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1. Introduction

Because electricity is very costly to store, wholesale prices vary from day to day and often fluctuate

by an order of magnitude between low-demand nighttime hours and high-demand afternoons. Nearly

all retail consumers, however, are charged some average price that does not reflect the wholesale price

at the time of consumption. In theory, economists have long recognized that this creates allocative

inefficiencies, and there is a long literature1 on ‘‘peak load pricing’’ and ‘‘real-time pricing.’’ In practice,

the welfare implications of correcting this inefficiency fundamentally depend on how price elastic

consumers are.
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A B S T R A C T

Most US consumers are charged a near-constant retail price for

electricity, despite substantial hourly variation in the wholesale

market price. This paper evaluates the first program to expose

residential consumers to hourly real-time pricing (RTP). I find that

enrolled households are statistically significantly price elastic and

that consumers responded by conserving energy during peak hours,

but remarkably did not increase average consumption during off-

peak times. The program increased consumer surplus by $10 per

household per year. While this is only one to two percent of

electricity costs, it illustrates a potential additional benefit from

investment in retail Smart Grid applications, including the

advanced electricity meters required to observe a household’s

hourly consumption.
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Recent advances in ‘‘Smart Grid’’ consumer energy management technologies can increase

households’ price elasticities and reduce the cost of the advanced electricity meters required to record

hourly consumption. This has increased the likelihood that real-time pricing (RTP) would have

positive net welfare effects, magnifying the business and policy interest in RTP. While electric utilities

have experimented substantially with other price structures,2 however, no utility has taken the

seemingly natural step of exposing residential consumers to the real-time variation in wholesale

market prices. This paper analyzes the program that has come closest, by providing hourly varying

retail prices based on day-ahead wholesale prices.

Specifically, I examine the Energy-Smart Pricing Plan, which has operated in Chicago since 2003.

From the households that opted into the pilot program, program managers randomly assigned a

control group to be kept on the standard flat rate tariff, allowing an unbiased estimate of the treatment

effects of real-time pricing on experimental households. To construct demand equations useful for

welfare and policy analysis, I derive and estimate structural demand functions from indirect utility,

while also highlighting the connections to a ‘‘reduced-form’’ treatment effect framework.

The demand estimation results bring to light three features of household electricity demand under

RTP. First, the households that selected into the experiment have statistically significant elasticities:

the overall reduced-form price elasticity of demand is about �0.1. Second, households’ behavioral

changes take the net form of energy conservation in peak price hours, with no net increase in

consumption during low price hours. The idea that RTP could cause peak energy conservation with no

net load shifting has important implications for the effects on energy costs, consumer welfare, the

equilibrium entry of different power generation technologies, and the carbon emissions from

electricity generation. The third central finding is that because the variation in hourly prices is small,

reducing the cost of observing and responding to energy prices can substantially affect households’

behavior. In this program, this was achieved by distributing Pricelights, glowing plastic orbs that

change colors to indicate the current electricity price, to a set of households randomly selected from

the group that had requested the device.

The demand system results are then used to estimate the program’s effects on consumer surplus,

under the simplifying assumption that wholesale prices and retailer profits are fixed. The calculation

shows that this RTP program resulted in an annualized consumer surplus gain of approximately $10.

This is 1–2 percent of the average household’s electricity expenditures. As the welfare gains from RTP

increase in the amount of wholesale price variation, however, this number would likely be higher in

other years and regions, where electricity prices tend to vary much more. I then extend the welfare

analysis by constructing a simple model of the greenhouse gas emissions from the marginal electricity

suppliers in each hour. This shows that the program reduced carbon dioxide emissions by just over

four percent.

Because the demand parameters are estimated from an experiment into which households had

self-selected, they are not informative about the price elasticity of the general population. Analysis of

optional residential RTP, however, is of great policy interest. Although the regulators that approve

electric utilities’ pricing structures typically share economists’ intuition about the benefits of RTP, they

are often concerned that consumers perceive RTP as complicated or risky relative to average cost

pricing (Faruqui and Sergici, 2009). A further political economy problem is that a mandatory shift to

real-time pricing could increase electricity bills for many consumers that tend to use more electricity

than average at times when market prices are high (Borenstein, 2007b). As a result, many real-time

pricing programs introduced over the medium-term may be optional instead of mandatory, and the

demand parameter estimates from this program may be of particular interest in understanding the

early phases of these future optional programs.

Although this discussion is specific to a particular setting, real-time electricity pricing is a

manifestation of an extremely general economic problem. Monitoring costs cause consumers to take

2 There is empirical evidence on the response of larger commercial and industrial customers to RTP, including Patrick and

Wolak (2001), Boisvert et al. (2007), Herriges et al. (1993), and Taylor et al. (2005). Barbose et al. (2004) provides a

comprehensive overview on real time pricing programs operated by US utilities. There is also a substantial literature on

residential electricity demand under other price structures, such as ‘‘critical peak pricing’’ and ‘‘time of use pricing.’’ See Faruqui

and Sergici (2008) for an overview of recent work.
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unobserved actions that differ from the perfect information optimum. Observing actions, however,

only improves welfare if consumers’ behavior under the new contract (real-time pricing) changes

sufficiently to justify the monitoring or contracting cost. Somewhat more specifically, there are many

settings when prices do not fully reflect how input costs or the shadow price of capacity vary over

time, including cellular phone and internet service contracts, most restaurants, and bridge and

highway tolls. In theory, the firm or regulator in these settings determines the profit-maximizing or

socially optimal contract using price elasticities and consumer surplus analyses similar to those

carried out here.

The introduction proceeds first by motivating why now is an important time to study real-time

pricing. Section 2 details the experimental design, the marketing and recruitment process, and

baseline household characteristics. In Sections 3 and 4, demand functions are derived from indirect

utility and estimated, exploiting the randomization to purge the estimator of simultaneity bias.

Section 5 presents empirical results, and Section 6 discusses policy implications.

1.1. Motivation: why study real-time pricing?

Real-time pricing is one of the central issues in an important industry. In 2007, the electric power

sector accounted for 2.5 percent of United States GDP, or $326 billion in retail sales per year (US Energy

Information Administration, 2008). Broader discussions of wholesale and retail electricity market

design, such as Bandt et al. (2003), Borenstein (2002), Joskow and Tirole (2006, 2007), and Wolak

(2007), often center on the importance of real-time pricing for market efficiency.

The most commonly discussed channel of efficiency gains from moving consumers from the

standard flat rate tariff to real-time pricing is static allocative efficiency improvements: conditional on

a capital stock of power plants, there are gains from shifting consumption from peak periods when the

marginal cost of production is high to off-peak periods when marginal cost is low (Holland and

Mansur, 2006). As discussed in Allcott (2009a), Borenstein and Bushnell (1999), and Borenstein

(2005), however, there are other important channels. The inelastic demand that results from the lack

of retail RTP is one of the central challenges in designing electricity markets: inelastic short-term

demand gives producer firms market power in wholesale markets, and markups above marginal cost

can cause an inefficient allocation of production between firms. Inelastic short-term demand,

combined with the extremely high cost of blackouts, also means that electricity market operators

must ensure that sufficient generating capacity is in the ground to satisfy extreme realizations of the

demand shock. In an industry where capacity is a substantial part of the cost structure, the capacity

reduction that could result from implementing RTP is a substantial potential source of welfare gains.

These potential gains from real-time pricing, of course, depend on the magnitude of consumers’ price

elasticity.

This is a particularly interesting time to be studying real-time pricing. Most US households

currently have electricity meters that simply record the total consumption of electricity since

installation, meaning that the consumer cannot be charged prices that vary from hour to hour.

Furthermore, the only way for the electric utility to observe households’ consumption is to actually

send a worker to read the meter, a costly and potentially error-prone process. The ‘‘Smart Grid’’ is a set

of emerging electric power information technologies that include, among other things, household

energy management devices and technologies that facilitate communication between electricity

retailers and consumers. From the utility’s perspective, improvements in these technologies offer

reduced meter reading and administrative costs and the potential for real-time metering of electricity

use. Furthermore, by allowing households to more easily observe prices and consumption, and even to

automate how air conditioners and other appliances turn on and off in response to real-time prices,

Smart Grid technologies can increase consumers’ price elasticity of demand.

Substantial business and policy interest has been associated with these technological changes.

