THE EFFECT OF ASSORTATIVE MATING ON THE
GENETIC COMPOSITION OF A POPULATION

There are two classic papers on assorta-
tive mating, written by Sewall Wright
(1921) and R. A. Fisher (1918). The ap-
proach in the two papers is quite different,
although the general qualitative conclusions
are similar. Fisher’s paper is notoriously dif-
ficult to read, although this is remedied to
some extent by the publication of an an-
notated version by Moran and Smith (1966).

Our object is mainly a review of these
classic results. Included is a derivation of
Fisher’s main conclusions, using a method
rather similar to Wright’s. It is thereby pos-
sible to obtain Fisher's results using only
elementary methods.

COMPARISON OF ASSORTATIVE
MATING WITH INBREEDING

Assortative mating means that mated
pairs are more similar for some phenotypic
trait than would be expected if they were
chosen at random from the population.
Since individuals with similar phenotypes
will usually be somewhat similar in their
genotypes, we should expect assortative
mating to have generally the same conse-
quences as inbreeding. An excess of con-
sanguineous mating has two consequences:
(1) an increase in the average homozygosity;
and (2) an increase in the total population
variance. Assortative mating should give
qualitatively similar results.

Assortative mating may have either of
two causes, or some combination of both.
The tendency toward phenotypic similarity
of mating pairs may be a direct consequence
of genetic relationship. For example, in a
subdivided population there will generally
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be a greater phenotypic similarity among
the members of a subpopulation because
they share a common ancestry. The genetic
consequences in this case are the same as
those of inbreeding. On the other hand, there
may be assortative mating based on similar-
ity for some trait, and any genetic relation-
ship is solely a consequence of similar pheno-
types. For example, there is a high correlation
between husband and wife in height and
intelligence, probably caused much more by
nonrandom marriage associated with the
trait itself than by common ancestry.

There are also other situations. For ex-
ample, there is a considerable correlation in
arm length between husband and wife. This
is probably a consequence of the fact that
those factors, genetic and environmental,
that increase height also increase the length
of the arm. So, any assortative mating for
height will be reflected in a similar assorta-
tive mating for arm length, diminished
somewhat by the lack of perfect correlation
between the two traits. It may be that a
population is mating assortatively for some
traits and not for others at the same time.
There may also be negative assortative, or
disassortative, mating if opposites attract,
but we shall consider mainly positive as-
sortative mating.

In general, assortative mating causes less
increase in homozygosity than inbreeding,
especially if the trait involved is determined
by several gene loci. On the other hand, as-
sortative mating causes a large increase in
the variance of a multifactorial trait, in con-
trast to that produced by a comparable
amount of inbreeding. A further difference is
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that inbreeding affects all segregating loci,
whereas assortative mating affects only
those related to the trait involved.

The variance-enhancing effect of assorta-
tive mating is apparent with a simple ex-
ample. Suppose that an arbitrary quantita-
tive trait is influenced by two loci without
dominance. Let each gene with subscript 1
add one unit to the phenotype, whereas each
gene with subscript 0 adds nothing. Then
the genotype A;4; B,B; represents one ex-
treme phenotype and 404, BoB, the other,
with 414, BoBo, A14e B[Bo, and A¢A4¢ BB
being exactly intermediate. Inbreeding will
increase the frequency of all four homozy-
gous genotypes, AiAi1 BiB1, Aodo BBy,
A1A1 BoBo, and AoAq BoB,. This will in-
crease the variance; in fact, it will exactly
double the variance if the population is
changed from random mating proportions to
complete homozygosity.

On the other hand, with complete as-
sortative mating, the population approaches
a state where only the extreme homozygotes,
A1A;1 B1By and AAo BoBy, remain. This
clearly causes a much greater enhancement
of the variance, especially as the number of
relevant loci is increased. The variance in-
crease with assortative mating has been
shown experimentally in Nicotiana (Breese
1956) and Drosophila (McBride and Robert-
son, 1963). The latter authors also found the
expected decrease with disassortative mat-
ing and demonstrated that the rate of
change under selection can be increased with
assortative mating.

