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a b s t r a c t

The combination of substantial public funding of nascent energy technologies and recent increases in

the costs of those that have been most heavily supported has raised questions about whether policy

makers should sustain, alter, enhance, or terminate such programs. This paper uses experience curves

for photovoltaics (PV) and wind to (1) estimate ranges of costs for these public programs and

(2) introduce new ways of evaluating recent cost dynamics. For both technology cases, the estimated

costs of the subsidies required to reach targets are sensitive to the choice of time period on which cost

projections are based. The variation in the discounted social cost of subsidies exceeds an order of

magnitude. Vigilance is required to avoid the very expensive outcomes contained within these

distributions of social costs. Two measures of the significance of recent deviations are introduced. Both

indicate that wind costs are within the expected range of prior forecasts but that PV costs are not. The

magnitude of the public funds involved in these programs heightens the need for better analytical tools

with which to monitor and evaluate cost dynamics.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Large programs and deviations from trends in cost reductions

are challenging policy makers to make decisions about whether,

when, and how much to stimulate the development of energy

technologies that have high external benefits. The net benefits of

subsidies and other incentives programs depend heavily on the

extent to which technologies improve over time. Experience

curves provide a way for policy makers to incorporate technology

dynamics into decisions that involve the future costs of technol-

ogies. They are now used widely to inform decisions that involve

billions, and even trillions, of dollars in public funding. The

general notion that learning from experience leads to cost

reductions and performance improvements is well supported by

a large array of empirical studies across a variety of technologies.

But the appropriateness of using experience curves to guide policy

is less uniformly acknowledged. Despite caveats in previous work,

the cost projections that result from experience curves are

typically used without characterizing uncertainty in those

estimates.

The motivating premise behind this study is that rigorous

analysis of the uncertainty involved in making experience curve-

based cost projections can inform policy decisions and improve

the outcomes of technology subsidy programs. Without better

analytical tools, decisions about these programs are vulnerable to

political expediency and near-term fiscal constraints. The use of

the term interim monitoring here is meant to suggest the

evaluation of data available between the time at which programs

have begun and when the full benefits of cost reductions are

expected to arrive. Because a substantial portion of the benefits of

these programs arrive several years hence, monitoring the

progress of technology cost reductions in the intermediate term

is crucial for decision-making. Possible responses to interim

results include: continuation of existing programs, early termina-

tion, changes to subsidy levels, and supplementing subsidies with

complementary programs that address additional market failures

and barriers. This study examines two questions: How sensitive

are the social costs of subsidy programs to this uncertainty? And

does characterization of uncertainty allow interpretation of the

significance of apparent deviations from projections?

The dynamic characteristic of experience curves has provided a

substantial advance over alternative models, which have tended

to treat technology statically, or have assigned constant rates of

change. The rate and direction of future technological change in

energy technologies are important sources of uncertainty in

models that assess the costs of stabilizing the climate (Edenhofer
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et al., 2006). Treatment of technology dynamics in integrated

assessment models has become increasingly sophisticated (Grubb

et al., 2002) as models have incorporated lessons from the

economics of innovation and as increased processing power and

improved algorithms have enabled optimization of phenomena,

such as increasing returns, which in the past had made

computation unwieldy (Messner, 1997). Yet the representation

of technological change in large energy-economic model remains

highly stylized relative to the state-of-the-art of understanding

about the economics of innovation (Nordhaus, 2002). Perhaps one

reason for the lag between the research frontier for the economics

of innovation and that for the modeling of it has to do with

incompatibilities in the methodological approaches of the two

fields. On the one hand, research on the economics of innovation

has tended to emphasize uncertainty (Freeman and Louca, 2001),

cumulativeness (Rosenberg, 1994), and non-ergodicity (Arthur,

2006). The outcomes of this line of inquiry, which dates back to

Schumpeter (1934), and even Marx (1867), have often been

characterized by richness of description, a case study approach,

and arguably, more progress with rigorous empirical observation

than with strong theoretical claims. On the other hand, optimiza-

tion and simulation models require compact quantitative estima-

tion of parameters, with uncertainties that do not become

effectively infinite once propagated through the model. One of

the few concepts that has bridged the epistemological gap

between the economics of innovation and the integrated assess-

ment of climate change is the experience curve. Experience

curves provide a way to project future costs conditional on the

cumulative quantity of capacity produced. The resulting cost

predictions are less deterministic than those generated by

temporal-based rates of technological change, but they are

also not simply scenarios, internally consistent descriptions of

one possible future state of technology; they are conditional

predictions.

The following section discusses the reasons for using experi-

ence curves, their prevalence, and the way that experience curve-

derived cost projections are used in policy decisions. In Section 3 a

stylized model is described for calculating the cost of a subsidy

program. Section 4 presents the range of values that result from

applying the model to two case studies, photovoltaics (PV) and

wind power. Section 5 introduces two approaches to compare

recent deviations to historical ex ante predictions. Finally, in

Section 6 the implications of applying the results of this type of

model to policy decisions are discussed.

