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We document significant negative effects of exposure to increased automation at work on

household wealth accumulation. Beyond the income and savings channels, we uncover

a novel mechanism contributing to the negative wealth effects of automation that

arises through the endogenous optimal portfolio decisions of households. We show that

households rebalance their financial wealth away from the stock market in response to

increased human capital risk induced by pervasive automation, thereby attaining lower

wealth levels and relative positions in the wealth distribution. Our evidence suggests that

the portfolio channel amplifies the inequality-enhancing effects of increased automation.
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In recent years, we have witnessed an accelerated progress of digital

technologies, including significant advancements in robotics and other related

technologies. According to the International Federation of Robotics (IFR), the
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worldwide stock of industrial robots has almost tripled in the past decade, and

is projected to grow at least at a similar rate over the next 10 years. The extent

and rapidity of the progress in automation, including major leaps in artificial

intelligence capabilities, raises several questions with important implications

for individuals.1

In this paper we focus on the effects of increased automation on household

wealth accumulation and on the underlying economic mechanisms, both

empirically and theoretically. Our paper highlights an important mechanism

driving the negative wealth effects of automation that arises from endogenous

optimal portfolio decisions of households. In particular, we demonstrate that

households endogenously rebalance their financial wealth away from the stock

market due to increased human capital risk induced by automation, thereby

attaining lower levels of wealth and relative positions in the wealth distribution.

In our empirical analysis, we focus on an industry-level measure of robot use

to measure the increased importance of automation. Specifically, we consider

the adoption of industrial robots, which are defined as reprogrammable and

fully autonomous machines capable of being adapted to perform different

tasks (Acemoglu and Restrepo 2020; Graetz and Michaels 2018; IFR 2017).

We combine this industry-level measure of automation with an extensive

individual-level panel data set from Sweden, which contains detailed wealth

records and highly accurate information on the demographics and labor market

outcomes of approximately 300,000 households from 1999 to 2007. We

then study the effects of changes in exposure to robots in the workplace on

financial behavior and wealth outcomes of households, including stock market

participation and relative position in the wealth distribution.

The baseline empirical strategy relies on an instrumental variable (IV)

approach that is estimated in a 2SLS fashion. Following a similar identification

strategy as Autor, Dorn, and Hanson (2013), Bloom, Draca, and Van Reenen

(2016), and Acemoglu and Restrepo (2020), we instrument for changes in

robot density in Swedish industries using contemporaneous median changes in

robot density across 11 other Western European countries. Our identification

proceeds from the notion that the adoption of robots in the (non-Swedish)

European countries represents the advances in the global technological frontier

(Acemoglu and Restrepo 2020), which enables us to identify the exogenous

variation in the use of robots in Swedish industries and to estimate its causal

effects on household financial choices and outcomes.We assess the plausibility

of the exclusion restriction in detail, and provide evidence that corroborates the

validity of the instrument.

1 A burgeoning literature focuses on the economic consequences of rapid automation, with a particular emphasis
on its effects on the labor market. Recent evidence suggests that despite a positive impact on productivity
(Graetz and Michaels 2018), automation and advances in production methods negatively affect the wages and
employment opportunities of individual workers (Acemoglu and Restrepo 2020; Autor and Salomons 2018), and
correlate with increases in labor income risk and wage inequality (Kogan et al. 2020).
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We start our analysis by investigating the effects of exposure to the

increased use of robots at work on net wealth levels and ranks. We provide

strong evidence that increased automation has a significant negative impact

on household wealth accumulation, even after accounting for a rich set of

household characteristics, industry factors, and local economic conditions. In

particular, a one-standard-deviation exogenous rise in exposure to robots at

work reduces the rank of individuals within the corresponding birth cohort-year

wealth distribution by 1.7 percentiles, on average.

We conduct numerous sensitivity checks to verify the robustness of

our findings. For example, we use a difference-in-differences (DiD) type

identification, which combines industrial variation in robot adoption intensity

with household variation in exposure to the effects of robotization. To be more

precise, we identify the effects of exposure to robotization fromwithin industry

variation by exploiting heterogeneity in the intersectoral transferability of

human capital (acquired through formal education) of individuals working

in the same industry. Consistent with our results from the base analysis,

we observe a significant negative impact of robot adoption on the wealth

accumulation of households even after the inclusion of industry fixed effects.

Interestingly, there seems to be large response heterogeneity to the adoption of

robots across employees in the same industry by the degree of the intersectoral

transferability of their skills.

Having established a robust negative causal effect of robotization on

household wealth accumulation, we next turn to the analysis of the underlying

economic factors. Beyond the income and savings channels, our findings point

to the existence of an additional and more nuanced mechanism, which we

label as the portfolio channel. In particular, we first show that adoption of

robots significantly increases the unemployment risk of exposed households.

We then demonstrate that households facing increased background labor

income risk, substantially reduce, or fully eliminate, their exposure to the

stock market. For the latter, a one-standard-deviation exogenous rise in the

robot density of the industry of employment leads to an 15% increase in

the probability of a household exiting from the stock market. As households

rebalance their financial portfolio away from the stock market, they forgo

substantial equity returns up to 4.3% a year (Calvet, Campbell, and Sodini

2007) and therefore experience a substantial drop in the growth of their

financial wealth and accumulate significantly less wealth relative to their

incomes.

We scrutinize alternative mechanisms, including changes in labor income

or in savings behavior. Our numerous empirical findings strongly suggest that

the patterns we document in the wealth analysis are not a mere product of the

income or savings effects, but are also driven by the portfolio channel. For

the former, we document quantitatively similar effects of increased adoption

of robots on household wealth accumulation when we explicitly control for

household income growth in the analysis or exclude displaced workers from
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the sample. Furthermore, our results provide no empirical support for (changes

in) household savings behavior as an operative channel.

Next, we study the effects of automation on the financial outcomes of

households by level of education. While skill upgrading of jobs as a result

of emerging technologies may favor some people, it can leave others behind,

notably, those with lower human capital (Brynjolfsson and McAfee 2012;

Autor 2015; Berg, Buffie, and Zanna 2018). Interestingly, we find that the

negative effects of automation on stock market participation and wealth

accumulation are only operative for less educated households and not among

their better educated counterparts. Overall, our findings suggest that rapid

automation can further widen the wealth gap between high- and low-skill

individuals.

Building on our empirical findings, we develop and solve a life cycle model

of consumption and portfolio choice with automation risk and endogenous

stock market participation. Our model is similar to Gomes and Michaelides

(2005) and Fagereng, Gottlieb, and Guiso (2017), but is extended by including

a robotization shock to the labor income process. More precisely, both the level

and the risk of the income process are functions of ex ante robot exposure

and ex post robot shocks. We first calibrate the model to match the wealth

accumulation of households with high, medium, and low robot exposure in

the data. We show that the calibrated model replicates very well the asset

allocations of these three groups. We then simulate the effects of a robot

shock over the same time period as in the data. Crucially, we impose the

same risk preferences and stock market participation costs for all households,

so that changes in stock market participation and risky share are fully driven

by the changing environment and the endogenous evolution of wealth in the

simulations.

Finally, we conduct a counterfactual analysis, where we isolate the role of

the portfolio channel in explaining the differences in wealth accumulations

between the low and high robot exposure groups. We find that portfolio

rebalancing in response to the robotization shock generates 15% of this

difference, thus confirming that the portfolio channel is indeed an important

mechanism driving differences in wealth accumulation, in line with our

empirical findings.

Our paper complements a small but growing literature on the economic

consequences of increased automation.2 For example, Acemoglu and Restrepo

(2020) find that penetration of industrial robots across U.S. local labor

markets reduces aggregate employment and wages, while Graetz and Michaels

(2018) document positive productivity effects of automation, which, however,

reduce employment for low-skilled workers. We contribute to this literature

2 See, for example, Bessen et al. (2019), Martinez (2019), Dauth et al. (2017), Aghion, Jones, and Jones
(2018), Arntz, Gregory, and Zierahn (2016), Freeman (2015), Benzell et al. (2015), Hémous and Olsen (2022),
Sachs and Kotlikoff (2012), and Sachs, Benzell, and LaGarda (2015).
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along several dimensions. First, we provide the first direct evidence that

the negative impact of robotization extend beyond the labor market to the

dynamics of wealth accumulation. Second, the portfolio channel, as we

document, amplifies the adverse effects of automation on household wealth

accumulation and highlights an important economicmechanism throughwhich

automation affects household financial well-being. Specifically, we show that

the endogenous portfolio responses of households to increased adoption of

robots at work amplify the relation between labor market polarization and

dispersion of wealth. Finally, our evidence on the negative labor market effects

of robotization using detailed household micro data complements the findings

of earlier studies.

In addition, our work links to the literature on the importance of uninsurable

background risk for the demand of risky assets (Cocco, Gomes, and Maenhout

2005; Fagereng, Guiso, and Pistaferri 2017; Betermier et al. 2012). For exam-

ple, Fagereng, Guiso, and Pistaferri (2017) conclude that households have a

large marginal propensity to respond to earnings risk even though the authors

observe relatively small responses in their analysis, which they attribute to

a low level of earnings risk in their empirical setup. Our paper provides

an empirical setting where the level of earnings risk is particularly high

and, consistent with Fagereng, Guiso, and Pistaferri (2017), we estimate much

larger economic responses, highlighting the importance of background labor

income risk for household portfolio choice. Another key contribution of our

paper to this literature is to identify an additional source of background

risk, that is, the rapid adoption of robots in the workplace. As we both

empirically and theoretically show in our paper, this risk is essential and is

very likely to become increasingly so for household portfolio choice andwealth

accumulation in the future, given the rapid progress in automation.

Finally, our findings on the importance of the portfolio channel for

household wealth accumulation relate to the recent literature on the underlying

factors of the observed wealth distribution (Benhabib, Bisin, and Zhu 2011;

Gabaix et al. 2016; Hubmer, Krusell, and Smith 2016), and on the large het-

erogeneity in returns onwealth (Bach, Calvet, and Sodini 2020; Fagereng et al.

2020; Campbell, Ramadorai, and Ranish 2019).

1. Data and Empirical Specification

In this section, we first introduce the data sources and provide detailed

information on our main variables of interest. We then discuss the econometric

challenges in the empirical analysis and explain how we tackle them.

1.1 Data and sample construction

To measure household exposure to increased automation in the workplace,

we use data provided by the IFR on the stock of industrial robots,

disaggregated at the industry level. The IFR collects annual information on

5
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the total stock of robots and new robot installations, detailed at the two-

digit or three-digit industry level since 1993 by surveying robot producers

and suppliers in approximately 50 countries (Graetz and Michaels 2018;

Acemoglu and Restrepo 2020; IFR 2017). For Sweden, the focus of our

empirical investigation, we observe the total stock of robots for 14 industries on

a yearly basis from 1993 to 2016. These industries include agriculture, forestry,

and fishing; mining and quarrying; manufacturing; utilities; construction; and

education, research, and development. For manufacturing, we have a more

detailed industry breakdown at the three-digit level, which includes food and

beverages; textiles; wood and furniture; pharmaceuticals; rubber, plastic, and

chemical products; basic metal and metal products; industrial machinery;

electrical products and electronics; and automotive industries.3

We then merge the industry-level robot data with the number of employees

in each industry, which we collect from the EU KLEMS data set (Jäger 2016).