With inbreeding there is no systematic
change in the frequencies of the gamete
typES, AlBl, AlBo, A()Bl, and AoBo. On
the other hand, as the example shows, as-
sortative mating causes a change in fre-
quency of the gametic types, increasing two
while decreasing the other two. So, another
way of describing the effect of assortative
mating and of understanding its variance-
enhancing effect is to note that it causes
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gametic phase (or linkage) disequilibrium.
In the words of Breese (1956, p. 342), as-
sortative mating causes a “reassociation of
genes in such 2 way that the excess of com-
binations giving extreme expression is
achieved at the expense of more balanced
combinations.”

The simplest cases of complete assorta-
tive mating were worked out long ago by
Jennings (1916) and by Wentworth and
Remick (1916). As an example, consider a
single locus with two alleles in which all
three genotypes are distinguishable and as-
sume that each genotype mates only with a
genotype like itself. The genetic conse-
quences are exactly the same as with self-
fertilization; heterozygosity is reduced by
half each generation and the variance is
eventually doubled.

It might be thought from this example
that assortative mating leads eventually to
complete homozygosity, as do many forms
of inbreeding, but this is not the case. Partial
assortative mating, like partial self-fertiliza-
tion, leads to an equilibrium level of
heterozygosity other than zero.

In the more general treatment of assorta-
tive mating, two cases are of interest. At one
extreme the individuals fall into two (or pos-
sibly more) discrete phenotypes with prefer-
ence for mating within a phenotype. For
example, deaf persons tend to marry others
with the same trait. At the other extreme is
a character, like size, for which there is a
correlation between mates, but for which the
distribution is continuous and determined
by multiple genetic and environmental fac-
tors.

Before dealing with more complex multi-
factorial models, we shall first consider a
single locus trait.

ASSORTATIVE MATING FOR
A SINGLE LOCUS

With inbreeding, the choice of a mathe-
matical model is clear from knowledge of the
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relationship and the Mendelian mechanism.
With assortative mating, the choice of mod-
els is not so obvious, as different behavior
patterns can have different consequences.

We shall measure the degree of assorta-
tive mating by the product-moment correla-
tion between parents. For a quantitative
trait the correlation is directly measurable.
For qualitative traits we measure the cor-
relation coefficient as the decrease in the
proportion of matings between dissimilar
phenotypes divided by that which is ex-
pected with random pairs.

As a simple first example, assume that
there are two alleles and that each genotype
has a distinct phenotype. We let a fraction, ,
mate strictly assortatively while the remain-
der mate at random. In this system, a cor-
relation of one is equivalent to self-fertiliza-
tion and as mentioned before, decreases
heterozygosity at a rate of 509, per genera-
tion. Partial assortative mating (r < 1) is
equivalent to partial self-fertilization. This
was first worked out by Wright (1921). The
population eventually approaches an equi-
librium in which the homozygosity is equiv-
alent to an inbreeding coefficient of F =
r/(2 — r). This will be demonstrated later.

A more important example for human
genetics is the case where dominance is com-
plete, which we now consider.

Assume that there are only two alleles
and, since dominance is complete, there are
only two phenotypes. Let P; be the fre-
quency of 44 in generation ¢, 20, be the
frequency of heterozygous Aa, and R, that
of the recessive aa. Let r be the correlation
between mating individuals; that is to say, a
fraction, r, mate strictly assortatively and
the rest mate at random with respect to the
trait considered.

To see the algebraic relationships, we im-
agine the population as being divided into
three groups: a randomly mating group
comprising a fraction (1 — r) of all matings
and with the A gene frequency P 4 Q = p;
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a recessive assortatively mating group mak-
ing up a fraction 7R of matings and with the
A gene frequency zero; a dominant assorta-
tive group comprising a fraction (1 — R)
and with the 4 gene frequency (P 4+ Q)/
(1 —R) or p/(1 — R) and recessive gene
(@) frequency Q/(1 — R). From the ran-
domly mated group, the fraction of A4, Aa,
and aa progeny will be #?%, 2pg, and ¢?, where
g = 1 — p. The contribution of the domi-
nant assortative group to the 44 class next
generation will be r(1 — R)[p/(1 — R)}%,
to the Aa class will be r(1 — R)2[p/(1 —
R)[Q/(1 — R)], and to the aa class will be
r(1 — R)[Q/(1 — R)]%.. The recessive as-
sortative mating group will make its entire
contribution, 7R, to the ae class.

