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How does inventors’ migration affect international talent allocation, knowl- 

edge diffusion, and productivity growth? To answer this question, I build a novel 

two-country innovation-led endogenous growth model, where heterogeneous in- 

ventors produce innovations, learn from others, and make dynamic migration and 

return decisions. Migrants interact with individuals at origin and destination, 

diffusing knowledge within and across countries. To quantify this framework, I 

construct a micro-level data set of migrant inventors on the U.S.-EU corridor from 

patent data and document that (i) gross migration is asymmetric, with brain drain 

(net emigration) from the EU to the United States; (ii) migrants increase their 

patenting by 33% a year after migration; (iii) migrants continue working with 

inventors at origin after moving, although less frequently; (iv) migrants’ produc- 

tivity gains spill over to their collaborators at origin, who increase patenting by 

16% a year when a co-inventor emigrates. I calibrate the model to match the em- 

pirical results and study the effect of innovation and migration policy. A tax cut 

for foreigners and return migrants in the EU that eliminates the brain drain in- 

creases EU innovation but lowers U.S. innovation and knowledge spillovers. The 

former effect dominates in the first 25 years, increasing EU productivity growth 

by 3%, but the latter dominates in the long run, lowering growth by 3%. On the 

migration policy side, doubling the size of the U.S. H1B visa program increases 

U.S. and EU growth by 4% in the long run, because it sorts inventors to where 

they produce more innovations and knowledge spillovers. JEL codes: O3, O4, F22. 

I. INTRODUCTION 

In 1998, a prolific French inventor, Jean Calvignac, moved to 

Research Triangle Park in North Carolina, where he and his team 
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initiated the IBM network processor activities. By then, he had 

filed more than 40 patents at the European Patent Office (EPO), 
with a network of more than 100 collaborators. Most of them were 

French, but a handful were Americans. Calvignac’s sojourn in 

the United States was likewise productive, with more than 30 

new patents filed in the EPO records. After moving to the United 

States, he continued to work with some of his collaborators in 

France. In addition, over 100 new collaborators benefited from 

his knowledge and experience. About half of them worked in U.S. 
labs, and half in French labs. Calvignac contributed to valuable 

innovation in the United States; he expanded his network of co- 
inventors, and created collaboration bridges between the United 

States and France. Each collaborator could then spread the ac- 

quired knowledge to their own co-inventors, creating a cascading 

effect of interactions and knowledge diffusion. 
The migration of high-skilled knowledge workers remains 

an open and contentious topic of academic and policy debates 
because it creates various positive and negative effects on the 

economy, which are challenging to evaluate jointly. For the ori- 

gin country, the fear of a “brain drain” is counteracted by the 

benefit of cross-country knowledge transfers channeled by emi- 

grants. For the host country, migrants bring valuable talent, but 
they might displace native workers. What are the aggregate im- 
plications of migration on the countries of origin and destination? 

Assessing the balance between positive and negative effects re- 
quires a framework that embeds micro-level migration decisions 
and interactions, mapping them into aggregate outcomes. What 

determines the decisions of individuals to migrate? How do they 

form their collaboration and interaction networks? How can we 

discipline this framework empirically? What is the quantitative 

importance of interactions for international knowledge diffusion? 
What is the role of policy in shaping these individual-level deci- 
sions and aggregate outcomes? The answers to these questions 

are central to policy debates on both sides of migration: brain 

drain and immigration. 
This article studies the impact of international migration 

on the allocation of talent, innovation, and knowledge transfer 
across countries, providing theoretical, empirical, and quantita- 

tive contributions. On the theoretical side, I develop a novel two- 
country model of innovation-based endogenous growth, with mi- 
gration decisions and endogenous interactions, providing a micro- 

foundation for the cascading effects of international knowledge 
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FIGURE I 

Model Summary 

spillovers. On the empirical side, I link the model to micro-level 

data from the EPO, focusing on the migration corridor between 

the United States and the European Union (EU). With these data, 
I document four new facts about inventors’ migration flows, the 

evolution of their productivity and interactions around the time 

of migration, and the change in productivity for their collabora- 
tors in the origin country. I use the empirical results to calibrate 

key parameters of the model. Finally, on the quantitative side, I 
use the calibrated model to quantify the various effects of migra- 
tion and the effect of migration policies on the two economies. 