Electric utilities in California, Colorado, Florida, Illinois, Indiana, Ohio, Texas, Washington, and other

states are introducing Smart Grid technologies to large groups of customers. The Energy Independence

and Security Act of 2007 provides $100 million annually in research and development funding and

provides incentives for utilities to invest in Smart Grid infrastructure. Furthermore, the 2009 US

economic stimulus package includes $3.9 billion in funds for wholesale and retail-level Smart Grid
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projects. Now that a larger share of households will have meters capable of administering real-time

pricing, utilities, regulators, and policymakers will want to understand the efficiency gains from that

pricing structure relative to the remaining perceived costs.

There is a long empirical literature on different forms of household electricity pricing. Reiss and

White (2005), for example, examine increasing block pricing, under which the marginal price increases

by the total quantity consumed. Wolak (2006) estimates consumers’ response to critical peak pricing,

where consumers pay higher prices or receive rebates for conservation on occasional high price days,

but pay their standard rate at all other times. Train and Mehrez (1994), the analyses in Aigner (1984),

and many others focus on time of use pricing, in which customers pay different fixed prices in peak and

off-peak hours. While responses to these other price structures can suggest a reasonable range of

responses to RTP, these distinct structures provide a distinct set of short run and long run incentives.

Despite this experimentation, the vast majority of US households are currently on a very simple flat

rate tariff, in which the marginal price per kilowatt-hour consumed does not vary other than year-to-

year or perhaps season-to-season.

A number of utilities have some large commercial and industrial customers on RTP, and such

programs have been analyzed in Patrick and Wolak (2001), Boisvert et al. (2007), Herriges et al. (1993),

Taylor et al. (2005), and other work. These larger customers, and in particular firms for which

electricity represents a large share of input costs, could respond in very different ways. Because the

fixed costs of advanced meters are a greater share of total electricity costs, and because of the

perceived complexity and risk to these smaller consumers, real-time pricing has historically been a

lower priority for residential relative to commercial and industrial customers. Indeed, after the early

time of use pricing experiments in Aigner (1984), conventional wisdom held that although households

had statistically non-zero price elasticities, these were not large enough to justify the expense of

installing advanced electricity meters (Faruqui and Sergici, 2008). In recent years, the prior about the

net benefits of residential RTP has begun to change, but no direct evidence existed until recently.

The ESPP pilot program analyzed here is of particular interest because it exposes residential

consumers to hour-to-hour price variation, which has never been done before in the United States.

This is as close as utilities have come to residential real-time pricing.3

2. Experimental design and data

This section begins by presenting substantial background on the program and participants, which

allows more insight into the nature of households’ self-selection. I then detail the experiment itself

and present descriptive statistics.

2.1. Setting: the energy-smart pricing plan

At the beginning of the decade, demand growth had pushed parts of Chicago’s local electricity

distribution network near their capacity limits. A large electric utility called Commonwealth Edison

(ComEd) owns this local network and provides retail electricity service to residential customers at

prices regulated by the state. Temporarily prohibited by state electricity restructuring rules from

financing infrastructure investments through higher electricity rates, ComEd was interested in low

cost strategies to reduce demand during peak periods.

A Chicago NGO called the Center for Neighborhood Technology (CNT) helped ComEd to design and

operate air conditioner replacement programs, in which a household with an inefficient but functional

window air conditioner could receive a rebate for trading in for a new, energy efficient model. These

programs were targeted to several specific neighborhoods where both ComEd’s infrastructure was

3 I note that this experiment has been previously studied in a consulting report (Summit Blue Consulting, 2004). Remarkably,

the report did not exploit the randomized control group. The authors recognized that a ‘‘comparison approach’’ between

treatment and control groups was possible, but worry that ‘‘the relationship between hourly prices is complicated, and

therefore it is difficult to determine from this approach’’ whether treatment effects are correlated with prices. They conclude

that if the control group were used in the analysis, ‘‘it would be difficult to directly determine the level and significance of the

relationship between hourly prices and usage.’’ In Section 5.1, I detail how non-experimental approaches appear to produce

biased parameter estimates.
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under stress and CNT believed it could operate effectively. In 2003, CNT initiated the Energy-Smart

Pricing Plan (ESPP) to test whether real-time pricing could incentivize significant reductions in peak

electricity demand. This was a convenient partnership for ComEd, because state law also prevented

them from promoting new products or rates4 (Isaacson et al., 2006).

2.2. Recruitment and baseline characteristics

CNT’s outreach targeted its existing areas of operation, shown in Fig. 1, and in particular focused on

households that had chosen to participate in the previous air conditioner replacement programs.

Beginning in late 2002, CNT mailed marketing materials to their 7000 existing participants, organized

community meetings in the areas where they operated, and publicized the new program via word of

mouth. By the end of April 2003, 693 households had opted in. Although the program was open to all

ComEd customers in and around Chicago, over two-thirds of the initial households had been participants

in previous CNT programs. Of the 225 that had no previous affiliation with CNT, most lived in the existing

areas of operation and had found out via word of mouth or the community meetings.

CNT and a consultant carried out a survey of ESPP program households and of other CNT affiliate

households that had received direct mail marketing materials but did not sign up for the program. The

survey indicated that saving money was by far the primary factor driving enrollment, followed by

‘‘environmental benefits.’’ As shown in Fig. 2, the most common way that enrollees found out about

the program was through direct mail. Among CNT households that had not enrolled, half did not recall

Fig. 1. ESPP geographic areas. CNT neighborhoods: A: Evanston; B: Austin; C: Pilsen; D, E: Elgin; F: Park Forest; G: Near West Side.

4 Restrictions against raising rates and promoting new rate structures were common features of state electricity market

restructuring law passed in the late 1990s. The rate freeze was typically used to garner political support from consumer groups,

while the prohibition against the incumbent utility offering new products or rates was intended to encourage competing retail

electricity suppliers to enter the market.
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hearing about the program, while others did not expect sufficient savings or thought that the program

was too risky or complex (Summit Blue Consulting, 2004).

Since many program households had participated in CNT’s earlier air conditioner replacement

programs, they were probably more interested in energy conservation or attentive to electricity

use than the Chicago population average. The fact that these households had recently purchased

an energy efficient air conditioner, however, means that their price response could also be

understated relative to the general population. This is because treatment group households would

have had one less inefficient air conditioner to replace, and also because turning down an efficient

air conditioner reduces consumption less than turning down an inefficient model.

Of the 693 initial households that enrolled in the pilot, program managers randomly assigned 103

to a control group. Control group households received a letter saying that they were not on real-time

pricing, complete with three $15 gift certificates for groceries as a consolation. These households

received no further information during the 2003 experiment and were only allowed to enter real-time

pricing at the beginning of 2004.

I observe each household’s Census tract and use this to incorporate tract-level information from the

2000 Census Long Form on housing stock (median year of construction and percent of dwellings that

are multifamily vs. single family) and demographics (percent of individuals not in the labor force and

percent with a college diploma). The 693 treatment and control households were in 255 different

tracts. At the household level, I also observe income (in six buckets) and number of household

members, although some missing data is imputed from census tract medians. Finally, I use the

monthly electricity bills for May through December 2002 to construct pre-program baseline

electricity consumption.

Columns I and II of Table 1 presents the means and standard deviations of the treatment and

control groups’ baseline observable characteristics. Column V presents the difference in mean

characteristics between treatment and control group households, with standard errors in

parenthesis. As Column V shows, treatment group households are slightly but not statistically

significantly larger and more concentrated in the higher income buckets. They are also similar on

average household size and on the tract-level demographic and housing stock variables. An F-test

of a regression of a treatment group indicator on observable characteristics fails to reject that

Fig. 2. Recruitment.
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the treatment and control groups are the identical, as we would expect in a randomized

experiment.

Columns III and IV of Table 1 present the means and standard deviations of characteristics of

households in the 30 zip codes where CNT had ten or more existing affiliates and in the Chicago

metropolitan area, respectively. Column VI presents the difference in mean characteristics between

the ESPP participants and the population in the CNT zip codes, with standard errors in parenthesis. On

household size and income, ESPP enrollees are not statistically different from households in the 30

CNT zip codes. Their pre-program energy consumption is lower, likely resulting from their previous

participation in CNT’s air conditioner replacement programs. Program participants are disproportio-

nately drawn from the better-educated of the areas where CNT had ten or more affiliates, although

CNT itself had focused its operations in areas with lower average education than the rest of Chicago.

In sum, while program participants are not highly unusual on observable characteristics, they are a

self-selected group. As a result, this experiment would not be very useful in understanding the effects

of a mandatory, population-wide real-time pricing program. It does, however, allow us to consistently

estimate internally valid demand parameters for the experimental population, which should be

indicative of the first few percent of households that would opt in to a first wave of optional residential

real-time pricing programs in similar parts of the country.