2. Using experience curves for technology policy

Despite ample evidence of technological learning, the weak

reliability of experience curve projections makes their application

to inform policy decisions subject to strong caveats.

2.1. A wide array of technologies demonstrate ‘‘learning’’

Experience curves have been assembled for a wide range of

technologies. While there is wide variation in the observed rates

of ‘‘learning’’, studies do provide evidence that costs, almost

always, decline as cumulative production increases (Wright, 1936;

Alchian, 1963; Rapping, 1965; Dutton and Thomas, 1984). The

roots of these micro-level observations can be traced back to early

economic theories about the importance of the relationship

between specialization and trade, which were based in part on

individuals developing expertise over time (Smith, 1776). The

notion of the experience curve varies from the more specific

formulation behind the learning curve in that it aggregates from

individuals to entire industries, and from labor costs to all

manufacturing costs.1

Experience curves have been assembled for a wide variety of

energy technologies. For useful studies and surveys see Wene

(2000), McDonald and Schrattenholzer (2001), Junginger et al.

(2005), Albrecht (2007), Hultman and Koomey (2007), and Neij

(2008). Fig. 1 shows learning rates (LRs) for a variety of energy-

related technologies.2 The rates vary, but, with the exception of

nuclear power and solar hot water heaters, costs do appear to

decline with cumulative capacity. The dispersion in LRs included

in these studies is attributable two factors: differences in how fast

technologies ‘‘learn’’ and to omitted variable bias; exogenous

technical improvements, changes in quality, and the price of input

materials, all affect costs over time, and are not included in the

cumulative capacity variable on the horizontal axis (Nemet,

2006). Still, perhaps because of a dearth of better tools, the

experience curve persists as powerful tool for guiding policy

decisions about the costs of future energy technologies.

2.2. Experience curves used to inform policy decisions

Experience curves are now used widely to inform decisions

that involve billions of dollars in public funds. They have been

used both directly—as graphical exhibits to inform debates—and

indirectly, as inputs to energy-economic models that simulate the

cost of achieving environmental goals. Much of the early work to

translate the insights from experience curve studies to energy

policy decisions is included in a study for the International Energy

Agency (Wene, 2000). Other studies have used the tool directly to

make claims about policy implications (Duke and Kammen, 1999;

van der Zwaan and Rabl, 2004).

Energy-economic models that minimize the cost of energy

supply now also include experience curve relationships to include

technology dynamics. Model comparison studies have found that

models’ estimates of the social costs of policy are sensitive to how

technological change is characterized (Edenhofer et al., 2006).

Working Group III of the Intergovernmental Panel on Climate

Change (IPCC) used results from a variety of energy-economic

models to estimate the magnitude of economically available
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Fig. 1. Experience curves for energy technologies. Data from Nemet (2007).

1 The technological ‘‘learning’’ used in the literature on experience curves

refers to a broad set of improvements in the cost and performance of technologies,

not strictly to the more precise notion of learning by doing, e.g. Arrow (1962).
2 The data for ethanol are in units of dollars per gallon, rather than dollars per

watt. For insight into why the cost of nuclear power increased, see Hultman et al.

(2007).
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greenhouse gas emissions in its Fourth Assessment Report (IPCC,

2007). The results of this assessment are widely used to inform

national climate change policies, as well as the architecture for the

next international climate policy regime. In the 17 models they

review, some form of experience curve is used to characterize

technological change in at least 10 of those models.3 Another

influential report in 2006, the Stern Review on the economics of

climate change (Stern, 2006), relied heavily on experience curves

to model technological change. This report has been central to the

formation of climate policy in the UK and has played a role in

debates in the US as well, at both the federal level and in

California. The International Energy Agency relies on experience

curves in its assessment of the least cost method for meeting

greenhouse gas reduction targets and energy demand for 2050

(IEA, 2008). Note that the ‘‘learning investments’’ that result from

the analyses in this report are estimated in a range of [3–7] 5–8

trillion dollars. Debates about subsidies and production require-

ments for ethanol also use historical experience curves as a

justification for public support of the production of biofuels

(Goldemberg et al., 2004).

At the state level, experience curves have provided one of the

most influential justifications for a three billion dollar subsidy

program for PV (Peevey and Malcolm, 2006). Experience curves

have also been used in economic models of the cost of meeting

California’s ambitious greenhouse gas reduction targets (Nunez,

2006). Finally, debates related to decisions by the 24 states that

have passed renewable portfolio standards include discussions of

how mandatory renewables deployment will bring down the cost

of renewables (Sher, 2002; CPUC, 2003).

2.3. Characterizing unacknowledged uncertainty

This study addresses a basic discrepancy between the way that

experience curves are used in policy debates and the strong

caveats that have emerged from recent literature. A primary

concern is the issue of unacknowledged uncertainty.4 In each of

the circumstances mentioned above, experience curves are used

because optimal technology policy decisions depend heavily on

future rates of technological change (Popp, 2006; Sue Wing,

2006). And for those studies that use experience curves to

represent technological change, assumptions about LRs are

important (Rubin et al., 2004; Kahouli-Brahmi, 2008).

