303 for 79 df

An F test gives Fw,m = 1.31, p = 2 X .1
= .2, a nonsignificant value suggesting that
correlated environments are not a complication
present in these data. Fitting the model will
yield a further test of the importance of this
source of variation in the test for the goodness
of fit.

TABLE 7

AN ANALYSIS OP VARIANCE TO COMPARE
THE FOUR MEANS IN TABLE 6

Source

Between types of families
Between families within types
Within families
Between types of families

partitioned
MZA sex difference
MZA versus MZT and DZr
MZ versus DZ (F only)

if

3
81
84

1
1
1

MS

50.0500
25.6026
9.1235

42.6168
95.5952
11.9383

F

1.96
2.81*

1.66
3.73

* t < .001.

Thus on the basis of these tests we are justi-
fied in fitting the simple G and E models to the
data.

Fitting the model. To illustrate the method we
will first fit the appropriate model to the mono-
zygotic twins only. Because we are able to re-
gard the two sexes as replicates we have two
values of VF and V? for MZA. The model is to
be fitted to the mean of these values. For MZT,
where we have no replications, there is only
one value each of Fp and VF to which to fit the
model.

Thus we have four equations and three un-
knowns. Since there are fewer unknowns than
observed statistics, we can use a least-squares
procedure to estimate G, EI, and E2. The
normal equations are

2 1 IJ

1 21 If

.11 If 2iJ

£1
.fi

•25.7277'

28.3163

.25.7365.

By inversion of the matrix we obtain the fol-
lowing solution:

LfiJ

- 1.025 0.150 -0.800-

0.150 0.900 -0.800

.-0.800 -0.800 1.600.

-25.7277̂

28.3163

.25.7365.

=

Whereupon
G =
£1 =

10.0291
8.7546

-2.0568

From these figures we can calculate the ex-
pected values of the four statistics listed along
with the observed values in Table 8. We have
one degree of freedom for comparing the ob-
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TABLE 8

OBSERVED AND EXPECTED VALUES OF VARIANCE COMPONENTS FOR MZx AND MZa (NEUROTICISM)

Type of
family

MZT

MZA

Variance
component

FF
V?

V,
Vr

Model

G Ei Et

0 1 0
i 4 i
0 1 1
i i *

Statistics

Observed

Female

8.1207
11.0819

9.6635
14.5608

Male

—

5.0000
14.7307

Mean

8.1207
11.0819

7.3318
14.6458

Expected deviation

8.7546 -0.6339
12.3496 -1.2677

6.6978 +0.6339
13.3781 +1.2677

served and expected statistics, and this tests
the equality of the total <r2s for twins reared to-
gether and apart. From replication we have an
error variance for 2 df against which to test the
significance of the discrepancy between the
two total o-2s. Variance (observed-expected)
= Sum of the squares of the deviations listed
in Table 8. Thus, V(0-E) = 4.0152. The error
sum of squares for the FF and FF is given by
Si (sex difference)2 = 10.8871 for 2 df, 5.4436
is the variance for two of the Vs, but £(5.4436)
is the variance attaching to the two mean
values representing twins reared apart. Thus
the error for testing V(0-E) is 15.4436 + \ X 5
5.4436 = 4.0827 for 2 df. Thus Fi,t = V(0-E)/
V (error) = 4.0152/4.0827 = 0.98, a nonsig-
nificant value confirming the result of the
earlier F test on the total variances for twins
reared together and apart. A further advantage
of replication is that we can derive standard
errors for the estimates of G, Ei, and E2. Be-
cause the variance of total <r2s given by V(0-E)
is not significantly greater than the variance
between FFS and FFS given by F(error), we
are justified in pooling these two sources of
variation to give a pooled error variance,
F (error) pooled = 4.0602 for 3 df. Multiplying
by the appropriate coefficient in the leading
diagonal of the inverse of the coefficients of
the normal equations given above, we obtain
the error variance of each estimate in turn.

V (G) = 1.025 X 4.0602 = 4.1617

F (£1) = 0.900 X 4.0602 = 3.6542

F (£2) = 1.600 X 4.0602 = 6.4963

The estimated components of the model,
their standard errors, and the significance of

their difference from zero by t test are

G = 10.0291 ± 2.0400,
/3G = 4.92, p = .017

£1 = 8.7546 ± 1.9116,
*3Ei = 4.58, p = .020

£2 = -2.0568 ± 2.5488,
J3£2 = 0.81, p = .420

Thus despite lamentably inadequate replica-
tion, we can see that G and EI are clearly sig-
nificantly greater than zero while the negative
£2 is not.

We can repeat the estimations using the
combined statistics from the total sample of
monozygotic and dizygotic twins. We now have
six statistics and four parameters leading to
the solution

' 1.6

-1.6

-0.8

0.8

_ 1

2

0

-1

6

55

9

6

-0.8 0.8'

0.9 -1.6

0.86 -0.8

-0.8 1.6.

X

•45.4743-

37.5105

48.0629

.37.5193.

—

G!

G2

£:
IfiJ

so that
Gi = 4.3072

C2 = 6.1186

£j = 9.0190

£2 = -2.0568

We can now compare the observed and ex-
pected values of the six statistics (see Table 9).
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Sum of squares (observed-expected) = 6.1162
which now has 2 df; thus V(0-E) = 3.0581,
while F (error) = 4.5363, slightly greater than
before because it is now based on two mean
values and four single observations. The F
ratio for the equality of the three total a1

= 3.0581/4.5363 = 0.67, which again confirms
the earlier impression of homogeneity of <7x2s.

Pooling sources of error as before gives
F (error) pooled = 3.7972 for 4 df. Multiplying
this value by the appropriate leading diagonal
elements in the inverse matrix yields the fol-
lowing :

Gi = 4.3072 ± 2.4649,
i

G2 = 6.1186 ±3.1117,
i

£1 = 9.0190 ± 1.8141,

£2 = -2.0568 ± 2.4649,

TABLE 9

OBSERVED AND EXPECTED VALUES OF VARIANCE
COMPONENTS FOR MZi, MZ\, AND DZx (NEUROTICISM)

ri = 1.75, p = .16

;2 = 1.97, p = .is

= 4.97, p = .001

:2 = 0.83, p = .45

Thus we have significant EI, but nonsignificant
Gi, G2, and E2.

The nonsignificant £2 agrees with the previ-
ous analysis, but the nonsignificant Gi and 62
do not. The disagreement, however, is more
apparent than real. Thus, if the model is ade-
quate, the highly significant G of the previous
analysis should equal the sum of the nonsig-
nificant Gi and Ga of the present analysis. In
fact GI + G2 = 10.4258, which is very close to
the estimate of G which equals 10.0291
± 2.0400.

The significance of GI + G2 may be tested
by means of our standard errors

Variance (Gi + G2) = F(Gi)
+ F(G2) + 2 cov (Gi,G2)

The F (error) multiplied by the appropriate
coefficients in the inverse matrix will give us
F(Gi) and F(G2) and the term cov (Gi,G2) is
obtained by multiplying F (error) by the first
off-diagonal term in the same matrix.

F(Gi + G2) = F(error) {1.6 + 2.55 - 3.2}

= 3.6073

Type of
family

MZT

MZA

DZT

Statistics

FF
FF

FF
7F

FF
F5

Mean
observed

8.1207
11.0819

7.3317
14.6458

13.8552
11.7828

Expected

9.0190
12.8786

6.9623
13.9070

13.3263
10.7250

Deviation

-0.8983
-1.7967

+0.3695
+0.5458

+0.5289
+1.0578

Thus the two estimates of G differ consider-
ably less than their standard errors, hence there
is no disagreement between the outcome of the
analysis of the monozygotic data only and that
of the combined data from monozygotic and di-
zygotic twins. The latter estimate, which is
based on Gi + G2 is not only highly significant
(p < .001), but its standard error is smaller
than that of the alternative estimate of G, as
might be expected, since more data is involved
in the estimation.

Analysis of gene action and mating system.
What implications do these estimates have for
gene action and the mating system? The only
indication on these two points to emerge from
the analysis of components is that G2 > Gi.
According to the models described, this indi-
cates assortative mating rather than any domi-
nant gene action. However, before accepting
this interpretation we test the significance of
G2 — Gi by means of our standard errors:

Variance (G2 -

As before

= F(G2)
+ F(d) - 2 cov

Standard error = V3.6073 = ±1.8988

F(G2 - CO = F(error) {1.6 + 2.55 + 3.2}

= 27.9094

Therefore, standard error

= V27.9094 = 5.2829, and

G2-G1 = 1.8114 ±5.2829,
t^ = 0.30, p = .8

Thus, although assortative mating is indicated
for this trait, it cannot be proved to be sig-
nificant in these data. At the same time, the
absence of dominant gene action is clearly
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TABLE 10

VARIOUS HERITABILITY RATIOS AND
INDEXES FOR NEUROTICISM

Index

Broad heritability
Narrow heritability
Holzinger's H
Nichol's HR
Vandenberg's F
Cattell's nurture : nature

overall
within family
between family

Estimate

Monozygotic
data only

0.60 ±0.11

—

0.67 ± 0.30

Monozygotic
anddizygotic

data

0.54 ± 0.09]
0.54 ± 0.09
0.37 ± 0.08]
1.00
1.58 ± 0.25

0.84 ± 0.42
1.68 ± 0.61]
0.00

Note.—The between-family nurture mature ratio is zero
because Ea=0 in the model, and Michel's HR = 1.00 for the
same reason. No error is appropriate to them under maximum
likelihood estimation.

indicated by the fact that d > G2. The ab-
sence of dominant gene action strongly suggests
that an intermediate level of neuroticism has
been favored by natural selection, and consti-
tutes the population optimum for this per-
sonality trait. Gottesman (1965) has speculated
along these lines and suggested for a number of
such traits that extremes would be at a selec-
tive disadvantage, but little by way of evidence
has been previously available.