Table 1 provides information on the use of industrial robots and the number of

workers for the Swedish industries during the sample period (1999 to 2007).

The automotive industry has the highest robot density, with 27.86 robots per

thousand workers, followed by the basic metal and metal products industry

with 11.35 robots per thousand workers as of 1999.

Next, we merge the data on the stock of robots with the LINDA

(Longitudinal INdividual DAta for Sweden) database, which is provided

by Statistics Sweden.4 LINDA consists of an annual cross-sectional sample

of around 300,000 individuals, or approximately 3% of the entire Swedish

population, and their family members. The sampling procedure ensures that

households in the panel are representative of the population as a whole, and

that each annual cohort is cross-sectionally representative. The data contain

highly accurate and detailed information on debt and asset holdings, as well as

demographic characteristics of each sampled individual from 1999 to 2007.5

In our analysis, we use information at the household rather than at the

individual level. To identify the head of a household, that is, the reference

person, we follow the Canberra definition.6 We then use the socioeconomic

3 To minimize potential misclassification and measurement errors, we do not consider the number of robots that
fall into the “Unspecified” category when calculating the robot exposure variable.

4 Since the IFR and Statistics Sweden use different industry classifications, we follow a similar matching procedure
as in Graetz and Michaels (2018). Table O.A.1 in the Internet Appendix provides further details about the
matching procedure.

5 The extensive financial and wealth information originates from the collection for wealth taxation, which was
abolished in 2007. Even though wealth taxation in Sweden has a longer history, originally dating back to the
early 1900s, we focus on the 1999-2007 period because of the availability of wealth information at the household
level in the archives of our data provider Statistics Sweden, which is the Swedish government’s statistical agency.
Note that all wealth data at the household level prior to 1999 was unfortunately destroyed.

6 The Canberra definition of the reference person in a household applies the following rule in the order provided:
“one of the partners in a registered or de facto marriage, with children; one of the partners in a registered or de
facto marriage, without dependent children; a lone parent with dependent children; the person with the highest
income; the eldest person” (Haliassos, Jansson, and Karabulut 2017).
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characteristics of the household head when defining household controls, such

as age, educational level, and work status. Asset and debt holdings, along with

income, are aggregated at the household level.

When constructing the working sample, we adopt a conservative strategy

to minimize potential misclassification and measurement errors. First, we

only consider working age households between the ages of 22 and 60

(Autor, Dorn, and Hanson 2013). Second, we exclude households who are

classified as student, housemaker, self-employed, or unemployed or retired,

and consider only employed households in the initial period. Third, we focus on

households who work in industries for which the IFR provides information on

the number of robots.7 Importantly, we require households to be employed only

during the initial period, and allow them to endogenously switch industries,

become unemployed, or move to another geographical location in subsequent

years. Finally, we eliminate households with any missing information on labor

market outcomes, asset holdings, or demographics. Overall, the final sample

comprises 30,375 unique households who are observable in any given year

during the 1999-2007 period. Panel A of Table 2 presents descriptive statistics

on relevant household characteristics.

1.2 Variable definitions

The key variable of interest in our analysis is the exposure of households to the

increased use of robots, which we define at the industry level j as follows:

�Robot_density99→07
j =

No of robots07j

No of workers95j
−

No of robots99j

No of workers95j
. (1)

Since our focus is on the impact of long-differences in exposure to robots

on changes in household economic choices and outcomes, we consider

changes in robot density in a given industry between 1999 and 2007. In the

construction of this variable, we use the number of workers in 1995, rather

than the contemporaneous values, as the baseline employment level to limit

the potential simultaneity bias in employment and the adoption of robots

(Acemoglu and Restrepo 2020).8 Panel B of Table 2 provides information

about this key variable. During the sample period, we observe on average an

increase in the number of robots per 1,000 employees across Swedish industries

with a mean (standard deviation) value of 2.69 (3.27).

7 According to the employment numbers from the EUKLEMS database, the number of employees in the industries
included in our analysis represents 55.5% of workers in the market economy and 35% of workers across all
industries in Sweden. We verify our findings by considering households that work in industries for which the
IFR does not provide any information about robot stock by setting robot adoption in those industries to zero.

8 For instance, the employment level in an industry in the year of 1999 might be affected by the (planned) increase
in robots between 1999 and 2007 in that specific industry. It is however much less likely that the employment
level in an earlier period, as in 1995, reflects expectations of future labor market trends. Still, we verify the
robustness of our findings using the 1999 values as the baseline employment level.
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Do Robots Increase Wealth Dispersion?

Table 2

Summary statistics for the final sample

Observations Mean SD

(1) (2) (3)

A. Household demographics and financial characteristics

Age 30,375 38.8532 7.5261
Male 30,375 0.8699 0.3365
Married 30,375 0.5507 0.4974
College and more 30,375 0.2424 0.4286
High school 30,375 0.5581 0.4966
Number of adults 30,375 1.9267 0.6273
Number of children 30,375 1.4168 1.1490
Immigrant 30,375 0.0995 0.2994
Gross wealth (in SEK) 30,375 980,456.6 2,116,590
Net wealth (in SEK) 30,375 524,553.4 1,730,830
Financial wealth (in SEK) 30,375 225,593.9 863,549.6
Housing wealth (in SEK) 30,375 547,806.8 560,392.4
Debt (in SEK) 30,375 424,828.3 765,143
(IHS of) Disposable income 30,375 13.2065 0.4075
(IHS of) Labor income 30,375 12.7125 0.5225

B. Variables of interest

�Robot_density99→07 30,375 2.6927 3.2744

�Robot_density99→07
EU

30,375 0.4225 0.5255

C. Dependent variables

Stockholding status 30,375 0.7808 0.4137
Stock market exit 22,125 0.0819 0.2744
Change in risky share 30,375 −0.1630 0.4069
Unemployment risk 30,375 0.0423 0.2014
Change in earnings 30,375 0.1955 1.5471
Net wealth levels 30,375 10.1922 9.8281
Net wealth rank 30,375 52.9843 27.1651
Change in net wealth 30,375 0.1948 21.2564
Change in financial wealth 30,375 2.1391 3.7284
Wealth-to-income ratio 29,955 0.8728 1.8076

D. Industry characteristics

�No of employees (1993-98) 30,375 −1.6201 15.5676

�Chinese_import99→07 30,375 2.4709 4.4889
�Capital intensity 30,375 0.2019 0.1145
�ICT capital 30,375 0.3863 0.1853
Initial robot density (1995) 30,375 4.3988 6.2528

�EU_import99→07 30,375 1.4765 2.1931
Labor_intensity (1999) 30,375 0.3001 0.1843
�Prof its 30,375 149.198 145.007

This table presents the number of observations, mean, and standard deviation of variables used in the empirical
analysis. In panel A, we present the descriptive statistics for household control variables that are defined in
1999. SEK refers to values in Swedish kronor and IHS refers to the inverse hyperbolic sine transformation. Panel
B reports summary statistics for the main variables of interest in our analysis, that are the changes in robot
density in the Swedish and European industries, respectively. Panels C and D presents the descriptive statistics
for the outcome variables defined at the household-level and industry-level controls, respectively. See the Internet
Appendix for detailed variable definitions.

In our analysis we account for numerous industry characteristics in

order to isolate the effects of increased robotization from other industry-

wide factors and trends. First, previous literature shows that increased

imports from China (and other low-wage countries) have a negative effect on
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employment, wages, and labor-force participation (Autor, Dorn, and Hanson

2013; Bloom, Draca, and Van Reenen 2016). Therefore, we follow

Autor, Dorn, and Hanson (2013) and construct a variable for exposure to

imports from China, which captures the increase in this exposure per thousand

of employees between 1999 and 2007 in a given industry. Second, international

trade competition, other than import exposure to China, can also affect the

economic outcomes of Swedish households and the proliferation of robots in

Swedish industries. We address this issue by accounting for median changes in

import exposure to 11 developedWestern European countries, which we use to

construct the excluded instrument described in Section 1.3. Third, we control

for whether a given industry is declining in terms of change in the nationwide

employment levels between 1993 and 1998 to account for industry pre-trends

(Acemoglu and Restrepo 2020). Fourth, we construct additional variables

for changes in industry profitability between 1999 and 2007, as well as for

initial labor intensity that is proxied by the labor-to-capital ratio of a given

industry in 1999.9 Lastly, we introduce control variables for changes in capital

intensity and ICT capital in the regressions. As we discuss in Section 1.4, the

increased use of robots is only weakly related to these industry-wide trends,

and represents a distinct factor. Panel D of Table 2 provides summary statistics

for the industry controls.

Finally, we use a rich set of household-level characteristics as additional

controls in the empirical analysis. These include age and educational level

of the household head, marital status, household size and adult-children

composition, and (initial) household disposable income and net wealth. We

provide detailed information about the variables employed in the empirical

analysis in the Internet Appendix.

1.3 Empirical specification

We study the effects of changes in exposure to robots in the workplace

on various household economic outcomes, accounting for a wide range of

household characteristics, industry trends, and local economic conditions. The

base model takes the following form:

�Y 99→07
ijk =α ·�Robot_Density99→07

j

+β ·�HH_Controls99→07
i +γ ·�IND_Controls99→07

j +δk+ǫijk

(2)

where �Y 99→07
ijk represents the long-differences (i.e., changes between 1999

and 2007) in the economic and financial outcomes of interest for household i

9 Regarding the former variable, an industry with declining profitability may exhibit lower-income growth and,
at the same time, higher automation growth to increase profits. For the latter variable, more labor intense, and
potentially more profitable, industries (such as luxury goods or high-end fashion) could offer higher-income
growth and less potential for the adoption of robots.
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Do Robots Increase Wealth Dispersion?

working in industry j and living in municipality k in 1999. In estimating the

impact of exposure to robots, we control for numerous observed characteristics

of the household (�HH_Controls99→07
i ) and several relevant industry controls

(�IND_Controls99→07
j ), which we introduced and described in the previous

section. The vector �HH_Controls99→07
i of household level controls includes

changes inmarital status, changes in level of education (distinguishing between

college education, high school, and less than high school) of the household

head, changes in the number of adults and in the number of children as well

as fixed effects for deciles of household initial wealth and income in 1999. We

further include regional fixed effects for the location of residence, defined at

the municipality level and denoted as δk , to account for potential differences

in regional economic conditions.10 In addition, we control for the initial robot

density of an industry (measured in the base year of 1995), which allows us

to focus on the variation in changes in the adoption of robots across industries

within a municipality.

Equation (2) is defined and estimated in first differences and is, therefore,

equivalent to a fixed effects regression. The first-differencing addresses

concerns arising from unobserved household characteristics thatmay otherwise

contaminate estimation of the true effect of automation on household

outcomes. Standard errors are double clustered by region and industry.

Even though we include a rich set of industry controls in the regressions,

there may still be some unobserved industry-wide factors that can simultane-

ously affect changes in robot density and the economic outcomes of households

working in that industry. For example, a rapid increase in unionization in some

Swedish industries could lead to the increased adoption of robots as well as

higher wages and improved job security for workers in those industries, which

would yield a positive correlation without implying a causal link. This would

pose a threat to our identification.