Although studies have cautioned that policy makers must

contend with discontinuities and uncertainties in future LRs, few

do; the cost projections that result from experience curves are

typically estimated without acknowledging uncertainty. Yet a

wide array of studies now have pointed to serious reservations

about using experience curve projections to inform policy

decisions. Wene (2000) emphasized the ways that experience

curves could be used to design subsidy programs, but cautioned

about the key uncertainties in parameters because ‘‘small changes

in progress ratios will change learning investments considerably.’’

Concerned about the scale of this uncertainty problem, Neij et al.

(2003) ‘‘do not recommend the use of experience curves to

analyze the cost effectiveness of policy measures’’ and recom-

mend instead using multiple methods. More recently, Neij (2008)

compared experience curve projections to those based on bottom

up models, as well as expert predictions, and found that they

‘‘agree in most cases.’’ However, in some cases large uncertainties

that emerge from the bottom up analyses are ‘‘not revealed’’ by

experience curve studies. Rubin et al. (2005) indicate that early

prototypes often underestimate costs of commercially viable

applications so that costs rise. Koomey and Hultman (2007) have

documented a more persistent form of this cost inflation effect for

nuclear reactors. Addressing PV specifically, Borenstein (2008)

argues that experience curve-based analyses do not justify

government programs because they conflate multiple effects and

ignore appropriability concerns.

Empirical observations of technology cost dynamics support

the notion that variation in LRs is substantial. Dutton and Thomas

(1984) surveyed 108 learning curve studies and showed a wide

variation in LRs leading them to question the explanatory power

of experience. Fig. 2 combines their LR data with those of a survey

of energy technology LRs by McDonald and Schrattenholzer

(2001), as well as those for the experience curves shown in Fig.

1 to display a distribution of 156 LRs. The LR for PV, 0.23, lies at

the 66th percentile of the distribution and that for wind, 0.12, lies

at the 17th percentile of the distribution.

This paper addresses three sources of uncertainty in projecting

experience curves. First, there is the typical dispersion in LRs

caused by imperfect correlations between cumulative capacity

and cost.5 Sark (2008) explores the effects of this ‘‘r-squared’’

variation to calculate an error around the LR. Inconsistencies of

the system boundaries chosen, e.g. geographic scope, may

introduce some of this variation. This paper addresses this type

of uncertainty in Section 5. A second source has to do with

whether historically observed rates of learning can be expected to

continue in the future. Even in his seminal work on learning-by-

doing Arrow (1962) argued that learning is subject to ‘‘sharply

diminishing returns.’’ Looking at studies within single manufac-

turing facilities, Baloff (1966) and Hall and Howell (1985) find that

LRs become essentially flat after a relatively short amount of

time—approximately 2 years in these studies. As a result, some

have suggested that a cubic or logistic function offers a more

realistic functional form than a power function (Carlson, 1973).

This study addresses this source of uncertainty by recalculating

the LR continuously over time. A third source of uncertainty

derives from the choice of historical time period used to calculate

LRs (Nemet, 2006). The timing issue captures variation in the

source data, as well as changes in the slope over time. This paper

explores this variation in the next section.

This study assesses the extent to which the sources of uncer-

tainty affect policy decisions. As such the focus is not on how

uncertainty affects LRs themselves but on the non-linear effects

that emerge as they propagate through policy models. Studies that

focus on the source of uncertainty typically underemphasize the
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Fig. 2. Frequency distribution of learning rates calculated in 156 learning curve

studies. Median learning rates for wind and PV obtained in this study indicated by

‘‘W.’’ and ‘‘PV.’’ Data from Dutton and Thomas (1984), McDonald and Schratten-

holzer (2001), and Nemet (2007).

3 See Table 11.15 in IPCC (2007).
4 This issue is analogous to that examined in the discourse over climate

change mitigation (Schenk and Lensink, 2007).

5 Imperfect here means that the measure of fit, e.g. r2 , when regressing log of

cost on log of cumulative capacity is less than one.
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ramifications of an apparently small variation in LRs. One notable

exception is a study by Alberth and Hope (2007); they found that

the level of optimal climate change abatement becomes more

uncertain when distributions of LRs, rather than point estimates,

are used. Uyterlinde et al. (2007) also show the sensitivity of

outcomes by using multiple LRs, albeit across a narrower range of

values than is assessed here.

2.4. The cases: PV and wind power

This uncertainty is examined for the cases of two energy

technologies, the future deployments of which are intimately tied

to government actions: PV and wind power. These are appealing

cases to examine for several reasons. First, experience curves have

been used to justify public support for these technologies. Both

technologies address environmental externalities, such as climate

change and local air pollution, so the private value of each

depends heavily on the government’s assignment of prices, in the

form of subsidies and pollution regulations. As a result, experience

curves have been used frequently as justification for subsidizing

each. Second, sales for both have been growing rapidly, at greater

than 30% per year, so subsidies to promote them now involve large

allocations of public funds, on the order of billions. Third,

technically, the costs of both technologies have been dynamic

over multiple decades, with strong trends in cost reduction over

time. Fourth, both have seen improvement within a single

technological generation. So unlike the overlapping curves

observed in other technologies with novel architectures, such as

semiconductors, cost reductions are expected to be continuous for

both (Irwin and Klenow, 1994). Finally, these technologies are

important; because the availability of the resource to deploy them

is incredibly large, their future deployment could be massive or

niche depending on the extent of future cost reductions. Price and

production data for the past three decades are used for each

technology. The experience curves for each are shown in Fig. 3 for

PV from 1976 to 2006 and in Fig. 4 for wind from 1981 to 2006

(Gipe, 1995; CEC, 1997; IEA, 2002; Strategies-Unlimited, 2003;