In the theoretical section, the article introduces a novel two- 
country general equilibrium model of innovation-based endoge- 

nous growth that highlights the role of international migration 

and knowledge diffusion in allocating scarce human capital. The 

model introduces two key novelties. First, migration decisions are 

micro-founded and shape migration flows, innovation, and talent 
allocation. Second, inventors accumulate human capital by learn- 
ing from others in endogenous interaction networks, which vary 

across countries. 
The main elements of the models are summarized in Figure I . 

In every period, inventors decide where to move, learn from oth- 

ers, and produce innovations, which improve goods’ quality and 

drive productivity growth. The size of innovations depends on in- 
ventors’ heterogeneous talent and idiosyncratic country-specific 

productivity. Talent evolves endogenously because of learning 
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from others. In particular, meeting probabilities are different for 

locals and immigrants and they depend on the distribution of in- 
ventors’ types and a matrix of exogenous meeting frictions. This 
structure generates endogenous interaction networks that match 

the empirical patterns of collaboration in the patent data. Meet- 
ings between individuals in different countries generate interna- 
tional knowledge transfers, with cascading effects on the econ- 

omy through interactions. Crucially, migrants continue to inter- 
act with locals in their origin country after migration, transfer- 
ring knowledge and making locals more productive. Inventors 

then choose to migrate or return for three reasons: (i) innova- 
tions are more valuable in the country with higher total fac- 
tor productivity (TFP), (ii) learning opportunities differ across 

countries, and (iii) the idiosyncratic productivity component is 
country-specific. Individuals move in both directions due to the 

idiosyncratic country-specific productivity component. However, 

the most talented individuals tend to move to the country with 

the highest TFP and highest human capital; after moving, they 

learn more from the local interaction network, reinforcing the se- 

lection effect. Aggregate TFP increases as a result of local inno- 
vation and exogenous diffusion from the frontier. 

The strength of this framework is that by modeling mi- 
gration decisions and interactions, it produces endogenous net 
and gross flows of migrants and knowledge spillovers that re- 

spond to economic conditions and policy. Existing models study 

either micro-level migration decisions, taking the macroeco- 
nomic environment as given, or macro-effects of immigration on 

innovation, taking the flows of migrants as given. My model takes 
a global perspective on migration and is suitable for analyzing 

the impact of policies on origin and destination countries jointly. 

I introduce two types of policies: taxes on inventors’ profits and 

immigration restrictions. Policies have multiple effects. First, the 

direct effect is a change in net migration flows, affecting the num- 

ber of inventors in each location. Three indirect effects then arise: 
(i) change in sorting patterns of inventors to the locations where 

they are most productive, (ii) change in international knowledge 

transfers, and (iii) change in technology diffusion from the inno- 
vation frontier. To quantify the effects of policy and discipline the 

framework empirically, I proceed to the empirical analysis. 
In the empirical section, I build a data set of international 

migrant inventors to document novel results on their migration 

and collaboration patterns, which provide qualitative motivation 
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for the new model ingredients and serve as quantitative targets 

to calibrate the key parameters. The empirical analysis of migra- 
tion is challenging because it requires data that track individuals 
across countries and consistently measure their outcomes, which 

are very limited. To overcome this challenge, I build a new data 

set of international migrants based on a recently developed panel 
of inventors from the EPO. Patent data offer a unique opportu- 

nity to observe inventors’ mobility; their output, measured by the 

number and quality of their patent applications; and their em- 
ployers and co-inventors. I identify migrants from changes in the 

residential address of inventors registered in patent files, and I 
trace the network of co-inventors for migrants and locals. I focus 
on the migration corridor between the United States and the Eu- 

ropean Union, which accounts for most of my data. 
I document four main findings. First, migration flows be- 

tween the EU and the United States are asymmetric, with net 

immigration in the United States (brain gain) and net emigra- 
tion from the EU (brain drain). Second, after migration, EU and 

U.S. migrants increase patent applications by 33% a year on av- 

erage, relative to local inventors in their country of origin with 

similar observable characteristics who do not move. Third, col- 

laboration networks are heterogeneous for locals and migrants, 
as inventors are more likely to collaborate with others living in 

the same location or coming from the same origin. Nonetheless, 

migrants continue working with inventors in their origin country 

after moving. Fourth, local inventors increase their patent appli- 
cations by 16% a year on average after a co-inventor emigrates, 

relative to other local inventors who have a collaborator similar 
to the migrant who does not move. 