Our empirical strategy addresses this challenge by using an IV approach that

is estimated in a 2SLS fashion. Following a similar identification strategy as in

Autor, Dorn, and Hanson (2013), Bloom, Draca, and Van Reenen (2016), and

Acemoglu and Restrepo (2020), we instrument for changes in robot density

between 1999 and 2007 in the Swedish industries using contemporaneous

median changes in the robot density across 11 other developed Western

European countries.11 Building on the same ideas as Acemoglu and Restrepo

(2020), we use the adoption of robots in (non-Swedish) European industries to

capture the advances of the global technological frontier, which is assumed to

10 In Sweden, 290 municipalities are responsible for various tasks, such as social services or physical planning.
Hence, municipality fixed effects account for latent regional characteristics and capture the direct effects of the
location of households.

11 The 11 other developed countries are Austria, Belgium, Denmark, Finland, France, Germany, Italy, the
Netherlands, Spain, Portugal, and the United Kingdom. Note that the industry breakdown of robot stock for
Austria, Belgium, the Netherlands, and Portugal is not available prior to 2004. Therefore, for these countries, we
use the robot density from 2007 in the corresponding industries.
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be positively correlated with the growth of robot density in Swedish industries

but uncorrelated with the error term in the equations of interest.12 Indeed,

the first-stage regressions, presented in Table O.A.2, show a positive and

statistically highly significant effect (p-value<.01) of the excluded instrument

on the endogenous robot exposure variable. In addition, we observe that the F-

statistics for the first-stage regressions are far greater than 10, which indicates

that the excluded instrument is strongly correlated with the endogenous robot

exposure variable and thus, does not suffer from a weak instrument problem.

Overall, the IV strategy will identify the exogenous variation in robot adoption

in Swedish industries induced by advances in the technological frontier of

robotics, which allows us to isolate the effect of an exogenous increase in

robotization on the economic outcomes of households.

1.4 Examination of the exclusion restriction

Since Sweden is a small open economy, and we focus on European countries

for defining the technological frontier of robotics, one may worry about the

validity of the exclusion restriction. For example, changes in robot adoption

in European countries could be correlated with negative shocks to Swedish

industries, contaminating the identification strategy. We tackle this concern in

a number of ways.

First, as shown in Equation (2), we explicitly allow for a rich set of industry

factors and trends in all regressions, which partially mitigates any concerns

about omitted time-varying factors. Second, we examine the validity of the

exclusion restriction by estimating pairwise correlations between the adoption

of robots in European and Swedish industries and other industry-level trends

in Sweden. Panel A of Table O.A.3 shows that the correlation coefficients are

relatively weak, suggesting that robotization represents a distinct factor from

other contemporaneous industry trends and other types of recent technologies

(Tuzel and Zhang 2021). When we consider the relation between past income

growth (i.e., 1995-1998) and the robotization rate between 1999 and 2007 in an

industry, we observe a positive association. Similar conclusions follow when

we consider early trends in industry-level employment growth, indicating that

industries that experienced greater past income or employment growth tend

to adopt more robots. These results provide strong support for the argument

that confounding industry pre-trends, such as declining income growth or labor

demand, are not likely to drive our results.

We also estimate a DiD type regression by exploiting our ability to observe

household income from earlier time periods. Specifically, we first compute

12 When defining the technological frontier of robotics, we could have considered a non-European country, such
as the United States or Japan, which would have been potentially less susceptible to unobserved industry
shocks. However, this is not feasible for at least two reasons. First, the U.S. is lagging behind European
countries (including Sweden) in terms of robot adoption; therefore, U.S. industries would have not represented
an appropriate technological frontier. Second, the robot stock data provided by the IFR for Japan were subject
to significant reclassification; therefore, we are not able to use the industry-level robot adoption data for Japan
in our analysis.
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Do Robots Increase Wealth Dispersion?

cumulative income growth at the household level for 1995-1998 (i.e., pre-

period) and 1999-2007 (i.e., post-period). Then, we regress income growth on

the interaction term between a post-period indicator and a high robotization

dummy, which takes the value of one if change the industry’s robot density is

above the sample mean. Since we have two time periods in these regressions,

we are able to introduce industry fixed effects and focus on within-industry

changes. Panel B of Table O.A.3 shows that the DiD coefficient is negative

and statistically highly significant, suggesting that increases in robot exposure

are associated with a large drop in labor income growth.

Fourth, it is important to note that Sweden is not a part of the European

Monetary Union, even though it has been a member of the European Union

(EU) since 1995. Sweden has its own currency, a floating exchange rate regime,

and an independent monetary policy, which makes Swedish industries less

prone to EU-wide common shocks. Consistent with this argument, Söderström

(2008) shows that Sweden-specific shocks represent a significantly more

important source of Swedish business cycle fluctuations than foreign (i.e.,

European) shocks, and that country-specific shocks account for most of the

variability in the Swedish economy. Further, we compute the gross value-added

beta of Swedish industries with respect to European and U.S. industries.13 We

find that changes in labor productivity in Swedish industries are, on average,

significantly less sensitive to labor productivity growth in corresponding

European industries than in U.S. industries.

Finally, we verify our empirical findings from the IV regressions using

an alternative identification strategy, which follows the spirit of a DiD type

identification and allows us to control for any unobserved (including time-

varying) industry factors and trends (see Section 2.2). Taken together, the

numerous findings presented in this section provide strong support for the

validity of the exclusion restriction.

2. The Effects of Robots on Household Wealth

This section first presents and discusses the household wealth analysis,

and further reports the results of a sensitivity analysis where we use a

complementary empirical strategy.

2.1 Robots and household wealth accumulation

We first analyze the effects of automation on the accumulation of household net

wealth, calculated by subtracting household debt from total household assets

(i.e., the sum of all financial and real assets). Following Black et al. (2020)

13 To compute industry betas, we obtain annual data on industry value-added for Sweden, the 11 developedWestern
European countries, and the U.S. from the EU KLEMS database for the period from 1970 to 2015. The industry
betas are calculated as the slope coefficients from rolling regressions of value-added growth of Swedish industries
on the value-added growth of U.S. and European countries using 25 years of data up to t.

13
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and Epper et al. (2020), we use the percentile rank of a household within the

corresponding birth cohort-year distribution of net wealth as the preferred

measure.14 By definition, this variable accounts for life cycle differences across

households, and also can be defined for zero or negative values of net wealth,

which is, for example, not feasible with a log transformation.

Column 1 of Table 3 reports estimates of the effect of exposure to increased

automation on the relative position of households in the wealth distribution.

The regression estimates imply a negative and statistically highly significant

effect of robotization on the percentile wealth rank of households at the end of

the observation period (t-stat. = −2.05), even after accounting for a rich set of

household characteristics, industry factors, and local economic conditions. To

give an idea of the magnitude of the estimated effect, we can say that a one-

standard-deviation increase in robot density in an industry reduces the rank

of individuals in the wealth distribution by 1.71 percentiles, on average. To

put this into context, we could say this corresponds to approximately one-third

of the impact of attending college, which is quite considerable. We recognize

that using net wealth rank as a dependent variable may mask some potential

rank-preserving shifts in household wealth, which we address by using (the

inverse hyperbolic sine of) net wealth as an alternative outcome variable (Chen

2013). Reassuringly, as reported in Column 2 of Table 3, we find statistically

significant and economically sizeable effects of robot adoption also on the level

of net wealth (t-stat. = −2.83).15

Next, we focus on the wealth mobility effects of robots. More specifically,

we use changes in the net wealth rank of a household within the corresponding

birth cohort distribution between 1999 and 2007.16 The results in column 3

of Table 3 show that households that are more exposed to industrial robots

at work experience a significantly larger drop in the wealth distribution. The

IV estimate in column 3 of –0.487 indicates that a one-standard-deviation

exogenous rise in robot use leads to a 1.60 percentile decline in the change in

net wealth rank of the exposed households on average (t-stat. =−2.01). Taken

14 We define 12 birth cohorts, whereby each consists of 5-year intervals from 1923 to 1983. When computing the
net wealth rank of households, we no longer restrict our attention to the households in the final sample, but
rather consider all households in the LINDA data set in order to more accurately identify households’ relative
position in the entire wealth distribution. As shown by Acemoglu and Restrepo (2020), increased automation
can generate externalities even for individuals who are not directly exposed to robotization in their industry
of employment. Thus, considering all households in the LINDA database (with nonmissing wealth information)
when constructing the wealth rank variable partly allows us to take into account the general equilibrium spillover
effects of automation on the wealth distribution. In untabulated results, we find similar results when only
considering households in our final sample.

15 Since we use the inverse hyperbolic sine of net wealth as the outcome variable, the coefficient estimates in these
regressions can be interpreted as a semielasticity. Hence, a coefficient of 0.167 would imply that an increase
by one robot per 1,000 employees in the industry of employment would decrease the net wealth of exposed
households by 16.7%, on average.

16 This measure enables us to assess the intracohort mobility of households over time, and provides insights about
the impact of robots on the dynamics of household wealth net of any life cycle effects (Quadrini 2000).
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Do Robots Increase Wealth Dispersion?

Table 3

Exposure to robots and household net wealth

Net wealth rank Net wealth level Change in net wealth rank

(1) (2) (3)

�Robot_density99→07
−0.52219∗∗

−0.16755∗∗∗
−0.48734∗∗

(0.2547) (0.0593) (0.2419)
�Married 1.02538∗

−0.01232 0.92092∗

(0.5690) (0.1950) (0.5588)
�College −4.95333∗∗∗

−3.09470∗∗∗
−4.87931∗∗∗

(0.8593) (0.4227) (0.8428)
�High school −3.76020∗∗∗

−2.53362∗∗∗
−3.68515∗∗∗

(1.0332) (0.3997) (0.9225)
�Number of adults 1.47095∗∗∗

−0.17384∗∗ 1.43479∗∗∗

(0.1483) (0.0746) (0.1403)
�Number of children 1.28079∗∗∗

−0.32836∗∗∗ 1.27862∗∗∗

(0.1379) (0.0655) (0.1373)
�No of employees (1993-98) 0.04125 −0.02617∗ 0.03374

(0.0767) (0.0151) (0.0734)

�Chinese_import99→07
−0.13497 −0.00021 −0.11972
(0.0883) (0.0177) (0.0850)

�Capital intensity −6.23526 0.55681 −6.16855
(6.1636) (1.3816) (5.8721)

�ICT capital 4.43708 0.39071 4.26663
(2.9112) (0.5576) (2.7586)

Initial robot density (1995) −0.02137 0.05307∗
−0.01616

(0.1062) (0.0309) (0.0995)

�EU_import99→07 0.10625 0.09567∗∗∗ 0.12629
(0.1194) (0.0233) (0.1153)

Labor_intensity (1999) 2.10066 −1.20881 2.32083
(3.5561) (0.9082) (3.3934)

�Profits −0.00181 0.00040 −0.00148
(0.0029) (0.0007) (0.0028)

Constant 24.57797∗∗∗
−2.80256∗∗∗ 18.42697∗∗∗

(2.7113) (0.9433) (2.6475)

Observations 30,375 30,375 30,375
R-squared .5793 .2557 .3167
Income deciles (1999) Yes Yes Yes
Wealth deciles (1999) Yes Yes Yes
Municipality FE Yes Yes Yes

This table presents coefficient estimates from the second-stage of the IV regressions for household net wealth. In
all specifications, wealth measures are regressed on changes in robot density between 1999 and 2007, changes
in observable household variables, fixed effects for deciles of household initial wealth and income in 1999,
contemporaneous industry characteristics, and municipality dummies. In column 1, we focus on the wealth rank
of households within their birth cohort-year distributions. In column 2, the dependent variable is the inverse
hyperbolic sine of net wealth. In column 3, the dependent variable is the change in the net wealth rank of a
household within her birth cohort distribution between 1999 and 2007.We estimate IV regressions instrumenting
for the change in robot density in Swedish industries using the median change in robot density across the
(non-Swedish) 11 European countries. Note that our base model is defined and estimated in first differences.
Standard errors are double clustered bymunicipality and industry. See the Internet Appendix for detailed variable
definitions. ∗p<.1;∗∗p<.05;∗∗∗p<.01.

together, our empirical analysis yields strong evidence for the negative effects

of pervasive automation on wealth accumulation.

