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It is well known that oocytes are produced during fetal development and that the total 
number of primary follicles is determined at birth. In humans, there is a constant loss 
of follicles after birth until about two years of age. The number of follicles is preserved 

until the resumption of meiosis at puberty and there is no renewal of the oocytes; this 
dogma was maintained in the last century because there were no suitable techniques to 

detect and obtain stem cells. However, following stem cell markers, several scientists 
have detected them in developing and adult human ovarian tissues, especially in the 
ovarian surface epithelial cells. Furthermore, many authors using different methodolog- 
ical strategies have indicated this possibility. This evidence has led many scientists to 

explore this hypothesis; there is no definitive consensus to accept this idea. Interest- 
ingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has 
contributed to the development of strategies for the retrieval of mature oocytes, useful 
for assisted reproductive technology. Here, we review the evidence and controversies on 

oocyte neooogenesis in adult women; in addition, we agree with the idea that this pro- 
cess may occur in adulthood and that its alteration may be related to various pathologies 
in women, such as polycystic ovary syndrome, premature ovarian insufficiency, dimin- 
ished ovarian reserve and several infertility and genetic disorders. © 2024 Instituto 

Mexicano del Seguro Social (IMSS). Published by Elsevier Inc. All rights are reserved, 
including those for text and data mining, AI training, and similar technologies. 

Keywords: Ovarian stem cells, Postnatal oogenesis, Female infertility, Ovarian surface epithelium, 
Diminished ovarian reserve, Premature ovarian insufficiency. 

Introduction 

In women, optimal fertility is generally reached between 

the ages of 20 and 30, accelerates after the age of 35, 
and then declines with age. Women are born with a lim- 
ited number of oocytes. By the fifth month of gestation, 
the fetal ovaries contain 500–1300 primordial germ cells 
(PGCs), which undergo mitosis to generate six to seven 
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million germ cells (GCs) by the 10th week of gestation. 
Subsequently, between the 11th and 12th week of gesta- 
tion, the process of mitosis stops, and the germ cells begin 

meiosis, stopping in prophase I ( 1 ). 
Waldeyer-Hartz was the first to estimate the number of 

oocytes contained in the neonatal human ovary (36,000–
50,000) ( 2 ). Since then the idea has been accepted that 
at birth the ovary contains all the oocytes for future life, 
which means that some oocytes could have a lifespan of 
45–50 years ( 3 ). Afterward, von Hansemann estimated be- 
tween 40,000 and 80,000 oocytes in a neonatal ovary ( 4 ). 
Hammar and Hellmann counted 194,283 oocytes in an 

ovary of three-year-and eight-month-old girl who died of 
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thyroaplasia ( 5 ). Häggström counted 419,911 oocytes in 

both ovaries of a 22-year-old woman ( 6 ). It is currently 

estimated that a woman’s ovaries contain between one and 

two million oocytes at birth and that this number decreases 
to about 400,000 at puberty when approximately 300–400 

oocytes will undergo a maturation process during ovula- 
tion. At menopause, approximately 1000 primary follicles 
remain to maintain endocrine activity and ovulation ( 7 ), as 
it was described by Zhu et al. ( 1 ). 

On the other hand, the crucial question of solving 

infertility problems in assisted reproduction and ovarian 

pathologies is partly based on the recovery of oocytes from 

adult women or on the question of whether it would be 
possible to obtain oocytes from postnatal oogenesis. More- 
over, whether it is possible to obtain ovarian or extraovar- 
ian stem cells for oocyte production by in vitro methods. 
However, the existence of postnatal oogenesis in humans 
has yet to be proven, but we agree with the scientific 
community that supports the idea that there is a possi- 
ble smaller number of oocyte renewals during a woman’s 
life. This brief review summarizes the key findings and the 
state of the art regarding the possible renewal of oocytes 
and the controversies surrounding it. 

Oogenesis during the fetal period of a woman’s life 

The development of the ovaries involves the origin, growth, 
and maturation of their gametes to reach a physiological 
transition appropriate for reproduction, which is achieved 

through two coordinated processes, oogenesis and follicu- 
logenesis. PGCs and gonads share a common characteris- 
tic: they originate without a sexual identity. When PGCs 
arrive at the genital ridges and interact with the somatic 
cells and their gonadal environment, the process of differ- 
entiation of both PGCs and gonads begins. Once the PGCs 
are established in the ovaries, a very active period of mi- 
totic proliferation is initiated by the female germ cells, the 
oogonia, which increase exponentially in number, but soon 

after, most of these cells undergo atresia. The remaining 

oogonia, however, enter meiosis during fetal life and have 
a dictyate arrest at birth. 