Through the lens of the model, I interpret these findings as 

evidence that inventors tend to move to a place where they are 

more productive. In addition, migrants keep collaborating with 

inventors in their origin country and they diffuse knowledge in- 

ternationally, making their collaborators at origin more produc- 
tive. 

In the quantitative section, I link the model to the data from 

the United States and the EU by calibrating the parameters to 

match the empirical results. I use the calibrated model to quan- 

tify the importance of knowledge spillovers and the effects of 
policy. I numerically solve for the balanced growth path (BGP) 
equilibrium and the transitional dynamics of the model. To high- 

light the role of policy, I set the fundamental parameters of the 
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productivity distribution to be the same across the two locations 

and I let tax policy and migration barriers vary by location. I show 

that the calibrated model provides a good fit for targeted and 

non-targeted moments. Along the BGP, the two countries grow 

at the same rate, but the EU displays brain drain to the United 

States, lower innovation, and lower aggregate productivity than 

the United States. I highlight three main quantitative findings. 

First, I show that knowledge transfers are quantitatively im- 
portant. For the EU, the negative effect of brain drain on inno- 
vation is partly offset by international knowledge transfers. A 

counterfactual BGP simulation shows that shutting off interac- 
tions, keeping the brain drain level similar to the baseline, would 

reduce the EU growth rate by 10% (or about 0.12 percentage 

points). 
Second, I find that in the baseline BGP where the United 

States is the frontier economy with a brain drain of EU inven- 

tors to the United States, both the U.S. and EU growth rates 
are higher compared with a scenario in which EU inventors can- 
not move to the United States. A counterfactual BGP simula- 

tion shows that shutting off international migration would reduce 

both the EU and the U.S. growth rate by 6% (or about 0.07 per- 

centage points). This result is due to three main forces. First, be- 
cause of learning complementarities, inventors benefit from inter- 
actions with other highly productive inventors. Because migrants 

toward the frontier economy are positively selected on talent, they 

expand the pool of productive interactions at the destination, in- 
creasing frontier human capital and innovation. Second, the ben- 

efit of immigration at the frontier through learning is partly offset 
by crowding effects, which imply that immigrants might crowd 

out local inventors; however, this force is quantitatively small. 

Third, due to exogenous technology diffusion, technologies pro- 
duced at the frontier are eventually available for production and 

consumption in the laggard economy, which benefits from higher 

frontier innovation. 
Next I turn to the quantitative analysis of policy counterfac- 

tuals. Concerns about the consequences of migration have mo- 

tivated policy interventions in the United States and European 

countries to manage migration flows. I study the BGP and transi- 

tional dynamics of two policy counterfactuals that replicate real- 
world policies: (i) a tax cut in the EU for foreigners and return 

migrants, and (ii) a change in visa caps in the United States. 
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A third main result is that the effect of the policies depends 

on the resulting inventors’ talent allocation and varies at differ- 
ent time horizons. In particular, an EU tax cut for foreigners and 

return migrants reallocates inventors toward the EU and leads to 

a permanent increase in EU innovation and a short-run increase 

in output. The long-run effects, however, depend on the overall 
talent allocation and migration level. On the one hand, a rela- 

tively small tax cut that eliminates the brain drain from the EU to 

the United States but increases the dispersion of inventors across 
the two locations reduces the long-run growth rate by 3% (about 

0.04 percentage points), because it reduces learning opportuni- 
ties and technology diffusion. Although the reduction in long-run 

growth is the result of multiple forces with opposite effects, the 

decline in knowledge transfers, which is the mechanism at the 

center of this article, accounts for about 50% of the total decrease 

in the long-run growth rate. On the other hand, a more extreme 

EU tax cut that could induce a brain drain of inventors from the 

United States to the EU would lead the EU to become the fron- 
tier economy and increase long-run growth, reversing the role of 

frontier and laggard for the two economies. Finally, considering 

the current situation of the United States as the frontier economy 

and the limited evidence on crowding-out effects by immigrants 
on local inventors, relaxing the visa cap in the United States 
by doubling the inflow of EU inventors would increase long-run 

growth by 4% for both the EU and United States, but at the cost of 
lower EU innovation and temporarily lower TFP level in the EU. 