2.2 Intersectoral transferability of human capital and robots

The identification strategy used so far in the analysis is standard in the literature

(Autor, Dorn, and Hanson 2013; Acemoglu and Restrepo 2020). However, a

potential concern is that any unobserved shock in Swedish industries may be
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correlated with industry shocks in the other European countries that we use to

construct the excluded instrument. While it is not possible to test the validity of

the exclusion restriction explicitly, the evidence and corresponding discussion

presented in Section 1.4 suggest that confounding industry factors are unlikely

to drive our results. In this section, we examine the robustness of our findings

by using an alternative identification strategy.

We rely on a DiD type design, which combines industrial variation in

robot adoption intensity with household variation in exposure to the effects

of automation. To be more precise, we identify the effects of exposure to

robotization from within industry variation by exploiting heterogeneity in the

intersectoral transferability of the human capital (acquired through formal

education) of individuals working in the same industry. The importance

of general and specific human capital for job mobility and determination

of earnings has been the focus of a rich body of literature (Becker 1962;

Altonji and Shakotko 1987; Topel 1991; Neal 1995; Parent 2000). Motivated

by these studies, we argue that individuals with more industry-specific human

capital are more adversely affected by the increased use of robots in their

industry of occupation, mainly because of the higher moving frictions they face

(Artuç, Chaudhuri, and McLaren 2010; Traiberman 2019) compared to their

peers who are better suited to reallocate.

To measure the transferability of human capital empirically, we focus on

educational level and major of study. For the former, we use two broad groups

for higher and lower levels of education based on college attendance. For the

latter, we use the three-digit SUN 2000 categorization of educational majors.17

We intersect, wherever possible, educational level and orientation to define

a total of 139 unique education major-level categories in our sample. We

then compute the distribution of individuals within each category over their

(two-digit) industry of employment, and construct a Herfindahl-Hirschman

index (HHI) of industry specialization for each major-level group. A higher

(lower) HHI implies lower (higher) levels of intersectoral transferability of

human capital.We note that educational majors, such asmedicine and dentistry,

have very low intersectoral transferability, while majors including engineering

and business administration have very high transferability (see Table O.A.4).

Importantly, the formal tests tabulated in Table O.A.5 confirm our prior that

individuals with more industry-specific human capital are significantly less

likely to switch industries, during both the observation period and an earlier

period.18

17 In the Swedish education system, students are required to choose a major in high school, which allows us to
construct our human capital measure for high school graduates as well. The SUN 2000 classification of Statistics
Sweden is similar to that of the International Standard Classification of Education 1997 (ISCED-97), and the
three-digit category consists of 117 different educational orientations. Our final sample comprises a total of 93
unique education majors across all households, and this figure accounts for 53 for high school graduates.

18 Our focus on the orientation and level of education rather than on occupational experience, as in
Kambourov and Manovskii (2009), or tasks performed in occupations, as in Gathmann and Schönberg (2010),
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To identify individuals with higher industry-specific human capital, we

define the indicator variable Low_transferij , which equals one if the HHI of

household i’s educational major is above the median HHI across individuals

working in industry j , and zero otherwise.19 We then estimate (within-

industry) regressions of the following form where we interact the changes

in robot density in the Swedish industries between 1999 and 2007 and the

(household-level) indicator variable for having less transferable human capital:

�Y 99→07
ijk =β1 ·�Robot_density

99→07
j ×Low_transferij

+β2 ·Low_transferij +θ ·�HH_controls99→07
ijk +δj +δk+ǫijk.

(3)

Note that industry fixed effects, denoted as δj , subsume the direct effect of

robotization and control for all sources of variation in differential industry

factors and trends. Put differently, this approach allows us to capture and

rule out the effects of any unobserved (including time-varying) industry

characteristics, which may be correlated with increases in robot use and the

wealth outcomes of households working in that industry.

Table 4 reports the regression estimates. Consistent with our results from the

base analysis, we observe a negative and significant effect of robot adoption

on wealth accumulation of households even after the inclusion of industry

fixed effects. As presented in column 2 of panel A, a one-standard-deviation

increase in the robot density of a given industry reduces the net wealth rank

of individuals with more industry-specific human capital by 1.17 percentiles

(t-stat. =−2.74), on average, compared to those with less industry-specific

human capital working in the same industry. Hence, there appears to be large

response heterogeneity to the adoption of robots across employees in the same

industry by the degree of the intersectoral transferability of their skills.20 These

results are robust to controlling for changes in household characteristics over

the sample period and for municipality fixed effects.

To address the concern that educational choices may partially reflect

expectations of future labor market trends, such as the increased use of robots,

is motivated by two reasons. First, formal education represents one of most important sources of human capital.
Second, the choice of educational major, and hence, the intersectoral transferability of human capital, is likely
to be exogenous to current advances in automation, since educational choices were made many years in the past.

19 In principle, we intend to compare individuals with similar (financial and demographic) characteristics working
in the same industry, some of whom are more affected by increased automation, and some of whom are not
or less affected. As shown in Figures O.A.1 and O.A.2, the distributions of household income and net wealth
across both groups are very similar, suggesting that we have a sample of fairly balanced treatment and control
households.

20 The magnitudes of the coefficient estimates from the DiD analysis require a nuanced interpretation. Since, by
construction, the treatment and control groups in the DiD design are of equal size, the mean of the treatment
effects in each of the two skill subgroups (i.e., −1.17) should correspond to the population average treatment
effect that we document in the IV regressions (i.e.,−1.71) presented in Section 2.1. Solving the exactly identified
system of two equations and two unknowns implies that a one-standard-deviation increase in the robot density of
a given industry reduces the net wealth rank of individuals with more industry-specific human capital by 2.295
percentiles, on average. For individuals with less industry-specific human capital, the corresponding effect would
be 1.12 percentiles.

17

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/rfs
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/rfs

/h
h
a
d
0
5
0
/7

1
9
2
9
9
8
 b

y
 U

n
iv

 o
f N

o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill H
e
a
lth

 S
c
i L

ib
 u

s
e
r o

n
 0

7
 O

c
to

b
e
r 2

0
2
3



The Review of Financial Studies / v 00 n 0 2023

Table 4

Intersectoral transferability of human capital and robots

A. Full sample

Net wealth rank Net wealth levels Change in net wealth rank

(1) (2) (3) (4) (5) (6)

�Robot_density99→07
−0.47452∗∗∗

−0.35786∗∗
−0.10826∗∗∗

−0.07309∗∗∗
−0.22567∗∗

−0.18085∗∗∗

x Low_transfer (0.1683) (0.1305) (0.0296) (0.0259) (0.0917) (0.0652)

Observations 30,375 30,375 30,375 30,375 30,375 30,375
R-squared .0483 .1444 .0158 .0489 .0074 .0579
Household controls No Yes No Yes No Yes
Municipality FE No Yes No Yes No Yes
Industry FE Yes Yes Yes Yes Yes Yes

B. Households with above-median age

Net wealth rank Net wealth levels Change in net wealth rank

(1) (2) (3) (4) (5) (6)

�Robot_density99→07
−0.58128∗∗∗

−0.38587∗∗
−0.17970∗∗∗

−0.13403∗∗∗
−0.29302∗∗∗

−0.23135∗∗∗

x Low_transfer (0.2091) (0.1629) (0.0382) (0.0355) (0.0686) (0.0610)

Observations 15,320 15,320 15,320 15,320 15,320 15,320
R-squared .0644 .1802 .0205 .0600 .0091 .0767
Household controls No Yes No Yes No Yes
Municipality FE No Yes No Yes No Yes
Industry FE Yes Yes Yes Yes Yes Yes

This table presents coefficient estimates from difference-in-differences type regressions. Wealth measures are
regressed on the interaction term between changes in robot density between 1999 and 2007, (household-level)
indicator variable for having a lower portable human capital, changes in observable household characteristics
between 1999 and 2007, and industry fixed effects. Note that industry fixed effects subsume the direct effect
of robotization and control for all sources of variation in differential industry trends and changes. In all
specifications, the standard errors are clustered at the industry-treatment level. See the Internet Appendix for
detailed variable definitions. ∗p<.1;∗∗p<.05;∗∗∗p<.01.

we conduct a sensitivity analysis where we restrict our sample to households

who are older than 39 years old (i.e., the sample median age) and thereby

rendering their educational major choices far in the past when concerns over

robotization had not yet gained much prominence. The results of this validation

exercise are presented in panel B of Table 4. Reassuringly, we document similar

findings. If anything, the effects increase slightly for this subsample. Taken

together, the empirical results presented in this section imply that our findings

on the adverse effects of automation on household wealth accumulation are not

simply an artifact of unobserved industry factors.

2.3 Additional robustness and sensitivity analysis

In this section, we perform several additional empirical tests to ensure the

robustness of our findings. We present these results in the Internet Appendix.

First, individuals may anticipate the increased future use of robots and

therefore sort themselves into industries that have a lower potential for robot

adoption. We tackle this concern by focusing on a subset of households that

were employed in the same industry since at least 1995, that is, when concerns

over automation had not yet gained much prominence. Table O.A.6 shows that
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Do Robots Increase Wealth Dispersion?

our findings are robust to constructing our exposure variable based on industry

of employment from the prior decade.

Second, the results in Table O.A.7 show that the negative impact of robots

on household wealth accumulation remains almost identical when accounting

for initial differences in homeownership status.

Third, one can argue that observed variation in household wealth accumu-

lation is induced by differences in risk preferences. Table O.A.8 repeats the

wealth analysis controlling for initial risk exposure, which is measured by the

share of financial wealth invested in risky assets in 1999 (Fagereng et al. 2020).

We again obtain similar results.

Fourth, in a recent paper, Barrot et al. (2022) show that households

in regions where manufacturing industries are more exposed to import

competition significantly lever up to smooth their consumption. We examine

this explanation by regressing changes in household debt on the industry-

level changes in robot density and other household and industry controls. As

presented in Table O.A.9, we find no significant effect of increased robotization

on household debt, suggesting that automation affects household wealth

accumulation by influencing the asset side of household balance sheets.