Computation of heritability ratios following
simplified model. Before computing the heri-
tabilities, it is worth considering how we may
obtain more precise estimates of Gi, Gs, EI,
and E2 from these data, given that Ci and C2

are not significantly different from each other,
and E2 is not significantly greater than zero.
Thus we can fit a simplified model where
Gi = G2 and E2 = 0.

We now have six statistics and only two
parameters leading to the solutions:

0.131 f82.9848~] _ fGi.j-]

0.40J [48.0629J = Ui J

0.13 -0.131 f82.9848~

-0.13

giving

= G2 = 4.6562 ± 0.8484,
^Ci,2 = 5.49, p < .002

£1 = 8.1605 ± 1.4605,
/efii = 5.59, p < .002

Our sum of squares for observed-expected
now has 4 df to test the adequacy of this sim-
plified model. Notice we are now not merely
assessing the equality of the total <r2s, but
Gi = G2 and the equality of EIS as well. Thus,
V(0-E) = 4.5964 for 4 df, Ft,2 for adequacy of
model = 4.5964/6.8045 = 0.67, which is
clearly a nonsignificant discrepancy, and the
simple model is judged adequate. This gives
pooled error F(error) = 5.3324 for 6 df and
standard errors as given above.

Probably the very best estimate of Gi, G2,
and EI may be obtained by a weighted least-
squares procedure where each observed V is
weighted by the amount of information we
have about it. In practice we do not know pre-
cisely what the amount of information is, but
if we use 1/F(F) we will obtain a good approxi-
mation to the ideal procedure, and obtain ap-
proximate maximum likelihood estimates of
our Gs and Es. This is a technique based on a
method due to Nelder (1960), and is explained
and illustrated more fully in Example 5, Table
4.

The maximum likelihood method gives

Gi = C2 = 4.5845 ± 1.2471,
c = 3.68, p < .001

fii = 7.7199 ± 1.2755,
c = 6.05, p < .001,

which agree very well with the simple method
previously given. Each estimate may be tested
against its standard error as a normal deviate
(c) since these errors are theoretical values.
Obviously we obtain a much more powerful
test than by using unweighted least squares.
The test of the fit of the model now leads to an
approximate X4

2 = 1.3217, p = .8, which again
confirms the adequacy of the simple model. It
is reassuring that the relatively simple un-
weighted procedure leads to the same conclu-
sions and similar values for our estimates as
the more laborious weighted procedure.

This simplified model, which fits the data
extremely well, and yields highly significant
estimates of GI = G2 and EI with E2 = 0, may
now be used to calculate heritabilities with
some degree of confidence (see Table 10).
Standard errors for these estimates have been
calculated by the method suggested by Kemp-
thorne (1957) which employs the formula for
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the variance of a ratio,

V(A/B) = (A/B
-2 Cov (AB)/AB

upon simple rearrangement of Kempthorne's
expression. Now this is the formula Cattell
(1963, 1965) suggested using for calculating
errors for nature: nurture ratios. Comparison
of Cattell's formula with ours suggests a print-
ing error in Cattell's 1965 paper. Cattell, how-
ever, would appear to be mistaken concerning
the effect of the covariance term in this ex-
pression in claiming it makes V(A/B) smaller
than if Cov (AB)/AB were ignored.

This covariance term is almost invariably
negative (as may be seen from the inverse
matrices of the normal equations given in our
examples) and will therefore result in inflation
of variance.

To illustrate the use of this expression we
calculate the error for Ei/Gi, the within-family
nature:nurture ratio. Here

F(£i) = 1.6269

F(d) = 1.5553

CovfiiA = -0.5546,

these values being obtained from the inverse
matrix involved in the estimation procedure.

Substituting in the expression above we
obtain

F(Ei/d) = 1.682{1.6269/7.71992

+ 2(0.5546)/(7.7199) (4.5845)
+ 1.5553/4.58452}

Therefore, SE (Ei/d) = Vo.3742 = 0.6117

Thus Ei/Gi = 1.68 ± 0.61 as given in Table
10. The striking feature of Table 10 is that all
ratios are significant and capable, therefore, of
interpretation.

The narrow heritability equaling the broad
heritability all genetic variation (54% of the
total variance) is available for natural or arti-
ficial selection to act upon. Cattell's nurture:
nature ratios indicate that although environ-
ment is more important than genotype in pro-
ducing differences between siblings, the differ-
ences in neuroticism observed between families
is entirely genotypic in origin. Evidently cul-
tural and class differences have no effect on this
major personality dimension. For a discussion

TABLE II

ESTIMATES or VARIANCE COMPONENTS FOE THREE
KINDS or FAMILIES (EXTRAVERSION)

Type of
family

MZT

MZA

DZT

Variance
component

FF
FP

FF
FF

FF
FF

Estimate

Female

7.2384
6.4871

15.3235
7.6923

8.3123
26.5547

Male

10.6680
6.5893

11.2857
3.5714

—

of the value of calculating other estimates, the
reader is referred to the references under the
appropriate authors.

Extraversion

The next trait chosen for analysis is extra-
version as measured by the self-rating ques-
tionnaire described in the previous example.
Again, it is not clear how closely this trait re-
sembles its counterpart in the MPI which refers
to uninhibited, outgoing, and sociable tenden-
cies in behavior but a moderate resemblance at
least seems certain (Shields, 1962). This trait,
together with neuroticism, completes the
broad, two-dimensional view of major person-
ality tendencies described by Eysenck (1960b).

Scores for the same individuals as in the
previous example are available.

Analysis of variance and estimation of vari-
ance components. These calculations produced
the components shown in Table 11.

Testing the assumptions. An analysis of vari-
ance to compare the means of the five types of
families (see Table 12) is given in Table 13.
This analysis shows that overall there is some
suggestion of types differing, and that there are
differences between families. The approximate
orthogonal comparisons between types indi-
cates that monozygotic twins reared apart are
significantly less extravert than those reared
together. There is no sex difference so we may
again regard sex as replicates. There is no
difference between monozygotic and dizygotic
twins. Our two samples of monozygotic twins
would seem to have been drawn from a differ-
ent population with respect to their means. The
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TABLE 12

TABLES OF MEANS AND VARIANCES FOR THE
FIVE KINDS OF FAMILIES (EXTRAVERSION)

Type of family

MZT

female
male

MZA
female
male

DZT
female

Mean 44$«

13.8017
13.7321

11.7885
11.3571

12.4844

Variance

10.4035
13.6895

18.9445
12.7195

21.7497

variance gives SmKx2/'S'min2 = 2.09, p = .1,
which is only a borderline significance, while an
F test for aT

2 tog versus <rT
2 ap = 1.18, p = .2,

strongly suggesting that correlated environ-
ments are not important in these data. The
variances appear reasonably homogeneous, and
therefore do not seem to reflect the bias intro-
duced into the means. Bearing in mind the
possibility of some distortion due to inadequate
sampling, but finding no evidence of this in the
variances to which the model is fitted, we con-
clude that the types of family represent rea-
sonably adequate samples from the same popu-
lation. Certainly, unless a low mean for the
sample of MZA has restricted their variance to
an appreciable extent, then the variance of this
group provides no evidence for correlated
environments.

The test for genotype-environment inter-
action yields the following correlations:

MZT (sexes pooled) r« = -0.3678, p = .02

MZA (sexes pooled) r38 = —0.0021, ns

TABLE 13

AN ANALYSIS OF VARIANCE TO COMPARE THE
FIVE MEANS IN TABLE 12

Source

Between types
Between families within types
Within families
Between types partitioned

Sex difference
MZr versus MZA
Sex X MZT versus MZA

MZr&A versus DZr

df

4
99
94

1
1
1
1

MS

48.9489
20.1180
10.1622

2.4870
190.6514

1.2950
1.3623

F

2.43
1.98*

9.48*

*p<.0l.

Thus there is evidence of a certain amount of
GEi but not GE2. Setting upper and lower
bounds by the method previously described,
GE falls within the range, 1.4590 to 0.1974.
This negative correlation indicates that intro-
vert genotypes are more susceptible to environ-
mental influences than extravert genotypes,
the latter being relatively impervious. This
finding is, of course, fully consistent with Ey-
senck's (1960a) theory that the introvert is
more conditionable than the extravert. There is
a considerable amount of evidence for the
theory, (Eysenck, 1960b), and our finding pro-
vides additional support. It would be of con-
siderable interest to attempt to determine what
kinds of environmental pressures are, in fact,
contributing to this interaction by looking at
the different effect on high and low genotypes
of factors known to affect the trait measured
by this test. Example 8, Table 4, illustrates
the form such an investigation might take.