The results of this study offer more general insight into high- 

skilled migration and raise new questions. The analysis focuses 
on inventors because of the unique availability of patent data. 
Nevertheless, the theoretical mechanisms illustrated here apply 

to a broader category of high-skilled individuals, such as stu- 
dents , engineers , scientists , STEM workers , and more general 
knowledge workers. These individuals are motivated to migrate, 

at least in part, by the possibility of acquiring human capital, 
and they can generate knowledge spillovers with effects similar 
to the ones outlined here. In addition, the analysis focused on two 

main channels linked to emigration, talent allocation and knowl- 
edge transfer, which could be disciplined with the data at hand. 

Besides these channels, high-skilled emigration leads to other in- 
teresting effects, such as the impact on the demand side for talent 
by the private and public sectors or the impact on demographics 

and fertility, which await further research. 
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I.A. Related Literature 

This article relates to several strands of literature. First, I 

build on and contribute to the theoretical literature on endoge- 
nous growth. Unlike most studies in this literature that focus 
on the role of firms, this article follows recent work that fo- 

cuses on individuals ( Lucas and Moll 2014 ; Akcigit et al. 2018 ; 
Akcigit, Pearce, and Prato forthcoming ). Following Akcigit et al. 
(2018) and König et al. (2016) , this article combines elements 

of innovation-based growth models and diffusion-based growth 

models. As in classic innovation-based endogenous growth the- 
ories, in my model growth results from costly investment in in- 

novation, which improves aggregate productivity ( Romer 1990 ; 
Grossman and Helpman 1991b ; Aghion and Howitt 1992 ; Jones 

1995 ). As in diffusion models ( Kortum 1997 ; Eaton and Kortum 

2001 ; Lucas and Moll 2014 ; Perla and Tonetti 2014 ; Buera and 

Oberfield 2020 ), agents in the economy can increase their pro- 

ductivity through interactions with others, which are typically 

described as draws from a specific exogenous or endogenous dis- 
tribution. The contribution of this project is to introduce (i) en- 

dogenous international migration and (ii) endogenous interac- 
tions and knowledge spillovers within and across countries in 

a model of endogenous growth. The model of Braun (1993) (see 

Barro and Sala-i-Martin 2004 , chap. 9) studies endogenous mi- 
gration decisions in the context of the neoclassical growth model, 
deriving a positive relationship between the responsiveness of 

the migration rate to differentials in per capita product and the 

speed of convergence for per capita output. Beine, Docquier, and 

Rapoport (2001) connect migration and growth to educational 

c hoices. Ehrlic h and Kim (2015) study a model of endogenous 
migration and growth where skill-biased tec hnological c hange 

drives high-skilled migration. In my model, interactions shape in- 
centives to migrate and provide a micro-foundation for knowledge 

transfer associated with migration. In this respect, this study 

also relates to a literature on knowledge diffusion and imita- 
tion ( Nelson and Phelps 1966 ; Cohen and Levinthal 1989 ; Kogut 
and Zander 1992 ; Geroski 2000 ; Stoneman 2001 ; Eeckhout and 

Jovanovic 2002 ; Acemoglu, Aghion, and Zilibotti 2006 ; Griffith, 
Lee, and Van Reenen 2011 ; Comin and Mestieri 2014 ), and 

particularly to a literature that studies knowledge spillovers from 

trade ( Santacreu 2015 ; Sampson 2016 ; Cai, Li, and Santacreu 

2022 ; Hsieh, Klenow, and Nath 2023 ; Lind and Ramondo 2023 ; 
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Ayerst et al. 2023 ). See Barro and Sala-i-Martin (2004) , chap. 8, 

and Buera and Lucas (2018) for a review. This article also con- 
tributes to theories that connect economic growth and demogra- 
phy ( Peretto 1998 ; Galor and Weil 2000 ; Jones 2022b ; Acemoglu 

and Restrepo 2022 ; Greenwood, Guner, and Marto 2023 ), by high- 
lighting the connection between migration and growth. 