Putting all this together, the genotype
frequencies next generation will be

P(AA) = Pt+1
=(1-nNpP+r1—-R)

P 2
X (1 — Rc) (1)
rp?
=(1'—7)P2+1_R‘ )
P(Aa) = 2Q:1
=(1—-172pg+r(1 —R)
p Q.
X2{_RI-R &)
_ _ 2rpQ:
= 2(1 r)Pq+P+Q‘,
P(aa) = Rg+1

=1 —-nNg+rR +r(1—Ry)

X (1 ng)z = (1=n¢

+EE

3)
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We have written p and ¢ with no sub-
scripts, since they do not change with time.
This can be verified by summing (1) and
half of (2). Recalling that p = P +Q,
¢ =Q 4+ R, and H = 2Q, this simplifies to
pip1 = Pi, showing that the gene frequency
does not change. As with inbreeding, only
the genotype frequencies change, not the
gene frequencies.
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whose solution gives the equilibrium value,
@, in terms of the correlation between mates
and the gene frequency. This equilibrium
and the rate of approach have been dis-
cussed by O’Donald (1960).

Of some interest is the extent to which
assortative mating increases the frequency
of homozygotes for recessive genes. The
equilibrium proportion of recessive homozy-

TABLE 1

PROPORTION OF RECESSIVE HOMOZYGOTES WITH ASSORTATIVE MATING
FOR VARIOUS VALUES OF THE RECESSIVE ALLELE FREQUENCY
(g) AND THE DEGREE OF ASSORTATIVE MATING (r)*

Recesstve ALLELE FrEQUENCY (§)

DEGREE OF As- 0.01 0.1 0.5

SORTATIVE MATING

(r R R, R Ry, Ry R,
0.000......... 0.00010 0.00010 0.010 0.010 0.250 0.250
0.125......... 0.00011  0.00011 0.011  0.011 0.260 0.261
0.250......... 0.00012 0.00013 0.012 0.013 0.271 0.273
0.500......... 0.00014  0.00020 0.014 0.017 0.292 0.305
0.750......... 0.00017  0.00038 0.016 0.027 0.312 0.352
1.000......... 0.00020 0.01000 0.018 0.100 0.333 0.500

* The values given are the proportion of recessive homozygotes after one generation of assorta-

tive mating (R:) and at equilibrium (R, = R).

When assortative mating is complete
(r = 1), (2) becomes

201 = 200«

P+ 0

4

gotes is given by equating R,;; and R,. This
gives the quadratic

R—-RA+@—rH+¢=0 (6

with the solution

polt@—rp— VA + @ — 1) — 4
= : ,

This approaches O as ¢ increases, but ex-
tremely slowly. When p = 1, then 20, = %,
and the frequency of heterozygotes in suc-
cessive generations follows the simple har-
monic series, 1, 1, 1, %, and so on, as first
shown by Jennings (1916).

With any value of r except 1, the popula-
tion never attains complete homozygosity,
but approaches an equilibrium. We can find
the equilibrium heterozygosity by equating
Q41 to Qy, giving

Q* + p(1 — NQ — g1 — 1) =0, (5)

(7

Some numerical examples are given in
Table 1.

Several general conclusions emerge from
examination of this table. First, with weak
assortative mating there is little ultimate in-
crease in homozygous recessive genotypes,
as seen in the values near the top of the
table. However, the population goes a large
fraction of the way to equilibrium in the first
generation. On the other hand, as seen in the
lower left part of the table, intensive as-
sortative mating with a rare recessive gene
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can lead eventually to a considerable in-
crease in recessive homozygotes, but this is
approached very slowly.

When g is small and r is not near to 1, the
solution of (7) is approximately

R=g/0+g-m) @
or, alternatively, if  is small a good approxi-
mation is

R=¢ll +rp?/(1 —¢)], (9)
where ¢* is the value of R when mating is at
random. For example, if red hair were
caused by a recessive gene and the tendency
to assortative mating for this trait were
25%,, the proportion of redheads would
eventually be increased by roughly one-
third, and most of this increase would be in
the first generation.