Fitting models. In spite of a certain amount
of GEi, we will fit the simple G and E model,
and then by inspecting EI and the bounds for
GEi, see if the detected amount is of import-
ance.

First we will fit the model G, EI, E2 to the
mean values of the FFS and 7pS listed for mono-
zygotic twins in Table 11. The method is
exactly as in the previous example, the matrix
equations carrying the same coefficients.

G = 9.3192 ± 1.8856, t£ = 4.94, p = .005

£i = 7.3080 ± 1.7669, /5£i = 4.16, p = .01

£2 = -2.4656 ± 2.3558, <6£2 = 1.05, p = .3

The test for the model is FM = V(0-E)/V
(error) = 2.16, which is clearly nonsignificant
(p = .2). Thus the simple model provides an
adequate description of the observations with
both d and fii highly significant. The negative
fia does not differ from zero. However, we will
defer discussion of this component until later.

With EI = 7.3080 and GEi lying between
1.4590 and 0.1974 the amount of bias, although
significant, is trivial. Allowing GEi to fall mid-
way between its limits, it is only 0.8282, some
11% of Ei and 6% of the total variation.
Probably, we can safely ignore its effects in
subsequent calculations. Fitting the full model
Gi, G2, EI, and E2, we obtain the following
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i = 4.61, p = .004

/6G2 = 1.23, p = .3

/6£i = 3.20, p = .02

estimates which have the significance shown.

Gi = 16.2696 ± 3.5286,
/,

G2 = -5.4667 ± 4.4547,

£1 = 8.3069 d= 2.5970,

£2 = -2.4656 ± 3.5286,
/«£« = 0.70, p = .5

Only Gi and £1 are significant, and G2 is
negative, but not significantly. £2 is again non-
significant (p = .25), but the emergence of
both these two between-family components,
fi2 and G2, as negative requires an explanation.
The equality of the total <r2s gives ^2,4 = 6.18,
p = .06 indicating a failure of the model now
that we have introduced the dizygotic twin
sample into the estimation. This failure, it will
be remembered, was also indicated by the test
for heterogeneous variances given previously
(p = .1), but does not suggest correlated en-
vironments because <rT

2 tog/<rT
2 ap was not

significant and the simple G, EI, E2 model fit
was clearly adequate. We suggest that the
simple model has failed on the following counts:

1. The model does not fit adequately when
dizygotic twins are included.

2. 62 and £2 are probably negative so that
they cannot be equated to theoretical vari-
ances, which must always be positive in the
linear model.

3. There is a certain amount of genotype-
environment interaction.

4. Gi is significantly different from zero;
G2 is not.

On genetical grounds, as we have seen from
the discussion of gene action and the mating
system, a large discrepancy between Gi and
62 is not possible. Failure due to Count 3
above cannot cause failure due to Count 1 or 2
and can only cause Count 4 if a large amount of
GE2 (see the section Genotype-Environment
Interaction) is present. We have detected only
GEi. Counts 1, 2, and 4 therefore require an
explanation in terms other than those previ-
ously suggested for failure of the model. The
reason for difficulty, on introducing dizygotic
twins is, of course, the very large <rw2 which
implies a negative era2 for this group. The linear

statistical model used in deriving the expecta-
tions of these components does not allow them
to become negative unless the individuals
within pairs are negatively correlated. This will
occur with dizygotic twins if they react against
each other in such a way as to develop opposite
characteristics with respect to a trait. In doing
this they will be reacting on a basis of differ-
ences due to Gi as well as those due to EI,
whereas the same tendency in the monozygotic
twins will only have EI effects to build upon.
The negative covariance in the dizygotic twin
pairs will therefore, be more pronounced than
in the monozygotic twin pairs. This process
could account for failure due to Counts 1, 2,
and 4. This reaction of one twin to the other
might have its origin in the intrauterine en-
vironment where one twin takes up a position
favorable to development, and the other a less
favorable one. Thus, if these positions are
maintained, initial differences become accentu-
ated. This phenomenon is termed "competi-
tion," and often takes place during the early
part of the lives of many wild plants and ani-
mals. The runt, for example, in a litter of
mammals is often the result of this kind of
effect. A strong case may be argued for the
intrauterine environment of twins producing
strong competition (Burt, 1966; Burt & How-
ard, 1956) and differences in birth weight,
which with competition may be quite pro-
nounced, can result in the heavier twin assum-
ing the more dominant role as Shields (1962)
has shown. He found, and cited other studies
which show that the leader twin is generally
heavier at birth. He was not, however, able to
show in his study that the heavier twin was
more extravert, although in the MZT group
alone there is a suggested association which
fails to reach significance (Shields, 1962, see
Table 20). The relevant information for the
DZT group, which, on our hypothesis, would be
expected to show the most pronounced effect
is, unfortunately, not given. However, whether
the birth weight is responsible for the initial
differences in extraversion, or not, there is a
strong association between leadership and
extraversion (Shields, 1962, see Table 19).
Moreover, the leadership pattern seems to de-
velop continuously throughout the lives of the
twins, their complementary roles becoming
firmly established by adulthood. This leader-
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TABLE 14

EXPECTATIONS OF VARIANCE COMPONENTS FOR THREE
KINDS OF FAMILIES ACCORDING TO A GENEXICAL

MODEL SUITABLE FOR EXTRAVERSION

Type of
family

M2p

MZA

DZr

Variance
component

FFFP
FF
Fp

FF
Fp

Genetical model

Gi = Ga = JG

0
2

0
2

1
1*

Ei

1

i

l
£

l
i

Ez

0
1
1
i
0
1

2CGi

0
0

0
0

J

i

ship effect which is not genotype-environment
interaction or correlated environments would
require an extension of the biometrical model.
Before attempting this it would be necessary to
detect the process by an unambiguous test.
One such test might be afforded by a compari-
son of dizygotic twin groups reared together
and apart. Also dizygotic twins might be com-
pared with sibs who would be expected to show
a similar but less pronounced effect due to the
closer proximity of the twins both before and
after birth. In Shields' data it is not possible to
make these comparisons. A study by Portenier
(1939) did however show the latter effect. Of
a series of 12 personality measures, 9 showed
smaller correlations for dizygotic twins than
for sibs. This was particularly pronounced in
the introversion score (dizygotic twins
r=- 0.02, sibs r = 0.52). The tests involved
in Shields' and in Portenier's studies were, of
course, not the same. Portenier's finding does,
however, illustrate the sort of effect expected,
and is included mainly to demonstrate an ap-
propriate method.

With only the three types of twins it is not
possible adequately to fit a suitable model.
However, we can attempt some assessment of
this negative correlation effect by making cer-
tain simplifying assumptions. It should be
pointed out that the following assessment can
only be tentative, and is included mainly to
show the flexibility of the biometrical approach.

If we allow that HB is small and there is little
assortative mating, Gi = Ga = |G is a good ap-
proximation. Then we can postulate a competi-
tion parameter CGi which describes that part

of the covariance between dizygotic twins due
to their genetic differences (Gi). That part due
to EI cannot be allowed for and remains as a
bias making EI too large and Ea too small. We
cannot allow for CEi because we cannot make
any assumptions about the relative sizes of
the between- and within-family environmental
components, as we can for the genetic ones.
The model is given in Table 14. The inverse of
the matrix of coefficients of the normal equa-
tions is

0.2375
0.0500

-0.4000
0.2375

0.0500
0.8667

-0.8000
0.8500

-0.4000
-0.8000
1.6000

-1.2000

0.2375
0.8500

-1.2000
1.8375

and the estimates are as follows :

iC = 5.4014 ± 1.3595,
<6|G = 3.97, p = .01

fi! = 8.3069 ± 2.5970,
<6Ei = 3.20, p = .02

£2 = -2.4656 ± 3.5286,
<6E2 = 0.79, p = .50

2CGi = -10.8682 ± 3.7815,
/eCGi = 2.87, p = .04

The F test for the model is, of course, the same
as before, and the same error variance is ap-
propriate for obtaining the standard error of
the estimates. The E2 and EI still take the same
errors. The competitive element is significant
but our model only applies to the groups we
have used and would seem to have little gener-
ality for the population at large. Heritabilities
can be calculated, but would depend for their
interpretation on whether or not the effect of
CG was ignored.

Mill Hill Vocabulary Test

The next psychological measure chosen for
analysis is the synonyms section of the Mill
Hill Vocabulary Test. This test of verbal in-
telligence has two parts. In one, the subject
chooses synonyms for the underlined word from
six alternatives, and in the other is asked to
define words. The two halves generally corre-
late quite highly (about 0.90 or better), and
either half may be used separately to provide
a shortened test. Unfortunately, the validity
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of this test is not well established, and it is not
known how it correlates with other measures of
verbal intelligence. Certainly there are a num-
ber of cognitive levels implied in different
vocabulary responses, and it seems unlikely
that this test taps more than a small number
of them. The author of the test (Raven, 1956)
described it as a test of "acquired information"
but this is misleading since verbal tests, this
one included, show high heritabilities (Shields,
1962). Shields' (1962) gives data for 36 pairs of
MZT and 40 pairs of MZA for this phenotype.