Second, my article also relates to work that studies the al- 

location of talent in the economy and how it influences economic 
growth. Talent is a scarce resource, thus allocating it efficiently 

is important to increase productivity. Hsieh et al. (2019) , Cook 

and Kongcharoen (2010) , and Buffington et al. (2016) document 
the importance of improving talent allocation across race and 

gender groups. Lagakos et al. (2018) and Porzio (2017) study 

cross-country differences in human capital accumulation and op- 
timal allocation of talent and technology. Wuchty, J ones , and 

Uzzi (2007) , Jones (2009) , Jaravel, Petkova, and Bell (2018) , and 

Pearce (2020) study the importance of talent allocation in re- 
search teams. Jovanovic (2014) and Akcigit, Pearce, and Prato 

(forthcoming) study the importance of education and occupational 

choice for talent allocation. This project contributes to this litera- 
ture by studying the effect of migration on the allocation of indi- 

viduals across countries. 
Third, this article contributes to a large literature that stud- 

ies the link between innovation, migration, and growth. Kerr 

(2007 , 2008) and Foley and Kerr (2013) document the contri- 
bution of ethnic inventors to U.S. technology formation, inter- 
national technology diffusion, and multinational firm activity. 

Agrawal, Cockburn, and McHale (2006) , Breschi and Lissoni 
(2009) , Agrawal et al. (2011) , Breschi, Lissoni, and Miguelez 
(2017) , and Bernstein et al. (2018) use patent and citation data 

to document knowledge flows associated with migration. Docquier 
and Rapoport (2012) offer a review of the literature on the connec- 
tion between brain drain and economic growth. Iaria, Schwarz, 

and Waldinger (2018) show that international cooperation is im- 
portant for knowledge diffusion. Recent work has documented the 

importance of immigrants for innovation in the modern United 

States ( Bernstein et al. 2018 ) and the historical United States 
( Akcigit, Baslandze, and Stantcheva 2016 ; Arkolakis, Peters, and 

Lee 2019 ; Burchardi et al. 2020 ). Bahar and Rapoport (2018) , 
Bahar, Choudhury, and Rapoport (2020) , and Bahar et al. (2022) 
provide evidence that inventors’ migration is a key source of 

knowledge diffusion across countries. Griffith, Harrison, and Van 
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Reenen (2006) and Coluccia and Dossi (2023) show evidence of 

knowledge diffusion between the United States and the United 

Kingdom channeled by inventors using modern and historical 
data, respectively. Ottaviano and Peri (2006) and Peri, Shih, 

and Sparber (2015) document that immigrants generate positive 

spillovers on wages of U.S. natives; however, there could be het- 
erogeneous effects on different categories of workers ( Morales 

2023 ; Mahajan 2024 ). Mayda et al. (2023) show that restricting 

high-skilled immigration to the United States would harm U.S. 
firms. Mayda, Orefice, and Santoni (2022) show that high-skilled 

immigrants have a positive effect on French firms’ innovation 

through task specialization. Moser, Voena, and Waldinger (2014) 
use historical evidence from Nazi Germany to document the im- 

pact of German scientists on U.S. innovation. Parey et al. (2017) 
and Moser and San (2020) analyze the selection of migrants based 

on skills. A further review of the literature is provided by Kerr 

et al. (2016) and Kerr (2020) . In this article, high-skill immi- 
grant flows can increase talent and the stock of ideas in the coun- 
try of destination, as in Kerr and Lincoln (2010) and Hunt and 

Gauthier-Loiselle (2010) , but they also displace local knowledge 

producers, as in Borjas and Doran (2012) . Although this body of 

work focuses on the effect of immigration on the receiving country, 
this article makes a distinct contribution by additionally empha- 
sizing the effect of emigration on the sending country. Addition- 

ally, this paper relates to recent work that documents the effect 
of taxation on the mobility of superstar scientists and inventors 
( Akcigit, Grigsby, and Nicholas 2017 ; Moretti and Wilson 2017 ; 

Akcigit et al. 2022 ) and studies the effect of taxation on long-run 

growth ( Jaimovich and Rebelo 2017 ; Jones 2022a ). 
The rest of the article proceeds as follows. Section II describes 

the theory, starting with the environment and equilibrium, then 

moving to the policies. Section III introduces the data and the 

empirical results. Section IV presents the calibration of the model 

and the quantitative policy counterfactuals. Section V concludes. 