In humans and other mammalian species, the onset of 
meiosis is approximately at week 11–12. Later, oocytes 
are arrested at the diplotene stage of prophase I in the ger- 
minal vesicle (GV) stage and may remain in this arrested 

stage for months, years, or decades ( 8–10 ). Oocytes are en- 
closed by a single layer of squamous follicular cells that 
form the primordial follicles ( 11 ). Oocytes must undergo 

cytoplasmic and nuclear maturation, also known as oocyte 
developmental competence, to have the potential to be fer- 
tilized, and to transport the essential maternal transcripts 
that will control embryonic development up to the morula 
stage ( 12–15 ). 

Oocyte cytoplasmic maturation involves the accumu- 
lation of mRNA, proteins, substrates, and nutrients that 

are required for embryonic development ( 16–18 ); whereas 
oocyte nuclear maturation is conditioned by organelle mat- 
uration (mitochondria, ribosomes, endoplasmic reticulum, 
cortical granules, and the Golgi apparatus), and epigenetic 
maturation (de novo methylation, histone post-traductional 
modifications, and chromatin remodeling) ( 15 , 19 ). 

Oocytes initiate a growth phase when the chromatin 

in the GV is decondensed and transcriptionally active, 
and follicular cells simultaneously become cuboidal and 

proliferate, giving rise to primary and secondary follicles 
( 11 , 20–24 ). 

After puberty, oocytes resume meiosis during each men- 
strual cycle when a surge of luteinizing hormone (LH) trig- 
gers the final maturation of a dominant follicle. Nuclear 
maturation of oocytes is necessary to restart meiosis. GV 

rupture then occurs, and oocytes pass to metaphase I until 
reaching metaphase II ( 13 , 14 , 25 ). At metaphase II (MII) 
the oocyte is arrested for the second time until fertilization 

occurs. Fertilization reactivates meiosis II and completes 
maturation to start embryonic development ( 26 ). 

Meiotic competent oocytes assemble microtubule orga- 
nizing centers (MTOCs), which will be essential for the 
assembly of a spindle ( 27–30 ), that will be required to di- 
rect the first meiotic divisions and the second meiosis after 
fertilization. 

The study of the ovary, and in particular of oogenesis in 

adult mammals, has generated interest over the years, and 

advances in both scientific and technological knowledge 
have made it possible to address this interesting line of 
research with new questions to be solved using new ana- 
lytical tools. Initially, histological techniques were used to 

study the ovaries of cats, rats, dogs, guinea pigs, monkeys, 
and humans ( 31–35 ). Subsequently, experimental methods 
focused on the analysis of the germinal epithelium of the 
rat ovary where colchicine was used to arrest mitosis ( 36 ), 
India ink was used to mark the germinal epithelium in vivo 

( 37 ), and for vital staining ( 38 ), and tannic acid and car- 
bolic acid were used to perform unilateral castration and 

destroy the germinal epithelium ( 39 ). In addition, the ef- 
fect of high doses of follicle-stimulating hormone (FSH) 
on the ovaries of immature monkeys, was evaluated ( 40 ). 

The ovarian surface epithelium (OSE) has been pro- 
posed as a source of ovarian stem cells in humans 
( 2 , 41–44 ), and mice ( 45 ). It is a natural source of germ 

cells in the fetal period of life ( 33 , 46 ), and this cell layer 
can be considered as a “germinal epithelium” ( 2 , 31 , 47 ). 
OSE scanning and transmission electron microscopy have 
revealed numerous germ cells of 10 μm in diameter 
within the OSE of the human fetus, at 7–24 weeks of in- 
trauterine life ( 48 ), supporting the idea that this cell layer 
may contain a stem cell niche. Recent evidence on the 
purification and in vitro propagation of premeiotic germ 

cells from neonatal and young adult mouse OSE cells 
has shown that these cells can generate a developmentally 

competent oocyte in a transplanted host female, providing 
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further support for this idea ( 49 ). These results suggest 
that both neonatal and adult mouse ovaries contain stem 

cells capable of producing functional oocytes ( 49 , 50 ). It 
has been widely reported that ovarian function declines 
with age due to a reduction in the number of ovarian 

follicles. In general, fertility begins to decline after the 
age of 30 leading to sterility at menopause ( 51 , 52 ). In 

humans, rats, and mice, the ovary is a unique organ that 
exhibits impaired function with advancing age ( 53 , 54 ). 