Analysis of variance and estimation of vari-
ance components. Significant between-family
components were indicated for all the four
groups and are given in Table 15.

Testing the assumptions. To see if the indi-
viduals in the four types of families have been
drawn at random from the same population,
we look for homogeneity of the means and vari-
ances listed in Table 16. An analysis of variance
comparing the four means is given in Table 17.
This analysis shows that there are differences
between families and between types of families,
the scores of monozygotic twins apart being
significantly lower than for those reared to-
gether. There are, however, no sex differences
in the mean so that we can again regard sexes as
providing replication. This difference between
twins reared together and apart clearly indi-
cates that we are not sampling the same popu-
lation. When we inspect the variances, hetero-
geneity, again, is clearly evident.

The Smax
2/Smin2 = 3.93, p = .01 and an F

ratio for o^ap/Wtog = 2.12, p = .005. For-
tunately, it is possible to obtain a reasonably
good estimate of the o^2 for this test from the
standardization data published in the instruc-
tion manual (Raven, 1956). A value of o-T2

= 62.316 was obtained and compared with the
values in Table 16.

The F ratios given in Table 18 were obtained.
All except the last F ratio are clearly significant,
strongly suggesting inadequate sampling par-
ticularly for MZT. Inspection of the raw data
indicates, in fact, that for the MZx males the
lower 25% of the standardization sample is
completely missing. The MZi are therefore a
poor representation of available genotypes in
the population. This restricted range is re-
flected fairly obviously in the differences in
Vf for the together and apart groups in Table

TABLE IS

ESTIMATES OF VARIANCE COMPONENTS FOR Two KINDS
OP FAMILIES (MILL HILL VOCABULARY TEST)

Type of
family

MZr

MZA

Variance
component

FF
FF

FF
FF

Estimate

female

17.2971
4.6250

28.5834
7.1400

male

8.6119
3.0419

34.3382
10.6333

TABLE 16

TABLE OF MEANS AND VARIANCES FOR THE FOUR KINDS
or FAMILIES (MILL HILL VOCABULARY TEST)

Type of family

MZr
female
male

MZA

female
male

Mean

18.6667
19.5417

16.3000
14.9667

Variance

19.2908
9.8243

31.6429
38.6540

TABLE 17

AN ANALYSIS OF VARIANCE TO COMPARE
THE FOUR MEANS IN TABLE 16

Source

Between types of family
Between families within types
Within families
Between types of family

partitioned
Sex difference (S)
MZr versus MZA
S X MZr versus MZA

dj

3
67
71

1
1
1

MS

141.1953
49.5312
6.8380

1.6695
383.0883
38.7687

F

2.85*
7.24***

7.74**

*t> <.05.

TABLE 18

F RATIOS BETWEEN a-^s FROM TABLE 16 AND <n
ESTIMATED FROM STANDARDIZATION DATA (MILL

HILL VOCABULARY TEST)

Type of family

MZr

MZA

Sex

females
males

females
males

P

^1000,48 = 3.23**
^1000.24 = 6.34**

Fim.M = 1.97*
^1000,30 = 1.61

***<.001.
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TABLE 19

ESTIMATES OP VARIANCE COMPONENTS FOR Two KINDS
OF FAMILIES (DOMINOES INTELLIGENCE TEST)

Type of
family

MZT

MZA

Variance
component

FF
PF

Vv
PF

Estimate

Female

58.1009
24.8261

90.9275
19.2500

Male

45.2546
4.9091

54.7541
19.3214

15. While we are not able to make use of these
data, therefore, in the form of analysis used
in this paper we can use them to demonstrate
the importance of adequate testing of assump-
tions before proceeding with a complex analy-
sis. If the values of the components in Table 15
are taken at face value, a very large rbttiW6, and,
by implication rwh,we, is indicated since Vf
reflects crs2 and

<rB
2 ap — era2 tog =

in the MAVA system.
We can, of course, still use these data to

carry out a genotype-environment interaction
test by correlating the means and differences of
the MZT and MZA as described previously.
The results are

MZT, *u
MZA, rsa

-0.2758, p = .1

-0.2781, p = .07

indicating borderline significance for GEi and
GE2. The negative sign of the correlation indi-
cates that environmental deviations are larger
for the individuals with the lower IQs. These
individuals seem, therefore, to be more at the
mercy of the environment than those with
higher IQs and, perhaps, reach their potential
with less certainty. This fact would, of course,
have important implications for educational
practice suggesting that individuals at the
lower end of the distribution need more careful
nurturing than those at the higher end, if they
are to develop fully their verbal intelligence
potential.

However, the correlations observed here
indicate that only 8% of the environmental
variation arises from interactions with the
genotype, and so the effect of differential edu-

cation would be quite small. In view of the
small effect and its dubious significance, it is
impossible to regard these findings as any more
than merely encouraging of further investiga-
tion.

We can use the one satisfactory group, male
MZA, to estimate G and EI + E2 + GEi
+ GE2, and hence estimate the broad heritabi-
lity for this test. Recalling the expectation for
this group as o-B2 = G, and <rw2 ~ EI + E2
+ GEi + GE2, and the broad heritability is

C/(Ei + E2

or about 73%.

GEi + GE2) = 0.7281

Dominoes Intelligence Test

The final measure that Shields (1962) re-
corded is the Dominoes test score. In this test
the subject is required to write the number of
pips which should appear on a blank domino to
complete the logical pattern formed by the
other dominoes in the item. The test is like
Raven's Progressive Matrices in that it in-
volves a similar perceptual-cognitive task pro-
ceeding from easy to more difficult items.
Shields' gives the reliability of the test as 0.92,
and states that it correlates highly (0.86) with
a general intelligence factor g. In view of this,
and the fact that the test is timed to last only
20 minutes, it probably provides a quick, reli-
able measure of general intellectual and reason-
ing ability. For this phenotype 34 pairs of
MZi and 38 pairs of MZA were available.

Analysis of variance and estimation of vari-
ance components. Estimating variance com-
ponents led to Table 19.

Testing the assumptions. To test the adequacy
of the sampling, an analysis of variance of the

TABLE 20

TABLE OF MEANS AND VARIANCES SOB. THE Two KINDS
OF FAMILIES (DOMINOES INTELLIGENCE TEST)

Type of family

HZr
female
male

MZA
female
male

Mean

25.8478
32.3636

24.3333
23.6786

Variance

69.5097
45.6710

98.8227
62.7447
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means in Table 20 was carried out and given in
Table 21. We see there is evidence of inade-
quate sampling from the significance of the
family-types item which, on further analysis
is seen to result from the difference between
groups reared together and apart. Again we
may regard sexes as replicates. Among the
variances Sm^/Smit? = 2.15, p = .1, and
<TT

2ap/<rT
2tog = 1.39, p = 2 X .05 = .1, sug-

gesting some heterogeneity. However, whereas
for the Mill Till Test there was striking consist-
ency of VF and Vy between replicates (see
Table IS), such is not the case for these data as
the analysis of variance of the Fs in Table 19
shows (see Table 22),

Thus the heterogeneity of variance that ini-
tially appears as the result of correlated envi-
ronments is more likely to be a sampling effect.
Therefore, we conclude the sampling is inade-
quate and estimation from these data would be
unreliable. However, if we drop the MZi males,
who certainly contribute to the heterogeneity
among the means and variances in Table 20,
the analysis of variance of the means becomes
as given in Table 23. While still retaining the
significance of the between-family component,
that between types has vanished, and<rT

2ap/
ffT2tog = 1.22, p = .3, no longer of borderline
significance.

We conclude then that with these three
groups there is adequate sampling and no
evidence of correlated environments, and pro-
ceed with the analysis, remembering, of course,
that our conclusions are limited to the female
population.

Fitting the model. The tests for genotype-
environment interaction yield for MZ-r, r2s

TABLE 21

TABLE or ANALYSIS or VARIANCE or THE FOUR
MEANS IN TABLE 20

TABLE 22

ANALYSIS or VARIANCE OF THE ESTIMATED VARIANCE
COMPONENTS IN TABLE 19

Source

Between types of family
Between families within types
Within families
Between types of family

partitioned
Sex difference (S)
MZx versus MZA

S X MZT versus MZA

df

3
68
72

1
1
1

MS

391,6670
133.3500
18.8611

212.6414
644.1356
317.4938

F

2.94*
7.07**

1.59
4.83*
2.38

Source

MZr versus MZA ; Vv
MZr versus MZA; PF
MZT versus MZA; Vf - Vt
Replication

df

1
1
1
4

MS

447.770S
19.5187

5416.6108
260.7312

F

2.72

20.83*

*t> <.os.

= -0.0878 and for MZA, rM = -0.1051,
both nonsignificant values. With no correlated
environments, no genotype-environment inter-
action and an adequate sample, we are justified
in fitting a simple G, Ei, Es model.

