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The inheritance of liability to certain diseases, estimated from
the incidence among relatives

By D. S. FALCONER*
Institute of Animal Genetics, West Mains Road, Edinburgh

INTRODUCTION

It is now commonly recognized that many diseases that are not inherited in a simple manner
have, nevertheless, some hereditary basis. The evidence that heredity plays some part comes
from the observation that the incidence of the disease is higher among the relatives of affected
individuals than it is in the general population. An increased incidence among relatives does
not, however, go far toward providing an answer to the important question of how strong the
hereditary factor is, because the difference of incidence has no simple genetic interpretation.
The relative importance of heredity and environment in such a case is clearly a problem of
quantitative genetics. The usual methods of quantitative genetics, however, are not immediately
applicable because these are based on correlations between relatives in respect of some ‘graded’
character measurable on a continuous scale. Data in the form of incidences refer, in contrast,
to an ‘all-or-none’ classification; individuals either have the disease or they do not. Though the
affected individuals may sometimes be graded according to the degree of severity of their
symptoms, the normal individuals, who are the majority, cannot be graded by the degree of
their normality. The purpose of this paper is to suggest that the method developed in quanti-
tative genetics for dealing with ‘threshold characters’ is applicable to data on the incidence of
diseases, and that by its use we can get further towards an answer to the question of the relative
importance of heredity and environment. (A fuller account of the method as applied in quanti-
tative genetics will be found in Falconer, 1960.)

The question of most general interest about the genetic causation of a disease that is not
simply inherited is probably the relative importance of heredity as a causative agent. This
question is meaningful only when stated in terms of amounts of variation; i.e. the variation
between individuals that causes some to be affected and some not. What fraction of this varia-
tion is attributable to genetic differences between individuals? This fraction may be called the
‘degree of genetic determination’. Unfortunately the degree of genetic determination cannot be
estimated from human data, unless possibly by the use of twins, but a related quantity, the
‘heritability ’, can be estimated. The distinction between the degree of genetic determination
and the heritability is as follows. Two kinds of genetic variation have to be distinguished,
‘additive’ and ‘non-additive’. The additive genetic variance is attributable to the average
effects of genes considered singly, as transmitted in the gametes. The non-additive genetic
variance is attributable to the additional effects of these genes when combined in diploid
genotypes. It therefore arises from dominance and interaction between genes at different loci;
if there is no dominance or interaction there can be no non-additive variance. The degree of
genetic determination is the total genetic variance (additive +non-additive) as a proportion of
the total phenotypic variance (genetic+non-genetic). The heritability is the additive genetic
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variance alone as a proportion of the phenotypic variance. The heritability expresses the extent
to which the phenotypes exhibited by parents are transmitted to their offspring. It therefore
determines the magnitude of the correlation between relatives. Though of less general interest
than the degree of genetic determination, it it is of more practical use for predictive purposes,
for example, in genetic counselling. The degree of genetic determination may be equal to the
heritability (i.e. in the absence of dominance or interaction) or it may be greater, but it can
never be less.

The heritability is estimated from the degree of resemblance between relatives, expressed as a
correlation or regression coefficient. The method proposed in this paper for dealing with diseases
is primarily a device for converting the information contained in the incidences into an estimate
of the correlation between relatives. The genetic interpretation of the correlation, from which
the heritability is estimated, is subject to the same sources of error as with continuously varying
characters. These possible sources of error, which are already well known, are not considered
in the main part of the paper but are mentioned in the Discussion. The first part of the paper
presents the theory of how the heritability can be estimated from data in the form of incidences.
The Theory section refers to data in the simplest form, consisting of two observed incidences,
that in the general population and that in relatives of affected individuals, and then deals with
some refinements necessary for analysing more complicated data. Then follows a section on
‘Applications’ in which the method is applied to published data on four diseases. This section
illustrates in detail how the formulae developed in the Theory section are used.

THEORY
‘ Liability’ and the ‘threshold’

To overcome the difficulty of the all-or-none character of a disease we have to suppose that
there is in fact an underlying gradation of some attribute immediately related to the causation
of the disease. If we could measure this attribute, it would give us a graded scale of the degree
of affectedness or of normality, and we should find that all individuals above a certain value
exhibited the disease and all below it did not. This hypothetical graded attribute will be re-
ferred to here as the individual’s ‘liability ’ to the disease. The term susceptibility is not suitable
because it implies the innate tendencies as distinet from the external circumstances. The term
liability is intended to express not only the individual’s innate tendency to develop or contract
the disease, i.e. his susceptibility in the usual sense, but also the whole combination of external
circumstances that makes him more or less likely to develop the disease. For example, in the
case of an infectious disease the individual’s susceptibility in the usual sense depends on his
immunological defences, but the liability includes also the degree of exposure to the infective
agent. The point on the scale of liability above which all individuals are affected and below
which all are normal will be called the ‘threshold’. The variation of liability, the threshold, and
the resulting incidence are illustrated in Fig. 1. The concepts of an underlying variable, here
called the liability, and the threshold were proposed by Carter (1961, 1963) in connexion with
congenital pyloric stenosis. The concepts can be developed quantitatively so that the correlation
between relatives in respect of liability can be estimated from data consisting of incidences.

For the quantitative development of the idea it is necessary to define the variation of liability
as being normally distributed. This gives a unit for the expression of the degree of liability, the
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unit being the standard deviation. This definition of the liability as being normally distributed
does not make an unwarranted assumption about the real nature of the liability : it simply
specifies that in order to express the degree of liability we shall choose a scale of measurement
which, if we could measure the liability, would yield a normal distribution. It does, however,
exclude situations where the variation of liability is discontinuous, which would apply to
diseases determined by a single major gene. The method of analysis to be developed therefore
applies only to diseases whose genetic component is multifactorial, or if there are few genes,
where these have effects that are small in relation to the non-genetic variation.

Incidence = 5%
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Scale of liability (standard deviations from threshold)

Fig. 1. Illustrations of two populations or groups with different mean liabilities. The liability is
normally distributed, with the same variance in the two groups. The groups are compared by re-
ference to a fixed threshold. The stippled portions are the affected individuals with the incidences

shown.

The definition of the threshold, as the point on the scale of liability above which all individuals
are affected and below which none are affected provides a fixed point by which to compare
different populations or groups with different incidences. Fig. 1 illustrates the comparison of
two populations on the basis of a fixed threshold. The lower distribution in the figure, with an
incidence of 20 9, has a higher mean liability than the upper distribution with an incidence of
59,. The two distributions illustrate the way in which data in the form of incidences are to be
interpreted in terms of the liability and the threshold, though the incidences shown are much
higher than are found for most diseases. The upper distribution represents the general popula-
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tion, and the lower distribution, with a higher incidence and higher mean liability, represents the
relatives of affected individuals. For the genetic analysis of data in this form we need to evaluate
the difference in mean liability between the two distributions, and we need to know also the
mean liability of the affected individuals themselves, whose relatives appear in the lower
distribution. These mean liabilities can be evaluated as follows.

Evaluation of mean liabilities. If the mean liabilities of two groups are to be compared and
the difference of liability evaluated, one important assumption has to be made. It is that the
variance of liability is the same in the two groups. This assumption is unavoidable because
without it there is no common scale on which the liabilities of the groups can be compared. The
unit of measurement on the common scale is the standard deviation of the distribution, and this
scale is shown at the foot of Fig. 1 with standard deviations marked off from the threshold as
zero. On this scale the mean liability of the upper distribution is —1-6 o, i.e. 1:6 standard
deviations below the threshold, and that of the lower distribution is —0-8 o.

The evaluation of the mean liability of the population is made by reference to tables of the
normal distribution. With a given incidence, g, a table of the normal deviate x (single-tailed)
gives the deviation, , in standard deviation units, of the threshold from the mean. These tables
are provided by Pearson (1931), Kelley (1947), Comrie (1949), Pearson & Hartley (1962). (Of
these, only Comrie’s tables cover incidences below 0-19,.) A table suitable for the present
problem is reproduced here in Appendix A.