AWEA, 2004; Maycock, 2005; Nowak, 2005; Maycock and

Bradford, 2007; Nemet, 2007; Wiser and Bolinger, 2007; BEA,

2008).

3. Approach: a stylized subsidy cost model

The approach presented here involves developing a simple and

transparent model of the costs of subsidizing technologies until

they are competitive with alternatives. While this model is a

stylized representation of the more detailed analytical models

used to inform policy decisions, it retains the core methodology

developed by Williams and Terzian (1993), Duke and Kammen

(1999), and van der Zwaan and Rabl (2003). The tradeoff made in

the attempt to construct a model in the simplest terms possible is

that it characterizes neither the richness of technological detail

nor the macro-economic impacts in the energy economic and

computable general equilibrium models used to inform policies.

For example, measurements based on capital cost ignore changes

in operations, such as availability rates. The advantage of this

simple form is that it employs a minimal set of assumptions. Since

each of the additional assumptions about parameters made in

these more detailed models involve their own uncertainty, this

highly stylized form provides a lower bound on the uncertainty in

the outcomes. The resulting cost model works as follows.

3.1. Calculating LRs

LRs are calculated by fitting a power function to the data set of

annual levels of cumulative capacity (which is denoted as E for

experience) and price, P in each year. Using manufacturing cost

data, rather than prices, provides clearer identification of technical

progress since the former are independent of changes in profit

margins due to evolving market structure (Irwin and Klenow,

1994). However, in the case of competing technologies, technol-

ogy users make adoption decisions based on the purchase prices

they face, not the costs to a manufacturer. Because this study is

ultimately concerned with estimating the point at which adopters

will prefer a new technology to an existing technology, price data

are used throughout. Following Epple et al. (1991), cumulative

capacity is lagged one year to account for the time it takes to

incorporate new techniques obtained as a result of learning from

experience. The power function takes the form

Pn ¼ Pm
En�1

Em�1

� �b

(1)

where Pn is the new price at year, n and Pm is the initial price at

year m, that is where cumulative capacity is Em. For each set of

data, values for b are determined by linearly regressing a vector

logðPtÞ on vector logðEt�1Þ for t ¼ m to n, where b is the coefficient

that minimizes the sum of squared differences between the actual

data for Pt and the predicted values (Sark, 2008). The model

estimates a value for b for every combination of beginning years,

tm and end years, tn for which tn � tmX9. Estimating b allows

calculation of the ‘‘progress ratio’’, PR ¼ 2b and the ‘‘learning rate’’,

LR ¼ 1� PR.

3.2. Year to reach target level

At this point the analysis becomes prospective; the last year of

available data, 2006, is used as the base year, t0. The model

compares the cost of the ‘‘learning’’ technology (PV or wind) to an

alternative technology, a. The learning technology becomes

competitive with the alternative technology when the price of

electricity from that technology reaches that of the existing

technology. Since capital costs for PV and wind are the dominant
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Fig. 3. Experience curve for PV modules (1976–2006). Data from Nemet (2007).

Fig. 4. Experience curve for capital cost of wind turbines (1981–2006). Data from

Nemet (2007).
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component of their electricity costs, comparisons are made based

on capital costs. The learning technology becomes competitive

when its price, P reaches a price at which electricity from the

learning technology is equal to that of the alternative technology,

that is when P ¼ Pa. First, the cumulative manufacturing experi-

ence needed Ea for P ¼ Pa is calculated using

Ea ¼ E0
Pa
P0

� �1=b

(2)

where P0 is the price of the learning technology in the base year

and E0 is the cumulative manufacturing experience in the base

year.

Next, the year at which capacity Ea is reached, ta is calculated

using

ta ¼
logEa � logE0
logð1þ gÞ

(3)

where g is the assumed annual growth rate of cumulative capacity

of the learning technology. This paper assumes a long-term value

for g of 0.15.

3.3. Cost of subsidy program

Next, the cost of the subsidies required to ‘‘buy-down’’ the

price of the learning technology until it is equal to Pa is calculated.

First, the price of the learning technology in each year from t0
until ta is calculated using

Pt ¼ P0ð1þ gÞðt�bÞ (4)

The annual production of the learning technology Mt is calculated

using

Mt ¼ M0ð1þ gÞt (5)

where M0 is annual production in the base year. The total present

value cost of the subsidy program, S, is

S ¼
X

ta

t¼0

MtðPt � PaÞð1þ dÞt0�t (6)

where d is the assumed discount rate, 0.05. This simple model is

applied to the price and production data for PV and wind power.