Table 1

Baseline household characteristics.

(I) (II) (III) (IV) (V) (VI)

Treatment Control CNT Chicago T-C ESPP-CNT

Pre-program usage 954 879 1050 1050 75 �135

SD (and SE): (497) (436) (629) (629) (47.5) (40.8)**

Household size 2.56 2.58 2.65 2.64 �0.024 �0.059

(1.02) (1.09) (1.66) (1.55) (0.110) (0.100)

Income 10k–25k 0.20 0.26 0.19 0.14 �0.058 0.034

(0.27) (0.36) (0.39) (0.35) (0.037) (0.024)

Income 25k–50k 0.29 0.32 0.29 0.24 �0.029 0.022

(0.31) (0.37) (0.45) (0.43) (0.038) (0.029)

Income 50k–75k 0.23 0.21 0.19 0.22 0.023 0.026

(0.29) (0.31) (0.39) (0.42) (0.033) (0.026)

Income 75k–150k 0.18 0.13 0.18 0.24 0.053 �0.015

(0.27) (0.23) (0.38) (0.42) (0.025)** (0.025)

Income >150k 0.04 0.03 0.04 0.08 0.016 �0.014

(0.14) (0.10) (0.20) (0.26) (0.011) (0.014)

Median year constructed 1950 1949 1948 1962 1.31 0.60

(11.4) (9.00) (8.38) (14.6) (1.00) (0.67)

Pct multifamily housing 0.49 0.48 0.63 0.44 0.017 �0.051

(0.29) (0.29) (0.48) (0.50) (0.031) (0.031)*

Pct not in labor force 0.40 0.41 0.40 0.39 �0.005 0.015

(0.10) (0.09) (0.49) (0.49) (0.010) (0.028)

Pct college graduates 0.25 0.23 0.19 0.31 0.023 0.041

(0.19) (0.17) (0.39) (0.46) (0.018) (0.025)*

Previous CNT affiliates 421 450 252 26.0 �29.1 187

(574) (603) (480) (170) (63.7) (33.4)**

F-Test p-Value 0.263 0.000

The first four columns present mean characteristics, with standard deviations below in parenthesis. Columns V and VI present

the difference between mean characteristics in Treatment and Control and ESPP vs. CNT neighborhood households,

respectively. For Columns V and VI, standard deviations are below in parenthesis. *, **Statistically different from zero with 90

and 95 percent confidence, respectively. CNT neighborhoods are the 30 zip codes that had more than 10 CNT affiliates before the

ESPP program began. ESPP Treatment Group: 590 households. ESPP Control Group: 103 households. CNT neighborhoods: 631

thousand households. Chicago four-county metropolitan area: 3.14 million households. For ESPP households, Pre-Program

Electricity Usage (W), Household Size, and Income buckets (Real 2003 $/year) are observed at the household level. Previous CNT

Affiliates is observed by zip code. All other variables are at the Census tract level; from 2000 US Census Long Form data. CNT and

Chicago electricity usage distribution are from microdata for the East North Central division from the 2001 Residential Energy

Consumption Survey US Energy Information Administration, 2005. For CNT-area and Chicago households, all other data are

from the 2000 Census demographic distributions.
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2.3. The experiment

Households assigned to the control group were forced to remain on the standard ComEd

residential tariff, which is 8.275 cents per kilowatt-hour (kWh) in the summer and 6.208 cents/

kWh in other seasons. For the treatment group, prices were set such that expected total electricity

bills would be slightly lower under RTP compared to the flat rate tariff, for a household with a

typical load shape. This reduction in total expected costs was achieved through a Participation

Incentive, which was designed to compensate households for an increase in perceived price risk.

ComEd fixed each day’s hourly retail prices by 4 pm the day before, according to the following

formula:

phd ¼ PDA
hd þ D � PI (1)

phd= retail price for hour h of day d; PDA
hd ¼ Day-Ahead5wholesale market price; D= distribution charge

(5.0cents/kWh); PI= Participation Incentive (1.4cents/kWh).

On the evenings before days when the wholesale component of price was to exceed 10 cents/

kWh, treatment group households received a special e-mail or telephone High Price Alert. This

happened on nine summer days in 2003. Program managers also made available programmable

thermostats to the treatment group, which allowed automated temperature control by time of

day.

Survey results, website login data, and discussions with program managers and participants

indicate that although prices were available via telephone and internet, only rarely did households

actively check prices. Treatment group households could, however, form reasonably precise beliefs

about the joint distribution of prices with season, hour, and temperature. To help inform these

beliefs, households were sent quarterly ‘‘ESPP Updates’’ and a ‘‘Summer Readiness Kit,’’

which explained that prices are typically higher during the afternoon, on hot days, and in the

summer.

In an effort to increase the ease with which households could observe, and thus respond to, hourly

price fluctuations, program managers introduced a device called the Pricelight. This is a small plastic

globe that changes colors in real-time on a continuous spectrum from blue to red, indicating low to

high electricity prices. CNT offered Pricelights to all ESPP participants in 2006. Of the 223 households

that submitted requests, 47 were randomly selected to receive the device. These households form the

treatment and control groups for a separate experiment that allows an estimate of the treatment

effect of owning a Pricelight conditional on being on real-time pricing and having requested the

device.

After a household had opted in to the program, and regardless of whether the household was

assigned to treatment or control, ComEd installed a new electricity meter to record hourly

consumption. I observe hourly electricity consumption for all program households between 2003 and

2006. This includes 3.98 million hourly observations from the randomized RTP experiment from May

through December 2003, as well as 814,000 observations from the Pricelight experiment between

June and October 2006.

Table 2 shows descriptive statistics for the 2003 RTP experiment. Compared with the same months

of the previous year, which had higher temperatures, treatment group households reduced

consumption by 90.6W,6 or about 10 percent, while control group households reduced consumption

by about 5 percent. Table 3 displays similar information for the Pricelights experiment in 2006.

An example investment decision may help put these price and consumption figures in context. A

household deciding to purchase a window air conditioner might choose between a standard model, for

5 Specifically, the prices between 6am and 10pm were on-peak Day-Ahead prices from a nearby region, as reported in Platt’s

Energy Trader, applied to the shape of hourly Locational Marginal Prices at the PJM West hub. Between 10pm and 6am, hourly

wholesale prices have little variance and were based on seasonal historical averages. As of 2008, the program uses the PJM

ComEd zone Balancing Market Locational Marginal Price for all hours.
6 I will sometimes refer to treatment effects in watts, which is a measure of power, the flow of energy. In this setting, energy

consumption is actually measured on an hourly basis, in total watt-hours. Treatment effects could also be thought of in ‘‘average

watts over an hour.’’
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$270, and an efficient ‘‘Energy Star’’ model, for $300. Air conditioning can represent a substantial

portion of household electricity consumption: when turned to its highest setting, the standard model

uses a flow of 1000W, while the energy efficient model requires about 100W less. At standard usage7,

a household on ComEd’s flat rate tariff saves $5.34 per year with the Energy Star model and chooses

that model if it discounts these future cash flows at less than 5.8 percent per year. A household on real-

time pricing would save $6.87 per year on the prices observed during the first four years of the

experiment and would purchase the Energy Star model under a discount rate of 13.4 percent or less.

Note that program households did have long run incentives: CNT and ComEd promoted RTP as a

permanent program, and as of 2008, there were approximately 5000 households enrolled.

The retail prices during the experiment ranged from 4.62 to 16.0cents/kWh, and there were 30h on

nine days in which the wholesale component of price exceeded the High Price Alert cutoff of 10cents/

kWh. Both the level and variability of wholesale prices are lower during the experiment than they are

Table 2

Descriptive statistics: RTP experiment.

Obs Mean SD Min Max

RTP retail price (summer) 2208 6.85 2.12 4.62 16.0

RTP retail price (summer peak) 384 9.73 2.46 5.27 16.0

RTP retail price (non-summer) 3672 6.20 1.07 4.78 11.0

Control retail price (summer) 1 8.275 0 8.275 8.275

Control retail price (non-summer) 1 6.208 0 6.208 6.208

1 (high price hour) 5880 .0052 .072 0 1

1 (high price day) 245 .037 .19 0 1

Treatment quantity 3,396,511 865 810 0 14,750

Control quantity 581,520 830 900 0 21,880

Quantity – baseline use (T) 3,396,511 �90.6 694 �3860 12,300

Quantity – baseline use (C) 581,520 �47.5 787 �2380 19,890

N (total households) 5880 677 9.40 658 689

N (treatment) 5880 578 6.67 563 586

N (control) 5880 98.9 3.16 95 103

Includes the RTP experimental period, May–December 2003. ‘‘Summer peak’’ includes noon to 6pm on all workdays from June

to August. Observations column reflects distinct observations. Quantities are in watts; prices are in cents/kWh.