II. MODEL 

I introduce an endogenous growth model that highlights the 

role of international migration and knowledge diffusion in allo- 
cating scarce human capital. 

For ease of exposition, I first introduce in Section II.A the 

environment and growth process in a closed economy with no 
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migration. Time is discrete, and the economy consists of a final 

good sector, an intermediate goods sector, and a technology sector. 
On the human capital side, individuals at birth are exogenously 

allocated to work as either production workers in the final good 

sector or as inventors in the technology sector. Inventors produce 

technologies that increase the quality of intermediate goods, driv- 
ing productivity growth. Inventors’ ability to produce technologies 

depends on their own talent, which increases over time due to 

learning from other inventors. 
Then in Section II.B I turn to an environment with two 

economies, A and B . Inventors are allowed to move across coun- 
tries and they draw an idiosyncratic country-specific productivity 

shoc k, whic h evolves stoc hastically over time. In addition, inven- 

tors interact and learn from other domestic, foreign, and migrant 
inventors, subject to meeting frictions. Interactions among inven- 
tors generate knowledge spillovers within and across countries. 

In every period, inventors choose where to move, subject to a mov- 
ing cost and depending on their talent and country-specific pro- 
ductivity. At the aggregate level, when migration flows are asym- 

metric, the country with net emigration faces a “brain drain” and 

the other faces a “brain gain.”

Finally, in Section II.C I introduce two types of policies, taxes 
on inventors’ profits and immigration restrictions. I also describe 

an application to the EU–U.S. context, which is the benchmark 

for the quantitative analysis in Section IV . 
There are no aggregate shocks in the model, so the analysis 

focuses on a BGP equilibrium where aggregate variables grow at 

a constant rate and talent distributions are stationary. I suppress 
the time index t in the model’s description where it does not cre- 
ate confusion. The numerical analysis of transitional dynamics is 

presented in Section IV . 

II.A. Innovation, Interactions, and Growth in a Closed Economy 

1. Inventors , Interactions , and Learning . I begin with the 

description of the environment of a single closed economy with- 
out migration. 

The economy in country c is populated by a unit mass of indi- 
viduals. Individuals survive to the following period with probabil- 
ity δ; when they exit the economy, they are replaced by a newborn 

individual. They have linear utility and discount factor β, and 
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they spend their whole income on consumption of the final good 

in every period. 
At birth, people are exogenously split into production work- 

ers or inventors. Let the mass of production workers be denoted 

by L c and the mass of inventors be denoted by I c ; then the alloca- 
tion of individuals across occupations implies that L c + I c = 1 . 

Inventors are born with heterogeneous talent z , drawn from 

an exogenous Pareto distribution, ˜ F c (z ) , with scale parameter 
equal to one and shape parameter θc . They produce technologies, 
or ideas. In every period t, an inventor with talent z t produces 

a bundle of technologies q t with the linear production function 

q t (z t ) = z t . The evolution of talent, z , is endogenous due to inter- 
actions and learning, so I denote as F c,t (q ) the endogenous distri- 

bution of innovation bundles produced at time t. 
Inventors can improve their initial talent level, z , by learning 

from other inventors as the result of random meetings. In every 

period, with probability λ an inventor has a meeting and her tal- 
ent z increases; with probability 1 − λ an inventor has no meeting 

and her talent z remains unchanged. When an inventor with tal- 

ent z and innovation bundle q meets another inventor with talent 
ˆ z and innovation bundle ˆ q , her talent evolves according to the fol- 

lowing learning function: 

z t = z t−1 ̂  q 
η

t−1 , (1) 

where η � 0 . 1 Given that z, ̂  z , q , and ˆ q are weakly greater than 

one, an inventor’s talent always increases after a meeting. The 

shape of the learning technology indicates that individuals with 

higher talent, z , learn relatively more from meeting an inventor 

with a large innovation, ˆ q ; formally: ∂ 2 z t 
∂ z t−1 ∂ ̂  q t−1 

> 0 . 2 The probability 

of meeting an inventor with an innovation q is given by F c,t (q ) . 