However, several diseases including genomic alterations 
and environmental and iatrogenic processes such as radio- 
therapy, and chemotherapy, alter oogenesis. Furthermore, 
the oogenesis process in adult women may be controver- 
sial, but in rodents, it is highly accepted. In this brief re- 
view, we have described the main dogma and data regard- 
ing the oogenesis controversy in adult humans and other 
mammals. 

“The central dogma of reproductive biology” and the 
concept of neooogenesis in adult mammals, including 

women 

Historically, Waldeyer-Hartz, ( 2 ), was the first to hypoth- 
esize that in adult mammalian species and birds, no ad- 
ditional oocytes can be produced in the ovary after the 
postnatal period and that oocytes originate from the OSE 

during a limited period in early life. This was the begin- 
ning of the greatest controversy in the field of biology that 
continues to this day. Various research groups provided 

evidence to support or refute this idea, but years later, we 
would come to know it as the central dogma of reproduc- 
tive biology regarding the concept of postnatal oogenesis 
or neooogenesis. 

Between 1901 and 1956, evidence was presented to sup- 
port the idea of neooogenesis in some adult mammalian 

ovaries, as well as oogenesis during sexual maturity, oo- 
genesis in the adult human ovary, and the estimation that 
new oocytes are formed from the germinal epithelium in 

the human ovary between the ages of 20 and 40 ( 31 , 32 , 35–
37 , 55–62 ). However, despite these works, the idea pro- 
posed by Waldeyer-Hartz still prevailed ( 2 ), as seen in the 
works by Kingery and Pearl and Schoppe ( 47 , 63 ). Kingery 

proposed that all oocytes that degenerate during fetal life 
are restored by oocytes that develop in the adult ovary ( 47 ). 
This idea was further reinforced by the work of Allen and 

Allen and Creadick ( 31 , 36 ), who argued that new oocytes 
arise from the germinal epithelium by mitotic division. 
Similarly, Pearl and Schoppe ( 63 ), asserted that there can 

be no increase in the number of primary oocytes after the 
formation of the ovary, a concept that years later Zucker- 
man would mention as the correct description of the “basic 
biological doctrine” ( 64 ). Subsequent studies focused on 

explaining the regenerative capacity of the rabbit and rat 
ovary ( 65 , 66 ), as well as postnatal oogenesis by analyz- 
ing the number of normal and atretic oocytes in the rhesus 

monkey, considering two possible mechanisms of oocyte 
depletion, atresia alone or the combination of atresia with 

a decreased neooogenesis ( 3 ). 
Based on the postulates of Waldeyer-Hartz, Kingery, 

Pearl and Schoppe, and Zuckerman ( 2 , 47 , 63 , 64 ) confirmed 

that in rats, mice, rhesus monkeys, rabbits, dogs, guinea 
pigs, and humans, the number of oocytes in the ovaries de- 
creases with age. From this point on, Zuckerman ̓s work 

would become what we know as “the central dogma of 
reproductive biology”, which postulates that most mam- 
malian females have the potential to generate a limited 

reserve of oocytes during fetal development ( 64 ). These 
oocytes, surrounded by granulosa cells, are described as 
ovarian follicles incapable of dividing ( 64 , 67 ). A few years 
later, Peters H, et al. ( 68 ), demonstrated that the period of 
oocyte formation in the mouse occurs only during the pre- 
meiotic S phase. The formed oocytes remain during the 
adult stage. Similarly, Crone M, et al. and Morita Y, et al. 
( 69 , 70 ), identified large oval cells in the OSE of young 

and adult mouse ovaries that resemble germ cells in fetal 
ovaries. The central dogma was that female mammals are 
born with a limited, non-renewable supply of germ cells, 
all of which are arrested in meiosis I and form functional 
units described as follicles ( 64 , 71–74 ). Since then, several 
research groups have conducted studies in several mam- 
malian species that support neooogenesis. 