Fig. 2 shows the same two normal distributions as Fig. 1, but with the values to be obtained
from the tables, or Appendix A, entered on them. The upper distribution represents the general
population with an incidence, g,. The corresponding deviation of the threshold from the mean
is z,. This is given as a positive value in the tables, so the mean liability, G, of the population
is z, units below the threshold, T, or —z, units if liability is measured from the threshold as
zero. Some care is thus needed with the signs in converting the values entered in the tables into
mean liabilities. The lower distribution in Fig. 2 represents the relatives of affected individuals
with an incidence g,. The corresponding mean liability, R, is 2, units below the threshold.
Reference to Fig. 2 will show that the difference of mean liability between the relatives and the
general population is R—-G = x,—ux,.

The mean liability of the affected individuals in the general population is marked 4 in Fig. 2.
This deviates from the mean of the population as a whole by the amount a in standard deviation
units. The value of a depends on the incidence and can be obtained from tables of the normal
distribution or from Appendix A. Not all the tables cited above give a itself, but it can be
obtained as a = z/q, where z is the height of the ordinate of the normal curve at the threshold
corresponding to the incidence, ¢. The values of @ given in the tables and Appendix A are, like z,
positive deviations from the population mean. Reference to Fig. 2 will show that the mean
liability, 4, of the affected individuals as a deviation from the threshold is given by ¢ —« and
is positive.

For the analysis of some data, as will be explained later, it is necessary to know also the mean
liability of the normal individuals in the general population. This obviously deviates very little
from the mean of the population as a whole unless the incidence is very high. The deviation is
shown as n in Fig. 2. It is not necessary to have = tabulated because it is related to a in the
following way. As e = z/q, so n = z/p where p = 1—gq. Therefore n = ag/p.
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Fig. 2. Two distributions representing the general population above, and the relatives of affected
individuals below, compared with reference to the fixed threshold, 7'

G = mean liability of general population,

A = mean liability of affected individuals in the general population,

R = mean liability of relatives,
incidence, i.e. proportion of individuals with liabilities exceeding the threshold,
deviation of threshold from mean, i.e. the normal deviate,
height of the ordinate at the threshold,
mean deviation of affected individuals from the population mean (= z/q),
n = mean deviation of normal individuals from the population mean (= z/(1—g)),
subscript g refers to the general population, subscript » to the relatives.
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GENETICS

Regression of relatives on propositi. Data in the form of two incidences, leading to the evalua-
tion of the two mean liabilities illustrated in Fig. 2, will be recognized by those familiar with
quantitative genetics as analogous to a ‘selection experiment’. The affected individuals, with
mean A, are ‘selected’ out of the general population with mean G. The difference of mean,
A -G, represents the ‘selection differential’. The affected individuals are the propositi, or
index patients, whose relatives are found to have a mean liability of E. The difference between
the mean of the relatives and the mean of the general population, R — @, represents the ‘re-
sponse’. The ratio of these two differences of mean liability is the regression of relatives on
propositi in respect of liability. The regression, b, is therefore given by

R-@G

b=T—5 (1)

Fig. 3 shows the meaning of this regression diagrammatically. The regression coefficient, &, is
the slope of the line drawn through the origin @, and the point corresponding to the value R,
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in the relatives and A in the propositi. Since the variances of liability are necessarily assumed
to be the same in the relatives as in the general population, the regression in equation (1) is
numerically the same as the correlation of liability between relatives of the sort under con-
sideration.

The regression of relatives on propositi is expressed in equation (1) as the ratio of two differ-
ences of mean liability. The evaluation of these mean liabilities from the observed incidences by
reference to tables of the normal distribution was explained in the previous section. When
equation (1) is expressed in terms of the quantities to be obtained from the tables it becomes

.’.Eg—.’L'

P L. 2)

b=

The table in Appendix A gives the values of 2 and a corresponding to incidences from 0-01 %,
upwards. To evaluate the regression, take , and a both corresponding to the incidence in the
general population, and z, corresponding to the incidence in the relatives, and enter these values
in equation (2). The standard error of the estimate of the regression coefficient obtained in this
way can be calculated from the formula given in Appendix B (Method 1). The derivation of the
sampling variance is outlined in Appendix C.
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Fig. 3. Diagrammatic representation of the regression of relatives on propositi. The figure is
drawn to scale for the values in Figs. 1 and 2. G = mean liability of general population; 4 = mean
liability of affected individuals (propositi); B = mean liability of relatives of propositi. The axes are
marked in standard deviation units, and the position of the threshold is marked by 7. The regres-
sion coefficient is given by b = (R—G)/(4 - G).

Estimation of the heritability. The regression of relatives on propositi leads very simply to an
estimate of the heritability of liability. This cannot be explained in detail here and the reader is
referred to Falconer (1960) for a fuller explanation. The connexion between the regression of
relatives on propositi and the heritability is briefly as follows. Let P be the phenotypic value
(i.e. the liability) of any individual, R the phenotypic value of a relative, and r the coefficient
of relationship. Then the regression of R on P is bpp = covyp/Vp = 1V,/Vp = rh%, where
cOVpp is the covariance, ¥ is the phenotypic variance of individuals, V, is the additive
genetic variance, and A2 is the heritability defined as the ratio of the additive genetic variance to
the total phenotypic variance. Since the liability of individuals cannot be measured, the regres-
sion has to be derived from the mean liabilities of groups of individuals as in equation (1), where
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A refers to a group of affected individuals and R to a group of their relatives. The covariance
of an individual with the mean of any number of relatives of the same sort is, however, the same
as with one relative. Therefore it does not matter how many relatives are contributed by each
propositus, and the relationship between the regression in equation (1) and the heritability of
liability is

b = rh2,
The heritability is therefore estimated from the regression by
h? = b/r. (3)

The coefficient of relationship, r, for first-degree relatives is 4. Thus if the relatives are full sibs,
parents, or children of the propositi, the heritability is estimated as

h? = 2b,

Other sorts of relatives that might be used are uncles and aunts, or nephews and nieces; with
these » = } and so k% = 4b. With first cousins (single) r = } and %2 = 8b, Twins present special
problems and will be discussed separately. Any number of relatives of the same sort can be
included and it does not matter if some propositi contribute more than others. When the rela-
tives are brothers or sisters then, of course, the propositus must not be counted with his sibs in
the incidence among relatives. If two members of the same sib family appear among the affected
propositi then, provided the two propositi were ascertained independently, the family should be
counted twice in the data on relatives, with one of the affected propositi included as an affected
relative.

Data from twins present some special difficulties in the genetic interpretation, which are
commented on in the Discussion. There is, however, no difficulty in using data from twins to
estimate the regression of twin relatives on the co-twin propositi, which is equivalent to the
twin-correlation in respect of liability. This would be done in exactly the same way as for any
sort of relative. But it is important to note that the twin pairs must have been ascertained
through one or both members being affected by the disease in question. (If both were affected
and were ascertained independently the pair would be counted twice.) Thus the pairs will
consist of one affected member, which is the propositus, and one affected or normal member
which is the ‘relative’. The incidence among the ‘relatives’ is the incidence required for the
calculation. This incidence is the same as the proportion of concordant pairs, when ascertained
in the manner stated. Identical and fraternal pairs must, of course, be analysed separately. If
the regression is to be used to estimate the heritability, in spite of the difficulties in the genetic
interpretation, the appropriate coefficient of relationship, , is 1 for identical pairs and } for
fraternal pairs.

Fig. 4 provides a quick means of obtaining an approximate estimate of the heritability
directly from the observed incidences, without any computation. The graphs, which are based
on equations (2) and (3), with = }, show the incidence in first-degree relatives of affected
individuals plotted against the incidence in the general population, for different values of the
heritability. The scales of incidence on the horizontal and the vertical axes are both logarithmic.
To use the graphs, find the point corresponding to the observed incidence in the general popu-
lation read along the horizontal axis and the observed incidence in the relatives of propositi
read along the vertical axis. The sloping line to which this point lies nearest then gives the
heritability to the nearest 109, and interpolation can be made if desired. The heritabilities
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marked against the sloping lines in the figure are those obtained by doubling the regression of
relatives on propositi. The heritabilities shown are therefore appropriate to data from first
degree relatives.
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Fig. 4. Graph for estimating the heritability of liability from two observed incidences,
when the relatives are sibs, parents, or children. Explanation in text.