Assortative mating is quite high for deaf-
ness, and it might be thought that this is a
major factor in increasing the incidence. It
has been estimated (Chung, Robison, and
Morton, 1959) that there are at least 35
recessive genes, any one of which can cause
deafness when homozygous, and with an
average frequency of 0.002. Whatever the
amount of assortative mating for deafness as
a trait, it would be only about 1/35 of this
amount for any one recessive gene—some-
what less because of other causes of deafness.
Thus, even with strict assortative mating,
the incidence would not be increased by
more than 29, or 3%, The increase would be
still less, if indeed it were an increase at all,
because with assortative mating there would
also be a tendency for association between
different genes for deafness. To the extent
that there is simultaneous homozygosity for
two or more genes for deafness there will be
fewer deaf persons than if the homozygosity
for deafness genes were dispersed in separate
individuals. However, the incidence might
be enhanced if there were a tendency for
consanguineous marriages among the deaf.
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ASSORTATIVE MATING FOR A SIMPLE
MULTIFACTORIAL TRAIT

Consider a trait determined by » gene
loci. At each locus is a gene with frequency p
such that the substitution of this gene for its
allele adds a constant amount a to the char-
acter under consideration. Later, this re-
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F16. 1.—Correlations between the values of genes
in two parents, X and Y, and their progeny. The
circles represent individual genes. Homologous genes
are opposite each other and genes from the same
gamete are in a single vertical column.

striction to equal gene effects and equal fre-
quencies at all loci will be removed.
Let

n = the (haploid) number of relevant
gene loci;
f = correlation in value of homolo-
gous genes;
k = correlation of nonhomologous
genes in the same gamete;
1 = correlation of nonhomologues in
different gametes:
m = correlation of homologues in dif-
ferent individuals, X and ¥
m' = correlation of nonalleles in dif-
ferent individuals.

These relations are shown in Fig. 1. '
An individual gene has a variance pqas,

where ¢ = 1 — p. This can be shown as fol-

lows: For convenience, let the value of one
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allele be a and the other 0, with frequencies
2 and ¢. The mean value is pa + ¢0 = pa.
The variance, v, is p(a — pa)? + ¢(0 —
pa)? = pga’. Likewise, the covariance, cov,
of two genes, each with the same variance, is
the variance times the correlation coeffi-
cient. For example, the covariance of two
homologous genes is pga’f.

We can write the variance of the total
value of individual X as the sum of the
variances of the component genes. Thus

V(X) = Zv; + 2Zcovy;

where ¢ and § designate individual genes.

The variance of an individual gene, ;, is
pga’® and there are 2z of them, so Zy; =
2npga®. The covariance of a pair of alleles
is pgfa?, and there are n pairs. The covari-
ance between nonalleles from the same
gamete is pgka® and there are n(n — 1) com-
binations. Likewise, there are n(n — 1)
pairs of nonalleles in different gametes with
covariance pga®. Putting all this together
the variance of X at time { is

V(X): = 2npqga® 4 2npgfia?
+ 2n(n — 1) pgk.u®

4+ 2n(n — 1)pglia? (10)
= 2npqa*{l + fi + (n — 1)
X (ke + 1] .
Likewise the covariance of X and ¥ is
Cov(X,Y): = 4dnpgmu?
(1)

+ dn(n — 1)pgmia® .

If the assortative mating is based solely
on the phenotype, rather than being a by-
product of common ancestry of the mates,
and the gene frequencies are the same for all
loci, there is no more reason for alleles in
mates to be alike than nonalleles. Therefore
m, = m, and we can drop the prime in equa-
tion (11), leading to

Cov(X,Y): = dn*pgmu® .  (12)
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From Fig. 1 the following recurrence rela-
tions can be seen.

fz+1 = M (13)
lH—l = m: = mt (14)
ki = (1 — o)k + ¢l (15)

where ¢ is the proportion of recombination
between the two relevant loci. In this case
it is an average of the recombination be-
tween all pairs of loci concerned with the
character, and for man is very nearly one-
half, since most pairs of loci are unlinked.

If r is the coeflicient of correlation be-
tween the phenotypes of the two mates, X
and ¥, which have the same variance, the
covariance is

CX,7) =rV(X).