1. In a closed economy without migration, it holds that q t = z t and ˆ q = z , so 

that the learning function could be expressed as a function of talent only. However, 

in the economy with migration, the inventor’s talent and the innovation bundle 

are not always equal, so I introduce a general learning function that holds in both 

environments with and without migration. 

2. The literature has studied a range of different learning functions. In Online 

Appendix A.10, I introduce a general learning function, which nests equation (1) 

and allows a comparison to several cases studied in the literature. The choice of a 

learning technology with complementarity in talent generates positive selection of 

migrants, which could not be obtained, for example, from the learning technology 

in Lucas and Moll (2014) , commonly used in the literature. The positive selection 

is an important feature of the data, as I document in Online Appendix Table B.1, 

and I discuss it in more detail in Sections II.B and II.C . Assessing the strength 
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An inventor’s value function depends on their talent, learning 

prospects, and returns to innovation. To determine the returns for 
inventors, I describe the production of the final good, intermediate 

goods, and the market for ideas. 

2. Production of Goods. The final good Y c,t is competitively 

produced at time t using labor L c and a continuum of intermediate 

goods k j,c,t : 

Y c,t = 
1 

1 − α
( L c ) 

α

∫ 1 

0 

( A j,c,t ) 
α ( k j,c,t ) 

1 −αdj, (2) 

where A j,c,t is the quality of intermediate j at time t. 3 The price 

of the final good is normalized to one. The final-good optimization 

problem maximizes output minus payments to labor, w c L c , and 

to intermediate goods, p j,c k j,c . This problem delivers the demand 

curve for intermediate input k j : 

P j,c = ( L c ) 
α ( A j,c ) 

α ( k j,c ) 
−α. (3) 

Each intermediate good is produced by a monopolist using the 

final good at marginal cost ψ . Each monopolist maximizes profits 

subject to the demand curve coming from the final good: 


 j,c = max 
k j,c ,P j,c 

{

P j,c k j,c − ψk j,c 

}

, subject to equation (3). 

The optimal profits for the intermediate-goods producer j are 

then given by 
 j,c = α

(

1 −α
ψ 

)
1 −α

α

L c A j,c . In line with the literature 

( Akcigit and Kerr 2018 ), I assume that ψ = 1 − α. 4 

Aggregate productivity in economy c , Ā c , is defined as the av- 

erage quality of intermediate goods: Ā c ≡
∫ 1 

0 
A j,c dj. It follows that 

the equilibrium workers’ wage and aggregate output are linear in 

aggregate productivity and are given by 

of learning complementarity, and thus the value of the parameter η, is central 

to the calibration in Section IV.A . I also use the calibrated model to compare the 

predictions on migrants’ selection in the model and in data in Section IV.B . 

3. The choice of this production function implies that aggregate productivity, 

inventors’ values, and firms’ values are linear in the average intermediate quality, 

improving the tractability of the model. In addition, given that the main novelties 

of the framework are migration decisions and interactions, I keep the production 

side of the model as close as possible to the existing literature both in the theory 

and in the calibration. 

4. This assumption does not affect the structure and the results of the model, 

and it is introduced because a combination of α and ψ can be used to target profits. 
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w c = 
α

1 − α
Ā c (4) 

Y c = 
1 

1 − α
L c Ā c . (5) 

Intermediate goods monopolists can purc hase tec hnologies to 

improve the quality of their goods. Next I describe the production 

and transaction of technologies. 

3. The Market for Ideas. Intermediate goods monopolists 
improve the quality of their product line by purchasing technolo- 

gies from local inventors. When an intermediate goods monopolist 
purc hases a tec hnology bundle q , the quality of the product line 

increases by a step size q ̄A , that is, quality A j,c,t will increase to 

A j,c,t+1 = A j,c,t + q ̄A c,t after the purchase. 5 

Inventors and intermediate firms are matched in a country- 
level market for ideas. When intermediate goods monopolists are 

matched to inventors, they pay a price p j,c,t (q ) for the technology 

bundle q . In every period, the number of matches depends on the 

number of intermediate firms, N c , equal to one, and the number 

of inventors, which is I c . The number of matches is given by 

x c = ( I c ) 
ν ( N c ) 

1 −ν, 

where ν ∈ [0 , 1] denotes the curvature of the matching technology. 
It follows that the tec hnology-purc hasing probability for firms 

and the technology-selling probability for inventors are, respec- 
tively: 

x c 

N c 

= ( I c ) 
ν and 

x c 

I c 
= ( I c ) 

−(1 −ν) 
. 