Some refinements and complications

There are several complicating circumstances likely to be met with in the collection and
analysis of data, which call for some minor modifications in the calculation of the regression of
relatives on propositi. These do not affect the estimation of the heritability from the regression
coefficient. The complications arise mainly from the fact that in the method described the
incidence in the general population has been made to serve two purposes, and the incidence
observed may not be suitable for both purposes. The incidence in the general population was
used first to evaluate the mean liability of affected individuals. For this purpose, the general



The inheritance of liability to diseases 59

population sampled should be representative of the population from which the affected indi-
viduals were drawn. Secondly, the mean liability of the general population, evaluated from the
incidence, was compared with the mean liability of the relatives. For this purpose the sample of
the general population should be representative of the population to which the relatives belong.
This is particularly important because the whole procedure rests on the variance of liability being
the same in the two groups compared. It is not always possible to obtain a single estimate of the
incidence in the general population that satisfies the requirements of both purposes for which it
is to be used. Some modifications of the procedure for caleulating the regression of relatives on
propositi are then needed. These are described in the sections that follow.

Data from controls. The best way to obtain a sample of the general population that is com-
parable with the relatives of affected individuals is from a series of ‘controls’. This will probably
also be the most convenient way to collect data on the general population if the incidence is
not already known and has to be determined as part of the investigation. The control propositi
are individuals not suffering from the disease in question, chosen for being the same as the
affected propositi in sex, age, and any other characteristic that seems important. The control
propositi are questioned about their relatives in the same way as the affected propositi are, and
the incidence among the control relatives is taken as the estimate of the incidence in the general
population. If the control propositi are well matched with the affected propositi, then the
control relatives provide a good comparison with the relatives of affected individuals and, in
particular, the assumption of equal variance of liability is less likely to be erroneous. For the
purpose of comparison with the relatives, therefore, the incidence in the general popula,tlon can
be satisfactorily estimated from a control series.

The use of controls, however, introduces two small errors. Both are so small as to be hardly
worth consideration, but they will be pointed out for the sake of completeness, especially as one
can be easily removed. Both errors arise from the fact that the control relatives are not strictly
representative of the population from which the affected propositi were drawn. Since the con-
trol propositi were selected for being unaffected by the disease, the relatives of the control
propositi are expected to have a mean liability slightly below that of the general population in
the strict sense. Consequently the relatives of affected propositi will differ more in mean
liability from the relatives of control propositi than from the general population in the strict
sense. In other words, the difference of mean liabilities in the numerator of the regression
equation will be too great. This error can easily be overcome by taking account of the selection
of the control propositi. Just as the affected propositi are selected out of the general population
for having a high liability, so are the control propositi selected for having a low liability. The
situation is illustrated by the upper distribution of Fig. 2, where the difference of mean liability
between the control propositi and the general population is indicated by the deviation marked ».
Whereas, before, the ratio giving the regression of relatives on propositi had a as denominator,
now the appropriate denominator is @ +n, because this is the total ‘selection’ that has given
rise to the ‘response’ observed in the difference between the relatives of affected and of control

propositi. The regression thus becomes
Z,—,
a+n’

where z, is the deviation of the threshold from the mean of the control relatives, evaluated from
4., the incidence in the control relatives. It was stated earlier that = itself need not be evaluated
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because it can be expressed as n = aq/p, where p = 1 —g. When this is done, the formula for
the regression, based on data from controls in place of the general population, simplifies to

b = p(xc_xr). (4)
a

The sampling variance of this estimate is given in Appendix B (Method 2). Since p will in most
cases be very nearly 1, equation (4) differs little from equation (2). An approximate estimate of
the heritability can therefore be obtained from Fig. 4, even though the incidence in the general
population is estimated from control relatives.

The second error introduced by the use of controls arises from the fact that the incidence
among the control relatives is not, strictly speaking, suitable for evaluating the mean liability
of the affected propositi, or of the control propositi, which should be evaluated from the incidence
in the general population from which the propositi were drawn. The error consequently intro-
duced in the evaluation of ¢ and p in equation (4) is not easily overcome by adjustment of the
formula, but it is so small that it can be safely neglected. It would, of course, be possible to
estimate the incidence in the general population in the strict sense as well as that in the control
relatives, and to use this for the evaluation of @ and p. Three observed incidences would then be
used. The additional sampling errors introduced would, however, greatly outweigh the improved
theoretical accuracy. There are, nevertheless, circumstances under which three incidences are
required, and these will now be discussed.

Incidence differing in the two sexes. If the incidence of a disease differs in the two sexes this
leads to a difference of incidence among the relatives of affected males and affected females which
may at first sight seem puzzling. The analysis by means of the regression coefficients, however,
provides an explanation of the differing incidences, and the differing incidences, in turn, offer
an interesting means of testing the validity of the analysis. Carter (1961, 1963) showed how the
higher incidence of congenital pyloric stenosis among the relatives of affected females than among
those of affected males could be explained on the basis of an underlying variable and a threshold.
Fig. 1 will serve to illustrate the interpretation in terms of liability, the upper distribution
representing females and the lower one males. The incidence in the general population is lower
in females than in males. With liability defined as being measured from a fixed threshold,
females have a lower mean liability than males. Consequently affected females deviate more
from the mean of their sex than do affected males. If the liability is to any extent inherited,
this will result in the relatives of affected females having a higher mean liability than those of
affected males.

To obtain a meaningful estimate of the heritability from the regression of relatives on pro-
positi, it is necessary to separate the sexes and determine the mean liability in each sex of pro-
positi and each sex of relatives. Regressions can then be calculated as follows. It is obviously
possible to analyse each sex separately, by the methods already described, and so to obtain two
estimates of the heritability, one for males and one for females. These two estimates need not
necessarily be the same, because the sexes may differ in the variance of liability arising from
environmental causes. The two estimates for the sexes separately make use of only the ‘like-
sexed’ relatives, i.e. male relatives of affected males and female relatives of affected fernales.
The regression of relatives on propositi can, however, be calculated for the ‘unlike-sexed’ relatives
—female relatives of affected males and male relatives of affected females—provided the inci-
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dences are taken from the appropriate sexes. This clearly calls for the use of three incidences
because the propositi of one sex and the relatives of the other belong to different general popu-
lations with different mean liabilities, and possibly with different variances. For the calcula-
tion of the regression of relatives on propositi two different general population means are re-
quired, and equation (1) becomes

R-@G,
=d-a,
where G, is the mean of the general population of the same sex as the relatives and G, is the
mean of the general population of the same sex as the affected propositi. In terms of the
quantities obtained from the tables, the regression based on three incidences is

b

b=, (5)

where 2, is evaluated from the incidence in the general population comparable with the rela-
tives, and a, is evaluated from the incidence in the general population comparable with the
propositi. The standard error of the regression estimated in this way is given in Appendix B
(Method 3).

The best sample of the general population for comparison with the relatives will be from a
control series, as explained in the previous section. The control relatives must, of course, be of
the same sex as the relatives of affected propositi. A similar modification of the formula is then
called for and the regression is obtained as

b= Dy (xc - :L‘,.)

a,

; (6)

where g, and p, are evaluated from the incidence in the general population comparable with the
propositi, and z, from the incidence in the control relatives. The sampling variance is given in
Appendix B (Method 4).

The regression of relatives of one sex on propositi of the other, calculated in the manner out-
lined, is quite valid, even if the variances are different. The relationship of this regression to the
heritability of liability is, however, not quite straightforward for the following reasons. The
resemblance in liability between relatives of one sex with affected individuals of the other
depends not only on the heritabilities in both sexes but also on the extent to which the genetic
component of liability is dependent on the same genes in the two sexes. It is possible that some
genes affect the liability in one sex but not in the other. The extent to which liability in the two
sexes depends on the same genes is expressed as the genetic correlation, rg, between the sexes
in respect of liability. Application of the theory of genetic correlation (see Falconer, 1960 for
details) to the problem under discussion shows that if the regression coefficient is multiplied by
two (or by the appropriate factor) this gives an estimate of 4, A7y, where k, and h, are the
square roots of the heritabilities in males and females, respectively. In principle, therefore, the
genetic correlation between liability in the two sexes can be estimated, but an estimate precise
enough to be meaningful would probably require data on a very large scale.