Fifth, we verify our results excluding individuals working in the automotive

industry, which historically has the highest robot density. The results, tabulated

in Table O.A.10, are consistent with the baseline regressions.

Sixth, we reestimate our base analysis using the full set of industries

available in the data set to alleviate any concerns of sample selection bias.21 The

results in Table O.A.11 are qualitatively similar, though smaller in magnitude,

to what we observe in our base specification.

Seventh, as presented in Table O.A.12, we find qualitatively and quantita-

tively similar results when we eliminate individuals working in the rubber and

plastics industry, which experienced the largest growth in robot use in Sweden

during the sample period.

Eighth, in the base regressions we account for potential differences in

regional economic conditions by the introduction of municipality fixed effects

based on the location of residence. One may worry that the municipality of

residence and the municipality of employment may not necessarily correspond

to the same region if there are many commuters in our sample. The regression

results, presented in Table O.A.13, show that our results are robust to the

exclusion of commuters from the sample.22

21 Specifically, we consider households employed in industries for which the IFR does not provide any information
about robot stock by setting the robot adoption rate to zero, which increases the sample size to 82,424 households.

22 Even though our data set is very rich along many dimensions, we have no information about the municipality of
employment. To address this issue, we take an indirect approach and exploit information about the commuting
costs of households to identify the commuters in the sample. Specifically, in Sweden, all employees are allowed
to deduct commuting costs if they are above a certain threshold from their labor income in order to reduce
income taxes. Hence, we define households who have high traveling costs to work and deduct those costs from
their income in the tax form as commuters (that equals to approximately one-third of the sample). Our conjecture
is that these households are the most likely ones to live in one municipality and work in another.
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Ninth, we conduct additional robustness checks to ensure that the statistical

inference in our base analysis is not sensitive to potential downward biases in

standard errors. These tests include: (1) using bootstrap techniques, specifically

the wild bootstrap procedure of Cameron, Gelbach, and Miller (2008), to deal

with issues arising from having too few clusters; (2) clustering at different

levels of industry; and (3) conducting a placebo experiment.23 As reported in

Table O.A.14, we obtain similar results.

Tenth, when we use the number of workers in an industry in 1999 in lieu of

the 1995 values as the baseline employment level when measuring the changes

in robot density in a given industry, the economic magnitude and statistical

significance of our main effect increase as compared to our base result (see

Table O.A.15).

Finally, Table O.A.16 shows that our findings are robust to controlling for

additional life cycle controls and preference shifters.24

3. Understanding the Mechanism

In what follows, we discuss and explore the mechanisms through which

increased use of robots at work can affect household wealth accumulation.

3.1 Robots and labor market outcomes

Since recent empirical literature documents a significant negative effect of

increased use of robots in the workplace on wages and employment prospects

for individuals (Acemoglu and Restrepo 2020; Graetz and Michaels 2018), we

start our analysis by estimating the effects of robotization on labor market

outcomes.

First, we investigate the effects of increased automation on changes in

household income, which is defined as the log differences in earnings (net

of any transfers or capitals gains) between 1999 and 2007. Consistent with

existing evidence, we document that individuals working in industries with a

higher rate of robot adoption, on average, experience lower income growth,

as presented in column 1 in panel A of Table 5. Interestingly, when we also

include received transfers, such as unemployment benefits and social welfare

payments, in the income definition, we note that the effect of robot adoption

in fact turns out to be statistically insignificant, as tabulated in Table O.A.17 in

the Internet Appendix.

23 In the placebo experiment, we randomly assign different industry-level robot exposure to households. For
example, households working in the automotive industry are randomly allocated to a different industry. We
construct 1,000 placebo samples and rerun our analysis in Table 3 on these placebo samples. Figure O.A.3 in the
Internet Appendix shows that the t-statistics on our placebo samples are centered on zero, suggesting that the
documented effects are not a mere result of some spurious correlations with omitted factors.

24 Following Brunnermeier and Nagel (2008), we use age and age squared, and their interactions with education
variables; gender and its interaction with age and age squared; household size; changes in household size; log
disposable income in 1995; a dummy variable for being unemployed in any year from 1999 to 2007; (percentage)
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Table 5

Exposure to robots and labor market outcomes

A. Base model

Change in earnings Unemployment risk

(1) (2)

�Robot_density99→07
−0.01715∗ 0.00422∗∗

(0.0100) (0.0020)

Observations 30,375 30,375
R-squared .0396 .0241
Industry controls Yes Yes
Household controls Yes Yes
Wealth deciles (1999) No No
Income deciles (1999) No No
Municipality FE Yes Yes

B. Base model + Initial income and wealth controls

Change in earnings Unemployment risk

(1) (2)

�Robot_density99→07
−0.02023∗ 0.00447∗∗

(0.0117) (0.0020)

Observations 30,375 30,375
R-squared .0662 .0400
Industry controls Yes Yes
Household controls Yes Yes
Wealth deciles (1999) Yes Yes
Income deciles (1999) Yes Yes
Municipality FE Yes Yes

This table presents coefficient estimates from the second-stage of the IV regressions for labor market outcomes.
In all specifications, labor market measures are regressed on changes in robot density between 1999 and
2007, changes in observable household variables, contemporaneous industry characteristics, and municipality
dummies. In column 1, we focus on the log changes in household earnings between 1999 and 2007. In column 2,
the dependent variable is an indicator variable that takes the value of one if a household is unemployed in 2007
conditional on being employed in 1999. In panel B, we account for fixed effects for deciles of household initial
wealth and income in addition to industry and household controls. We estimate IV regressions instrumenting
for the change in robot density in Swedish industries using the median change in robot density across the
(non-Swedish) 11 European countries. Note that our base model is defined and estimated in first differences.
Standard errors are double clustered bymunicipality and industry. See the Internet Appendix for detailed variable
definitions. ∗p<.1;∗∗p<.05;∗∗∗p<.01.

Second, we turn to the impact of automation on unemployment risk. It

represents one of the most important sources of background risk, a risk that is

nontradable and not fully insurable due to market illiquidity or incompleteness

(Kimball 1993; Aiyagari 1994; Fagereng, Guiso, and Pistaferri 2017). Our

dependent variable is an indicator variable that takes the value of one if a

given household was employed in 1999 but became unemployed in 2007.

In other words, we estimate the transition probability from employment to

unemployment during the observation period. Unemployment status is defined

at the household level using information about whether the household head

received any unemployment benefits in a given year.

change in income between 1995 and 1997; change in income between 1997 and 1999; and a set of indicator
variables for homeownership, business ownership, and positive labor income in 1999 and 2007.
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The regression estimates in column 2 of Table 5 indicate that, ceteris paribus,

a one-standard-deviation increase in robot density increases the probability

of becoming unemployed by 1.4 percentage points, on average. The effect is

statistically significant (t-stat. = 2.11) and meaningful in economic terms. Our

estimates put this into context by implying a 32% increase in the unemployment

probability, as the unconditional unemployment rate in our sample equals

4.2%. As presented in panel B of Table 5, we obtain similar results when we

in addition control for differences in initial levels of income and wealth. In

summary, we establish negative and significant effects of robot adoption on

labormarket outcomes, particularly on the unemployment risk of households.25

3.2 Robots, financial risk-taking, and financial wealth

Next, we examine whether increased automation affects wealth accumulation

through its effects on household financial risk-taking and investment choices,

which we label as the portfolio channel.

How can the increased use of robots affect the financial behavior of house-

holds? The rapid adoption of robots in the workplace results in individuals

facing higher background labor income risk, as shown by our labor market

analysis in Section 3.1. The theory argues that increased background risk

reduces the willingness of investors to take other types of risk, such as holding

risky financial assets.26 As returns on wealth are directly affected by the

willingness of households to take financial risk (Ameriks, Caplin, and Leahy

2003), reducing or completely eliminating exposure to the stock market (in

response to increased human capital risk) would lead to accumulation of less

wealth over time.27

Panel A of Table 6 reports the empirical results of the financial risk-taking

analysis. In column 1, the dependent variable is an indicator variable on

whether the household invests in the stock market in 2007, either directly

or indirectly through mutual funds excluding investments through retirement

accounts.28 After controlling for other well-known predictors of stockholding,

we find that increased exposure to robots in an industry significantly reduces

25 The positive contribution of robot adoption to jobloss risk is consistent with Kogan et al. (2020), who document
that advances in production methods are associated with substantial increases in labor income risk of individual
workers. Still, we acknowledge that our analysis is silent on the general equilibrium spillover effects of
automation on wages and employment in other sectors, as our analysis focuses on households that are directly
exposed to robots at work. Hence, the displacement effect of robots may be partly offset by their reinstatement
effect (Acemoglu and Restrepo 2019), which would, in turn, mitigate the adverse effects of automation on overall
employment.

26 Cocco, Gomes, and Maenhout (2005) build and simulate a life cycle model of consumption and portfolio choice
with nontradable labor income, showing that individuals who are exposed to more idiosyncratic labor income
risk invest less in stocks. They also estimate the welfare losses incurred by ignoring labor income when investing
in risky assets, and find them to be up to 2% of the annual consumption of investors.

27 In Section 4, we formalize these ideas by developing and solving a life cycle model of consumption and portfolio
choice with endogenous stock market participation and automation risk.

28 Since the wealth data were collected to assess wealth taxes, stockholding under the mandatory first pillar of
social security and in tax-deferred retirement accounts is not included in our data because they were not part of
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Do Robots Increase Wealth Dispersion?

Table 6

Exposure to robots and financial risk-taking and financial wealth

A. Financial risk-taking

Stockholding status Stock market exit Change in risky share

(1) (2) (3)

�Robot_density99→07
−0.00517∗∗ 0.00384∗∗

−0.00402∗∗

(0.0024) (0.0018) (0.0018)

Observations 30,375 22,125 22,125
R-squared .1698 .0715 .0800
Industry controls Yes Yes Yes
Household controls Yes Yes Yes
Wealth deciles (1999) Yes Yes Yes
Income deciles (1999) Yes Yes Yes
Municipality FE Yes Yes Yes

B. Financial wealth outcomes

Change in fin. wealth Wealth-to-income ratio

(1) (2)

�Robot_density99→07
−0.04645∗∗

−0.01551∗

(0.0232) (0.0084)

Observations 30,375 29,955
R-squared 0.5968 0.1881
Industry controls Yes Yes
Household controls Yes Yes
Wealth deciles (1999) Yes Yes
Income deciles (1999) Yes Yes
Municipality FE Yes Yes

This table presents coefficient estimates from the second-stage of the IV regressions for household risk-taking
and financial wealth. In all specifications, outcome variables are regressed on changes in robot density between
1999 and 2007, changes in observable household variables, fixed effects for deciles of household initial wealth
and income in 1999, contemporaneous industry characteristics, and municipality dummies. In column 1 of panel
A, we focus on stockholding status of households in 2007. In column 2 of panel A, the dependent variable is
an indicator variable that takes the value of one if a stockholder household in 1999 exits the stock market as of
2007, and zero otherwise. In column 3 of panel A, the dependent variable is the changes in risky share between
1999 and 2007. In Panel B, we consider the changes in financial wealth between 1999 and 2007 and financial-
wealth-to-income ratio in 2007 in columns 1 and 2, respectively.We estimate IV regressions instrumenting for the
change in robot density in Swedish industries using the median change in robot density across the (non-Swedish)
11 European countries. Note that our base model is defined and estimated in first differences. Standard errors
are double clustered by municipality and industry. See the Internet Appendix for detailed variable definitions.
∗p<.1;∗∗p<.05;∗∗∗p<.01.

the probability of households in that industry owning stocks (t-stat. =

−2.15). In terms of economic magnitude, ceteris paribus, a one-standard-

deviation increase in robot density lowers the likelihood of stockownership by

approximately 1.7 percentage points, on average.