Table 3

Descriptive statistics: Pricelight experiment.

Obs Mean SD Min Max

RTP retail price (summer) 2208 9.24 3.50 3.71 40.1

RTP retail price (non-summer) 1464 7.83 1.55 4.29 14.9

1 (high price hour) 3672 .013 0.11 0 1

1 (high price day) 153 0.065 0.25 0 1

Treatment quantity 171,867 1190 1180 0 16,700

Control quantity 642,095 1090 1040 0 16,600

Quantity – baseline use (T) 171,867 �91.1 872 �4790 11,100

Quantity – baseline use (C) 642,095 �44.3 876 �2640 15,300

N (total households) 3672 222 0.693 219 223

N (treatment) 3672 46.8 0.396 46 47

N (control) 3672 175 0.369 173 176

Includes the Pricelights experimental period, June–October 2006.

7 The calculation assumes that the air conditioner lasts seven years and is used 683 hours per year, as suggested by the Energy

Star website (US Department of Energy, 2008). Air conditioner capital costs are from the same source. The RTP savings assumes

that this 683h of usage is spread equally across the summer months between 10am and 6pm. Note that the Participation

Incentive lowered electricity prices for RTP customers by 1.4 cents per kilowatt-hour and thus somewhat reduces their

estimated savings. Note further that even these relatively small savings may be overstated if air conditioners are used during

evening hours, which in Chicago are still quite hot but have lower prices than 10am to 6pm.
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in most power markets today. There are a number of ways of quantifying this difference; one simple

measure is the mean and standard deviation of daily average prices. During the RTP experiment, these

are 2.8cents/kWh and 0.85cents/kWh, respectively. By comparison, the mean and standard deviation

of daily average prices in 2010 from a selection of major wholesale hubs across the United States are

4.7cents/kWh and 1.4cents/kWh, respectively.8

Five percent of households attritted from the sample over the eight month experiment. The

attrition was reportedly due to customers closing accounts as they moved, and ComEd has confirmed

that this is consistent with the rate at which their general residential customer base closes accounts.

There is no statistical difference between the attrition rates of the treatment and control groups

(p=0.251). Furthermore, within each group, attrition does not appear to be correlated with observable

characteristics. The first two columns of Table 4 present regressions of an attritter indicator variable

on household characteristics in each group, and F-tests cannot reject that attrition is uncorrelated with

observables. This is consistent with the proposition that attrition is random and thus independent of

demand parameters, which would be sufficient for the parameter estimates to be unbiased by

attrition. Only four households attritted from the sample during the Pricelights experiment.

3. Indirect utility and demand functions

In this section, I derive demand functions from indirect utility. This structural approach is useful for

welfare analysis and counterfactual simulations. The results section will discuss reduced form

analyses as well as estimates of these structural demand parameters.

Household i has utility VðP; wiÞ, which depends on wealth w and the vector P of electricity prices

and High Price Alerts in all future days. The Gorman form is used, because it will give simple linear9

demand functions and has zero wealth effects, which is reasonable given that electricity is a small

share of the household budget. Assuming negligible time discounting over the experimental period,

we have:

V iðP; wiÞ ¼ wi �
X

d

X

24

h¼1

phd �
1

2
h
D

ih

phd þ ðh
A

is

� h
D

ih

Þ p̄hs þ h
HP

ig

HPd þ h
T

is

T i þ jihd

  !  !

(2)

fhD
ih; hA

is; hHP
ig ; hT

isg ¼ demand parameters for household i, where g denotes a group of hours; jhd=
demand shifter in hour h of day d. (Note that j need not have zero mean.); p̄hs ¼ average price for hour

h in season s; HPd= High Price Alert day indicator function; Ti= indicator for whether household i is

enrolled in RTP.

Household i enrolls in real-time pricing if its expected utility from entering and participating in the

program is greater than its expected utility on the standard flat rate tariff. Econometric unobservables

influence selection in two ways. First, households with stronger demand parameters are more likely to

enroll. Second, households that naturally have lower demand during high priced hours, i.e. whose

demand shifters ji are less correlated with prices, are more likely to enroll.10 This analysis focuses on

8 The underlying data are from the U.S. Energy Information Administration’s website, at http://www.eia.gov/cneaf/

electricity/wholesale/wholesale.html. I used all hubs where data were available for 2010, which were NEPOOL, AEP-Dayton

Peak, Entergy Peak, ERCOT South, PJM West Peak, and SP-15 EZ.
9 Any applied specification of the functional form for indirect utility and demand functions will be ad-hoc, and there is little

evidence on the appropriate functional form for electricity demand curves. Constant elasticity of substitution demand curves

would be a natural alternative to the linear specification used here. In this setting, however, non-parametric examinations of

average treatment effects as a function of prices suggest that treatment effects only become larger in magnitude for retail prices

above 10 cents per kilowatt-hour. There is little apparent elasticity below that level, suggesting that the CES specification would

overstate elasticity at low prices. While linear demand functions would presumably overstate price elasticity at higher prices,

this is not a concern here because demand functions will only be fitted to the relatively moderate prices in sample.
10 As suggested by Borenstein (2007b), for most commercial and industrial consumers, the savings from RTP due to their price

elasticity are outweighed by the transfers implied by how their natural load shapes (represented by ji) interact with the price

changes implied by moving from the flat rate tariff to RTP. If this holds for residential customers, this implies that the selection

of consumers with lower demand during high price hours (‘‘flatter load shapes’’) is more powerful than selection of consumers

with higher unconditional elasticities. These consumers with flat load shapes, furthermore, may also actually have lower

unconditional elasticities. As a result, although it seems plausible that those who enrolled in the program are more price elastic,

this is not an unambiguous theoretical result.
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estimating the (internally valid) average demand parameters for the population that enrolled in the

experiment. I thus drop the individual subscripts on demand parameters, and it is understood that the

h parameters are the averages for the group that enrolled.

The demand function for household i on hour h of day d is derived from Roy’s Identity and a minor

re-arrangement:

qihd ¼ hA
s p̄hs þ hD

h ð phd � p̄hsÞ þ hHP
g HPd þ hT

s T i þ jihd (3)

The h parameters were conceived to represent three different responses to time-varying prices.

First, the parameter hA captures responses to the average hourly price shape, such as habitually using a

washing machine during low price evening hours instead of high price afternoon hours. The year is

broken into two seasons, summer and non-summer, and separate parameters allowed for each of the

two average price shapes. The hT
s parameters, one for each season, are the intercepts for the response

to hourly price shape that was parameterized by hA. These capture the level shift in average

consumption for the real-time pricing treatment group.

The second response to time varying prices is captured by the hD
h parameters, which are responses

to deviations from the average price shape. The two parameters hA and hD
h are separately specified

because large scale RTP would likely affect both the typical price shape and the magnitudes of

deviations from that shape, and households could respond differently to the two types of variation. A

third type of price response is captured by hHP
g , which reflects additional consumption changes

Table 4

Attrition.

Treatment Control

(1) (2)

Pre-program usage 8.49E�06 �1.47E�06

(0.00002) (0.00009)

Household size 0.0001 0.0007

(0.007) (0.009)

Income 10–25k �.028 �.009

(0.068) (0.051)

Income 25–50k �.005 0.002

(0.071) (0.044)

Income 50–75k �.026 0.027

(0.069) (0.047)

Income 75–150k �.050 0.07

(0.07) (0.074)

Income >150k �.068 0.117

(0.075) (0.197)

Med const year 0.0008 0.002

(0.0008) (0.002)

Pct multifamily housing 0.112 0.037

(0.038)** (0.062)

Pct not in labor force 0.028 0.064

(0.179) (0.167)

Pct college graduates 0.018 0.024

(0.072) (0.08)

Const. �1.662 �3.615

(1.657) (3.436)

Obs. 590 103

R2 0.024 0.009

F statistic 1.459 0.308

F test p-value 0.983 0.143

Dependent variable is an indicator for whether the household attritted. Standard errors in parenthesis. *, **Statistically different

from zero with 90 and 95 percent confidence, respectively. Pre-program electricity use is in watts. Income buckets are real 2003

dollars per year.
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associated with High Price Alert days. Separate parameters are estimated for four hour groups g: Early

Morning (6–10am), Morning (10am–2pm), Afternoon (2pm–6pm), and Evening (6pm–10pm).