Four separate regressions can be calculated, two from like-sexed and two from unlike-sexed
relatives. When multiplied by the appropriate factor for the coefficient of relationship, the first
two estimate k2, and A2, respectively, and the second two both estimate A, A;rq. Thus the two
estimates from unlike-sexed relatives should be the same, even if the heritabilities in males and
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females are different. If all four estimates are the same, then the genetic correlation must be
unity, within the limits of sampling error. The three examples given later in this paper, in which
the incidence differs in males and females, all show fairly close agreement between the four
estimates of the heritability. These cases, therefore, give no evidence of different heritabilities
in males and females, or of the liabilities in males and females being influenced by different
genes.

If the four separate estimates of the heritability do not differ significantly, they can be com-
bined into a single estimate by taking a weighted mean, the weight given to each being the
reciprocal of its sampling variance. The sampling variance of this combined estimate is given
approximately by the reciprocal of the sum of the weights. This is only approximate because
the sampling variances of the separate estimates are not uncorrelated.

Incidence changing with time. Another situation in which three incidences might be required
for the calculation of the regression is when the incidence of the disease is known to be changing
with time. If the propositi and their relatives belong to different generations, e.g. the relatives
are parents or children, the propositi and relatives will belong to different general populations,
with different incidences. The regression of relatives on propositi could be calculated by equation
(5) or (6), but this procedure is not to be recommended for the following reasons. A time-trend
in the incidence of a disease may be due either to a change in the mean liability or to a change in
the variance of liability, and there is no means of knowing which is the cause. If it is only the
mean that is changing, the estimate of the heritability from propositi and relatives in different
generations would be valid. But if the variance is changing an essential assumption on which
the calculation is based would be violated, and the estimate of the heritability would be invalid.
The use of contemporaneous relatives, however, will yield an estimate of the heritability that is
valid for the time at which the data are collected.

Incidence changing with age. Variation in the age of onset leads to an age-dependent incidence,
the incidence increasing with age. The increase of incidence might be due to either an increasing
liability or an increasing variance of liability. The consequences of an increasing variance will not
be considered, and it will be assumed that the variance is the same in all age groups. With this
assumption it is possible to compare the liabilities of different age groups. If the incidences are
known for different age groups, the liabilities can be determined from the incidences, and the
relationship between liability and age can thus be determined.

On the assumption that the liability and not the variance changes with age, the comparisons
on which the estimation of the heritability is based are valid, provided the groups compared
have the same age distributions. Some adjustment, or correction, for age differences may, how-
ever, be needed. The propositi, being affected, will tend to be above the average age, and there-
fore their relatives will also tend to be above the general population in average age. If this is so,
the incidence in the general population, from which #, in equation (2) is evaluated, should be
adjusted so that it is the incidence expected in a general population with the age distribution as
found in the relatives of the propositi. If the incidence in the general population were estimated
from the relatives of control individuals, little or no adjustment would be needed, provided the
controls were matched for age with the affected propositi. This would seem to be a situation in
which control relatives would be particularly advantageous.

The incidence in the general population is also needed for the evaluation of a, the mean
deviation of affected individuals. This incidence should not be adjusted to correspond with the
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age distribution of the propositi, because the greater age of the propositi is one aspect of their
higher liability which makes them affected, and any adjustment would remove some of the
variation of liability whose inheritance is being evaluated. The incidence used to evaluate
should be that of the whole population from which the propositi were drawn.

If liability changes with age, some of the variation of liability is associated with the variation
of age in the population or sample. In other words, age represents one of the non-genetic
sources of variation of liability. The procedure outline for estimating the heritability retains this
variation associated with age as part of the non-genetic variation. The proportionate amount of
the variation that is associated with age may be of interest, and can be estimated as follows.
If the population is divided into age groups, the mean liability of each group can be evaluated
from the incidence in it. The variance of these mean liabilities, each mean being weighted by the
number of individuals in the group, is then an estimate of the variance of liability associated
with the variation of age in the population. Let this variance of liability between age groups
be v. The variance within the age groups is 1, by definition. (The liabilities are evaluated in terms
of unit variance.) Therefore the total variance of liability is 1+ », and the proportion of the total
that is associated with age is v/(1+v).

APPLICATION

The following four examples will illustrate the application of the method. In the first two the
computations are shown in some detail, but in the last two only the data and the results are given.
In all but the fourth example data from different sorts of relatives have been combined because,
though given separately, the data are insufficient to warrant making separate estimates of the
heritability. The relatives combined are, of course, all of the same degree, and in no case were
the separate estimates of the regression coefficients significantly different from one another.

The symbols used have the following meanings:

A = observed number of affected individuals in the sample,

N = total number of individuals in the sample,

q = incidence = A|N,

p =1l-g,

z and @ are the values corresponding to g, taken from the table in Appendix A, with linear
interpolation,

b = regression coefficient of relatives on propositi,

V, = sampling variance of b,
h? = heritability of liability to the disease in question.

1. Renal stone disease (Calcareous calculs) (McGeown, 1960). The data consist of the incidences
in relatives of affected individuals (patients) and in relatives of unaffected controls matched for
sex and age with the affected individuals. The sexes are not separated. The incidences in parents,
sibs and offspring, each with their control series, are given separately but are here combined. The
data and values needed for the computation are given in Table 1. The regression coefficient is
calculated by equation (4) (Method 2 of Appendix B) as follows:

b = 0-99593 (2-646 — 1-959)/2-960 = 0-231.

Whence the heritability is
Bt = 2b = 46%,.
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The calculation of the standard error of the heritability is as follows. The first steps are not
shown, but comparison of the first line with the formula in Appendix B (Method 2) will show
what these steps are. The sampling variance of the regression coefficient is
V, = [0-3365—0-231 (2-948 — 2-646)]* x 00189 + (0-3365)% x 0-00496

= (:00134+0-00056

= (-00190.
The standard error of the heritability is given by

S.E. (%) = 2V, = 2x0-044 = 0-09.
Thus the heritability of the liability to renal stone disease estimated from these data is
ht = 46+ 99,

1t will be noted that by far the larger part of the sampling variance comes from the first term,
arising from the sampling error of the incidence in the control relatives. This is because the

sample of control relatives contains many fewer affected individuals than the sample of relatives

of patients.
Table 1. Renal stone disease

Relatives

of A N q P x a
Controls 6 1473 0°00407 0'99593 2646 2-g6o
Patients 36 1437 0702503 0'97495 1959 2°337

2. Congenital pyloric stenosis (Carter, 1961), Here the incidence differs in males and females
and so the sexes of both propositi and relatives must be treated separately to yield four estimates
of the regression. Data are given for sibs and children of propositi, but these are here com-
bined. The incidences in the general population are given, but without the numbers on which
these are based. Therefore the standard errors cannot be exactly calculated and those shown are
based on the assumption that the incidences in the general population are known without error.
The solutions obtained are given with the necessary data in Table 2. The regression coefficients

are obtained from equation (2) (Method 1 of Appendix B) for the like-sexed relatives, and from
equation (5) (Method 3) for the unlike-sexed relatives.

Table 2. Congenital pyloric stenosis

General population Y| N q% z a b Vy x 104 h*ts®E. %
Male — — o3 2°576 2892 — — -
Female — — o1 3090 3367 — — —

("’b"‘_)\"-—"’—_’ﬂ
Propositi  Relatives

Male Male 16 318 503 1-642 2060 0323 1672 64+ 8

Male Female 7 326 215 2:024 2°304 0:369 29'16 74+ 11

Female Male 14 82 1707 0'951 1-486 0°483 2366 9710

Female Female 5 76 658 1'508 1'945 0°470 4357 04t 13

Weighted mean — — - — — 0397 627 79% 5

The calculations are as follows:

Propositi Relatives

Male Male b = (2576 ~1-642)/2'892 = 0-323
Male Female b = (3'090—2'024)/2'892 = 0-369
Female Male b = (2576 —0-951)/3367 = 0483
Female Female b = (3-090—1'508)/3:367 = o'470
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The sampling variance of the first regression coefficient, to take just one as an example,

is obtained as
1 0-9497

= (2-892)2 * (2:060)Ex 16
The first terms in the formulae given in Appendix B are zero if the incidence in the general
population is assumed to be estimated without error.