Next, we consider changes in household risk-taking. In column 2, we focus

on stock market exits using an indicator variable for whether the household

participated in the stock market in 1999 but liquidated its investments by 2007.

In column 3, we use changes in risky share, which is defined as differences in

the tax base. Note that defined-contribution retirement wealth was still very limited in Sweden during the sample
period.
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the ratio of direct and indirect stock holdings to total household financial assets

between 1999 and 2007.

Our results in columns 2 and 3 show that higher exposure to robotization

significantly increases the probability of exiting the stock market and decreases

the share of financial wealth invested in stocks. The estimated effects are

economically highly meaningful. For example, the IV estimate in column 2

indicates that a one-standard-deviation exogenous rise in robot use increases

the probability of exiting the stock market by approximately 1.25 percentage

points.29 This estimate implies a 15% increase in the exit probability, as

the stock market exit rate in our sample equals 8.2%. Similar conclusions

follow from the portfolio risky share analysis. To put these results into

context, Betermier et al. (2012) report that an increase in wage volatility

by 3% leads to an active decrease in the share of risky assets by 1%,

and Fagereng, Guiso, and Pistaferri (2017) find that a one-standard-deviation

increase in wage risk reduces the risky assets share by only 0.12 percentage

points. Therefore, we conclude that this specific form of background risk,

that is, automation risk, is essential and given the rapid recent progress in

automation, it is likely to become increasingly important for the portfolio

choice and wealth accumulation of households.30

In additional tests presented in Table O.A.19, we analyze the effects of

robotization on the housing tenure decisions of households. Consistent with

the financial risk-taking results, we find that increased exposure to robots in

the workplace significantly increases (decreases) the probability of households

selling (buying) a house during the sample period, suggesting that the effects

of increased automation extend beyond financial assets to the real assets of

households.

Thus far, we have stressed the importance of labor income risk when

interpreting the results of the financial risk-taking regressions. However,

expected changes in human capital also affect household risk-taking behavior

(Calvet and Sodini 2014). To address this channel, we follow Mian and Sufi

(2011) and proxy for income expectations using realized household-level

income growth between 1999 and 2007. Panel A of Table O.A.20 shows that

the exposure to robot variable retains its economic and statistical significance,

even after controlling for household income expectations.31

29 In Table O.A.18, we estimate the impact of increased exposure to robots in the workplace on stock market entry,
and find no effect of robots on the probability of entering the stock market.

30 It is also important to note that our focus in on the impact of (changing) income risk expectations on portfolio
choice, as opposed to (“only actual”) income shock realizations. By comparison, Basten, Fagereng, and Telle
(2016) study the impact of unemployment shocks on portfolio allocation, and estimate a reduction in risky share
of about 0.5%. This estimate is in fact similar to the one that we document (i.e., a reduction of 0.4%) even
though we focus on the total population of households that has experienced an increase in their unemployment
probability and not only those that actually became unemployed.

31 As noted by Aladangady (2017), household expectations are likely to be correlated with their realized income
growth, even though households do not have perfect foresight. For robustness purposes, we instead use past
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Do Robots Increase Wealth Dispersion?

Finally, we investigate whether increased automation contributes to differ-

ences in the accumulation of financial wealth across households. The results in

panel B of Table 6 show that households working in industries with a higher rate

of robot adoption experience a substantial drop in their financial wealth growth

and accumulate less financial wealth relative to their income. Taken together,

the findings presented in this section provide strong empirical support for

our proposed mechanism that households that are more exposed to increased

automation attain lower levels of financial wealth because they reduce, or fully

eliminate, their stock market exposure in response to increases in their human

capital risk.

3.3 The relative importance of different mechanisms

The results in the previous section provide strong evidence for the portfolio

channel as an important mechanism through which exposure to automation

affects household wealth accumulation. In this section, we discuss other

potential explanations, including the direct impact of changes in labor income

and changes in household savings behavior – and how we address them. Our

intention is not to play down the importance of these other mechanisms,

but rather to highlight that the portfolio channel is also operative and that it

amplifies the adverse effects of increased automation on household financial

well-being.

A powerful mechanism for the lower wealth levels of automation-exposed

households is the income channel. The analysis in Section 3.1 shows a negative

impact of robots on income growth. To scrutinize this channel, we would in

principle like to estimate the wealth regressions by including both changes in

robotization and realized income growth of households on the right-hand side

of the model. Since realized income growth is endogenous to the increased use

of robots in the industry of employment over the same period, such a model

could lead to biased estimates. Therefore, we follow Zeldes (1989) and Shea

(1995) and use past realized household-level income growth as an instrument.

Specifically, we augment our base model by including realized income growth

between 1995 and 1998 as an additional regressor. This corresponds to the

reduced form of an IV regression, where we instrument current income growth

by lagged income growth. Our findings in panel A of Table 7 indicate that

exposure to the robot variable remains significant with a negative sign.32 In

addition, we find significantly negative and economically comparable effects

of automation on household wealth accumulation in two subsamples, split by

the median value of realized income growth between 1999 and 2007. Finally,

to mitigate concerns that our wealth findings are entirely driven by displaced

income growth between 1995 and 1998, if households are more likely to form expectations based on past
realizations, and obtain similar results.

32 We obtain similar results when we replace the income deciles in 1999 with average disposable income over
1995-1998 (see Table O.A.21).
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Table 7

Exposure to robots and household net wealth: Addressing household income and savings channels

A. Wealth regressions controlling for past income growth

Net wealth rank Net wealth level Change in net wealth rank

(1) (2) (3)

�Robot_density99→07
−0.57877∗∗

−0.19813∗∗∗
−0.54185∗∗

(0.2573) (0.0657) (0.2438)

�Income95→98
−0.17596 −0.13081 −0.21712
(0.2739) (0.1462) (0.2702)

Observations 26,103 26,103 26,103
R-squared .5972 .2632 .3027
Industry controls Yes Yes Yes
Household controls Yes Yes Yes
Wealth deciles (1999) Yes Yes Yes
Income deciles (1999) Yes Yes Yes
Municipality FE Yes Yes Yes

B. Wealth regressions controlling for active savings rates

Net wealth rank Net wealth level Change in net wealth rank

(1) (2) (3)

�Robot_density99→07
−0.51367∗∗

−0.16584∗∗∗
−0.47910∗∗

(0.2492) (0.0581) (0.2366)
Active savings rate (2000) 5.87378∗∗∗ 1.23525∗∗∗ 5.66322∗∗∗

(0.3217) (0.1231) (0.2978)

Observations 30,374 30,374 30,374
R-squared .5843 .2574 .3244
Industry controls Yes Yes Yes
Household controls Yes Yes Yes
Wealth deciles (1999) Yes Yes Yes
Income deciles (1999) Yes Yes Yes
Municipality FE Yes Yes Yes

This table presents coefficient estimates from the second-stage of the IV regressions for household net wealth. In
all specifications, wealth measures are regressed on changes in robot density between 1999 and 2007, changes
in observable household variables, fixed effects for deciles of household initial wealth and income in 1999,
contemporaneous industry characteristics, and municipality dummies. In column 1, we focus on the wealth rank
of households within their birth cohort-year distributions. In column 2, the dependent variable is the inverse
hyperbolic sine of net wealth. In column 3, the dependent variable is the change in the net wealth rank of a
household within her birth cohort distribution between 1999 and 2007. In panel A, we include realized income
growth between 1995 and 1998 as an additional regressor in the regressions (that corresponds to the reduced
form of an IV regression where we instrument current income growth by lagged income growth). In panel B,
we include (initial) active savings rate as an additional control. We estimate IV regressions instrumenting for the
change in robot density in Swedish industries using the median change in robot density across the (non-Swedish)
11 European countries. Note that our base model is defined and estimated in first differences. Standard errors
are double clustered by municipality and industry. See the Internet Appendix for detailed variable definitions.
∗p<.1;∗∗p<.05;∗∗∗p<.01.

workers, we exclude households that become unemployed from the sample and

repeat the estimation. Table O.A.22 shows that the coefficient for exposure to

the robot variable declines but retains its economic and statistical significance.

Further, we recognize that heterogeneity in savings behavior can contribute

to observed differences in wealth accumulation (De Nardi and Fella 2017;

Meeuwis 2020). We address this alternative explanation in a number of ways.

First, we compute the (initial) active savings rate of each household and include

it as a control variable in the wealth regressions. The results, tabulated in panel

26

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/rfs
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/rfs

/h
h
a
d
0
5
0
/7

1
9
2
9
9
8
 b

y
 U

n
iv

 o
f N

o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill H
e
a
lth

 S
c
i L

ib
 u

s
e
r o

n
 0

7
 O

c
to

b
e
r 2

0
2
3



Do Robots Increase Wealth Dispersion?

B of Table 7, show that the exposure to robots variable still exhibits a negative

significant effect when accounting for heterogeneity in savings behavior across

households.33 Next, we consider the direct effects of increased automation on

household savings behavior. The regression estimates in Table O.A.24 show

no significant effect of robot exposure on the savings rates of households,

suggesting that savings behavior is not an operative channel.

Finally, we perform a causal mediation analysis to estimate the share of

the effect of increased automation on household wealth accumulation that

runs through realized income growth. In principle, the mediation analysis

allows to disentangle the average causal effect of a treatment variable

(automation growth) on an outcome variable (changes in net wealth) running

through an observed intermediate outcome (realized income growth), that

is, indirect effects, and through other mechanisms (portfolio channel),

that is, direct effects (Imai, Keele, and Yamamoto 2010; Imai et al. 2011;

Heckman and Pinto 2015).34 Based on the parameter estimates presented in

columns 1 and 2 in Table O.A.25, we note that income growth as a mediator

explains approximately two-thirds of the total effect of increased exposure to

robots at work on household wealth accumulation.

Overall, our numerous findings presented in this section confirm a

significant negative effect of robots on wealth accumulation that is not

explained by a direct income effect or by differences in savings. Hence, the

portfolio channel seems to represent an additional important and a relevant

wealth accumulation factor.

3.4 The distributional effects of robots

While skill upgrading of jobs as a result of emerging technologies may favor

some people, it could also leave others behind. In fact, Acemoglu and Restrepo

(2022) show that middle-aged workers who perform blue-collar tasks are

more likely to be replaced by industrial robots relative to older workers

who are specialized in nonproduction services. Thus, we next study the

distributional effects of automation by analyzing its impact on the economic

outcomes of households by skill level. In line with Card and Lemieux (2001)

and Acemoglu, Autor, and Lyle (2004), we argue that level of educational

attainment is a good proxy for skill level, with less educated (i.e., high school

or less) households more likely to perform blue-collar tasks.35

As shown in Table 8, an interesting pattern emerges when we analyze the

effects of robot adoption by education level. Increased exposure to robots

33 We verify this finding using the initial total savings rate instead of the active savings rates, as shown in
Table O.A.23. We refer the reader to Section A of the Internet Appendix for a detailed description of how we
use detailed household portfolio data to compute the savings rates.