Research conducted in adult prosimians has contributed 

to the identification of oogonia during interphase and at 
different stages of mitosis, as well as oocytes during the 
meiotic prophase ( 75 , 76 ). It has been suggested that the 
mitotic activity of germ cells forms clusters within the 
ovarian cortex that can incorporate tritiated thymidine, in- 
dicating mitosis and DNA synthesis during the estrus and 

anestrus stages ( 77 , 78 ). 
Johnson and his collaborators demonstrated that in 

young and adult mice, ovarian mitotically active germ 

stem cells (GSCs) express the germ-cell marker Mvh, and 

the meiotic entry marker synaptonemal complex protein 3 

(SYCP3) ( 79 ). Further work by Johnson and colleagues 
( 80 ) found that bone marrow transplantation (BMT) could 

restore oocyte production in chemotherapy-sterilized wild- 
type mice, as well as in ataxia telangiectasia-mutated 

gene-deficient mice, after oocytes were observed in pe- 
ripheral blood transplants, concluding that bone marrow 

is a potential source of oocyte-producing germ cells in 

adulthood. Furthermore, Lee and coworkers proposed that 
BMT could rescue long-term fertility in CTx-treated fe- 
male mice, provided that germ stem cells (GSCs) can re- 
plenish oocytes and eliminate the effects of busulfan and 

cyclophosphamide as well as the action of CABLES1 , like 
an associated key gene that restricts the rate of oocyte 
renewal in adult mouse ovaries ( 81 , 82 ). In addition, fur- 
ther evidence supported the hypothesis of postnatal follic- 
ular renewal from immature putative germ cells in post- 
natal and adult C57BL/6 mouse ovaries ( 83 ). It has been 
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demonstrated that oocytes can be spontaneously generated 

from embryonic stem cells (ESCs), which can have mor- 
phological and physiological characteristics of ovarian fol- 
licles ( 84 ). Zhang et al. observed the presence of cell ag- 
gregates, corresponding to cell populations unrelated to 

ovarian follicles, that expressed germline and stem cell 
surface markers in adult mouse ovaries ( 85 ). Szotek et al. 
identified a population of label-retaining cells (LRCs) in 

the OSE of adult H2B–GFP mouse ovary as candidate so- 
matic stem/progenitor cells ( 86 ). Zou et al. purified by 

immunomagnetic isolation and maintained in culture for 
6–15 months a GSC line in neonatal and adult mice, with 

normal karyotype, high telomerase activity, and the ex- 
pression of pluripotency and germline genes ( 87 ). Niikura 
et al. identified premeiotic germ cells in the OSE of aged 

mouse ovaries with high expression of the Stra8 and Dazl 
genes. They also observed a positive correlation between 

Stra8 expression and follicle regeneration after doxorubicin 

treatment in young adult female mice ( 54 ). Pacchiarotti 
J, et al. identified two populations of GFP-Oct4 positive 
cells in both neonatal and adult mouse ovaries, based on 

their size and distribution ( 88 ). The first group consisted of 
small cells found in the OSE that corresponded to GSCs 
that maintained telomerase activity, expressed germ cell 
and stem cell markers, had normal karyotypes, and formed 

embryoid bodies (EBs). The second group consisted of 
larger cells corresponding to oocyte-like cells (OLCs) that 
were surrounded by follicular structures. Gong et al. es- 
tablished two lines of ESCs-like cells in mice, from adult 
ovarian stromal cultures with a fibroblast monolayer that 
expressed pluripotent markers and formed EBs and ter- 
atomas ( 89 ). White YAR, et al. purified mitotically active 
cells in both adult mice and humans that can be expanded 

in vitro and spontaneously generate oocytes. Injection of 
GFP-transfected human oogonial stem cells into human 

ovarian cortical biopsies results in the formation of folli- 
cles containing GFP-positive oocytes after xenotransplanta- 
tion, into immunodeficient female mice ( 90 ). Esmaeilian Y, 
et al. provided evidence for differential expression of Oct4, 
Nanog , and Sox2 in prepubertal and adult mouse ovaries 
and suggested that mouse ovaries have cells with stem 