The following values were obtained:

C = 59.6070 ± 18.8384,
46 = 3.16, p = .05

£1 = 27.2200 ± 17.6524,
t£i = 1.54, p = .2

£2 = -10.3283 ±23.5365,
/3£2 = 0.44, p = .06

Thus £2 is again negative and not significantly
greater than zero, while only <j is significant.
Dropping £2 from the model we obtain

F2l2 model fit = 0.13, a nonsignificant devia-
tion from the expected,
and

C = 54.4429 ± 13.1420,
t£ = 4.14, p = .016

£1 = 22.0559 ± 11.7546,
/4fii = 1.88, p = .15

These estimates are clearly subject to error in
these data. However, we may use them to indi-
cate broad heritability as 0.7117 or about 70%,
which agrees well with estimates of heritability

TABLE 23

ANALYSIS or VARIANCE or MEANS IN TABLE 20 TOR
MZr (FEMALES ONLY) AND MZA (BOTH SEXES)

Source

Between types of family
Between families within types
Within families

df

2
57
60

MS

47.9570
143.1929
21.7333

F

6.59*

<.05.
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for IQ from other studies (Burt, 1966;~ErIen-
meyer-Kimling & Jarvick, 1963).

IQ (Burl's Group Test}

To illustrate the kind of analysis that can be
undertaken using published intraclass correla-
tions we will use those published by Burt (1966)
for IQ and general school attainments (see
Example 6, Table 4). For all but parental cor-
relations, the IQ measurements were arrived at
in the following way. Subjects were given a
group test of intelligence containing both verbal
and nonverbal items, and the results submitted
to the teacher for comment. Where doubt was
expressed the child was reexamined. The reli-
ability of the group test was 0.97, and for a set
of performance tests used occasionally in
doubtful cases, 0.87. Both of these tests, which
are described in detail elsewhere (Burt, 1921,
1933), were standardized by means of an indivi-
dual test, the London Revision of the Terman-
Binet, a broadly based test measuring many as-
pects of cognitive and intellectual ability. We
have correlations based on 95 pairs of MZi, 53
pairs of MZA, 127 pairs of DZT, 264 pairs of
FST, 151 pairs of FSx, and 136 pairs of UT-

To illustrate the extended analysis, we have
taken estimates of the marital correlation (M)
and parent-offspring correlation (fp,0) from
Burt and Howard (1956). The numbers for
these two correlations are not given. We have
chosen Burt's correlations of the many possi-
ble sets presented by Erlenmeyer-Kimling and
Jarvik (1963) because they are not only based
on large numbers and many groups, but also
result, largely, from the application of a single,
highly reliable test. Moreover, they have been
used by Burt and Howard (1956) to carry out
calculation similar to ours. We believe our
methods have certain advantages of scope and
rigor over theirs which justify reanalysis, but

TABLE 24

CORRELATIONS AND SIMPLE GENETICAL MODEL FOR
Two KINDS OF FAMILIES (IQ)

TABLE 25

CORRELATIONS AND SIMPLE GENETICAL MODEL FOR
THREE KINDS OP FAMILIES (IQ)

Type of
family

MZT

MZA

Correlationw

0.92
0.87

Model

G

1
1

Ei

0
0

Ei

1
0

Type of
family

MZT

MZA

DZT

Correlation
W

0.92
0.87
0.54

Model

Gi

1
1
0

Gi

1
1
1

Ei

0
0
0

Ei

1
0
1

it is useful to be able to check our broadly
similar conclusions. The correlations we have
chosen for reanalysis were taken from Table 4
in Burt's 1966 paper.

Analysis of correlations. Assuming no corre-
lated environment, genotype-environment in-
teraction and equality of EIS and E2s, we can
fit the simple model given in Table 24 (rem-
embering that r = fraction of total variance
due to <TB2)- The two equations in Table 24 may
be solved for G and E2, EI being obtained by
subtraction of G and £2 from the total 1.00.
Thus,

G = 0.87

£1 = 0.08

£2 = 0.05

suggesting a heritability of 0.87 or 87%.
Adding Gi and G2 to the model in the place

of G, and using the correlations for DZT we can
fit the model given in Table 25. Obtaining £1
by subtraction of d, G2, and £2 from 1.00, we
obtain the following estimates:

Gi = 0.38

G2 = 0.49

£i = 0.08

£2 = 0.05

Using the alternative minimal set of data re-
ferred to in the previous discussion of this mat-
ter (see Minimal Data), and given together
with the appropriate model in Table 26, we
obtain Gi, Ga, EI, and E2. Again EI is obtained
by subtraction:

Gi = 0.39

G2 = 0.43

£1 = 0.08
fi, = 0.10
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The good agreement between the estimates ob-
tained from the groups in Table 25 and those
obtained from the groups in Table 26 strikingly
confirms the adequacy of the latter groups as
an alternative minimal set for a complete solu-
tion on the simple genetical model.

In both cases we notice G2 > GI suggesting
assortative mating is taking place. In fact, Burt
and Howard (1956) found a marital correlation
of fj, = 0.3875 for these data, indicating a con-
siderable amount of assortative mating at the
level of the phenotype, and used this value to
investigate the mating system and gene action
for this trait.

Before showing how our estimate of GI and
G2 may be used to carry out a similar investi-
gation, it is worth considering how the best
estimates of these parameters may be obtained
from all the six groups available, rather than
simply relying on an arbitrary selection of data
as Burt and Howard have done. The method to
be used is essentially that of least squares used
in the reanalysis of Shields' (1962) data pre-
viously given; but in this case, because of the
large numbers involved, we extend the analysis
to take into account the different precisions of
the correlations available. A weighted least-
squares method will be used where each correla-
tion is weighted according to the inverse of its
sampling variance, a procedure leading to ap-
proximate maximum likelihood estimates of
Gi, 62, E2, and EI and a chi-square test of the
adequacy of the genetical model. The method
only approximates to maximum likelihood
since t is not normally distributed if large or
based on a small sample, and we use t to esti-
mate its own variance. However, the method
certainly leads to a more comprehensive evalu-
ation of the genetical model than hitherto at-
tempted, and may be equally easily used with

TABLE 26

CORRELATIONS AND SIMPLE GENETICAL MODEL FOR
THREE FAMILIES FORMING AN ALTERNATIVE SET

TO THAT IN TABLE 25

Type of
family

MZr
FST
FSA

Correlation
W

0.92
0.53
0.44

Model

Gi

1
0
0

G.

1
1
1

Ei

0
0
0

Ei

1
1
0

analysis starting from raw <TB2s and <rw2s by
using the inverse of the usual formulas for the
variances of these parameters (Kempthorne,
1957) to provide the appropriate weights. For
details of this approach to estimating genetical
parameters, the reader is referred to Nelder
(1960). The groups given in Table 27 may be
used equating r's to the model in terms of GI,
G2, and E2, EI having been omitted from the
model since it always carries a coefficient of
zero and is obtained by subtraction as before.

The variance of r is obtained from V(r)
= (1 — r^Y/N so that the amount of informa-
tion, I(r) is approximately l/V(r). Although,
strictly this formula for V(r) applies to pro-
duct-moment correlations, and we are dealing
with intraclass correlations, where family size
is two, the more precise formula (Roberston,
1960) gives almost exactly the same values as
the more familiar (1 — r*)*/N.

The normal equations are

4914.6 4914.6 4016.1

4914.6 5811.1 4780.3

4016.1 4780.3 4938.5

Thus,

4476.507

4986.280

4145.087

0.001209350 -0.000967486 -0.000046978] r4476.507]
-0.000967486 0.001552850 -0.000716325 4986.280
-0.000046978 -0.000716325 0.000934072J Ul45.087j

where the 3 X 3 matrices are the information
matrix and the variance-covariance matrix of
the estimates, respectively.

The estimates are:

Gi = 0.39 ± 0.03

C2 = 0.44 ± 0.04
£1 = 0.08 ± 0.01
£2 = 0.09 ± 0.03

the standard errors being obtained as the square
root of the appropriate leading diagonal term
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TABLE 27

OBSERVED AND EXPECTED VALUES or CORRELATIONS FOR Six KINDS OP FAMILIES AND THE WEIGHTS
I(r) USED IN FITTING THE SIMPLE GENETICAL MODEL (IQ)

Type of
family

MZT
MZA
DZT
FST
FSA
UT

Correlation
W

0.92
0.87
0.54
O.S3
0.44
0.27

Model

Gi

1
1
0
0
0
0

G«

1
1
1
1
1
0

Ei

1
0
1
1
0
1

F(f)

0.000249
0.001113
0.003945
0.001958
0.004305
0.006321

I(r)

4016.1
898.5
253.5
510.7
232.2
158.2

Expected (r)

0.9274
0.8376
0.5326
0.5326
0.4428
0.0897

(0-fi)

-0.0074
+0.0324
+0.0074
-0.0026
-0.0028
+0.1803

in the variance-covariance matrix, for example,

= V(0.001209350)

= 0.0347

The standard error of £1 is essentially that of
>"MZT- If each (0-EY is weighted by I(r) then
S/(0-£)2 = X3