Substituting into this from (10) and (11)
gives

dan?pgmal =l +fi+ (n — 1)
X (kg + lg)]2npqa2 .

Now we substitute fy1for m, (see [13]) and f;
for I, ([13] and [14]), which leads after some
rearrangement to

fur =5 (L +ufe + (n — Dh] . (16)

Using this and the relation

k= (1 — ke + o 17

(from equations [13], [14], and [15]) we can
compute f; for any generation ¢, given the
starting values, fo and ko, which would both
be O for a randomly mating population in
gametic phase or “linkage” equilibrium.

At equilibrium there is no distinction be-
tween ¢ and ¢ 4 1, so using carets to desig-
nate equilbrium values

A

f=i=m=%F. (18)
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Using these equilibrium relations, (16)
becomes

f=gt+nf+ (= 0],

leading to
r

/= 2n(l —1)+r
as first shown by Wright (1921).

~

If » is large, f is small unless r is very
nearly 1. This shows that, unless the number
of loci is small or the degree of assortative
mating is very intense, there is only a very
slight increase in homozygosity.

There is a much larger effect on the vari-
ance. From (10), substituting f; for I/, from
(13) and (14),

V(X)e= Vil +nf + (n — DE], (20)

where Vo = 2upga?, the variance with ran-
dom mating and linkage equilibrium. At
equilibrium under assortative mating, sub-
stituting into (20) from (19) and (18),

(19

— VO
PX) ===y @
(Wright, 1921) or, for large #,
s Vo
V(X) =~ et (210)

As a numerical example, let r = 1/4,
which is roughly the correlation in height
between husbands and wives. The homozy-
gosity is increased only trivially if », the
number of factors, is large. After one gen-
eration f=1/8% and at equilibrium is
1/(6n <+ 1) or approximately 1/6x. On the
other hand the variance is increased by 1/8
in the first generation and eventually by
1/3.

MULTIPLE ALLELES, UNEQUAL GENE
EFFECTS, AND UNEQUAL
GENE FREQUENCIES

Still assuming no dominance and epistasis
and no environmental effects, the assump-
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tions of only two alleles with equal effect and
equal frequency will be dropped.

Let o% be the variance of a gene at the ith
locus. Thus ¢? = Zp.a? — M?, where p; and
az, are the frequency and effect on the trait
of the kth allele, M is the mean effect of these
alleles and the summation is over all alleles
at the 7th locus. The ¢,’s remain constant
under assortative mating since the gene fre-
quencies do not change.

The covariance ox; between two genes is
aro e Where 7, is the correlation between
the two genes. The correlations f, &, /, m and
m' of Fig. 1 are no longer constant for all
pairs of genes. Equations (10) and (12) can
be written more generally as

V(X) = 2%}3 + 230,
s=1 : (22)

4 2D k0.0, 4 22 1,0,0,
172 17

and

C(X,Y) = 42 m.0.0, . (23)
%3

The recurrence relations (13), (14), and
(15) still apply to individual gene pairs; that
is
(24)

Loty = myye (25)
ki = (A = ek, + ool (26)

fi.H—l = Maaty

so that at equilibrium

fi = M, ku = lu = My . (27)

Then, at equilibrium (22) becomes

V(X)) = 40 m,0.0,

— ZZm,.af -+ 2203 .

(28)

We now let

= Zm,,cr.a',/zm"a'?.
L) 4

(29)
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Substituting this into (23) and (28) gives

PX) = C(X,Y) — C(X D4y, (0
and
Vo= V(X)o= 23 0i. (30a)

Vo is V(X) before the assortative mating
began (f=1=Fk=m=0 in [22]). Since
C(Xx, v) = 7 (X), we get

Vo
r(1—1/2n) "

7(X) = 1 31)

At equilibrium, the average inbreeding
coeflicient, weighted by the contribution of
each locus to the variance, is

f= Tmiot / ;a%.