The four estimates of the regression coefficient have been combined by weighting each by the
reciprocal of its sampling variance and taking a weighted mean. The sampling variance of this
combined estimate is approximately the reciprocal of the sum of the weights. The combined
estimate of the heritability, with its standard error, is 79+ 5%, The four separate estimates
agree with each other reasonably well within the limits of their sampling errors,

3. Club-foot (Talipes equino-varus) (Wynne-Davies, 1964). As in the previous example, the
incidence is different in males and females and the incidences in the general population are given
without the numbers from which they are derived. Data from sibs and parents are given, but
these are again combined here. The data and the solutions, obtained in the same manner as the
previous example, are given in Table 3.

V

= 0001672,

Table 3. Club-foot

General population A N q % z a b Vyx 104 h%+s.E,
(%)
Male — —_ 0162 2'944 3231 — — -—
Female — — o080 3156 3°429 — — —
f_——_g-_\
Propositi  Relatives
Male Male 5 212 236 1984 2359 0297 3361 50112
Male Female o 187 o — — — — —
Female Male 5 8o 625 1°534 1-968 0411 41°17 82+13
Female Female 2 81 2:47 1-965 2'342 0347 7561 69 + 17
Weighted mean — — — — — 0-348 14°87 70+ 8

One group of relatives contained no affected individual. With the incidence being lower in
females than in males, this group—female relatives of affected males—is the one that would be
expected to have the lowest incidence. The zero-incidence observed is not inconsistent with the
estimates of the regression obtained from the other groups. The upper 959%, confidence limit for
the number observed is 3-66 (from Fisher & Yates, 1943, Table VIII,). This means that an
observed number of 0 is not incompatible with an expectation of 3-66 out of 187, giving an
incidence of 1-96%/,. This incidence leads to b = 0-339, h? = 68 %, which is not significantly
different from the other estimates. The group with zero-incidence is necessarily excluded from
the combined estimate of the heritability obtained from the weighted mean of the other three
groups. This combined estimate of A2 = 70 + 8%, is therefore biased upwards.

4. Peptic ulcer (Doll & Buch, 1950). Peptic ulcer presents a complicated situation and its
analysis certainly merits a more elaborate treatment than can be attempted here. There are two
main complications—the composite nature of the disease and the age-dependent incidence.
Doll & Kellock (1951) showed that the excess of incidence of peptic ulcers among relatives of
propositi, as compared with the general population, was almost entirely due to ulcers at the
same site—gastric or duodenal—as that of the propositus. From this they concluded that gastric

and duodenal ulcers are genetically distinct entities. An analysis of the two combined, as
5 Hum. Gen. 29, 1
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‘peptic ulcer’, will therefore yield an estimate that is an approximate average of the herita-
bilities of the two separate entities. Though the data given in the appendices to the two papers
cited would probably allow the gastric and duodenal sites to be analysed separately, I have not
attempted to do this.

Table 4. Peptic ulcer. Incidence and mean liability (= —x) by age groups.
Sampling variance of mean lLiability = pg[z*N

Males Females
s A Al r —A Al
Median Mean Median Mean

age N 7% liability +8.E. age N 7% liability + S.E.
20 499 080 — 241 +o018 — — — — —
30 1128 2:48 —1'96 + 008 25 578 0°35 — 270 +0:23
40 1375 4'58 —1'69 + 006 40 236 083 —2°39 + 026
50 1089 7°3% —1'45 1t 006 55 249 1-61 —2'14 + o020
(1) 625 624 —1'54 +008 6s+) 17 1176 —I1'19 +0°40
(65+) 155 581 - 1'57 to16 — — — — —

The data on peptic ulcer gives the incidence by age groups in a large sample of the general
population, and the incidence increases with age in both sexes. Table 4 shows the incidences in
each age group and the mean liabilities derived from them. Fig. 5 shows the mean liability
plotted against age. In both sexes there is a regular linear increase of liability up to the age of
about 50. The proportion of the total variance of liability that is associated with variation of age
in the population is 8 9, in both sexes, calculated in the manner described in the previous section.
From this it can be inferred that the correlation between liability and age is about 0-3 (i.e. the
square root of 0-08).

- ® Male
_10}
L O Female
- Q
_15} ¢ + +
& 2
| - t
>
+
2 20
2 -
- .
—_25}
—30 [ 1 i L I
20 30 40 50 60 (65+)

Median age

Fig. 5. Age effect on peptic ulcer. Mean liabilities of different age groups in the general population.
The liability is expressed in standard deviations from the threshold. The vertical lines extend to +
one standard error of the estimated mean. Data from Doll & Buch (1950).
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The data for the estimation of the heritability are the incidences in the general population and
among the sibs of propositi. Since the incidence differs between males and females it is necessary
to keep the sexes separate and obtain four estimates as in the previous examples. The sexes of
propositi and their sibs were separated by reference to the appendix of Doll & Buch (1950), and
the numbers so obtained were as shown in Table 5 here. The average age of the relatives of
affected individuals was, as expected, above that of the general population. For comparison
with the relatives, therefore, the incidence ir: the general population has to be adjusted to corre-
spond with the age distribution among the relatives. For this purpose the age-corrected ‘expec-
tations’ given by Doll & Buch have been used. It has been assumed that the age distribution
among the relatives did not differ according to the sex of the propositi, which is probably not
quite true because female propositi were older than male. Table 5 gives the values needed for the
calculations, the values in brackets being those required only for the sampling variances. The
four separate estimates of the heritability are satisfactorily consistent, and the combined
estimate is b2 = 37+ 6 9.

Table 5. Peptic ulcer

General population A N 7% x a b Vyx 10t h21s.E,
(%)
For comparison with:
Propositi-——male 223 4871 458  (1-687) 2099 — —
Propositi—female 10 1080 op3  (2'353) 2690 — — —
Relatives—male } Age corrected 5°39 1-608 (2r031) — — —
Relatives—female incidences 117 2267 (2612) — — —
Relatives
f“"—_—A——"ﬁ\
Propositi  Relatives
Male Male 36 306 1176 1-187 (1677) 0201 21'41 40+ 9
Male Female 9 318 2-83 1906 (2:291) o172 ~8:46 34+ 18
Female Male 20 153 13°07 1'123 (1-624) o180 2464 36+ 10
Female Female 5 1635 303 1-876 (2°264) 0'14% 6656 29+ 16
Weighted mean — -— — — — 0183 870 37+ 6
DISCUSSION

The usefulness of the method of analysis proposed in this paper is that it renders the observed
incidences intelligible in terms of the heritability, and that a knowledge of the heritability can
be of some predictive value. There are, however, some limitations in the method which may lead
to error. The uses and limitations will be discussed in turn.

Interpretive value

The idea of an underlying variation of liability, and the analysis developed from it, provide a
quantitative interpretation of the excess incidence of a disease among the relatives of affected
individuals over the incidence in the general population. The incidences themselves, without
further analysis, give a poor indication of the strength of hereditary factors because the inci-
dences are not related in any simple way to the degree of inheritance, nor to the closeness of the
relationship between the affected individuals and their relatives. A simple comparison of the
incidence in relatives with the incidence in the general population will give a different picture
according to whether the simple difference or the relative increase is taken as a measure of the
importance of heredity. This can be seen from the graphs in Fig. 4. For example, diseases where

5-2
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the heritability of liability was 50 %, would give the following results, according to the incidence
of the disease in the general population:

Incidence in  Incidence in Difference
general relatives of Relative
population (h? = 50%) incidence increase
(%) (%) (%)
oI I 09 10-fold
1 5 4 5-fold
10 20 10 2-fold

The diseases with different incidences in males and females that were analysed in the pre-
vious section provided examples of this situation. When the sexes were separated, the inci-
dences among relatives seemed at first to be inconsistent, but were found on analysis to be all
consistent with a single value of the heritability.