4. How large is the dispersion in subsidy costs?

This model is used to simulate the cost of a subsidy program,

calculating the dispersion in estimates that arises from the

variation described above. This section describes three policy-

relevant outcomes: (1) the LR, (2) the year at which the cost of a

subsidized technology approaches a target level, and (3) the

discounted cost of government subsidies needed to achieve that

level. This section shows the results first for PV and then for wind.

4.1. Photovoltaics

The data displayed in Fig. 3 are used, for which r2 ¼ 0:96, to

calculate LRs for all possible time periods.

4.1.1. LRs over time

Eq. (1) is used to estimate the LR for PV in each of the 253 time

periods of 10 years or greater between 1976 and 2006.6 Fig. 5 plots

these LRs by the year at which each time series ends. For example,

the values shown for 1995 include all 11 time series that end in

1995. This set of values indicates the range of LRs that would have

been available to an analyst using experience curves to project

costs in 1995. The data begin in 1985 because that is the first year

for which 10 years of historical data (1976–1985) are available.

The data reveal two features about the trend in calculated LRs.

First, there is a negative time trend; the mean of the LR values has

decreased over time, by approximately 0.005 per year. Second, the

dispersion in LR values around the annual mean has increased

over time. The dispersion includes an oscillation with maxima in

1995 and 2006.

The upper panel of Fig. 6 shows the distribution of LRs for all

253 periods (black columns). The white columns show the

distribution of rates using only those series that end in 2006.

The latter is the data set one would expect a contemporary

planner to use. Table 1 shows the descriptive statistics for the

distribution of all 253 time series and for the subset of 22 series

that end in 2006. The median of the distribution of LRs from all

253 time series ðLR ¼ 0:21Þ is substantially higher than the

median of the series ending in 2006 ðLR ¼ 0:15Þ, although this

difference is not significantly different.

4.1.2. Crossover year

Eqs. (2) and (3) are used to estimate the year at which a

subsidized technology will equal the cost of the competing

technology, a. The target cost for PV modules used in this

example is Pa ¼ $1=W (SEIA, 2004). A 73% subsidy on actual 2006

prices is needed for consumers’ costs to equal this target. The

middle panel of Fig. 6 shows distributions of the estimated years

at which the price of PV will equal that of this competing

technology. Descriptive statistics for these distributions are

shown in Table 1 for all time series and for all series that end in

2006. The median crossover year for all series, ta ¼ 2034 occurs 14

years earlier than the estimates using only data through 2006

ta ¼ 2048. Note that the dispersion has also increased with the

more recent data set.

4.1.3. Cost of a subsidy program

The present value of the cost of the program to subsidize PV

until its cost equals that of the competing technology is calculated

using Eqs. (4)–(6). The lower panel of Fig. 6 shows the

distributions for the total cost of a subsidy program, S. Descriptive

statistics for these distributions are shown in Table 1. The median

ARTICLE IN PRESS

Fig. 5. Learning rates for PV (1976–2006) calculated for all periods X10 years

ðn ¼ 253Þ.

6 Each year represents a full year of data, so inclusively there are 31 years of

data in the data set ð2006� 1976þ 1 ¼ 31Þ. Here, a LR requires 49 years to be

valid. So there are 31� 9 ¼ 22 periods available that have 1976 as the first year

ð2006� 1977þ 1Þ � 9 ¼ 21 periods beginning in 1977, and ð2006� 1997þ 1Þ �

(footnote continued)

9 ¼ 1 period available beginning in 1997, the last year for which a 10-year time

series is available. For PV, the number of time periods from which to calculate LRs

is
P1997

n¼1976 ð2006� nþ 1� 9Þ ¼ 253. Similarly, for wind,
P1997

n¼1981 ð2006� nþ

1� 9Þ ¼ 153.
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cost to subsidize PV is $62b when using all time series and $163b

when using only the time series that end in 2006. Note that a

difference in median LR of 40% leads to a difference in median

program costs of between a factor of two and three. The

dispersion in costs has also become large; the range from the

5th percentile to the 95th percentile spans an order of magnitude.

Further, notice that costs around the 95th percentile become very

large, rising to the tens of trillions. Slow learning has non-linear

effects on cost and leads to very expensive subsidy programs—

even when these future costs are discounted to present values.

4.2. Wind power

Similarly, this analysis is run on the wind power data. The data

displayed in Fig. 4, for which r2 ¼ 0:82, are used to calculate LRs

for varying time periods.

4.2.1. Calculate LRs for varying periods

Fig. 7 shows the trend in LRs for wind power over time. The

figure shows a negative time trend in LRs as was observed with

PV, albeit at about half the rate of decline, about 0.0025 per year.

In this case the dispersion in values decreases over time.

The upper panel of Fig. 8 shows the distribution of LRs for all

153 periods (black columns). The white columns show the

distribution of rates using only those 17 series that end in 2006.

Table 2 shows the descriptive statistics for all 153 time series and

for the subset of 17 series that end in 2006.