34 We use the identification framework of Pinto et al. (2019) that enables, given some assumptions, such a
decomposition in IV settings where both treatment and intermediate outcomes are endogenous. A novel property
of their identification framework is that it requires a single instrument for identification, whereas earlier methods
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Table 8

Distributional effects of robots

A. Labor market outcomes

Less-educated Better-educated Less-educated Better-educated

Change in earnings Unemployment risk

(1) (2) (3) (4)

�Robot_density99→07
−0.01296 −0.01475 0.00441∗∗ 0.00265
(0.0098) (0.0100) (0.0020) (0.0018)

Observations 23,011 7,364 23,011 7,364

B. Wealth outcomes

Less-educated Better-educated Less-educated Better-educated

Net wealth levels Change in net wealth (in SEK)

(1) (2) (3) (4)

�Robot_density99→07
−0.14592∗∗

−0.06684 −45622.63313∗
−21429.06049

(0.0605) (0.0489) (26714.3725) (20720.7180)
Observations 23,011 7,364 23,011 7,364

C. Financial risk-taking

Less-educated Better-educated Less-educated Better-educated

Change in risky share Stock market exit

(1) (2) (3) (4)

�Robot_density99→07
−0.00464∗∗∗ 0.00148 0.00487∗∗

−0.00344∗∗∗

(0.0018) (0.0025) (0.0020) (0.0009)
Observations 16,091 6,034 16,091 6,034

Industry controls Yes Yes Yes Yes
Household controls Yes Yes Yes Yes
Wealth deciles (1999) Yes Yes Yes Yes
Income deciles (1999) Yes Yes Yes Yes
Municipality FE Yes Yes Yes Yes

This table presents coefficient estimates from the second-stage of the IV regressions for various household
economic variables. In all specifications, wealth measures are regressed on changes in robot density between
1999 and 2007, changes in observable household variables, fixed effects for deciles of household initial wealth
and income in 1999, contemporaneous industry characteristics, and municipality dummies. We use level of
education of household head to identify low- and high-skill households, which we proxy by being a high-
school graduate or less, and attending to college or more, respectively. Panels A and B report labor market and
wealth outcomes of households, respectively. Panel C presents the results of the financial risk-taking analysis.
We estimate IV regressions instrumenting for the change in robot density in Swedish industries using the median
change in robot density across the (non-Swedish) 11 European countries. Note that our base model is defined and
estimated in first differences. Standard errors are double clustered by municipality and industry. See the Internet
Appendix for detailed variable definitions. ∗p<.1;∗∗p<.05;∗∗∗p<.01.

increases the unemployment risk and significantly decreases the financial risk-

taking of the less educated households, whereas we find no such effects for the

require separate instruments for treatment and mediator. We provide details about the estimation procedure in
Section B of the Internet Appendix.

35 It is worth mentioning that the median net wealth rank in our data at the start (end) of the sample period accounts
for 51 (49) and 67 (71) for low- and high-educated households, respectively. Hence, splitting the sample by

education level allows us to draw conclusions about the effects of automation on the dispersion of wealth among
high- and low-wealth households, while using an arguably less endogenous variable (i.e., level of education)
than, for example, the initial level of wealth.
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Do Robots Increase Wealth Dispersion?

better educated. Similarly, we find a strong significant negative effect on the

wealth accumulation of less educated households but no significant effect in

the better educated subsample. For instance, a one-standard-deviation increase

in robot density in the industry of employment leads to an approximately US$

23,100 lower increase in net wealth levels over the sample period for the less

educated, on average.36 Since the median net wealth in that group is around

US$ 100,000, the effect is indeed quantitatively important. Taken together, the

increased adoption of robots displays – partly through the portfolio channel –

asymmetric effects on the wealth accumulation of households across different

segments of the population.

4. Life Cycle Model

In this section, we develop a life cycle model to provide an alternative

quantification of the importance of the portfolio channel. We consider a

standard life cycle portfolio choice model (as in, e.g., Gomes and Michaelides

2005, Fagereng, Gottlieb, and Guiso 2017, Catherine 2022), augmented to

include a robotization shock to the labor income process. We solve the model

for both pre- and post-robotization shock scenarios. We then simulate the

model under the prerobotization conditions, to replicate the behavior in the

year 1999 of the data. From that starting point, we introduce the robotization

shock, and simulate the behavior of the agents for another 8 years, to match the

sample period in our empirical analysis.

4.1 Model setup

Households have a finite horizon, divided into two periods: working-life and

retirement. Before retirement, they earn labor income subject to undiversifiable

shocks, and after retirement, they receive a fixed pension. They can invest their

savings in both a riskless and risky asset, but investments in the risky asset face

(per-period) participation costs.

In the empirical analysis, robotization is a continuous variable. In the model,

we capture this by having three groups of households working in industries with

different levels of exposure to robot risk: low, medium, and high. We will refer

to those using the notation Ω =L, M , and H , respectively. Importantly, stock

market participation costs are the same for all groups such that, entry and exit

decisions are fully determined by the endogenous outcome of the simulations.

Likewise, all agents have the same risk aversion parameter, so that their demand

for risky assets would be identical in a frictionless model.

4.1.1 Preferences. Households have Epstein-Zin utility functions

(Epstein and Zin 1989) defined over the consumption of a single, nondurable

36 The Swedish krona (SEK) traded at US$ 0.155 at the end of 2007.
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good (Ct ):

Vt =

{

(1−β)(Ct )
1−1/ψ +βEt

[

π s
t

[

V
1−γ

t+1

]]

1−1/ψ
1−γ

}

1
1−1/ψ

, (4)

where γ is the coefficient of relative-risk aversion, ψ is the elasticity of

intertemporal substitution, β is the subjective discount factor, and π s
t is the

conditional survival probability from age t to age t +1.37 The conditional

survival probabilities are a function of income, as will be described below.

4.1.2 Labor income process and retirement income. Labor income during

working life is subject to both permanent shocks and transitory shocks as in

Carroll (1997), Gourinchas and Parker (2002), Cocco, Gomes, and Maenhout

(2005), or Gomes and Michaelides (2005), among others. However, we

augment the stochastic process in these papers by considering a separate

unemployment state (Ut ). Crucially, all parameters of the income process are

functions of robot exposure in the industry (Ω).

Each year households suffer an unemployment spell with probability πu(Ω)

in which case their income is given by λu(Ω). With probability 1−πu(Ω),

households are employed and their labor income is given by the standard

permanent and transitory combination:

ln(Yt ) = f (t,θ;Ω)+pt +ut , (5)

pt = pt−1+zt , zt ˜N (μZ,σ 2
z (Ω)), (6)

ut ˜N (0,σ 2
u (Ω)), (7)

where f (t,θ;Ω) is a deterministic function of age and other household

characteristics (θ ), as described in the Internet Appendix.

The common assumption in the literature is that μZ =0 (see Carroll

(1997); Gourinchas and Parker (2002); Cocco, Gomes, and Maenhout (2005);

Fagereng, Gottlieb, and Guiso (2017), among others). We extend this by

allowing unemployment spells to be associated with a reduction in permanent

income, as documented by Braxton, Herkenhoff, Rothbaum, and Schmidt

(2021), for example.38 More precisely, we set μZ =0 if the households was

employed at t −1, and μZ =zlow <0 if the household was unemployed at t −1.

Households retire at age K , and, as standard in the literature, retirement

income is a deterministic function of income in the last year of working life:39

Yt =λR(Ω)YK , t >K, (8)

where λR is the retirement replacement ratio.

37 The conditional survival probability is equal to zero at a predetermined maximum age, which we calibrate to
100.

38 See Bagliano, Fugazza, and Nicodano (2019) for an alternative formulation, capturing the same mechanism.

39 In most life cycle models retirement income is a fraction of (last-year’s) permanent income only. Since the level
of income is already a state variable in our model, we are able to generalize that formulation.
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4.1.3 Financial assets, participation costs, and budget constraints.

Households can invest in a riskless one-period bond, and in an aggregate stock

market index. Households who invest in the stock market face per-period costs

of participation (F ), as in Fagereng, Gottlieb, and Guiso (2017).

Letting Wt and αt denote, respectively, wealth and the risky share at time t ,

the household’s budget constraint is

Wt+1=(αtRt+1+(1−αt )Rf )(Wt −Ct −FIα>0
t )+Yt+1, (9)

where Iα>0 is a dummy variable that is equal to 1 if the household has positive

stock holdings this year. The return on the riskless bond (Rf ) is constant.

Following Fagereng, Gottlieb, and Guiso (2017), the return on the stockmarket

follows a normal distribution augmented to include both a tail event (with

probability πR) and idiosyncratic volatility:

Rt+1˜

{

N (μr ,σ
2
rm+σ 2

ri) with probability 1−πR

Rlow with probability πR ,

where the idiosyncratic volatility term (σri) captures the underdiversifica-

tion of individual portfolios (see, e.g., Calvet, Campbell, and Sodini 2007;

Fagereng, Gottlieb, and Guiso 2017; Bach, Calvet, and Sodini 2020).

4.1.4 Survival probabilities. We capture the empirical correlation between

survival probabilities and income, as described in the calibration section. In

the model, life expectancy is a function of permanent income, instead of

total income, to avoid large jumps in survival probability associated with

unemployment spells. Since we have a correlation between unemployment and

future permanent income (as discussed above), the unemployment spells still

lead to a decrease in survival probabilities going forward, but in a smoother

manner.

4.1.5 Model solution, simulations, and counterfactuals. The model has

four state variables: wealth (Wt ), income (Yt ), age (age), and an indicator for

lagged unemployment (IUt−1).40 In addition, we have to solve for the three

types of agents (Ω =L,M and H ), and both the environment with and without

the robotization shock (denoted as RS and NRS, respectively). The solutions

are obtained using standard numerical methods, as described in Section C.1 of

the Internet Appendix, to yield the two decision rules: consumption/savings

and share of wealth invested in the risky asset:41

Ct = C(Wt ,Yt ,I
Ut−1 ,age;Ω,RS/NRS), (10)

αt = α(Wt ,Yt ,I
Ut−1 ,age;Ω,RS/NRS). (11)

40 The lagged unemployment indicator is a required state variable because of the correlation between current
unemployment and future permanent labor income.

41 The participation decision is a by-product of the portfolio rule, since we “only” have per-period participation
costs.
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In the simulations, we first simulate an economy using the prerobotization

decision rules and the corresponding data-generating processes, capturing

the year 1999 in the data. Then, we introduce the robotization shock. More

precisely starting from the pre-robotization equilibrium, we simulate the model

using the post-robotization policy functions and associated data-generating

processes. Consistent with the empirical analysis, we simulate this economy

for 8 years, as will be discussed in more detail below. Furthermore, we feed

into the simulations the actual realized asset returns during this period. We

assume that robotization is an unexpected shock. The alternative would require

making assumptions about household’s subjective expectations of the shock,

which would introduce an additional free parameter in the model.