Predictive value

For predictive purposes it is the incidence itself in a specified group that is required, because
the incidence expresses the probability that an individual of the group will have the disease.
Knowledge of the heritability may, however, lead to a prediction which could not otherwise be
made. The use of the heritability in this way may be made clearer by specific examples of
genetic counselling. A patient suffering from renal stone disease may, for example, ask what is
the chance that his children will suffer from the same disease. In this case, the incidence among
first degree relatives is known (see Table 1 in the previous section), and nothing further is
required : the probability is 219, or 1 in 40. But if the required incidence were not known a useful
prediction could still be made in the form of an upper limit, provided that the incidence in the
general population were known. The upper limit would be obtained by assuming the heritability
to be 100 %, Reference to Fig. 4 then shows that with a general population incidence of 0-4 9,
the maximum incidence among first degree relatives is 129,. As a more complicated example,
suppose a woman says her sister had a club-footed son, and asks what is the chance of her having
a club-footed child. The relationship in question is between single first cousins, and the required
incidence is to be predicted from the known incidence among first degree relatives. The known
incidence is used to estimate the heritability (h2) which was found in example 3 of the previous
section to be 70 9%,. The expected regression (b) for cousin relatives is 342, which in this case is
0-0875. To obtain the expected incidence among cousins of affected individuals we have to solve
one of the regression equations for x,. Because of the different incidences in the two sexes there
will have to be different predictions for male and female children of the questioner. For male
children equation (2) (Method 1 of Appendix B) is to be solved for x,, with the value of b already
found, and the values of 7, and a from the male general population (see Table 3 of the previous
section). This gives 0-0875 — 2.944 — xr,

3-231
whence x, = 2-661. The incidence (¢) corresponding to this value of z can now be found from
Appendix A. It is 0-399, or about 1 in 250. This is the probability that a male child will be
club-footed. A similar calculation for female children can be made by solution of equation (5)
(Method 3 of Appendix B). This gives

0-0875 = 3-156 —z,

3-231 °
whence z, = 2-873, and the predicted incidence is 0-20 %, or 1 in 500.
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The above examples will show how a knowledge of the heritability might be used in genetic
counselling. Prediction made in the same way would be helpful also in planning the collection
of data on incidences, for deciding what size of sample should be collected. Since the standard
error of the regression coefficient, and of the heritability estimated from it, depends chiefly on the
number of affected individuals in the sample, it is important to have a sample large enough to
include a reasonable number of affected individuals; if it includes none the sample is of very little
use. Prediction of the incidence would be particularly helpful if it were planned to collect data
from second or third degree relatives. The prediction may show that the size of sample required
to be of any use would be impracticably large.

One other aspect of prediction deserves mention. If the heritability is found to be very high,
the degree of genetic determination must also be very high and environmental factors, therefore,
unimportant as causative agents of the disease. This does not mean, however, that curative
or preventive measures will be ineffective. The environmental factors proved to be unimportant
are those operating in the population sampled and these do not include special treatments or
preventive measures. No prediction can be made from a knowledge of the degree of genetic
determination about the efficacy of curative or preventive treatments. All that could be said
in such a case is that one will have to look outside the range of normal environments experienced
by the untreated population.

Sources of error

The method has two chief limitations from which error may arise: the assumption of a con-
tinuous distribution of liability, and the assumption of equal variances. The validity of the
regression of relatives on propositi rests on these assumptions. Two other sources of possible
error occur in the estimation of the heritability from the regression coefficient.

The requirement that the variation of liability should be continuous means that the method
will break down if there is a major gene contributing to the causation of the disease. If the
disease is simply inherited by a single dominant or recessive gene this will, of course, be known
from family studies and the method would not be applied. A gene with incomplete penetrance,
which did not give simple Mendelian ratios, might nevertheless cause a discontinuity in the
distribution of liability. If the gene were recessive the situation would be detected by the
estimate of the heritability from sibs being much higher than that from parents or children. If
the gene were dominant the situation might be detected only by the estimated heritability being
very obviously too high to be credited.

The requirement that the variance of liability should be the same in all groups being com-
pared will probably not always be fulfilled, and the possibility of error from this source must be
borne in mind. The error can be minimized by careful choice of the groups compared, as for
example by the use of controls.

The estimation of the heritability from the regression of relatives on propositi is subject to
two sources of possible error. The more important of these arises from non-genetic causes of
resemblance between relatives. Members of the same family are obviously likely to be exposed
to the same environmental factors associated with their diet, mode of life, exposure to infection,
etc. Their liabilities to any particular disease will therefore tend to be correlated for purely
environmental reasons, and the regression computed from the incidences may be in part, or
even in whole, the consequence of these non-genetic causes of resemblance. The possibility must
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therefore be recognized that the estimated heritability may be too high. This error seems likely
to affect sibs more than other relatives.

The second source of error occurs only with estimates based on full sibs. It arises from the
fact that non-additive genetic variance contributes to the correlation between full sibs and to
the regression of full sib relatives on propositi. Doubling this regression coefficient gives an
estimate of the additive genetic variance, together with one-half of the non-additive variance
arising from dominance, as a proportion of the total. Therefore, if there is a significant amount
of non-additive variance, the estimate obtained by doubling the regression coefficient of full
sibs gives something in excess oi’ the heritability but below the degree of genetic determination.

On account of the two sources of error discussed,the estimate of the heritability from full sibs
may be somewhat higher than those from other sorts of relative. But if this is found, there is no
means of knowing whether the discrepancy is due to environmental causes of resemblance or to
non-additive genetic variance. It is obviously desirable that an estimate of the heritability
should not be based on data from sibs alone. The inclusion of second or third degree relatives
would be helpful for excluding error from environmental causes of resemblance.

In the examples analysed, the data from different sorts of relatives were not enough to be
treated separately, so the absence of any obvious discrepancy does not exclude the possibility
that the heritabilities may have been over-estimated. It is perhaps encouraging that the two
congenital diseases showed higher heritabilities than the other two, and particularly that peptic
uleer, which might be expected to be the most seriously affected by non-genetic causes of
resemblance, gave the lowest heritability.

Finally, the difficulties inherent in the use of twins, though they cannot be discussed in detail,
must be mentioned. The difficulties arise from the same two sources of error that affect full sibs,
but they are likely to be more serious. The first is that twins of both sorts may well resemble
each other for environmental reasons even more than non-twin sibs. If this cause of resemblance
could be excluded, the regression obtained from identical twin pairs would estimate the degree
of genetic determination. If the environmental causes of resemblance can be assumed to be
the same in their effects on fraternal as on identical pairs, then subtraction of the regression for
fraternals from the regression for identicals will eliminate this source of error. What is left, i.e.
what the difference between the two regression coefficients estimates, is one-half of the additive
genetic variance plus three-quarters of non-additive variance arising from dominance, as a pro-
portion of the total. If this is doubled it will over-estimate the degree of genetic determination.
The conclusions that can be drawn from twins are therefore not very precise. If, however, a
reliable estimate of the heritability has been obtained from other relatives, preferably parents
or children, then the twin data can give a useful indication of the relative importance of non-

additive genetic variance.
SUMMARY

1. Diseases that are not inherited in a simple manner by a single gene may have some degree
of hereditary basis, which shows in a higher incidence among relatives of affected individuals

than among the general population.
2. A method is presented by which the correlation between relatives can be derived from the

known incidences. The method is based on the assumption of an underlying variable—called the
liability—which expresses the combination of innate tendencies and external circumstances

that make the individual more or less likely to develop the disease in question. Whether an
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individual is affected or not depends on whether his liability exceeds or falls short of a fixed
threshold.

3. The correlation of liability between relatives leads to an estimate of the heritability of
Hability, which estimates the relative importance of hereditary factors as causes of differences
of liability between individuals.

4. Four examples from published data are analysed and the following estimates of the
heritability ( + standard error) obtained:

Renal stone disease 46 + 99,
Congenital pyloric stenosis 79 +59,
Club-foot 70+ 89,
Peptic ulcer 37+69%,

5. The method can be used to predict incidences not known by direct observation. The pre-
dictions could be useful in genetic counselling and in planning the collection of data.