Substituting from (29), (23), and (30q)

Vo ¢2)

=2n,(1—r)+r'

Comparing (31) and (32) with (21) and
(19) shows the equivalence of # and ..
When m;; = m;; = m, then from (29)

= Yoi0; [ 3}
L ¥} 4

and if each locus has the same standard
deviation (o; = ¢; = ¢) then n, = n2d?/
no? = n. We therefore call n, the effective
number of loci. It will be equal to the true
number when there is free recombination
and all loci contribute equally to the vari-
ance; otherwise it will be less.
Notice that when n, = 1, (32) gives

f=5= (33
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the value mentioned earlier when we dis-
cussed a single locus. Likewise

). 69

The variance after one generation of as-
sortative mating is readily derived. From
equations (22), (23), (24), (25), and (30a)
we can write

V(X) = Vo

V(X)) = Vo+ 226?171;:'.0
+ 22 kija0i0;
I3 7]
+ ZEaiajm.-,-.q .
=)
But %5, = 0, from (26). Thus
V(X)1 = Vo + 227}2.’,’0’;0‘,‘
¥

= Vo -+ 1C(X,¥)o (from [23])

==Vo(1+%)

since C(X, ¥) = rV(X).

Table 2 gives some numerical illustrations
of the increase in homozygosity and vari-
ance after one generation of assortative mat-
ing and after equilibrium is reached.

We have not considered the effects of dis-
assortative mating, but there is nothing
about these formulae that demands that r
be positive., Disassortative mating has op-
posite effects, a decrease of homozygosity
and variance and a building up of linkage
disequilibrium in the opposite direction (i.e.,
an association in the same gamete of genes
of opposite effect).

(35)

EFFECT OF DOMINANCE AND
ENVIRONMENT

In a randomly mating population the
variance can be divided into components.

Vi=Vo+Vat V. (36)
or

Vi=Vi+ Ve (36a)
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where V, is the total variance and V,, V,,
Vs, and V, are the genic (additive genetic),
dominance, genotypic (or total genetic), and
environmental components.

The equations above assume that the
genetic and environmental factors are inde-
pendent so that V, is simply additive to the
other components. This is a major limitation
to precise quantitative prediction of the
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lier, with a large number of genes there is
very little change in heterozygosity under
assortative mating, and therefore V, is not
expected to change very much.
We let 4 be the correlation between the
genic values of the mates. Thus,
Ve
r v, = rH
where H is the keritability.

A= @37

TABLE 2

EFFECT OF ASSORTATIVE MATING ON THE AVERAGE INBREEDING
COEFFICIENT OF RELEVANT GENES AND
THE VARIANCE OF THE TRAIT*

GENE INBREEDING
Loct COEFFICIENT VARIANCE
V1 Veo
CORRELATION BETWEEN MATES _ ———
ANp HERtrammiry (H) fia i feo Vo Va
r=1 1 0.500 1.000 1.500 2.00
H=1j
4 0.125 1.000 1.500 8.00
r= 5. 1 0.250 0.333 1.250 1.33
H=1 §
4 0.063 0.111 1.250 1.77
® 0.000 0.000 1.250 2.00
r= 25\................ 1 0.125 0.143 1.125 1.14
H=1 |
4 0.031 0.040 1.125 1.28
© 0.000 0.000 1.125 1.33
r=.50 i ® 0.000 0.000 1.0631 1.21
H=.5

* Subscripts o, 1, and o, refer to the randomly mating population, the population after one
generation of assortative mating, and the population at equilibrium under assortative mating,

t Exact only if Vg = 0.

phenotypic effects of assortative mating,
particularly in human populations. We are
also ignoring the effects of epistasis. Finally,
all the results from here on are only approxi-
mate.

According to Fisher (1918), assortative
mating will increase V,, but not Vgand V..
This is not surprising, since with multiple
factors only genic effects contribute to the
correlation between parent and offspring
(Reeve, 1961). However, it is not strictly
true, for V4 does change. But, as noted ear-

After one generation of assortative mat-
ing

V= V,(l +—‘§) + Va+ V. (38)

from (35), after replacing r with 4. Equa-
tion (38) will be reasonably accurate if Vais
small. Otherwise, the factor by which V, is
inflated may be appreciably in error. See
Reeve (1961) for an exact expression for the
two allele case. Equation (38) is strictly cor-
rect only in the absence of dominance.
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At equilibrium under assortative mating

A=rVe i,

i

(39)

Substituting into (36) from (31) gives

1
V¢=Vg—“—," V. V.
(l—AQ + Va+
40
=V, Vof ———=— 40
+ — T (40)

I

V' 1+H<1——AQ]

whereQ = 1 — 1/24..