These demand functions do not include intra-day substitution parameters, through which

consumption in hour h could be affected by price in another hour of the same day. While this

restriction is undesirable, it is necessary because price variation is principally movement of an entire

day’s prices up or down, affecting relative hourly prices by a fairly constant proportion. Prices in

different hours of the same day have correlation coefficients of roughly 0.9, and this collinearity makes

it impossible to separately estimate both hD
h and intra-day substitution parameters.11 This means that

hD
h should be thought of as the association between consumption in hour h and the deviation of the

day’s prices from average, which may include response to price in hour h as well as some intra-day

substitution.12 Also, notice that while price responsiveness might differ between weekends and

weekdays, all day types are pooled because there is not sufficient weekend data to separately estimate

these parameters with sufficient precision.

4. Identification and estimation

As in the typical demand estimation, the demand shifter j is unobserved. Attempting to estimate

the demand functions using only treatment group usage data would be biased by simultaneity,

because the same unobservable factors affecting RTP households’ demand shifters j also shift the

aggregate market-level demand curve and thus affect equilibrium prices. The randomized control

group, however, has in expectation the same j as the treatment group, meaning that any difference in

demand is the effect of response to real-time prices. Intuitively, the variation in average treatment

effects across hours with different prices can identify the h parameters.

This can be formalized using the ‘‘potential outcomes’’ framework of Rubin (1974) and the program

evaluation literature that builds on his approach. Upon enrollment, each household has two possible

states of the world: one in which it is randomized into the real-time pricing treatment, and one in

which it is randomized into the control group. Define qihd(Ti=1) as household i’s potential

consumption in hour h of day d in the treated state, while qihd(Ti=0) is the potential consumption if it

were assigned to the control. For each household, consumption qihd is observed only for the state to

which it was actually assigned:

qihd ¼ qihdðT iÞ ¼
qihdðT i ¼ 0Þ if T i ¼ 0
qihdðT i ¼ 1Þ if T i ¼ 1

� �

(4)

The average treatment effect (ATE) is the expected effect on program households’ consumption in

hour h of day d caused by being on real-time pricing instead of the flat rate tariff:

thd ¼ E½qihdðT i ¼ 1Þ � qihdðT i ¼ 0Þjh; d� (5)

The control group paid ComEd’s seasonal flat rate residential tariff p̄T¼0
s . For both the summer and

non-summer days, substituting this into the demand function gives:

qihdðT i ¼ 0Þ ¼ hA
s p̄

T¼0
s þ jihd (6)

11 Some analyses of real time pricing for larger commercial and industrial customers (e.g. Patrick and Wolak (2001) and Taylor

et al. (2005)) do not have this collinearity problem because they analyze programs that offered each day’s Balancing Market

prices. These prices covary less than the Day-Ahead market prices that the ESPP program used at the time of the experiment.
12 A possible behavior that the specification will thus misrepresent is ‘‘pre-cooling,’’ in which a consumer air conditions the

house in the morning hours to reduce the need for cooling in a relatively high price afternoon. Based on the energy use changes

reported by program households, both anecdotally and in small surveys conducted by the program managers, it appears that

intra-day substitution may not be large in magnitude. The demand functions do capture what seem a priori to be two more likely

forms of substitution. First, the strongest intra-day substitution should be observed on High Price Alert days, and the net effect

of this is captured through the hHP
g parameters. Second, the hA parameters measure substitution between hours of the average

day based on the average price shape.
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The randomization of the N households into treatment and control groups allows the identifying

assumption that the groups’ average demand shifters are equal as N!1:

E½jihdjT ¼ 1; h; d� ¼ E½jihdjT ¼ 0; h; d� (7)

Subtracting this and the treatment and control groups’ demand functions, each hour’s average

treatment effect can be parameterized as:

thd ¼ E hA
s ð p̄hs � p̄T¼0

s Þ þ hDð phd � p̄hsÞ þ hHP
g HPd þ hT

s jh; d
h i

(8)

The demand parameters can therefore be consistently estimated by pooling across all hours of the

experiment and adding a fixed effect for each of the 5880h observed. Including control variables, the

estimating equation is:

qihd ¼ hA
s ð p̄hs � p̄T¼0

s Þ þ hDð phd � p̄hsÞ þ hHP
g HPd þ hT

s

n o

� T i

þ a1ð p̄hs � p̄T¼0
s Þ þ a2ð phd � p̄hsÞ þ a3HP

a ft
d

þ a4HPd þ a5

n o

Xi þ zhd þ eihd

(9)

X={Pre-Program Average Hourly Consumption, Household Size, log(Income)}; HPa ft
d

¼ indicator for an

afternoon hour of a High Price Alert day; zhd= fixed effect for hour h of day d; eihd= econometric error.

The estimation uses the standard fixed effects estimator. The data are demeaned to remove fixed

effects z, and ordinary least squares is applied to the demeaned data. Standard errors are Newey-West,

allowing a 1-h lag. In a structural sense, the ‘‘econometric error’’ eihd is part of the household’s demand

shock jihd that is residual of the other covariates.

Although simultaneity bias has been removed via the randomization, there are remaining

limitations. One concern is that although the causal effect of being on real-time pricing is identified for

each hour, the demand functions are an a priori imposition of functional form. This means that the

parameters h are only causal in the (unlikely) event that the demand functions are correctly specified.

For example, unless consumers’ true demand functions are linear in prices, ĥ
HP

is not a consistent

estimate of the causal impact of a High Price Alert on consumption.13 As an illustration of this issue,

recall that purchasing an energy efficient air conditioner reduces consumption most on hot days,

which are more likely to be High Price Alert days. The estimated coefficient ĥ
HP

could therefore be

nonzero even if households had no incremental response to the Alerts. There is an analogous problem

in discrete choice demand estimation in characteristics space: analysts typically impose some simple

functional form for indirect utility as a function of characteristics, but these characteristics are often

correlated with each other and are not randomly assigned to products.

A second and related limitation is that we do not observe the behaviors that underlie the treatment

effects or when those behaviors occurred. This procedure simply estimates the correlation between

average treatment effects and prices. It does not identify the frequency at which behavioral changes

occurred, i.e. whether the responses were day-to-day, short-term adjustments to air conditioner

settings or long-term adjustments to thermostats each season. It similarly does not identify whether

the effects were produced by long run changes to energy-using capital stock versus short run changes

to the usage of that capital stock.14

13 A natural way to estimate responses to High Price Alerts would be a regression discontinuity framework, in which demand

on days with highest wholesale price just below $0.10 per kWh is compared to demand on days with highest price just above

that cutoff. Unfortunately, there were not enough High Price Alert days near the cutoff to carry this out, even when including

additional summers of non-experimental data from 2004 to 2006.
14 Short-term price response could be identified by instrumenting for hourly prices with short-term supply shocks that are

exogenous to the unobservable demand shifters. One suggestive test of the validity of the exclusion restriction is whether the

control group, which faced the flat rate tariff, appears to be responsive to prices instrumented by the short-term supply shocks.

Using this sort of ‘‘placebo test,’’ I ruled out potential instruments for short-term price variation such as deviations in daily

natural gas spot prices from trend and variation in relative temperatures in nearby regions.

Structurally estimating short run and long run elasticities would require data on households’ stock of energy using durable

goods, but these data are not available for ESPP households.
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5. Results

This section presents estimation results in the form of three key conclusions that can be drawn

from the data. Some reduced form results will be presented alongside the demand parameter

estimates, with an eye toward the connections between the two approaches.

The first conclusion is that program households are statistically significantly price elastic.

Specification I of Table 5 presents the demand parameters estimated using Eq. (9). Responses to

average price ĥ
A
s are �17.4 and �21.8W/(cents/kWh), respectively. These are statistically stronger

than the responses to deviations from average prices: the deviation coefficients ĥ
D
h average -12W/

(cents/kWh). This implies that a one standard deviation increase in an hour’s price (in the afternoon,

1.5cents/kWh) is associated with the equivalent of just under one in four households turning off a

75W lightbulb. Because there is little price variation in the nighttime hours (from 10pm to 6am),

these deviation parameters are not estimated. In the next section, we will examine whether these

statistically significant price responses are also economically significant, in the sense of generating

substantial welfare benefits.