I am greatly indebted to Dr B. Woolf for showing me how to work out the sampling variances
and for advice on the preparation of Appendix A; and to Dr R. C. Roberts, Dr A. Robertson
and Dr C. O. Carter for reading the manuscript and offering many valuable criticisms. I am
grateful also to Dr C. A. Clarke, who first drew my attention to the problems discussed in this
paper.
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APPENDIX A

Table of » and a for values of ¢ from ¢ = 0019 to ¢ = 500%. g is the incidence; x is the
normal deviate (single-tailed) exceeded by the proportion ¢; a (= z/g) is the mean deviation of
these individuals. Note changes of interval in ¢ at ¢ = 2:0% and ¢ = 21-09%,. Compiled from
Pearson (1931), Comrie (1949), and Fisher & Yates (1943).

7% = a 7% = a 7% 2 a 9% = a

o'50 2'576 2:892 100 2326 2665 1I'50 2°170 2'525
o01 3719 3960 o's1 2569 2-886 o1 2323 2662 1’51 2°167 2-522
002 3540 3°790 o'52 2562 2:880 102 2319 2658 1’52 2165 2520
003 3432 3687 o'53 2556 2:873 103 2-315 2°655 153 2162 2518
o004 3353 3613 o's4 2°549 2-868 104 2312 2652 1'54 2'160 2°5I5
005 3201 3554 055 2543 2862 o5 2:308 2649 1’55 2157 2'513
o0b 3239 3507 o056 2536 2:856 106 2:304 2°645 156 2°155 2°5I1
007 3195 3464 o'57 2530 2-850 107 2:301 2642 157 2152 2°508
008 3156 3429 o058 2'524 28435 108 2297 2639 1-58 2'149 2-506
009 3121 3397 o'59 2518 2:839 1'09 2294 2636 1'50 2°'147 2°504
o'10 3090 3367 o6o 2512 2834 1’1o 2290 2633 160 2'144 2'502
o'11 3062 3341 o061 2'506 2:829 -1 2287 2630 161 2'I42 2°'499
o1z 3036 3317 062 2'501 2:823 1'12 2283 2627 162 2139 2°497
©'13 3012 3204 063 2495 2-818 1113 2280 2624 163 2°137 2495
o14 2989 3273 064 2489 2813 1'14 2°277 2621 164 2°135 2°493

o'15 2668 3253 065 2484 2'808 115 2273 2618 165 2°132 2°491
o016 2048 13234 066 2:478 2-803 116 2270 2615 1466 2130 2489
017 2920 3217 067 2'473 2708 117 2267 2612 167 2-127 2436
o188 2911 3201 068 2:468 2793 118 2264 2-609 168 2-125 2484
o'19 2894 3185 o'6g 2462 2789 1’19 2260 2:606 169 2122 2482
oz20 2878 3170 oo 2457 2784 120 2257 2603 170 2120 2°480
o21 2863 3156 o071  2°452 2779 121 2254 2600 171 2118 2478
o022 2848 3142 o072 2°447 2775 1'22 2251 2°597 172 2115 2°476
023 2834 3129 073 2'442 2770 123 2248 2-'594 173 2°113 2°474
o24 2820 3117 074 2437 27606 1'24 2'244 2'591 174 2°II1 2°472

o025 2807 3104 075 2432 277601 125 2241 2°589 175 2'108 2°470
026 2794 3'093 0776 2428 2757 126 2238 2586 176 2'106 2-467
oz7 2782 3081 077 2423 2753 1-27 2235 2'583 177 2°104 27465
o028 2770 3070 o078 2418 2748 128 2232 2580 178 2'101 2:463
o029 2759 3060 079 2°414 2'744 129 2229 2578 179 2'099 2-461
o030 2748 3050 o080 2409 2740 130 2226 2'575 1'80 2097 2'459
031 2737 3°040 o081 2:404 2736 I'31 2223 2°'572 181 2'095 2°457
032 2727 3030 082 2400 2732 1'32 2'220 2°570 182 2092 2°455
33 2716 3021 083 2395 2728 1'33 2217 2567 1°83 2'090 2°453
©'34 2706 3012 084 2391 2724 134 2214 2°564 1-84 2088 2451
o35 2697 3003 o085 2387 2720 135 2211 2-562 1'85 2'086 2449
036 2687 2:994 086 2382 2716 1-.36 2209 2559 1-86 2'084 2-447
037 2678 2986 087 2378 2712 1'37 2200 2'557 187 2081 24453
038 2669 2978 o088 2:374 2708 138 2203 2-'554 1-88 2'079 2'444
039 2661 2969 o089 2'370 2704 I1'39 2200 2°552 189 2'077 2'442
040 2'652 2:962 o'go 2366 2701 1'40 2°197 2°549 1'90 2°'075 2°440
041 2644 2954 o091 2361 2:697 I'41 2'194 2°547 1’91 2°073 2'438
o4z 2636 2947 092 2-357 2693 1'42 2°192 2'544 192 2'07I 2°436
043 2628 2939 093 2353 2690 143 2'189 2542 193 2068 2-434
o'44 2620 2932 094 2:349 2686 1'44 2186 2539 1'94 2066 2-432
045 2612 2-°925 095 2346 2°683 1°45 2183 2'537 1-95 2'064 2'430
046 2605 2918 096 2-342 2679 146 2181 2534 1-.96 2+062 2-428
047 2°597 2°9II 097 2338 2676 1°47 2178 2532 197 2060 2:426
048 2590 2-905 098 2334 2672 148 2175 2°529 1-98 2'058 2-425
049 2583 2898 099 2-330 2669 1'49 2173 2'527 199 2°'056 2423
o's0 2-576 2892 100 2326 2665 1'50 2°170 2°525 2°00 2'054 2421



9%
20
2°1
22
2°3
24
2'5
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
&

46
47
48
49

50
5
52
53
54
5

56
57
58
59
60
61
62
63
64
65
66
6
6-8
69

70

2:054
2034
2014
1°995
1977
1-9g6o
1°943
1-927
1°91I
1-896

1-881
1-866
1'852
1-838
1-825

1-812
1799
1787
1774
1762

1751
1°739
1728
1717
1706

1695
1685
1675
1-6635
1655

1:645
1-635
1-626
1616
1607

1'598
1'589
1-580
1°572
1°563

1°555
1-546
1°538
1-530
1-522

1514
1-506
1'499
I1'491
1-483

1-476

2°421
2°403
2-386
2:369
2'353

2-338
2°323
2'309
2°205
2-281

2268
2°255
2:243
2231
2219

2-208
2°19%
2'186
2175
2-165

27154
2'144
2°135
2'125
2116

2106
2097
2088
2-080
2071

2063
2°054
2046
2-038
2'030

2:023
2°015
2°007
2-000
1993

1985
1'978
1971
1-964
1-957

1951
1-944
1'937
1-931
1°924

1918
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7%
70
7
72
73
74
7'5
76
77
7-8
7°9
80
81
82
83
84
85
86
87
88
89

90
91
92
93
9'4
9'5
96
97
9’5
99
10°0
I0'1
102
1073
10'4

10°5
106
107
10-8
109

110
I
11°2
113
11°4
11°5
116
117
11-8
119

12+0

APPENDIX A (cont.)

x

1°476
1°468
1°461
1°454
1447

1°440
1'433
1°426
1419
1°412

1°405
1-398
1392
1-385
1379

1°372
1366
1°359
1°353
1-347

1°341
1-335
1-329
1-323
1317
1'31I
1°305
1°299
1°293
1-287

1282
1-276
1'270
1'265
1°259

1254
1-248
1'243
1237
1-232

1°227
1°221
1216
I'211
1-206

1°200
1°195
1-1g0
1'185
1’180

1'175

a

1-918
1912
1'9gob
1-899
1-893

1-887
1-881
1-876
1-870
1-864

1-858
1-853
1-847
1-842
1:836

1-831
1:825
1-820
1-813
1-810

1-804
1799
1:794
1789
1784

1779
1774
1769
14765
1760

1-755
1'750
1746
1'741
1-736

1732
1727
1723
1718
1714

1-709
1-705
1701
1-696
1692
1-688
1684
1-679
1675
1-671

1:667

7%
120
12°1
122
123
12°4

12°5
126
127
128
129

13°0
13°1
132
13°3
134
13°5
136
137
138
139
140
14'1
142
143
14°4
14°5
146
147
148
149
150
15°1
15°2
15°3
15°4
15°5
156
157
15-8
15°9
16-0
16°1
162
16-3
16-4
165
166
167
168
169