cell characteristics ( 91 ). Hu et al. confirmed the existence 
of female germline stem cells (FGSCs) in postnatal and 

adult mouse ovaries; they showed the expression of germ 

cell markers Mvh, Dazl, Figla, Zps, and stem cell markers 
Oct4, Klf4, c-myc, Nanog, CD49f, Sox2, CD133, SSEA1, 
and SSEA4 ( 92 ). Bhartiya et al. demonstrated that preg- 
nant mare serum gonadotropin (PMSG) treatment resulted 

in induced very small pluripotent embryonic-like stem cell 
(VSEL) activity in the OSE, leading to the proliferation 

and differentiation of GSCs into oocytes and primordial 
follicle assembly, besides increased FSH receptors (FSHR), 
in adult mouse ovaries ( 93 ). Park ES, et al. suggested that 
exposure of oogonial stem cells (OSCs) to BMP4 in the 
adult mouse ovary, resulted in rapid phosphorylation of 

BMPR-regulated Smad1/5/8 proteins, followed by the in- 
creased expression of the meiosis genes Stra8, Msx1 , and 

Msx2 ( 94 ). Sriraman et al. provided evidence that OSE 

cells, cultured from chemoablated ovaries formed clusters 
of proliferative cells and oocyte-like structures, and were 
positive for MVH and GDF9 ( 95 ). Moreover, they showed 

that the direct stimulatory action of FSH induced OSE 

proliferation and differentiation into premeiotic germ cell 
clusters. Guo et al. postulated the presence of active GSCs 
in adult mouse ovaries and their function in replenishing 

the primordial follicle pool under physiological conditions 
( 96 ). 

Evidence of stem cells in the human ovary 

A growing body of evidence suggested the possibility of 
the existence of neooogenesis in adult human ovaries, 
opening a new avenue for intensive research in this field 

( 41 , 43 , 44 , 50 , 79 , 80 , 97–115 ). Many of these works were 
based primarily on studies performed first in rodents and 

later on oogenesis from human OSE cells and possible 
extra-ovarian sources, which will be briefly described in 

the following paragraphs. 

Oogenesis in adult humans and mammals: realities and 

controversies 

There is vast evidence that oocyte renewal can occur in 

adult human ovaries; however, the debate in the scientific 
community is still controversial. A very elegant, convinc- 
ing, and detailed review by Tilly’s group ( 113 ) and oth- 
ers, described the scientific evidence for oogenesis in adult 
mammals, including humans ( 79 , 80 , 110 , 116 ). OSCs from 

mice differentiated into oocytes in vitro are suitable to be 
fertilized and implanted into sterilized animals resulting in 

embryonic development. Thus, the purpose of our com- 
ments, in addition to previous works, is related to our ob- 
servations of the possible involvement of the OSE in the 
induction of cell transition, and their ability to induce new 

cell-differentiated populations, such as granulosa cells and 

possible oogonia cells. If granulosa cells can renew stem 

cells, they are likely to be recruited by oogonial cells in 

differentiation. Indeed, in patients with diminished ovarian 

reserve (DOR), we demonstrated that epithelial cells in the 
OSE of these patients expressed stem cell markers such as 
SOX2, NANOG, and OCT4, and these cells exhibited mi- 
gration and invasion into the stroma ( 53 ), similar to what 
was previously reported by Bukovsky A, et al. ( 43 ). In- 
terestingly, other reports by Vital-Reyes et al. indicate that 
the ovaries of these patients did not present an increase in 

apoptosis, nor a reduction in primary follicles, suggesting 

a decreased or suppressed stem cell population ( 117 ). Our 
research group agrees with the idea that the ovary, like 
many other human tissues, contains a reserve of the stem 

cell population capable of renewing functional tissue cells. 
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If there is evidence of granulosa cell renewal in the ovary, 
it has probably been recruited by renewed oocytes, but 
possibly with a very limited population ( 53 ). Our studies 
were inconclusive due to the limitations of human biopsies 
and the ethical aspects of obtaining ovarian human tissue. 
Therefore, further studies are needed. 