Specification I takes up the first three columns, with the parameter estimates presented in the middle

column. These three columns present different adjustments for serially correlated errors, which could be

a concern given that consumption is measured by the hour. The leftmost column presents robust

standard errors, while the second column uses Newey-West standard errors with one lag, and the third

uses Newey-West with up to 24h lag. Going from no serial correlation to allowing for up to 24 lags

changes the standard errors only slightly: the median standard error estimate increases by just under

eight percent, although a couple of the parameters appear to be much less precisely estimated.

The second conclusion is that households respond to RTP through energy conservation, with no net

load shifting from high to low price hours. Fig. 3 illustrates this in reduced form by showing the mean

average treatment effect for each hour of the day, across all non-High Price Alert summer days. The

relationship of these hourly average ATEs and the average summer price shape is in essence the

variation that identifies the parameters hA
s and the intercept hT

s . Average prices increase from 5cents/

kWh at night to 9 cents in the mid-afternoon, and this is associated with lower treatment group

consumption by an average of 50–80W. On average, the afternoon consumption is not being shifted to

the nighttime: only between 10pm and 11pm is the point estimate for treatment group average

consumption higher than in the control, and this increase does not come close to offsetting the

conservation that occurs during the rest of the day.

This finding of no increase in off-peak consumption does not necessarily imply that there is zero

substitution of electricity consumption across hours. As intra-day substitution parameters could not

be estimated, I do not rule out this form of substitution. Furthermore, different combinations of

conservation and shifting could be consistent with this aggregate finding on the level and shape of

average consumption by hour. For example, households could make some investment that conserves

energy in all hours by some constant amount, which if combined with a second change that shifts

some consumption from afternoon to nighttime hours would make it appear as though no change had

occurred at night. Alternatively, the treatment group could leave nighttime consumption unchanged

and conserve more substantially in the afternoons. What can be concluded is that on net, RTP causes

households to significantly reduce consumption on the average afternoon and does not cause

significant increases in average consumption at night. As a result, the treatment group’s consumption

during the experiment dropped approximately five percent more than the control group’s

consumption during the experiment relative to pre-program baseline.

Consumers’ behavior exhibits this same pattern on High Price Alert days. Fig. 4 illustrates the

hourly shape of mean ATEs for the nine summer High Price days, showing that the treatment group

reduces consumption by an additional 100–200W during daytime hours, or about five to 14 percent.

Only in 4h is the treatment group estimated to have increased consumption, all by less than 10W and

statistically indistinguishable from zero. This is the reduced form illustration of the variation that

identifies the hHP
g parameters. Other specifications, not reported, show that there is no increase in

consumption associated with the evening before a High Price Alert day, or the day after.

The energy conservation result can be explained by the technologies available to households to

respond to RTP. In a small survey in the fall of 2003, treatment group households reported the changes
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they thought they had made after entering the program: turning off lights, using fans instead of air

conditioners, turning down or replacing air conditioners, and washing clothes during low price hours

instead of during the afternoon. Only this last activity involves substitution of electricity consumption

from 1h to another; the others entail substitution toward more energy efficient capital stock or

substitution away from household energy services such as comfort.

Table 5

Demand system estimates.

I (T and C) II (T Only) III (T Only) IV (T Only)

Average price hA: summer �17.4 40.2 N/A N/A

(1.0)** (1.3)** (2.0)** (0.8)** N/A N/A

Non-summer �21.8 119.8 N/A N/A

(1.9)** (2.4)** (2.1)** (0.9)** N/A N/A

Price deviation hD: Hour 6 �10.5 35.2 32.6 29.9

(6.9) (6.9) (7.1) (1.9)** (1.9)** (7.8)**

7 �14.8 27.7 22.7 25.2

(6.3)** (6.3)** (6.5)** (1.9)** (2.0)** (7.6)**

8 �16.7 1.7 �3.0 �4.7

(10.0)* (10.0)* (10.4) (2.8) (3.1) (12.5)

9 �15.6 �4.4 �17.0 �12.1

(7.9)** (8.0)* (8.3)* (2.5)* (2.8)** (10.1)

10 �12.2 �3.3 �22.1 �21.4

(5.4)** (5.4)** (5.8)** (2.0)* (2.2)** (7.3)**

11 �10.6 6.7 �22.6 �23.8

(5.0)** (5.1)** (5.5)* (2.1)** (2.4)** (7.0)**

12 �13.1 13.7 �21.5 �19.2

(4.3)** (4.3)** (4.5)** (1.9)** (2.2)** (5.9)**

13 �13.6 12.6 �18.0 �12.6

(3.4)** (3.5)** (3.6)** (1.6)** (1.9)** (4.8)**

14 �12.7 20.9 2.5 9.4

(3.7)** (3.8)** (4.0)** (1.8)** (2.2) (5.4)*

15 �11.6 34.5 12.3 19.0

(3.9)** (4.0)** (4.2)** (1.9)** (2.3)** (5.7)**

16 �9.1 43.7 23.1 24.0

(3.7)** (3.6)** (3.8)** (1.8)** (2.2)** (5.2)**

17 �10.7 64.2 39.7 41.3

(4.3)** (4.4)** (4.6)** (2.1)** (2.5)** (6.2)**

18 �17.8 44.0 38.9 39.3

(6.2)** (6.3)** (6.6)** (2.6)** (3.0)** (8.5)**

19 �5.7 56.5 54.8 44.5

(7.6) (7.7) (8.1) (2.9)** (3.4)** (10.4)**

20 �5.6 42.4 52.5 43.0

(5.5) (5.5) (5.9) (2.3)** (2.7)** (7.6)**

21 �9.9 54.4 69.7 62.7

(8.5) (8.6) (9.2) (3.1)** (3.6)** (11.5)**

High price day hHP: Morning �62.9 �8.9 1109.4 1388.5

(13.5)** (16.5)** (22.2)** (8.0) (82.2)** (198.5)**

Mid-Day �115.8 �58.0 1437.0 2093.3

(18.4)** (23.1)** (32.9)** (11.5)** (118.3)** (290.2)**

Afternoon �133.1 30.8 52.5 147.0

(23.3)** (29.5)** (42.1)** (14.7)** (15.6)** (38.0)**

Evening �53.2 607.8 277.4 340.1

(20.9)** (26.6)** (37.7) (13.7)** (14.2)** (32.4)**

Constant hT: summer �45.3 N/A N/A N/A

(2.6)** (3.5)** (6.9)** N/A N/A N/A

Non-summer �36.6 N/A N/A N/A

(1.4)** (1.9)** (5.5)** N/A N/A N/A

Dependent variable: electricity use (W). Price variables are in cents/kWh. Standard errors in parenthesis. *, **Statistically

different from zero with 90 and 95 percent confidence, respectively. Specification I: Left column has robust standard errors.

Middle column has Newey-West standard errors with up to 1h lag. Right column has Newey-West standard errors with up to

24h lag. Specifications II–IV, Newey-West SE’s with up to 1h lag. Regression I: 3.98 million observations. Regressions II–IV: 3.40

million observations.
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Several factors could change this result in the future. Intra-day substitution elasticities may be

increased by energy management devices that automatically allocate activities such as clothes washing to

low price hours. Furthermore, potential new sources of electricity demand such as plug-in electric vehicles

may also be able to automatically charge when prices are low. Also note that ‘‘energy conservation and no

net shifting’’ does not necessarily generalize to industrial facilities, which can respond to RTP through

flexibly scheduling production processes across hours. Patrick and Wolak (2001), for example, find

statistically significant intra-day substitution parameters for large industrial consumers on RTP.

A third conclusion from the demand results, which is fundamental but perhaps unsurprising, is that

energy management and information technology can significantly increase households’ price

elasticity. Fig. 5 plots the reduced-form ATE for each hour of the Pricelight experiment against the

hour’s price. For the price range below 10cents/kWh, the Pricelight does not substantially affect

consumption. At 15cents/kWh, however, the estimated effect of having a Pricelight is about 150W,

and this reaches over 200W during the highest price hours. This is about two-thirds of the

conservation by the RTP treatment group during the highest-price hours of the 2003 experiment,

Fig. 3. Average hourly prices and reductions. Newey-West standard errors.

Fig. 4. Prices and incremental reductions on high price days. Newey-West standard errors.
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although the comparison is made cautiously given that the Pricelights group is self-selected out of the

(already self-selected) RTP population.

For context, a short term change that could produce a 200W effect would be if every fifth

household turned off a window air conditioner. The Pricelights’ importance suggests that because the

hourly variance in households’ electricity costs induced by real-time pricing is small, devices that

lower the cost of price discovery – or simply increase attention paid to electricity use – can

substantially affect energy use. Fig. 5 also illustrates that the Pricelight does not cause consumption to

increase during low price hours, further reinforcing the net energy conservation result.