We have used 4 instead of r because only
the genic part of the correlation contributes
significantly to the variance of future popu-
lations. Furthermore, we use the equilibrium
value of A4, since even with constant r there
will be changes in 4 as the composition of the
population changes.

The object is to express the population
variance and the correlation between rela-
tives after equilibrium under assortative
mating in terms of quantities that can be
measured in the random mating population
before assortative mating began. To do this
we must have a measure for A. Note first the
identity

1 —
Vi— V= V,,(——B—H) ,

which follows from the definition, H =
V,/V:. But, since V4 and V. do not change
much with assortative mating,

5
=z 5 )

Equating the right sides of (41) and (42) and
recalling that H = A/r, we obtain, after

(41)

Vt— Vg

i

(42)

some algebraic rearrangement, Fisher’s
equation for A:
0l — MA*— A+ Hr=0. (43)

Eugen. Quart.

H can be measured in the randomly mating
population. Then, if Q is taken as 1 (i.e., the
effective number of genes involved is as-
sumed to be large, as it must be if other as-
sumptions are to be correct), the equation
can be solved for 4, and this value put into
(40) to give the equilibrium variance.

As an example, let H# = .5, r = .5, and
Q = 1. Solving for A gives (2 — v/2)/2 =

.293. Then, from (40)
.293
7= 1 + 5(1 .293 ]
= 1.207 Vg )

so the population variance is increased after
equilibrium under assortative mating of this
degree by about 21%,.

This value is given in the bottom row of
Table 2, along with the increase in variance
after one generation of assortative mating,.
As noted above, the latter value especially
may be a poor approximation if Vg is large.

EFFECT OF ASSORTATIVE MATING ON THE
CORRELATION BETWEEN RELATIVES

This was first done by Fisher (1918) and
we follow his method.

Consider first parent-offspring correla-
tion. The correlation is V,/2V; in a ran-
domly mating population. With equilibrium
under assortative mating this will change for
two reasons. One is that the variances in-
crease, so we must replace V, and V; with
their equilibrium values. The other reason is
that the correlation between the two parents
will, to the extent that this is reflected in
genetic differences, add to the correlation of
offspring with one parent through influences
acting through the other.

If the chosen parent deviates by a unit
amount from the population average, the
other parent will deviate by r because of the
correlation between the two mates. The
mean deviation of the parents is thus
(1 4 r)/2, and the expected deviation of the
children is the genic part of this, or V,/V,



Vol. 15, No. 2

times the parental mean deviation. Thus,
the correlation between the chosen parent
and the offspring at equilibrium under as-
sortative mating is

. 14

Tpo = %—1 (1 + f) ’

(44)

which in terms of the random mating vari-
ances is

s 1Vt VR

po = 2 (1'{‘7):
%+mK (45)
K’=__AQ_A__’
1— 4AQ

as given by Fisher (1918) for Q = 1.
Fisher also gives the grandparent-child

correlation as
~ _Vii4r144

Tpo =

.2 2

(46)

and each additional descendant multiplies
the correlation by (1 4 A)/2, as expected
since only the genic component is trans-
mitted and therefore A replaces .

With full sibs the problem is more compli-
cated because there are also correlations be-
tween the dominance components. Recall
first the correlatiori between sibs under ran-
dom mating,

|~

[N

(47)

Yoo =

=<

V.
+iy-

¢

The variance within a sibship with parents
chosen at random is

V. = V¢(1 — r.,.,)
14 Va
—1%9 173
=v(1-3yi-4y) @
=3V, +3Va+4 V..
However, Fisher notes that this is also a

good approximation to the variance within a
sibship when the parents are mated assorta-
tively, since the variance within a sibship
depends only on genes for which the parents
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are heterozygous and, as we have learned,
with a large number of genes the heterozy-
gosity is only slightly decreased by assorta-
tive mating. Considering now the popula-
tion at equilibrium under assortative mating,