4.2.2. Crossover year

The target cost for wind power turbines, Pa is $900/kW (IEA,

2008). A 40% subsidy on actual costs would be needed for

consumers to see this target. The middle panel of Fig. 8 shows

distributions of the estimated years at which the price of wind

will equal that of the competing technology. The median cross-

over year for all series, ta ¼ 2029, is six years less than the

estimates using only data through 2006 ta ¼ 2035, not a

significant difference.

4.2.3. Cost of a subsidy program

The median cost to subsidize wind is $105b when using all

time series and $174b when using only those time series that end

in 2006 (see lower panel of Fig. 8 and Table 2). Similarly to PV, the

range of cost values across the middle 90 percentiles is large—

over an order of magnitude in both sets of time periods. Here too,

the possibility of the return of the slowest LRs experienced in the

past produces very expensive subsidy programs, well into the

trillions of dollars.

4.3. Summary of results

In the case of PV, an apparently high r2 value of495% contains

variation that leads to substantial LR variation depending on the

time period chosen. The resulting dispersion in LRs leads to ranges

of subsidy cost estimates that are not only large, but asymmetric

around the mean. Slow learning is possible, even within highly
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Fig. 6. Upper: calculated learning rates for PV; middle: year at which price of PV

equals that of competing technology; lower: present value of cost to subsidize PV

until it equals cost of competing technology. The black columns include values for

all 253 time series from 1976 to 2006. The white columns include only those time

series that end in 2006.

Table 1

Descriptive statistics for distributions of experience curve results for PV.

Learning rate Breakeven year Cost to

breakeven ($b)

For all time series ðn ¼ 253Þ

5th percentile 0.25 2028 38

Median 0.21 2034 62

95th percentile 0.14 2049 175

s 0.03 8 229

For time series ending 2006 ðn ¼ 22Þ

5th percentile 0.21 2034 59

Median 0.15 2048 163

95th percentile 0.08 2082 2172

s 0.04 15 713
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Fig. 7. Learning rates for wind power (1981–2006) calculated for all periods X10

years ðn ¼ 153Þ.
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correlated data sets with above average LRs. This outcome leads to

very expensive subsidy programs in order to reach target levels.

5. Assessing the significance of recent deviations

The possibility of very expensive subsidy programs makes

early identification of such a scenario important. This section

briefly explores whether the types of analysis above provide a

means with which to conduct interim monitoring of cost

dynamics. These exploratory approaches are intended to fit under

the rubric of ‘‘outcome indicators’’ suggested by Neij and Astrand

(2006). Working specifically on government energy technology

development programs, they emphasized the need for ‘‘contin-

uous evaluation’’ of policy outcomes. This study looks for insight

on early identification by employing two methods of addressing

the question: do recently observed costs represent a significant

deviation from the historical trend or does historical variation explain

them? First, recent costs are compared to the confidence interval

for the power function resulting from the dispersion in past

observations. Second, these costs are compared to the set of all

possible experience curve forecasts made over time.

5.1. Confidence interval for observations around power function

The first method uses straightforward statistics examining

whether recent variation fits within the confidence interval for

observations around the power function. This variation is caused

by imperfect fit of the power function to the experience curve data

(Sark, 2008). Here a confidence interval is constructed for the PV

data through 2003. This range is compared to the most recent

three years of data, 2004, 2005, and 2006, to determine whether

they fit within the range defined by projecting the experience

curve for three years. For the case of wind, apparent deviation

began one year later, so 2005 and 2006 are compared to the

interval defined by cost trends in the prior years.

The data for PV from 1976 to 2003 have r2 ¼ 0:98 and

LR ¼ 0:22. The variation around the experience curve power

function using least squares yields a 95% CI around the LR of

0:22� 0:01. Projecting the experience curve to the capacity

reached in 2006 ðE2006Þ, yields a 95% confidence interval of

expected costs in 2006 of $1.58–$2.51. The actual value for 2006,

$3.74, lies outside this range (Fig. 9).

For wind power, the data from 1981 to 2004 have r2 ¼ 0:75 and

LR ¼ 0:11. The variation around the experience curve power

function yields a 95% CI around the LR of 0:11� 0:03. Projecting

the experience curve to the capacity reached in 2006 ðE2006Þ, yields

a 95% confidence interval of expected costs in 2006 of $1.65–$0.76.

The actual value for 2006, $1.49, lies inside this range. But note

that this range is substantially larger than that for PV.

When error around the experience curve derived from least

squares variation in the data is used to project future costs,

recently observed PV costs are outside this range while wind costs

are inside it.

5.2. Range of historical projections for recent prices

Next, an approach is developed that assumes the perspective of

a policy analyst making ex ante forecasts each year, incorporating

new data as it becomes available. This approach assesses whether

recent observations could have been projected by the set of all

possible historical forecasts. This section uses Eq. (1) and,

forecasting for each year, t, calculates the expected price at the

cumulative capacity that was actually reached in 2006, E2006:

P2006 ¼ PmðE2006Þ
bi (7)

A price, P2006, is projected using the set of learning factors

bi, calculated from all the time series that were available at year t

(Eq. (1)).