Restoration of Oogenesis in Adults Using Stem Cells 
from Different Sources, Including Preserved Ovaries and 

Restoration of Ovarian Reproductive Function 

The recovery of ovarian and reproductive function is 
emerging as a promising strategy to preserve fertility, as 
well as to reduce the impact of chronic diseases on repro- 
ductive health and those related to reproductive age and 

to extend reproductive capacity in the future ( 1 , 118 ). In- 
fertility is a global problem affecting 48 million couples, 
with women accounting for 37 % of infertility cases. This 
number continues to increase leading couples to turn to 

strategies that can solve the problem, such as assisted re- 
production technologies (ART) ( 119 , 120 ), in vitro fertiliza- 
tion (IVF) ( 121–123 ), and intracytoplasmic sperm injection 

(ICSI) ( 124 ), among others. However, none of these tech- 
niques have been able to completely solve the problem, 
since infertility has a complex origin, which can be caused 

by genetic, epigenetic, or chromosomal abnormalities, in- 
cluding copy number variations (CNVs), or even by autolo- 
gous germline mitochondrial energy transfer (AUGMENT) 
factors ( 113 , 125–127 ), in aging oocytes, all of which can 

positively impact folliculogenesis and oogenesis. Due to 

this diversity of reproductive alterations, the search for new 

or improved assisted reproductive technologies is an ongo- 
ing research effort. 

Recently in patients with premature ovarian insuffi- 
ciency (POI), advances in stem cell technology have been 

proposed that increase the likelihood of in vitro game- 
togenesis derived from human induced pluripotent stem 

cells (hiPSCs) which could provide new therapeutic strate- 
gies for infertile couples successfully overcoming signifi- 
cant problems related to immunological rejection, and eth- 
ical issues related to the human embryo. We refer to the 
generation of patient-specific stem cells that can be repro- 
grammed ( 118 ). Here, neooogenesis may provide a new 

strategy to preserve fertility, delay menopause, and treat 
infertility. 

Although not widely used in most cancer fertility 

preservation centers, the biobank of cryopreserved ovar- 
ian tissue provides a substantial source of biological mate- 
rial to study the OSC population of women ( 128 ). Sev- 
eral studies have reported the existence and origin of 
OSCs derived from various sources such as bone marrow 

( 110 ), ovarian cortex ( 129 ), OSE ( 101 , 108 ), skin-derived 

stem cells ( 130 ), and pancreatic stem cells ( 131 ). OSCs 
can proliferate and differentiate into different developmen- 
tal stages of oogenesis. OSCs or ovarian stem cell-like 
cells have been identified using several methods including 

fluorescence-activated cell sorting (FACS), and magnetic- 

activated cell sorting (MACS) ( 90 , 108 , 110 , 129 , 132 , 133 ) 
( Fig. 1 ). 

Although we know that OSCs can generate new 

oocytes, the methodological issues of obtaining ovarian 

OSCs, ESCs, and induced pluripotent stem cells (iPSCs) 
used to generate new oocytes in vitro , should not be over- 
looked ( 134–136 ). There is great potential for OSCs to 

generate oocytes that can counteract the alterations ob- 
served in infertile cancer survivors and patients with POI, 
in addition to the problems associated with menopause, 
which could help preserve fertility in older women who 

have not yet been able to become mothers ( Fig. 1 ). 
OSCs express specific markers, including the 

fluorescent-labeled dead box polypeptide 4 (DDX4), 
which is the most commonly reported marker when OSCs 
are isolated by FACS and MACS methods, as well as 
other germ cell markers such as PRDM1, PRDM14, and 

DPPA3, SSEA-4 and FRAGILIS. However, some reports 
mention that they are not ovarian specific, but we have 
stem cell markers such as OCT4, SOX2, SSEA-4, SALL4, 
CDH1, and LEFTY1, and oocyte-specific markers such as 
ZP3, SYCP3, and c-KIT ( 108 ). 

It has been reported that OSE cells can differentiate into 

oocytes and granulosa cells ( 101 ), while VSELS and OLCs 
obtained from OSE scrapings can proliferate and differen- 
tiate into OLCs ( 137 ). Furthermore, in humans, FGSCs 
have opened new opportunities for understanding human 

oogenesis. However, it should be noted that the scarcity 

of available adult human ovarian tissue for ethical reasons, 
impedes future research and its potential clinical applica- 
tions. 