4.2 Calibration

4.2.1 Income process estimation. Our estimation closely follows the

definitions and estimation procedure as used in Cocco, Gomes, and Maenhout

(2005). We use income data at the household level from 1993 to 2007

when estimating the income profiles of households with low, medium,

and high exposure to robots at work. We define the 1993-1998 period as

the prerobotization period, while the 1999-2007 period refers to the post-

robotization period. We allow the income profile to differ between high,

medium, and low robot exposure industries, and between pre- and post-

robotization shock.

Since we have a short time series for the post-robotization period, we

estimate the permanent-transitory decomposition on the full sample, and

therefore focus on the role of changing unemployment risk, as in the empirical

analysis. The probability of unemployment (πu) represents the probability

of suffering an unemployment spell throughout the year, and therefore, the

corresponding income includes both unemployment subsidy received during

the unemployment spell and labor income earning during the rest of that year.

The estimation results are presented in Table 9, and Figures 1 and 2.

In 2008, around 70% of the Swedish workforce was a member of an

unemployment insurance fund. In addition, some individuals also have private

unemployment insurance. Their unemployment benefits are therefore equal

to 80% of previous earnings up to a maximum of SEK 680 per day (5-day

week). We combine this with the average unemployment duration in Sweden

(4.3 months) to compute individual income in a year with an unemployment

spell.

We calibrate the correlation between unemployment spells and future

permanent labor income with the recent evidence from Braxton et al. (2021).

They estimate that unemployment spells are followed by a 15% negative

permanent income shock (on average).

4.2.2 Other parameters. Consistent with the analysis in the empirical

section we set the starting age in the model to 22. The retirement age is set
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Figure 1

Labor income process estimates: Prerobotization period

This figure presents the labor income processes estimated from the LINDA database for the pre-robotization
period (i.e., 1993-1998) for three groups of households with low (Ω =L), medium (Ω =M), and high (Ω =H )
exposure to robot risk, respectively. Labor income refers to the broad income definition that includes labor income
and government transfers excluding any capital income. See Section C.2 of the Internet Appendix for details
about the estimation procedure.

to 65 and the maximum age to 100, but these are only relevant for solving the

dynamic programming problem, since the simulation results naturally focus

on preretirement households. More precisely, the statistics computed from the

simulations are based on the same age distribution as the one observed in the

sample for the empirical analysis.

We calibrate the coefficient of risk aversion (γ ) to 5 for the three groups.

We then use the discount factor (β) and EIS (ψ), to match the initial wealth-

to-income ratio of each.42 More specifically, we define ψH =0.2, ψM =0.275

and ψL=0.4 and βH =0.98, βM =0.975 and βL=0.994.

We calibrate the correlation between survival probabilities and income

using data from Statistics Sweden, which reports average life expectancy as

a function of age for four different income quartiles. To avoid discrete jumps

in survival probabilities at the cutoff values for those quartiles, we map this

into a continuous function of income. More specifically, we compute mean

income in each quartile in our data and use that to fit separate regression of

survival probabilities on log income, for each age.43 This gives us both a vector

42 Alternatively we could fix one of those (discount rate or EIS) and only consider heterogeneity in the other, but
this would require more heterogeneity along that one dimension.

43 Differences in survival probabilities are naturally very small at young ages but increase at later ages, hence the
importance of running separate regressions for each age.
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Figure 2

Labor income process estimates: Post-robotization period

This figure presents the labor income processes estimated from the LINDA database for the post-robotization
period (i.e., 1999-2007) for three groups of households with low (Ω =L), medium (Ω =M), and high (Ω =H )
exposure to robot risk, respectively. Labor income refers to the broad income definition that includes labor income
and government transfers excluding any capital income. See Section C.2 of the Internet Appendix for details
about the estimation procedure.

of intercepts and a vector of slope coefficients, which we then feed into the

model, resulting in different survival probabilities as a function of (permanent)

income for each age.

We set the real riskless rate to 1% and the equity premium to 4%. The

total volatility of stock returns (including the idiosyncratic component) is

set to 30%, capturing the limited diversification of household portfolios

(Calvet, Campbell, and Sodini 2007). The probability of a return tail event

and the return realization are set to 2% and 51.5%, respectively (from

Fagereng, Gottlieb, and Guiso 2017).44 Finally, we set the per-period partic-

ipation cost F to 0.4% and 0.05% of yearly income.45 A crucial point is that

these costs are identical for all three groups (high, medium and low robot

exposure), so that differences in asset allocation decisions are fully driven by

the parameters of the stochastic environment (both before and after the shock)

and by the wealth dynamics in the simulations.

44 The equity premium value of 4% takes into account the tail event state.

45 Following the evidence in Lusardi and Mitchell (2014) we consider two groups with high and low financial
literacy hence different participation costs.

35

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/rfs
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/rfs

/h
h
a
d
0
5
0
/7

1
9
2
9
9
8
 b

y
 U

n
iv

 o
f N

o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill H
e
a
lth

 S
c
i L

ib
 u

s
e
r o

n
 0

7
 O

c
to

b
e
r 2

0
2
3



The Review of Financial Studies / v 00 n 0 2023

Table 10

Fit of the model: Model-implied moments versus their empirical counterparts

Model Data

Ω =L Ω =M Ω =H All Ω =L Ω =M Ω =H All

(1) (2) (3) (4) (5) (6) (7) (8)

Wealth-income ratio 3.04 1.31 0.90 1.43 3.03 1.29 0.86 1.41
Stock market participation 0.88 0.75 0.62 0.73 0.75 0.74 0.69 0.73
Conditional risky share 0.65 0.77 0.72 0.74 0.69 0.74 0.73 0.73

This table compares the model-implied moments and their empirical counterparts for wealth-income ratio, stock
market participation and conditional risky share for households with low (Ω =L), medium (Ω =M), and high
(Ω =H ) exposure to robot risk separately, and for the full population. The full population moments from the
model are computed using the empirical weights for each of the three groups.

4.3 Results

4.3.1 Baseline economy. Table 10 reports the model-implied moments

and their empirical counterparts for wealth-to-income ratio, stock market

participation and conditional risky share. We report results for each of the

three groups (Ω =L, M and H ) separately, and for the full population. The full

population moments from the model are computed using the empirical weights

for each of the three groups.

The model matches extremely well the wealth-to-income ratios in the data,

both for the total population, and for each of the three groups individually.

This was expected since these were the moments that were targeted in the

calibration. However, the empirical conditional risky shares are also very well

matched, even though all three groups have the same coefficient of relative risk

aversion and face the same stock market participation costs.46 The average

stock market participation rate is also exactly the same in the model and in

the data (73%), and in both cases, it is a decreasing function of robot risk

exposure. However, the gradient is steeper in the model, relative to its empirical

counterpart.

4.3.2 Robotization shock and portfolio channel decomposition. Having

documented that the model closely replicates the behavior of Swedish

households along the dimensions that are important for our analysis, we now

use it to evaluate the impact of the portfolio channel that we document. We

proceed in the following steps:

1. We first replicate the 1999 equilibrium by simulating the model in the

absence of the robotization shocks, so with the policy functions Ct =C(:

;Ω,NRS) and αt =α(:;Ω,NRS). W noshock
Ω denotes the average wealth of each

group (Ω =L, M , and H ) in these simulations.

2. Starting from the 1999 equilibrium above, we then simulate the model for

8 years in the presence of the robotization shocks, so with the policy functions

46 Interestingly, the model is even able to replicate the hump-shape pattern in risky share, as a function of robot
risk exposure, that we observe in the data.
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Ct =C(:;Ω,RS) and αt =α(:;Ω,RS). W shock
Ω denotes the average wealth of

each group (Ω =L,M , andH ) in last year of the simulations. This is the model

predicted outcome for 2007.

The difference between W shock
Ω and W noshock

Ω (�W shock
Ω ) measures the

average change in wealth, for each group, following the robotization shock.

To isolate the contribution of the portfolio channel, we require a third set of

simulations.

3. Starting in the 1999 equilibrium, simulate the model for 8 years in

the presence of the robotization shocks but with the risky shares that would

have been observed in the absence of the robotization shock.47 W
shock_oldalpha

Ω

denotes the average wealth of each group (Ω =L, M , and H ) in last year of the

simulations. This is the model predicted outcome for 2007, in the presence

of the robotization shock, but without households adjusting their portfolio

allocations.

The difference between W
shock_oldalpha

Ω and W noshock
Ω (�W

shock_oldalpha

Ω )

measures the average change in wealth, for each group, that would have

happened following the robotization shock, if households had not adjusted their

policy functions. Finally, we compute the ratio:

(�W
shock_oldalpha

L −�W
shock_oldalpha

H )/(�W shock
L −�W shock

H ). (12)

We obtain a value of 15%, which indicates that 15% of the differences

in (change in) wealth due to the robotization shock, result from the

portfolio reallocation behavior of households. Hence, this result reinforces and

supports the empirical results that the portfolio channel represents a relevant

wealth accumulation factor, amplifying the inequality-enhancing effects of

automation.

5. Conclusions

This paper uses an extensive administrative panel and auxiliary data on

industrial robots to analyze the effect of increased automation on household

wealth accumulation and on the underlying economic mechanisms. We find

evidence of statistically and economically significant effects of rapid adoption

of industrial robots on household wealth accumulation. Our findings are

robust to correcting for the endogeneity of exposure to robots, and when

controlling for a rich set of household characteristics, macroeconomic and

institutional regional factors, and industry factors and trends. We conduct

numerous sensitivity checks to verify the robustness of our findings.

We consider a number of explanations through which industrial robots

may affect household wealth accumulation. Beyond the income and savings

channels, our results point to a more nuanced mechanism, which we label

47 The actual portfolio allocations are still changing, even for the same decision rules, both because wealth is
changing and because the agent is aging.
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as the portfolio channel. In particular, we show that households that are

more exposed to increased automation attain lower levels of financial wealth,

mainly because they reduce, or fully eliminate, their stock market exposure in

response to increases in their human capital risk.We scrutinize other alternative

mechanisms, including changes in labor income or changes in household

savings behavior. Our numerous findings strongly suggest that the patterns of

statistical and economic significance we document in wealth analysis are not

a mere product of income or savings effects but, in addition, are driven by the

portfolio channel.

We then study the potential distributional effects of increased automation and

find that the negative impacts of automation on stock market participation and

wealth accumulation are only operative for less-educated households, while

we find no such effects for their better-educated counterparts. These results

suggest that rapid automation can further widen the wealth gap between high-

and low-skilled individuals.

Building on our empirical findings, we solve a life cycle model of

consumption and portfolio choice with automation risk and endogenous

stock market participation. We first calibrate the model to match the wealth

accumulation of households with high, medium, and low robot exposure

in the data, and show that the calibrated model replicates very well asset

allocations of these three groups. We then perform a counterfactual analysis,

where we isolate the role of portfolio channel in explaining the differences in

wealth accumulation across households, and find that the portfolio rebalancing

in response to the robotization shock generates 15% of the differences in

(change in) wealth, confirming that it is indeed an important mechanism

driving the differences in wealth accumulation, in line with our empirical

results.

All in all, our paper highlights an important mechanism driving the

negative effects of increased automation on household wealth accumulation,

and contributes to the current discussion on the economic consequences of

increased automation.
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