2 which tests the adequacy of the
genetical model

S/(0-E)2 = 6.3251

Therefore,

X3
2 = 6.3251, p = .10-.05,

indicating a borderline failure of the model. The
reason for this failure is obviously the large
value of ruT = 0.27, a direct estimate of E2

estimated as 0.09 in the analysis using all
the groups in Table 27. An approximate Xi2 for
this single discrepancy is 0.18032 X 158.2
= 5.1428, Xi2 = 5.1428, p = .05-.01, con-
firming the inadequacy of this correlation.
Burt also rejected this correlation as atypical
on the grounds that it probably reflected a
placement effect due to the practice of foster-
ing children with parents of similar estimated
IQ. It is a feature of weighted estimation pro-
cedure that this correlation, in fact, introduces
very little distortion into GI and G2 because it
contributes so little information compared with
the other correlations, and yet its anomolous
nature is detected by the chi-square test. A
repeat of the estimation procedure omitting
this correlation provides the following esti-
mates :

GI = 0.40 ± 0.03 c = 13.3 p < .001

G2 = 0.47 ± 0.04 c = 11.8 p < .001

£1 = 0.07 ± 0.01 c = 7.0 p < .001

£2 = 0.06 ± 0.03 c = 2.0 p = .025,

the significance of the parameter being shown
by the normal deviate, c = parameter/5£ and
the model fit tested by

X2
2 = S/(0-£)2

= 0.2835, p = .9-.8

which now shows an excellent fit for the model.
The two X2s from this and the previous fitting
may be compared approximately as

2X3
2/3X2

2 = ^3,2

= 12.09, p = .10-.05

suggesting a significant increase in the ade-
quacy of fit of the genetical model on omitting
the correlation of UT-

Analysis of gene action and mating system.
We notice that G2 > Gi, in all our estimations
from these data, but that the difference does
not reach significance G2 — GI = 0.07 ± 0.07,
the error being obtained from the variance-
covariance matrix with due allowance for the
substantial correlation between GI and G2.
However, for these data we have independent
evidence for assortative mating with the mari-
tal correlation n — 0.3875. Using this value of
At we will illustrate two methods for estimating
HR and DB, the gene action parameters.

The first, an iterative method, uses
A = Heritability X M > in which our initial
estimate of heritability is (G: + G2)/(Gi + G2

+ Ei + E2) = 0.870. Thus

Ai = 0.87 X 0.3875

= 0.3371
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Substituting this value of A into the expecta-
tions for GI and G2, we find that

G2 = iDR +

which reduce to

G2 = 0.504DB + ^HR = 0.47

Solving these for DR and HR we find

£>R = 0.808

ftR = 1.184

K = 0.202.

These estimates provide a new estimate of
heri lability

=0.606

from which we estimate

At = 0.606 X 0.3875

= 0.2348

and the whole calculation is repeated with this
new value of A .

Successive estimates of A were

A i = 0.337

At = 0.235

At = 0.264

A, = 0.260,

this last value being taken as the stable value,
the difference between A3 and At being less
than 2%.

The estimates obtained were

£)B = 0.984

AR = 0.821

a = 0.173
= 0.83

indicating a substantial amount of dominant
gene action for this trait. These values are
similar to those obtained by Burt and Howard
(1956) who used rp.0 and estimated |DR, JHR,
and 5J4/(1 — j4)}DB as percentages of total
variance, concluding that only a small amount

of dominance variation was present. While it
is true that JHB is small (21%), it is the size of
HB compared with DR which is relevant to a
consideration of gene action, and this high ratio
of 0.83 suggests the possibility of complete
dominance.

On a single gene model and u = i>

= h/d = 0.91

in this case. However, if u 7^ v this ratio may
vary markedly from h/d, (Fisher, 1918;
Mather, 1949).

The second method of estimation involves
adding the statics rp.0/(l + M) to GI and G2 to
give three equations :

The last being Covp.0/(l + M) when GI and G2
are estimated from variance components. This
gives

DR = G1-3G2+6(rp.0)/(l+M)

HR=4Gi+4G2-8(rp.0)/(l+M)

the errors of these estimates being given by

F(DB) = F(d) + 9F(G2)
- 6 Cov(G!G2) + 367[fp.0/(l

F(HB) = 16F(Gi) + 16F(G2)
+ 32 Cov(G!G2) + 64F[rp.o/(l

- li Cov(GiG2) + F[rp.0/(l +M)]

These expressions for the variance of the esti-
mates are obtained by squaring the coefficients
in the corresponding expressions for the esti-
mates, and allowing cross-product terms to
vanish in the case of GI and rp.0/(l + M), G2,
and rp.0/(l + M), where no correlation between
the estimates exists, but leaving the coefficients
for GI, G2 which are correlated.

The values of F(Gi), F(G2) and Cov(GiG2)
are obtained from the variance-covariance
matrix provided by the estimation procedure.
The F[>p.o/(l + M)] obtained by substituting
into the formula for the variance of a ratio
given in the example in the section Neuroticism.
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For these data rp.a = 0.49, so that

Ci = 0.396,
= 0.001209

G2 = 0.467,
F(G2) = 0.001648

rp.o/(l+/*) = 0.353,
H/P.O/ (!+/*)]= 0.000787

Cov(GiG2) = -0.000961

Substituting in the three expressions for Gi,
G2, and rp.0/(l +yu) we obtain

rt>R = 1.116 ±0.224,
c = 4.98, p < .001

AR = 0.627 ± 0.256,
c = 2.45, /> < .02

- A)}DR = 0.149 ± 0.074,
c = 2.00, p < .05

thus showing a significant amount of domin-
ance variation, although the value of HR is
slightly reduced in this procedure probably due
to rp.o being biased by common environments.
This conservative test for HR indicates, there-
fore, that dominant gene action for IQ almost
certainly exists. Unfortunately, the direction
of dominance cannot be determined without
the original data, although they contain the
necessary groups of progeny from consanguine-
ous matings and ordinary sib families (Burt &
Howard, 1956). However, the significant nega-
tive skewness for the distribution of IQ scores
which Burt (1963) has found certainly indi-
cates that dominance is for high IQ, low being
recessive. If this is indeed the case, the intui-
tively appealing idea that IQ has been subject
to directional selection throughout man's evo-
lutionary history would be strikingly confirmed.

Under assortative mating our best estimate
of heritability is 2rp.0/(l + M) = 0.706
± 0.009, although this will probably be an
overestimate due to common environments.

The broad heritability is given by

[iDB + fHB + i{A/(l - ,4)}DR]/crT
2

= 0.863 ± 0.003

The weakness of this estimation lies in the fact
that we cannot test the adequacy of the model
as is possible when we start with the raw vari-
ances. However, the a^s are probably homo-

geneous from evidence Burt gives elsewhere in
his 1966 paper. In fact, an F test for MZA

versus FSi can be constructed and gives

^105,627 = 234.09/225.00 = 1.04,
p = 2 X .3 = .6,

strongly suggesting no correlated environments.
The possibility of GE still remains. However,
the probable absence of substantial genotype-
environment interaction for Shields' two intelli-
gence tests, and for the Newman, Freeman, and
Holzinger (1937) data examined briefly in the
final example (see Table 4, where a similar test
to the Terman-Binet was used) make it at least
plausible to suggest this source of bias is not
likely to be very important either.

Educational A ttainments

Educational attainments were measured by
a group of scholastic tests (Burt, 1921, 1933)
involving elementary reading, spelling, and
arithmetic items. The items were similar to
those in conventional school examinations.

Using correlations for the same groups and
following exactly the same estimation pro-
cedure as in the previous example gave the
following estimates:

Ci = 0.169 ± 0.018, c = 9.4, p < .001

G2 = 0.509 ± 0.050, c = 10.0, p < .001

£1 = 0.015 ± 0.001, c = 15.0, p < .001

£2 = 0.307 d= 0.052, c = 5.9, p < .001

and

X2
2 = 1.1460, p = .6

showing a satisfactory fit of the model to these
data.

The value of c for C2 - d = 6.12, (p
<.001) indicating that G2 is significantly

greater than GI. However, a large discrepancy
of this kind is simply not possible on a purely
genetical model, and may well result from cor-
related environments fan,be) or grossly inade-
quate sampling of the original population.
Unfortunately, without recourse to the original
raw data, it is not possible to decide which of
these two possibilities is likely. If ?»,&, is in fact
responsible for producing this effect, it is
interesting to note the marked contrast be-
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tween this trait and IQ where neither E2 nor
rth.be seem to be very important.

Perhaps, however, the main value of this
example lies in demonstrating the inadequacy
of the classical correlation approach when the
assumptions implicit in simple genetical models
are not met.

IQ (Several Tests)

To illustrate a single method we have chosen
a small sample of 689 sib families of size three
or more in order to calculate the mean within-
family skewness from a vast population of
family records published by Reed and Reed
(1965). To do full justice to their unique data
using the approaches we are suggesting would
be a major undertaking, so we have restricted
our analysis to a single method. Also we have
limited ourselves to the range IQ 50-150 as
being roughly comparable to the range of the
other studies we have been considering, and to
exclude the influence of single genes of very
large effect. For this sample the mean skewness
of the distribution of scores within families,
fcs = - 257.326 ± 121.023, c = 2.12, p = .03,
probably a significant result. The error is cal-
culated from the variance of the 689 k3 values
obtained, weighted according to the degrees of
freedom available for each k3 (Fisher, Immer,
& Tedin, 1932) and is only an approximate
error. An alternative approach through the cal-
culation of g! = fc3/V(<TW

3) gives -0.2000
± 0.0791, therefore, c = 2.53, p = .01 also sug-
gesting the value of fc3 is significantly less than
zero. In the absence of genotype-environment
interaction fc3 = — 3S«W&. Our negative
value indicates dominance for high IQ. Un-
fortunately we have no test for GE in these
data, but two considerations cause us to place
some confidence in our finding. Other examples
(Dominoes and Mill Hill Vocabulary Test
scores previously analyzed, and IQ scores in
the final example) fail to reveal any significant
GE for intelligence test scores, and our value
fca is consistent with the overall value of £3
that characterizes the population from which
our families were chosen.