An eight month experiment is not ideal evidence on how households would respond to real-time

pricing over a period of years. Consumers might learn more about typical price shapes, lose an initial

interest in energy conservation, or have time to make additional changes to energy-using capital stock.

One way of providing additional evidence on this issue is to compare the treatment and control groups

in 2004, when both are on real-time pricing but the treatment group is in its second year and the

control group is in its first. For additional statistical power, this exercise departs from the structural

formulation and simply estimates a reduced form coefficient on hourly price. Table 6 details the

results. The first column is the reduced form analysis of the RTP experiment from May through

December 2003. Across all hours, if price was higher by onecent/kWh, treatment group consumption

was lower by 18.6W. The latter two columns show that in 2004, the original treatment group

consumed six to eight watts less on hours when price was higher by one cent. By this measure, price

responsiveness in the second year is about one third greater than in the first year.

5.1. The benefits of randomized experimentation

Randomized experiments are not new to the utilities industry: British utilities used randomized trials

to test alternative pricing programs in the late 1960s (Levitt and List, forthcoming), and many of the

American time of use pricing experiments from the late 1970s and early 1980s included randomized

control groups (Aigner, 1984). Nearly all current energy efficiency programs and many recent real-time

pricing programs have been non-experimental,15 however, despite the fact that the causal effects of

these programs are under continuing debate. How useful are non-experimental data in this application?

Lacking a randomized control group or a valid instrument for prices in this setting, one way to

address simultaneity bias would be to use observables to soak up the demand shifter j and assume

that price variation is conditionally exogenous. As a trial of the conditional exogeneity assumption, I

parameterize j as a function of each hour h’s observable characteristics, including a polynomial series

Fig. 5. Pricelights: average treatment effects by price.

15 To my knowledge, Herriges et al. (1993) is the only randomized evaluation of a real time pricing program. Many other

pricing structures have been evaluated with randomized treatment and control groups, however, and Allcott (2009b) and Davis

(2008) evaluate recent experimentally randomized energy efficiency programs.
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of weather variables and month and workday indicators. I then estimate the demand function from

Eq. (3) with only the treatment group data. Specification II (the fourth column) in Table 5 shows the

results of this regression: the positive h parameters give the apparently upward-sloping demand

indicative of simultaneity bias.

I then omit hA and include hour dummies, in an attempt to soak up the natural correlation between a

typical hourly price shape and households’ electricity consumption. As Specification III (the fifth column)

of Table 5 shows, this also gives upward-sloping demand functions for most hours. Specification IV

repeats this regression for the control group, showing that it apparently was responsive to real-time

prices that it did not face. Although the failure of conditional exogeneity in some sense means that the

econometrician did not collect enough controls, these results are consistent with a number of other

specifications attempted, with all of the control variables an analyst would typically have available.16.

While the benefits of randomized experiments are well-understood by economists, this exercise

highlights the unique opportunity that this experiment provides to understand how consumers

respond to real-time electricity prices. This also suggests that a further shift toward randomized

evaluations of energy pricing and energy efficiency programs could be useful in allocating policy

Table 6

Second year vs. first year of RTP experiment.

RTP All Summer

(1) (2) (3)

P � T �18.5 �6.1 �4.8

(0.9)** (0.7)** (1.1)**

T � P � Pre-program usage �14.8 �9.7 �9.1

(1.5)** (2.7)** (2.0)**

T � P � household size 6.7 0.9 �2.1

(0.8)** (0.9) (1.4)

T � P � log(Income) 7.2 1.6 4.7

(0.7)** (0.9)* (1.2)**

P � Pre-program usage 63.7 33.6 51.5

(1.5)** (2.7)** (1.8)**

P � household size �7.6 2.5 4.0

(0.8)** (0.9)** (1.2)**

P � log(Income) 1.4 7.3 2.2

(0.7)** (0.8)** (1.0)**

Pre-program usage 92.9 330.7 62.0

(9.5)** (20.3)** (12.6)**

Household size 38.2 �20.3 0.5

(4.9)** (6.5)** (8.6)

log(Income) 11.7 �64.3 �14.8

(4.2)** (6.0)** (7.3)**

T � Pre-program usage 1.8 �92.3 72.2

(9.9) (20.7)** (13.6)**

T � household size 6.3 25.9 17.1

(5.3) (6.9)** (9.4)*

T � log(Income) �69.9 �4.8 �37.9

(4.6)** (6.5) (8.2)**

T 69.2 �20.6 48.5

(5.9)** (5.8)** (7.5)**

Obs. 3,978,019 3,762,972 1,396,648

F statistic 64776.9 29708.4 14750.4

Dependent variable: electricity use (W). Price variables are in cents/kWh. Newey-West standard errors with up to 1h lag in

parenthesis. *, **Statistically different from zero with 90 and 95 percent confidence, respectively. Pre-program usage, household

size, and log(Income) are normalized to mean 0, standard deviation 1.

16 Note further that even if an elasticity to price variation conditional on observables could somehow be estimated, that

approach would not capture any price response correlated with these observables. For example, recall that Figs. 3 and 4

illustrated substantial energy conservation on average in afternoon hours. Including hour dummy variables in the set of controls

would absorb that form of price response into the estimated demand shifter j.
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attention and investment dollars to the most effective projects. Allcott and Mullainathan (2010)

describe one model for how this shift could occur and discuss lessons for energy program design from

field experiments in other areas such as development microeconomics and finance.

6. Consumer surplus

The welfare effects of real-time pricing flow through four primary channels: producer profits,

retailer profits, meter costs, and consumer welfare.17 This analysis computes only the consumer

surplus effects, under the simplifying assumption that retail prices are fixed. Modeling producer

profits and welfare effects in market equilibrium is well beyond the scope of this paper, and Allcott

(2009a) focuses on those issues.

The representative consumer’s compensating variation is:

CVhd ¼ VðPT¼1
; wÞjðĥ; ĵ; T ¼ 1Þ � VðPT¼0

; wjĥ; ĵ; T ¼ 0Þ (10)

From Eq. (1), each element in the vector PT=1 of RTP treatment group prices was the wholesale price

plus a flat payment per kilowatt-hour that covers the retailer’s costs, which are essentially fixed. For

welfare analysis, we want the flat rate tariff PT=0 that is ‘‘comparable’’ in equilibrium with PT=1, in the

sense that it keeps the retailer at zero profits by covering wholesale electricity costs and holding

constraint the ex-post net revenues from the distribution charge and the ESPP program’s ‘‘Participation

Incentive.’’ In this case, the PT=0 used for welfare analysis is less than the actual price that the Control

group received, because the Participation Incentive and mild weather during the pilot program kept

PT=1 relatively low. To compute annualized values, the summer and non-summer observations are re-

weighted such that summer is 2208 of the 8760h in a year and non-summer is 6552 of the hours.

This calculation, detailed in Table 7, gives a Compensating Variation of $10 per year per program

household. By comparison, advanced metering infrastructure is expected to cost between $100 and

$150 per household (Allcott, 2009a), although the infrastructure’s benefits other than the potential to

Table 7

Welfare calculation and CO2 effects.

Summer Non-summer

Effects by season

Hours observed 2208 3672

Comparable flat rate tariff (cents/kWh) 7.17 6.15

Fitted baseline usage (W) 986 804

Fitted usage reduction (W) 45.7 37.7

Electricity cost reduction (cents/h) 0.244 0.118

Compensating variation (cents/h) 0.195 0.088

Electricity generation CO2 emissions (lbs/household-hour) 1.4 1.53

CO2 emission reductions (lbs/household-hour) 0.0616 0.0674

Annual effects

Annual compensating variation ($) 10.05

Baseline annual electricity costs ($) 480

Annual electricity cost reduction ($) 13.1

Percent savings 2.73

CO2 emission reductions (short tons/household) 0.289

Baseline annual CO2 emissions (short tons) 6.54

Percent CO2 reduction 4.42

Baseline annual electricity costs is the control predicted group’s electricity bill on the comparable flat rate tariff. Note that this is

lower than ComEd’s typical annual electricity bill because the Participation Incentive and the mild summer reduce the

comparable flat rate tariff. To compute annual effects, the summer and non-summer observations are re-weighted such that

summer is 2208 of the 8760h in a year and non-summer is 6552 of the hours.

17 The indirect utility function from Section 3 brings out an additional channel of welfare effects when RTP is optional.