TABLE 3

CORRELATIONS BETWEEN RELATIVES IN A RAN-
DOMLY MATING POPULATION AND IN A
POPULATION AT EQUILIBRIUM UNDER AS-
SORTATIVE MATING WHERE r IS THE PHENO-
TYPIC CORRELATION BETWEEN MATES, H =
Vy/Ve, D=V 4/V, AND A = Hr*

CORRELATIONS
Random
RELATIVES mating Assortative mating

Parent-ofi- .

spring....... i 1H(147)
Grandparent- R .

offspring. . .. b4 1H(1+n(1+4)
Great grandpar- R R

ent-offspring. P2 1H\ +)(1+A4)
Sibs.......... 1H+1D 1H(1+A)+3iD
Double first . N R

cousins. ..... 1H+4:D %I{(l +34)+2D
Uncle-niece. . .. i (144941 D4
First cousins. .. i JH( AP+ DA

* Equilibrium values under continued assortative mating
are indicated by carets. The effective number of genes is as-
sumed to be large, so that (2n, ~ 1)/21, may be regarded as 1,

the correlation is a measure of the reduction
of the variance within a sibship.
Thus

1__; =%Vﬂ+§‘Vd+Ve
[ V‘ .

But, from (40), V, = V,+ KV,. Making
this substitution and rearranging we obtain

s = Vﬂ(K+%) +%Vd
“ V.+ KV,

(49)

where

- 40
R=1255

A may be obtained from (43). Q may be
taken as 1.

Correlations for other relatives are given
in Table 3.
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Fisher applied these methods to data on
human stature. The data (obtained from
earlier studies by Pearson and Lee) show

r = .2804
P20 = .5066
Yoo = .5433 .

From (44), we calculate the equilibrium
heritability

v, A
< =H=.791
Vs
from which
Ad=Hr=22

assuming Q0 = 1,

Assuming the observed correlations rep-
resent equilibrium values we can ask what
the heritability was before assortative mat-
ing began:

v, =V, - A4)
A
V¢= V;"‘ Vﬂ(l _E)
_Ve_
H = V‘—.74.

So the assortative mating has increased the
heritability from .74 to .79. From the sib
correlation (49) we can estimate V4/7,,
which turns out to be about the same as
1 — H. Hence, on the basis of these data,
Fisher concluded that environment is of
very little importance in determining vari-
ance in human stature, '

The analysis of variance in a population
at equilibrium under assortative mating
would be

|/ 629,
Vidgeeeeeneereieeereeeianen, 2197,
Vi oeneeiieeiieieeieeineeaen, 839,
Effect of assortative
mating.....coeoneniiennn, . 179%
| UOPURPR 100%,

Eugen. Quart.

Fisher assumed that the environmental
similarity between sibs was no greater than
that between parent and offspring. This
seems quite dubious; it is probable that
genes for height are less dominant than he
thought and the environmental influence
greater.

To make it easier to go from this treat-
ment to Fisher’s 1918 paper, here is a list of
equivalents:

Ve = Vﬂ/ Vh = Ce
Vh = 02 AA = A
Vi = & 0 = 1
Vh/ V; = (1 r = I3
SUMMARY

Assortative mating, as does inbreeding,
causes an increase in homozygosity and an
increase in the population variance. How-
ever, with multiple factors the increase in
homozygosity is very slight while the in-
crease in variance is large. There is an associ-
ation between genes of like effect and the
resulting gametic phase (linkage) disequi-
librium explains the large variance increase.

A trait determined by homozygosity for a
rare recessive gene eventually has its inci-
dence multiplied approzimately by a factor
(1 — rpH~1, where 1 — p is the recessive
gene frequency and r is the correlation be-
tween mates. Exact formulae are given for
any generation.

A multifactorial trait with complete her-
itability (additive gene effects and no en-
vironmental influence) has at equilibrium an
average inbreeding coefficient

r

f=2n,(1—r)+r

where n, is the effective number of loci. The
variance is increased by a factor (1 — #Q)!
where Q = (2n, — 1)/2n,. The methods
used are similar to those of Wright (1921).

Extensions of these formulae are given to
include dominance and environmental ef-
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fects for a trait determined by a large num-
ber of loci. The effect of assortative mating
on the correlation between certain relatives
is also given, These were all shown earlier by
Fisher (1918), but are derived here by a
more elementary method.
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