Overall, kt = - 1077.102, andgl = - 0.3386
± 0.0862. Therefore c = 3.93, p = .001. If
w = », the &3 should be equal to 4fc3 (Fisher,
Immer, & Tedin, 1932). The agreement with

this expectation in these data is striking.
Moreover, since the effect of genotype-environ-
ment interaction is extremely unlikely to pro-
duce a value of k$ = 4fc3 even if present, we
conclude that the negative value of fc3 provides
reasonable evidence for dominance for high IQ,
and &3 = 4fc3 evidence for approximately equal
frequencies for the genes controlling this trait.
With equal gene frequencies VHR/DR provides
a valid estimate of the average level of domi-
nance. Thus the value of this ratio (0.735) ob-
tained from Burt's data may well indicate
about the true level of dominance for IQ. It is
worth pointing out that incomplete directional
dominance is exactly what we would expect
if high intelligence has been subject to a con-
tinual process of natural selection, as Reed
(1965) has argued elsewhere. As in the example
concerning the analysis of neuroticism, where
a history of stabilizing selection was indicated,
we are able, through the estimation of genetical
parameters, to gain some insight into the past
evolution of behavioral traits. This, to our
mind, is the main justification for undertaking
such an analysis.

In view of the very large sample in this study,
the number of genes controlling IQ may rea-
sonably be estimated using the range of IQ
scores in the sample and the estimate of DR
from Burt's data. If n is the number of loci and
there are equal allele frequencies (u = v) then
n = (i Range)2/DK. The range is 10-164 IQ
points. While DR, scaled up from o-T

2 = 1.00 in
Burt's data to 225 for Reed and Reeds' (1965)
is 271, n = 772/271 = 21.8. Thus at least 22
loci would seem to be controlling IQ. This is
probably a gross underestimate as n is lowered
by the inequality of effects of the loci, and the
range is probably underestimated due to ceiling
effects in the tests. Clearly many loci are in-
volved in determining individual differences in
IQ.

IQ (Wechsler Intelligence Scale for Children)

Further evidence concerning dominance and
the number of loci for IQ comes from a recent
study by Schull and Neel (1965), reported by
Spuhler (1967) on the effects of inbreeding on
Japanese children. This showed strikingly that,
for a number of tests, children resulting from
consanguineous unions had lower scores than
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those in a control group. This small (but highly
significant) inbreeding depression provides
very powerful evidence that dominant or inter-
active gene action is controlling these mea-
sures. We have singled out for consideration
the IQ score derived from a Japanese version
of the Wechsler Intelligence Scale for Children
(WISC), an individual test of general intelli-
gence covering a wide range of verbal and per-
formance material. While the significant in-
breeding depression is sufficient to establish
that the genes controlling this trait show strong
directional dominance, the size of the effect
adds further information. Combining sexes and
allowing for socioeconomic differences between
the inbred and control groups (which Schull
and Neel do by means of regression analysis)
the estimated inbreeding depression is 3.70
IQ points (see Spuhler, 1967, Table 2). Re-
membering the formula in the section on gene
action, Mt = M0 — 2f2uvh, where Mf is the
mean of the inbred group, M0 that of the con-
trols, and / the inbreeding coefficient, we can
rearrange to giveSwu/j = (M0 — Mf)/2/. Then
(M0 — Mf) is the inbreeding depression.

In Schull and Neel's study the inbred group
was the result of first-cousin marriages so that
f=T$. This gives

Vmh = 3.70 X 8

= 29.6

If the estimate of HR from the reanalysis of
Hurt's data may be taken as an estimate of HR

for this population, the number of genes show-
ing directional dominance can be estimated
from » = 16(Z«D/OVHR. Allowing that the
use of HR from another study is a doubtful pro-
cedure, it seems unlikely that its value would be
entirely wrong. HR = 0.627 from Burt's data
and scaled to (TT

2 for the WISC IQ gives HK

= 141.075.

n = 16 X 29.6V141.075

= 99.33

Thus about 100 genes seem to be showing
dominance for high IQ. This estimate is large
and some caution should be adopted in placing
too much reliance on it. Small biases in the
study could result in considerable inflation of
its value since the important item in the form-
ula for n depends on (M0 — Mf)

2. However

it is clear that directional dominance is demon-
strated and that many genes are involved.

IQ (Stanford-Binet and Otis)

For our final example we have chosen to look
at the IQ scores of the 19 pairs of MZA given in
Newman, Freeman, and Holzinger's (1937)
study to see if we can detect evidence of geno-
type-environment interaction. A more exten-
sive analysis of their data is ruled out by the
restricted range of the group we are considering,
and by the absence of raw data on the DZi and
MZx samples.

Two highly reliable and well-validated tests
of general intelligence were used, the individual
Stanford-Binet test, and the pioneer group test,
the Otis Group Intelligence Scale.

Stanford-Binet test. Three tests of genotype-
environment interaction were carried out.

1. For the 19 pairs of twins the correlation
of 5 (sum) with $ (difference) of their scores was
calculated. This gave r\t = — 0.0996, a non-
significant result indicating absence of GE.

2. Cochran's test (Winer, 1962) for hetero-
geneity of variance was carried out. In this test
C = 52max/S52. In our case, each 5 (twin dif-
ference)2 is an S" for 1 df.

It is these 52s we subject to Cochran's test.
Just as heterogeneity of variance within inbred
lines denotes GE, so does heterogeneity of vari-
ance within twins (see Tests for Genotype-
Environment Interaction). The maximum twin
difference is 24 IQ points

Therefore, 52max = f 242

= 288

Therefore, C = 288/1061

= 0.2714

The .05 significance level for C is 0.3894, so we
conclude there is, again, no evidence for GE.

3. Although with Tests 1 and 2 failing to re-
veal any effect, the test to be described is un-
likely to produce a positive result, but it seems
worth illustrating as part of a general approach
to GE where it is present.

In the original study, each twin was rated for
educational advantage relative to the other.
Thus for each pair there is a difference score on
this scale. This score seems from Newman,



APPROACHES TO GENETICS OF BEHAVIOR 345

Freeman, and Holzinger's (1937) analysis to
largely account for the differences between
twins. That is, EI + E2 is almost entirely due
to educational advantages. But it is worth
asking if differences in educational advantage
affect favorable genotypes to the same extent
as unfavorable ones, that is, does genotype for
IQ interact with educational advantage?

To examine this point, pairs of twins were
divided into two groups on the basis of high or
low genotype (i.e., according to their mean
scores). They were then divided according to
the size of difference in educational advantage
(the nine largest difference scores being classed
as "large educational difference"). A fourfold
table of IQ differences was obtained (see
Table 28). Analysis of variance was carried out
on this table and gave the result in Table 29.

Thus the importance of educational differ-
ences in determining EI andE2 is confirmed, but
there is no suggestion that genotypes are differ-
entially susceptible to environmental effects
(genotype item), or that such differential sensi-
tivity interacts with differences in educational
advantage. This method could probably be
extended to deal with a large range of causes of
GE.

Otis IQ. Tests 1 and 2 were applied to the IQ
scores obtained for the Otis Group Intelligence
Scale.

1. r\t = — 0.1346, a nonsignificant value.
2. Cochran's C = 0.2088, also a nonsignifi-

cant value. We conclude therefore, that there is
no evidence of genotype-environment inter-
action in these data.

DISCUSSION AND CONCLUSIONS

The techniques of biometrical genetics de-
scribed and illustrated in this paper can claim
a number of advantages over rival methods of
analysis.

One important advantage comes from pre-
liminary testing of the basic assumptions under-
lying simple genetic and environmental models.
These assumptions, discussed in the second
main section, dealing with genotype-environ-
ment models, were tested for those examples
where sufficient data was available, and the
results, together with a summary of findings,
are presented in Table 30. The assumptions, it

TABLE 28

TABLE OF DIFFERENCES IN IQ BETWEEN EACH M.ZA
PAIR CLASSIFIED ACCORDING TO A FAVORABLE OF

UNFAVORABLE GENOTYPE AND ACCORDING
TO DIFFERENCE IN EDUCATION

Difference In educa-
tional advantage

between each
MZx pair

Large
Small

Genotype

Favorable

2, 17, 24, 7, 10
5, 8, 1,6, 5

Unfavorable

12, IS, 1, 19
12, 4,1, 1,2,9

will be recalled, are as follows: that all groups
represent a random sample of genotypes and
environments present in the population, that
there is no correlation between genotype and
environment and no influence of genotype-
environment interaction.