To illustrate, Fig. 10 shows the predictions, over time, of the

price of PV for the cumulative capacity that was reached in 2006,

E2006. The first result is that none of the 231 possible projections

for 2006 would have predicted a level at or above the actual 2006
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Fig. 8. Upper: calculated learning rates for wind; middle: year at which price of

wind equals that of competing technology; lower: present value of cost to

subsidize wind until it equals cost of competing technology. The black columns

include values for all 153 time series from 1981 to 2006. The white columns

include only those time series that end in 2006.

Table 2

Descriptive statistics for distributions of experience curve results for wind.

Learning rate Breakeven year Cost to

breakeven ($b)

For all time series ðn ¼ 153Þ

5th percentile 0.20 2017 33

Median 0.10 2029 105

95th percentile 0.05 2057 903

s 0.04 11 918

For time series ending 2006 ðn ¼ 17Þ

5th percentile 0.12 2026 82

Median 0.08 2035 174

95th percentile 0.05 2061 1430

s 0.02 11 438
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price. Next this method is used to project prices for the

cumulative capacities reached in all years from 1986 to 2006. In

Fig. 11, the range in gray represents the full range of forecasts for

the capacity that was reached in each year. For example, the gray

range for 2006 includes all of the 231 data points portrayed in

Fig. 10. Actual prices in each year are shown as a line with white

circles. The second result is that, other than two individual

occurrences, the only time the actual prices have consistently

fallen outside the range of all possible LR derived price forecasts

was in 2004–2006.

Similarly, Fig. 12 shows the predictions, over time, for the price

of wind power for the cumulative capacity that was reached in

2006, E2006. In contrast to PV, some projections for wind power

prices would have been quite close to the actual 2006 price level,

with several even overestimating the actual price. As with PV, this

method is applied to predict all years from 1991 to 2006 in Fig. 13.

In the case of wind, recent prices do fit within the range defined by

all previous forecasts. Similarly to PV, historical wind power prices

have always stayed within the range, except for one year, 1997.

The outcome of this analysis concurs with that of the

confidence interval analysis: the recent deviations in PV fall

outside the range of historical precedent, while those of wind

remain within. While further analysis is certainly needed to

characterize the sources and persistence of these deviations, these

methods may be useful as a preliminary screen to identify that

near-term deviations merit further investigation.

5.3. Savings from niche markets

Finally, one should also consider that niche markets exist

where early adopters have a higher willingness to pay than the

cost of the alternative technology (Geels, 2002; Shum and

Watanabe, 2007). Accounting for these niche markets will lower

subsidy costs because willingness to pay among these consumers

is not Pa but Pn where Pt4Pn4Pa. Here, the size of the niche

markets is based on a fraction, n of the breakeven capacity, so that

the size of the niche market, En ¼ nðEa � E0Þ. The total savings due

to niche markets are

N ¼
X

tn

t¼0

MtðPt � PnÞð1þ dÞt0�t (8)
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Fig. 10. PV: trend in predictions of prices for the capacity levels reached in 2006.

Dashed line shows actual value in 2006.

Fig. 11. PV: gray shows the range of all forecasts for the price of PV at the

cumulative capacity reached in each year. Actual prices are shown as a line with

white circles.

Fig. 12. Wind: trend in predictions of prices for the cumulative capacity levels

reached in 2006. Dashed line shows actual value in 2006.
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where tn is the year at which niche markets are saturated, Et4En.

The cost of the subsidy program after accounting for niche

markets is S� N.

The sensitivity of subsidy costs to niche markets is evaluated

by assuming that in niche markets Pn ¼ ðPt þ PaÞ=2, and that

reasonable values for the size of niche markets are 1% and 10% of

cumulative demand through breakeven. Table 3 shows that for PV,

niche markets of 1% and 10% reduced median program costs by 4%

and 25%, respectively. Their effect on the most expensive

outcomes, the 95th percentile, was larger. Results for wind were

similar, albeit with slightly smaller effects.

The existence of niche markets is substantial and they should

be accounted for. Empirical analysis of the level of willingness to

pay in niche markets, and the size of these markets will add

insight into the extent to which they reduce the cost of subsidy

programs. Still, the inclusion of niche markets does not change the

finding that outcomes at the 95th percentile are far larger than

those at the median.

6. Discussion

The results of the analyses in this paper indicate (1) a need for

policy makers to more explicitly consider uncertainty in cost

projections and (2) the importance of the development of better

tools to identify the significance of near-term deviations from

projections. This study assessed two technology case studies and

provided evidence that expected costs to subsidize technologies

until they are competitive with alternatives span a large

range—beyond an order of magnitude. Note that this range was

observed for a technology, PV, for which goodness of fit of logged

prices to logged cumulative capacity was over 0.95. Dispersion in

cost projections for wind power was even larger. These results

suggest that projected subsidy costs are highly sensitive to timing

of the data used: both when the forecast was made, and the

duration of the historical data set used. The high dispersion in

costs—and especially the skewness of the distribution toward

high values—emphasizes the importance of interim monitoring of

technological improvement.