17°0

x

‘175
‘170

165
‘160
‘I55

‘150
‘146
141
136
‘131

L I B

I A ]

1°126
1'122
1117
I"112
1-108

1-103
1008
1'094
1-089
1-085

1-080
1°076
1°o71
1-067
1-063

1058
1-054
1°049
1-045
1-041

1-036
1'032
1028
1'024
1°019

1'015
I°0II
1°007
1'003
0'999

0°994
0990
0986
0982
0978
0974
0970
0966
0-9g62
0958

0'954

a

1:667
1663
1:659
1655
1651

1647
1643
1639
1-635
1631

1-627
1623
1620
1616
1612

1'608
1605
1-601
1'597
1593

1'500
1-586
1'583
I'579
1°575

1°572
1°568
1565
1°561
1-558

1’554
1551
1-548
1544
1541

1°537
1534
1'531
1-527
1524

I-§21
1517
I°514
1-511
1-508

1-504
1:501
1-498
1°495
1°492

1-489

7%
17°0
171
172
17°3
17°4
175
176
177
17-8
17°9
180
181
182
183
184

185
18:6
187
18-8
189

19°0
19°1
19'2
19°3
19°4
19°5
196
197
198
19'9
20'0
20°'1
202
20°3
204

20°5
206
20
208
20°9

21°0
22°0
230
24'0

250
260
270
280
290

300

r

0954
0’950
0 946
0942
0'938

0935
0'931
0927
0'923
0919

o915
0912
0:go8
0904
0°'9oo

0896
0893
0'88¢g
o0'885
0882

o878
0874
0:871
0867
0863

0-860
0856
0852
o849
0'845

0842
0838
0834
0831
o827

o824
o-8z0
o817
o813
o810

0°806
0772
0739
0706

0674
0643
0613
0'583
0'553

0524

1°489
1-485
1482
1°479
1'476

1473
1'470
1°467
1°464
1°461

1458
1455
1'452
1°449
1°446

1443
1°440
1437
1434
1'431

1°428
1425
1°422
1420
1417

1414
1°411
1408
1°405
1403

1400
1:397
1°394
1-301
1-389

1-386
1-383
1-381
1-378
1-375

1-372
1'346
1-320
1-295

1°271
1-248
1-225
1'202
1-180

I'159

73
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APPENDIX A (cont.)
9% x a q9% x a 7% z a 2% x a
300 0°'524 1°159 350 0385 1058 400 0253 0°966 450 o126 0880
310 0496 1138 360 0358 1°039 410 0228 0948 46'c o100 0863
320 0468 1-118 370 ©1332 1'020 420 0'202 0°931 470 o075 0846
330 0°440 1'097 380 0'305 1'002 430 o176 0913 480 o050 o0°'830
340 o412 1078 390 0279 0984 440 0151 0896 49'c o025 0814
350 0385 1058 400 ©0°253 0966 450 o126 o88c 500 ©-0co0 0798
For incidences (g) over 50 %, take the tabulated value of = corresponding to 1 —g, but give it a negative

sign: take the tabulated value of a corresponding to 1—g¢ and multiply this by (1-g¢)/g, retaining the
positive sign.

APPENDIX B

Summary of formulae for computing the regression, b, of relatives on propositi tn respect
of liability, and the sampling variance, V,, of the estimate
The heritability, 42, is given by k% = 2b, when the relatives are full sibs, parents, or children of the
propositi, and the standard error of the estimate of the heritability is 2vV,. The quantities z and a are
obtained from the table (Appendix A) and correspond to the observed incidence denoted by the sub-
seript. Subscripts outside the brackets refer to all the quantities within the brackets. Other symbols
are: ¢ = observed incidence; p = 1—¢; 4 = number of affected individuals in the sample from which

the incidence is calculated: a’ = a(p:—q) where ¢ is the incidence from which « is derived;
W = pla*d

where p, a4, and 4 correspond to the incidence denoted by the subscript to W. Each of the four methods
is based on different observed incidences, as indicated.

Observed incidences and subscripts denoting them
General population, comparable with affected individuals ¢
General population, comparable with relatives gr
Relatives of normal controls ¢
Relatives of affected individuals r

Method 1. Two incidences: ¢ and r

ph = Fe—%

» Vo= [Ya—bla—x);W,+ (1/a); W,.

Method 2. T'wo incidences: ¢ and r.

= Py, = [pla—b( ~ 2R Wt (o) W,
Method 3. Three incidences: g, gr and r

b = xvr__:fr

o Vo= [bla—a)g Wyt (La)g(W o, + W,).

g
Method 4. Three incidences: g, ¢ and r
Le—Z, ’
b= P8y )W+ () (Wt W),

g
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APPENDIX C
Sampling variance of the estimate of the regression of relatives on propositi

The regression coefficient is estimated from two or three observed incidences, the sampling variances
of which are independent of each other. The sampling variance of the regression can therefore be
obtained from the partial differentials, uncomplicated by covariance terms. It is convenient to take the
partial differentials with respect to the normal deviate (x) rather than the incidences. Then if w, x, and
y are the normal deviates corresponding to three observed incidences, and b is the estimated regression
coefficient

db db db

db\? db\? db\?
V= (a) Ve () v () 7

The population sampled is defined as being normally distributed with respect to liability. The following
symbols will be used for the parameters of a normal distribution:

g = frequency of affected individuals (= incidence),

p = 1*%

z = normal deviate (single-tailed) corresponding to ¢, (w and y will also be used for normal deviates,

in order to avoid subscripts),

z = height of the ordinate at deviation z,

a = z/q (= mean deviation of affected individuals),

N = number of individuals in the sample from which ¢ is estimated,

A = observed number of affected individuals in the sample.

The following differential coefficients of the above parameters will be needed:

oy,

and the sampling variance is

dgldr = —z,

dpldx = z,

dzjde = —zx,
Since a = z/[q,

dajdx = (—qza+2?)|? = a(a—x).
The sampling variance of the normal deviate,  (or w or y) is also required. This can be easily derived
from the sampling variance of the incidence, V,, thus:

- (—_1 *pq
“\z/) N
A
a4’
Here, of course, the values of p, @ and A4 are those corresponding to the particular deviate, w, x or y,
whose variance is required.
The formula to be used for estimating the regression differs according to the number of incidences
observed, and the form of the variance depends also on which particular incidence is used to evaluate a.

In order to avoid subscripts the following symbols will be used for the normal deviates corresponding
to the different observed incidences:

Normal deviate Derived from incidence in Symbol used in text
w Control relatives z,
x General population Z, OF X4
y Relatives of affected z,

individuals
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Method 1 (equation (2) of text). Two incidences: a evaluated from general population.

b To=% _ Y

a, a
(@ and z derived from the same observed incidence).
db db
ob= 7 ox+ dy oy
_e-oyale=) ,  —1o
- a? a

1 -1
= [C—l—b(a—x)] 8x+7‘—— 2y.

v, = [le—b(a—x):r V,+ [2]2 v,

(Expressions for ¥, and V, have been given above.)

Therefore

Method 2 (equation (4) of text). Two incidences: a evaluated from relatives of normal control
individuals.
b = pc(xc—xr) = p(w—y)
a, a
(p, a, and w derived from the same observed incidence). Put B = (w—y)/a, and note that B = b/p, and
that the differentials of B are those of b in Method 1, but with w in place of x. Then
_db db

= p{l—B(a—w)}ﬁ-Baq:I 3w+——p oy
| “la a

- ”:B_b{@_(e:q) }] wt 2o

a P

Therefore Vv, = [P b{ }] Vv, —l-[ ] V,.

a

-

The derivations for the two remaining methods are similar and need not be given in full.

Method 3 (equation (5) of text). Three incidences: two different samples of the general population.
b= Lgr— %y WY
t, a
(@ derived from the incidence corresponding to » as normal deviate).

SO POV

V, = bla—z) Vet [a] Vot Vil

Method 4 (equation (6) of text). Three incidences: as method 3, but with one sample of the general
population replaced by control relatives.

b = pg(xc_xr) — P(W—Z/)

a, a

{p and a derived from incidence corresponding to 2 as normal deviate).

= [ AT e[ s,