Analysis of variance was carried out to test
the adequacy of the sampling in each of the
first four examples taken from Shields (1962),
and allowed us to decide which groups were
suitable for further analysis. Sampling was ade-
quate for most of the groups in three of the
measures but not, apparently, for some of those
in the Mill Hill Vocabulary example. Further
comparisons of group variances with the stand-
ardization variance confirmed our suspicion.
In this case, inadequate sampling produced an
effect similar to that of correlated environments,
and further analysis would have been quite mis-
leading. A test of heterogeneity of group vari-
ances was used to supplement the analysis of
variance and heterogeneity of the mean vari-
ances, for groups reared together and apart, to
indicate any correlation between genotype and
environment. The latter test, applied in the
first five examples, failed to reveal a significant
correlation effect in two personality and three
cognitive traits. Other features of the data in-

TABLE 29

ANALYSIS or VARIANCE OF ENVIRONMENTAL
DEVIATIONS IN TABLE 28

Source

Genotypes (G)
Educational difference (E)
GXE
Replication

df

1
1
1

IS

MS

0.04
41.7
0.02
8.39

F

4.97*

*p <.OS.
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TABLE 30
SUMMARY OF RESULTS AND FINDINGS FOR NINE EXAMPLES OF REANALYSIS OF THE DATA IN TABLE 4

Example

Number

1

2

3

4

6

5

7

8

9

Phenotype

Neurotlcism

Extraversion

Mill Hill
Vocabulary
Test

Dominoes
Test

Educational
attainments

IQ (Hurt's
Group
Test)

IQ (Several
tests)

IQ (WISC)

IQ (Stanford-
Binet and
Otis)

Main Findings

Correlated
environments

none

none

none, but poor
sampling mimics
correlation effect

none

Positive correlation
of heredity and
environment be-
tween families
indicated
(p <.001)

none

_

—

—

Genotype-environ-
ment interaction

none

Introvert genotype
more modifiable
than extravert
genotype by with-
in-family environ-
ment (p <.02)

Suggestion that un-
favorable genotypes
are more influenced
by environment
than favorable ones
(p.l-.QS)

none

_

none

Heritabllity ± SE

Broad

54 ± 7%

67 ± 8%

73 ± 12%

71 ± 7%

Uncertain
but prob-
ably less
than 30%

86 ± 1%

—

_—

Narrow

54 ± 7%

—

—

71 ± 1%

Conclusions

Very simple genetical model
adequate to explain data.
Assortative mating Indi-
cated. Additive gene action
only detected indicates in-
termediate expression of
trait favored by natural se-
lection. Common family en-
vironment unimportant.

Simple model not adequate as
DZr appear to react against
each other producing nega-
tive correlation. Some evi-
dence effect is built upon
genetic differences. Common
family environment unim-
portant.

Poor sampling of genotypes
vitiates attempt at more
adequate analysis.

Very simple genetical model
adequate. Common family
environment unimportant.

Simple model probably not ade-
quate, but sampling effects
may be producing a false
picture. No proper tests of
assumptions possible with-
out raw data. Assortative
mating is indicated. Com-
mon family environment
very important, and accent-
uated by effects of correlated
environments.

Fairly simple model adequate
to explain the inheritance of
IQ. Assortative mating tak-
ing place.

Additive and dominant gene
action detected with level of
dominance 0.74.

Dominance for high IQ for
many genes (about 100) and
gene frequencies, on average
equal.

Gene action strongly suggests
that IQ has been subject to
considerable directional na-
tural selection during man's
evolutionary history. Unlike
educational attainments,
common family environment
unimportant.

dicated correlation for educational attainments,
as might be anticipated, but with no proper test
of either sampling or correlation little reliance
can be placed on this finding. The final assump-
tion of no genotype-environment interaction
was tested by correlating the sums and differ-
ences for MZf and MZA in the four examples
taken from Shields (1962), and in the final ex-
ample on IQ by a test of the heterogeneity of
within-twin differences. Some interaction was
indicated in the examples (see section Extra-
version and the Mill Hill Vocabulary Test) but

in neither case was the contribution to total
variation important, being less than 10%. All
these preliminary tests of assumptions allowed
us to arrive at simple genetic and environmen-
tal models that were both realistic and parsi-
monious. In alternative approaches little or
no attempt is made to test these assumptions
with the result that we cannot be sure whether
a particular model is appropriate or not. In the
MAVA approach the omission of these tests
may have serious consequences since the model
is quite complex, and, if inappropriate, would
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lead to a considerable distortion of the real
situation.

Another important advantage of the biomet-
rical approach comes from the method of
estimation used in fitting the model finally
chosen to represent the data. All other ap-
proaches use just sufficient groups to provide
an exact fit, that is, the number of unknown
parameters in the model equals the number of
groups. Where more groups than parameters
are available, as in the reanalysis of Burt's
(1966) IQ data, this would result in an in-
efficient use of available information. When we
consider the cost of data of this kind it seems
imperative that it is used efficiently. The
weighted least-squares or maximum likelihood
procedure we describe uses all the available
information in the data, and has the added ad-
vantage of leading to a chi-square test of "good-
ness of fit" of the model, providing a further
test of the basic assumptions underlying the
model. It also provides highly reliable standard
errors for the estimated parameters without
which further interpretation must remain un-
certain. Using this method of estimation in the
example reanalyzing Burt's data we showed
that the UT group was inconsistent with all
other groups in the study, and thus justified its
rejection. Subsequent estimation provided a
strikingly good fit for a simple model yielding
highly reliable estimates of Gi, G2, Ei, and E2.
Finally, perhaps the most important contribu-
tion of the biometrical approach comes from the
information it provides on the gene action con-
trolling traits and the subsequent evolutionary
implications that may be drawn from this.
Adapting the approach of Fisher (1918) and
Burt and Howard (1956) to benefit from the
maximum likelihood estimation, we demon-
strated two methods for estimating the gene
action parameters Da and HR, allowing for the
presence of assortative mating. For detecting
the direction of dominance two methods were
demonstrated, one using the shape of the dis-
tribution of scores within families, and the other
the phenomenon of inbreeding depression.
These methods, when applied to data on IQ
(see sections Burt's Group Test, Several Tests,
and WISC), all agreed in detecting a significant
level of dominant gene action. The direction of
dominance was for high IQ,indicating an evolu-
tionary history of strong directional selection

for this measure. The gene action parameters
had the further value of allowing approximate
values of the level of dominance compared with
additive effects, the number of genes influenc-
ing the trait, the average gene frequencies, and
the influence of assortative mating to be as-
sessed.

Turning from the importance of the biomet-
rical method to the findings, it is interesting
to note that the inheritance of most of the psy-
chological measures reanalyzed conform to a
simple model. In view of pessimism, over the
possible influence of correlated environments
and genotype-environment interaction so often
expressed in the psychological literature, it is
reassuring to find they are by no means uni-
versal phenomena. The reasons why correlation
effects are of little importance is not entirely
clear to us, but may result from using tests
having high test-retest reliability over long
intervals. Such tests measure traits showing
little dramatic change throughout long periods
of the subject's life. However, these tests will,
necessarily, measure aspects of subjects deter-
mined very early on, and may, therefore, re-
flect primarily genetic and prenatal and early
postnatal influences. If this is so, many of the
cultural factors, which would normally lead to
correlated environments (Cattell, 1963), will
produce little or no effect. This would also ex-
plain the frequent finding of the unimportance
of common family environment (E2). The
absence of important genotype-environment
interaction may also result from the use of tests
with a high genetic component showing stabil-
ity over long periods of time. A further factor
may result, however, from the practice in test
construction of aiming at a constant reliabil-
ity throughout the range of the trait. Since
error of measurement is included in twin differ-
ences, this would tend to minimize their heter-
ogeneity. In view of the high heritabilities re-
corded in Table 30, and the known, or probable,
reliabilities of the tests, much of EI may result
from unreliability variance leaving little else
environmental to interact with genotype. If
we are correct, then measures not deriving from
psychological tests might show a greater com-
plexity of mode of inheritance as, for example,
measures taken from experimental, physiologi-
cal, or developmental psychology.

However, within the simple model the find-
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ings for each trait showed important differ-
ences. For the section Neuroticism, assortative
mating was indicated and only additive gene
action, suggesting that the evolutionary history
of this trait has involved natural selection for
and intermediate optimum, either extreme of
the trait being at a reproductive disadvantage.
In contrast to this, examples concerned with IQ
showed strong directional dominance for high
expression, indicating that during man's evolu-
tion subjects with high IQ have been at a re-
productive advantage, a situation to which
man seems, recently, to be returning (Reed,
1965).

We note also that the high number of genes
estimated to be controlling IQ (>22 and ap-
proximately 100) fully confirms that this trait
is under polygenic control.

Extraversion, while not allowing a complete
analysis, showed evidence of an interesting
role taking effect. Shields (1962) discussed
how one MZ? twin assumes the extravert role
of leader, and how this role develops throughout
the lives of the twins. Our negative estimate of
E2 may result from this process not taking
place when twins are separated, and the nega-
tive correlation item for DZi (CGi) from
genetic differences between DZ twins greatly
intensifying this effect. Suggestions for^the
further investigation of this phenomenon are
given in the example.
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