To this end, two methods were employed to assess technology

cost development in the near term. Ranges of projected values

were estimated using (1) confidence intervals around the power

function and (2) a moving range of forecasts based on all possible

historical time series. Recent prices were then determined as

falling within or outside of these ranges, since in both cases recent

costs appear to have deviated from experience curve projections.

For PV, recent prices fall outside the full range of projections using

both methods. For wind recent prices remained within the range

of projections under both methods.

6.1. Policy implications

This analysis points to two normative conclusions for policy

makers. First, if policy makers are to rely on future cost

projections derived from experience curves, they need to be

explicit about the reliability of predictions. Policy decisions should

be made acknowledging the observed variation in rates of

technological improvement over time. Given the current state of

knowledge about what actually causes variation in LRs, policy

makers would do well to consider learning as a stochastic

process—that is, that some aspects of the process remain

unpredictable (Gritsevskyi and Nakicenovic, 2000). In this respect,

learning is similar to the outcomes of R&D investments; they are

inherently uncertain despite improvements in understanding

about R&D productivity (Baker and Adu-Bonnah, 2008). Important

further work on this topic involves assessment of whether this

uncertainty is likely to diminish over time as more observations

are obtained, in a manner suggested by the central limit theorem.

It is unclear whether the results in this study so far support such a

notion. In Fig. 5 it appears that the dispersion in LRs for PV has

increased over time, while in Fig. 7 the dispersion for wind power

fits with the notion of decrease. Even if such a convergence were

to occur, a practical issue for policy makers is whether it will occur

quickly enough to inform decision-making, and whether the

cumulative capacity required for convergence is small relative to

the size of the world energy demand.

Second, devising ex ante methods to identify the significance

of near-term deviations in technology cost and performance

trends is essential. How should policy makers respond to

situations such as those for PV (Fig. 3) and wind (Fig. 4) in which

recent prices appear to be deviating from the experience curve

path? Are these short-term deviations driven by supply bottle-

necks, or are they representations of the lower limits on cost?

Deviations make policy difficult; policy makers need to be vigilant

against encountering the extremely expensive outcomes found in

Section 4. For example, debate over subsidies amounting to

several billions dollars in the 2007 Independence and Security Act

in the US EIA suggests that programs involving hundreds of

billions will be subject to scrutiny (Schnapp, 2008). But the

substantial social value these technologies have the potential to

deliver at widespread deployment implies that policy makers may

also need to defend technology support against competing social

priorities when deviations are actually short-term aberrations.

How can near-term data be used to assess confidence in longer-

term projections?7 The methods developed in Section 5 suggest

some avenues for analysis, but ultimately better tools will be

required.
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Fig. 13. Wind: gray shows the range of all forecasts for the price of wind at the

cumulative capacity reached in each year. Actual prices are shown as a line with

white circles.

Table 3

Sensitivity of subsidy program costs to size of niche markets, n.

PV Wind

n: 1% 10% 1% 10%

Program costs with niches, S� N ($b)

Median 59 46 103 84

95th percentile 159 124 823 649

Savings due to niches, N=S

Median 4% 25% 2% 21%

95th percentile 9% 29% 9% 28%

7 In many ways, this challenge is similar to debates about indicators of climate

change (Rahmstorf et al., 2007; Pielke, 2008).
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6.2. The need for new analytical tools

An ongoing deficiency in government support for technology

improvement arises from the lack of analytical tools with which to

add insight on future costs. Much is at stake, both in terms of the

public’s financial resources used to fund these programs and the

environmental impacts these programs are designed to mediate.

These decisions are too important—and mistakes too expensi-

ve—to rely on simple heuristics that mask large uncertainties,

which are easily ignored. Promising developments exist. An

important analytical improvement has certainly been the inclu-

sion of explicit treatment of learning uncertainty in modeling

(Alberth and Hope, 2007; Rubin et al., 2007; Uyterlinde et al.,

2007). Estimating technology costs through the summation of

‘‘bottom-up’’ characterization of technology dynamics in indivi-

dual components provides an appealing alternative, in that

sources of uncertainty can be identified more precisely (Keshner

and Arya, 2004). Comparisons of such bottom-up models with

experience curves and expert opinion provide a method that is

more robust to bias within any single method (Neij, 2008). An

alternative use of bottom-up methods is to integrate them with

expert elicitation into a single model that represents both

incremental and non-incremental technical change (Nemet and

Baker, 2008). This integration will help account for the introduc-

tion of new technological generations, which seems especially

likely in the case of PV. Finally, empirically distinguishing local

from global learning effects is needed to inform international

coordination among government programs (Benthem et al., 2008;

Shum andWatanabe, 2008). The role of international coordination

is especially important given the uncertainty that arises from

multiple independent national programs and modeling results

that show strong path dependence in technology learning

(Mattsson and Wene, 1997). Improving the accuracy and precision

of models such as these is an important research endeavor. Still,

one should not lose sight of the goal of the ambitious plans to

devote public resources to the improvement of societally

beneficial energy technologies. Ultimately, the insights from these

models need to be built in to the design of programs that create

strong and persistent incentives for private sector investments in

cost-reducing activities.
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