Households that select into RTP should theoretically have underlying demand patterns – as captured by demand shifters j – that

are less correlated with hourly prices than in the rest of the population. This form of positive selection implies that the average

cost of electricity for the group that remains on the flat rate tariff will rise. I abstract away from this because my data provide no

insight into demand parameters for the rest of the population. See Borenstein (2007b) for an analysis of this issue.
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offer RTP are substantial. Although in electricity pricing, congestion pricing, and many other settings,

economists’ intuition is that prices should be aligned with marginal costs, this residential RTP program

may provide an important real-world example of a situation where this is not currently welfare-

enhancing given contracting or information costs. It should again be emphasized that because of the

selected set of households in this program and the small amount of price variability in this program

compared to in other settings, this result may not be highly generalizable.

The pilot program’s effects can also be framed as a reduction in energy costs. To do this, I first

compute each household’s fitted quantity demanded in each hour under RTP and under the

‘‘comparable’’ flat rate tariff, q̂ðPT¼1jðĥ; ĵihdÞÞ and q̂ðPT¼0jĥ; ĵihdÞ, respectively. Using this predicted

consumption, I estimate that the average RTP household saves $13 per year on electricity bills. As

shown in Table 7, this is 2.7 percent of total electricity bill at the calculated PT=0. A different way of

putting this is that, even in this selected group, a household that did nothing in response to the offer to

enroll in the program would have foregone just $13 annually.

This calculation suggests that some program participants may have gone to great lengths to be

price elastic, with small pecuniary returns.18 This result is consistent with some other studies, such as

Reiss and White (2008), that show that populations or subpopulations are in some cases highly

motivated to respond to energy prices.19 These studies are a puzzling counterpoint to a larger

literature on the ‘‘Energy Paradox’’ (Jaffe and Stavins, 1994), which suggests that consumers often

appear to be less responsive to energy costs than theory would predict that they should be.

6.1. Carbon emissions

While real-time pricing does affect air pollution emissions, RTP programs have historically been

motivated by aligning electricity prices with marginal costs, with little consideration of climate

change or other environmental issues. The energy conservation result from the empirical analysis,

however, suggests that RTP programs could also reduce carbon emissions from electricity generation.

How relevant is this factor in the ESPP program?

Carbon emission abatement is the product of the treatment effect of RTP with the carbon dioxide

emission rate of the marginal electricity generator. Intuitively, if the marginal power plant during high

price hours, when the ATEs are largest in magnitude, has a higher emission rate than the marginal

power plant when prices are low, RTP will have a more beneficial impact on emissions. Electricity

generators of different technologies, including coal, nuclear, hydro, natural gas, oil, wind, and others,

have different carbon emission rates, and the market shares and generation profiles of each

technology vary between electricity markets in different regions. Results in a nationwide analysis,

such as Holland and Mansur (2008), may therefore be different from those for this specific program.

I construct a simple model20 that gives the marginal carbon emission rate Êhd(Phd) as a function of

the price that would be set by the marginal generator in the ComEd region in 2003. For each hour of the

18 One particularly motivated program participant told me that on the afternoons of High Price Alert days, they reduce energy

consumption by leaving the house and taking their family to the park. I asked them how much they saved by doing that on a

High Price Alert day relative to a normal day; they estimated 25 cents. Even that was an overestimate.
19 Reiss and White (2008) examine electricity consumption by San Diego households during the California electricity crisis.

They find that total consumption dropped 13 percent in two months in response to an average price increase from 10 to

23cents/kWh, then rebounded immediately by 8 percent when prices dropped to 13cents/kWh. After the initial increase, one in

three households reduced by 20 percent or more relative to the previous year. The authors show that this large fraction of the

population would have needed to make significant behavioral or capital stock changes in order to achieve reductions of this

magnitude.
20 The model is a simple merit-order dispatch model constructed from Continuous Emissions Monitoring System data from

the US Environmental Protection Agency (2009) for the Reliability First region of the North American Electric Reliability Council,

of which ComEd is a member. These data give unit-level fuel input, electricity output, and carbon dioxide emissions, which are

then combined with 2003 average prices for coal, oil, and natural gas from the US Energy Information Administration (2009a,b).

The marginal generator at a particular price is the next unit in a merit order determined by the sum of fuel costs and other non-

fuel variable operating costs.

This model correctly represents marginal CO2 emissions under either of two sets of assumptions. First, it would be valid

assuming fixed capital stock and no ramping constraints or other dynamic considerations. Second, it would be valid in the long

run where the generation technology at a particular price is constant. Both sets of assumptions also require marginal cost

bidding and abstract away from inter-regional electricity transfers.
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ESPP experiment, this model provides the emission rate of the marginal generator, which can be

multiplied by the predicted effect of RTP on quantity demanded at ‘‘comparable’’ retail prices. The

average effect per household on over any period of days d and hours h is given by the following sum,

where q̂ is given by Eq. (3):

X

d

X

24

h¼1

ÊhdðPhdÞ �
1

N

X

N

i¼1

q̂ðPT¼1jðĥ; ĵihdÞÞ � q̂ðPT¼0jðĥ; ĵihdÞÞ
� �

(11)

In this region, the marginal generator is typically small high-emission coal-fired plants in the off-peak

periods and lower-emission natural gas plants during the peak periods. As shown in Fig. 6, this means

that the energy conservation from RTP covaries negatively with the marginal emission rate, slightly

attenuating RTP’s effects on carbon dioxide emissions. As shown in Table 7, the predicted annual carbon

reduction from the program is approximately 0.29 short tons per household, which is 4.4 percent of total

emissions from the average program household’s electricity consumption. This is slightly less than the

predicted percent reduction in electricity demanded under RTP. What fundamentally drives this result is

the daytime energy conservation parameterized by hT
s , which is visible in Fig. 3.

To convert these into monetary terms for comparison with the welfare calculation requires placing

a value on carbon emissions. Because marginal damages are difficult to estimate, I instead use the

predicted price of a carbon emission allowance in 2020 under the recently proposed Waxman-Markey

carbon cap-and-trade bill, which is $29 per short ton (US Energy Information Administration, 2009c).

Multiplied by the annual carbon emission reductions, this gives $8.41 per year. In the specific case of

an RTP program that generates net energy conservation, in an electric power market where the

marginal off-peak generator is not substantially more carbon-intensive than the marginal peak-hour

generator, the gains from reduced carbon emissions could play an important role in the welfare

calculation.21

7. Conclusion

This paper exploits a randomized field experiment to evaluate the first ever hourly real-time

electricity pricing program for residential consumers, Chicago’s Energy-Smart Pricing Plan. A central

Fig. 6. Carbon dioxide reductions. Newey-West standard errors.

21 If and when a carbon cap-and-trade bill passes, this calculation would be different because the costs of carbon emissions

would in principle be internalized into the electricity price. At that point, we would simply compute the welfare gains from RTP

at the new equilibrium electricity prices, and the marginal damages of carbon dioxide emissions would not enter the calculation

separately.
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result of the demand estimates is that residential RTP should perhaps be thought of as a peak energy

conservation program, instead of a mechanism to shift consumption from peak to off-peak. This means

that demand for off-peak power under residential RTP, and thus air pollution emissions, energy costs,

and equilibrium entry of baseload power plants, may be lower than analysts had previously expected.

A second central result highlights the importance of complementary technologies, in this case the

‘‘Pricelight,’’ which help residential consumers respond to time-varying prices.

For several reasons, the precise magnitude of the elasticity and welfare results from this

experiment may not generalize to other settings and time periods. First, in this program were a

selected group who are potentially more price elastic than the general population. Second, future

advances in household Smart Grid technologies could increase price elasticity and therefore directly

change this result. Third, the variance in hourly electricity prices during this pilot is lower than that

experienced in other regions of the country and in different years. This is important both because

higher price variance increases the potential gains from RTP given any particular price elasticity and

because higher volatility could induce consumers to rationally devote more attention to prices, which

would increase their price elasticity.

The welfare calculation with these parameter estimates shows that moving to RTP from the flat

rate tariff improved consumer surplus for program households by an annualized value of $10. This

comprises 1-2 percent of households’ total electricity expenditures. These benefits do not appear

substantially outweigh the gross costs of advanced metering infrastructure required to observe hourly

consumption, which are estimated to be around $150 per household. Many utilities are installing

these meters and other retail Smart Grid infrastructure, however, because they offer substantial cost

savings. The option to offer RTP is thus for many utilities an additional potential benefit of advanced

metering infrastructure.
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