The human adult ovary is a source of oocyte recovery for 
reproductive purposes 

In vitro maturation (IVM) of oocytes has been proposed 

as a tool that could support ART and obtain better re- 
sults in patients who present infertility, and in women with 

polycystic ovary syndrome. Lee ( 138 ) used adult pluripo- 
tent stem cells (ASCs) derived from human adipocytes, 
along with a conditioned ASCs-CM medium applied to 

the porcine oocyte, and IVM to evaluate the efficiency of 
ASCs in oocyte development and subsequent embryonic 
development. This was presented as a proposal to improve 
oocyte cultures and thus obtain better results that would fa- 
vor the maturation and optimal development of the oocytes, 
thus increasing the chances of a successful outcome when 

performing assisted reproduction. 
From this work, we can consider ASCs as ideal can- 

didates in regenerative medicine due to their stable dif- 
ferentiation ability, easy expansion, and isolation to obtain 

adequate quantities ( 139 ). For these reasons, ASCs are re- 
liable for application in medicine. 

Accumulating evidence over the years has shown that, 
in mammals, mice, and humans, the presence of FGSCs 
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Fig. 1. Schematic summary of ovarian cell types and putative cell sources, the process of differentiation into mature oocytes and granulosa cells, 
identification methods, and their use in the treatment of infertility. Oogonial stem cells (OSCs) are derived from a variety of sources, including bone 
marrow, ovarian cortex, skin-derived stem cells, and pancreatic stem cells. OSCs can proliferate and differentiate into different developmental stages 
of oogenesis. OSCs can be identified by various methods, including fluorescence-activated cell sorting (FACS) and magnetically-activated cell sorting 
(MACS). OSCs are a potential treatment for women with infertility diagnosed with premature ovarian insufficiency (POI), premature ovarian failure 
(POF), and diminished ovarian reserve (DOR). 
Modified from Gong SP, et al., and Truman AM, et al. 

is responsible for carrying out neooogenesis in postnatal 
ovaries ( 79 , 87 , 140 , 141 ). However, in humans, abnormal- 
ities in germline development have been reported to lead 

to serious diseases, including infertility and cancer. 
Currently, diseases associated with ovarian dysfunction 

have become prevalent in women whose menstrual cycle 
frequency and duration are often altered ( 142 ), and in some 
cases, POI or polycystic ovary syndrome may or may not 
occur. 

Spermatogonial stem cells (SSCs) can differentiate into 

other cell types including oocytes, and it has been reported 

that these ovarian organoids can produce offspring ( 143 ), 
which is why this cell type has been able to maintain fer- 
tility and provide support in other genetic diseases, such 

as Klinefelter’s syndrome ( 144 ). 
Recently, a study based on single-cell RNA sequence 

analysis (scRNA-seq) of adult human ovarian cortical tis- 
sue, claimed that OSCs do not exist ( 97 , 145 ), and the 
groups claiming neooogenesis have worked with perivascu- 
lar cells (PVCs), instead of OSCs, after isolation by MACS 

or FACS. However, the methodology of these studies has 
also been refuted by technical problems in isolating differ- 
ent types of ovarian cells ( 113 ). 

Intervention strategies to delay ovarian aging have now 

been proposed in murine models and women. These pre- 
clinical trials may show potential for improving female 
fertility. Significant progress has been made in the field 

of sino-therapy to prolong the reproductive life of mam- 
malian females ( 146 , 147 ). Antioxidants such as resvera- 
trol, nicotinamide mononucleotide, NAC, melatonin, and 

coenzyme Q10 may prevent oxidative damage and delay 

ovarian aging ( 1 ). 
Finally, clinical trials have been conducted using cy- 

toplasmic transfer to improve oocyte quality and employ 

mitochondrial enrichment, where some or all of the healthy 

cytoplasm is transplanted into oocytes from infertility pa- 
tients to perform oocyte rescue ( 1 , 148 , 149 ). 

Conclusions 

Although there is much evidence in favor of oogenesis in 

mammals including humans, there is still controversy in 

the scientific community between those who support the 
idea of postnatal oogenesis and those who deny its exis- 
tence, which emphasizes the need for further research, by 

using or generating new methodologies in animal models 
for use in human clinical trials. This is of great importance 
not only for the treatment of infertility but also for POI 
and other obstetrical and gynecological diseases. 
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