The parameter ν governs crowding effects in the matches between 

firms and inventors. A value ν < 1 indicates that a larger number 
of inventors in the economy leads to a lower matching rate per 

inventor, resulting in lower “realized” innovation per individual. 

5. Note that the step size is proportional to the current level of aggregate 

productivity, capturing the idea that new technologies are “standing on the shoul- 

ders of giants.” The step size is thus increasing over time, generating sustained 

endogenous growth, as explained in more detail below. 
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Thus, the value of owning a product line with quality A j,c,t , 

denoted by J(A j,c,t , t) , is: 

J(A j,c,t , t) = 
 j,c,t + 
1 

1 + r 

[

x c,t+1 

(

∫ ∞ 

1 

( J( A j,c,t + q ̄A c,t+1 , t + 1) 

− p j,c,t+1 ( q )) dF c,t+1 ( q ) 
)

+ (1 − x c,t+1 ) J(A j,c,t , t + 1) 

]

. (6) 

This value function has the following interpretation. On the right 
side, the first term is the per period profit 
 j,c,t . The second term 

captures the discounted change in firm value due to the purchase 

of technology, with probability x c,t , which will increase quality by 

a step size q ̄A c,t+1 , minus the cost of purchasing the idea. The 

discount factor depends on the exogenous interest rate, r . 6 The 

probability of matching with a specific technology q depends on 

the distribution of bundles F c,t (q ) . I assume inventors appropriate 

all the surplus from the technology transaction. 7 

The profits of an inventor with talent z are given by the prob- 
ability of matching with a firm multiplied by the revenues from 

selling technology q : 

πc (z, t) = (I c ) 
ν−1 p c,t (q (z )) . (7) 

It follows that the value of an inventor with talent z , V (z, t) satis- 
fies the following Bellman equation: 8 

V (z, t) = πc (z, t) 

+ βδ

(

λ

∫ ∞ 

1 

V (z ̂  q 
η, t + 1) dF c,t ( ̂  q ) + (1 − λ) V (z, t + 1) 

)

. 

6. The interest rate is exogenous for consistency with Section II.B , where the 

two small open economies share a common exogenous interest rate. 

7. This assumption implies p j,c,t+1 (q ) = E [ J(A j,c,t + q ̄A c,t+1 , t + 1)] −

J(A j,c,t , t + 1) . The exact assignment of inventors to technologies does not 

matter for aggregate productivity growth along a BGP, because, as described in 

the next section, the value of a product line is linear in A j , so a certain technology 

produces the same improvement no matter which firm it is matched to. 

8. This is the value of an inventor before being matched to an intermediate 

firm. The timing of events is the following: (i) inventors produce the technology 

bundle; (ii) if they meet a firm, they sell the bundle; (iii) if the inventor survives, 

the following period starts; (iv) meetings occur and the inventors’ productivity 

is updated. Note that in a closed economy without migration, inventors are not 

making any decisions. 
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This value has the following interpretation. On the right side, the 

first term indicates the current-period expected profits for the in- 
ventor, πc (z, t) . The second term captures the continuation value, 
which is discounted by a factor β and survival probability δ. In pe- 

riod t + 1 , with probability λ, the inventor will have a successful 
meeting. If the meeting occurs, with probability F c,t ( ̂  q ) , the inven- 
tor will meet an individual with productivity ˆ q and her talent will 

evolve to a value z ̂  q 
η. With probability 1 − λ, no meeting occurs 

and talent remains unchanged at z . 
I turn to the description of a BGP equilibrium in a closed 

economy without migration. 

4. BGP Equilibrium in a Closed Economy with No Migra- 

tion. I describe the BGP equilibrium of a closed economy with no 

migration where aggregate productivity grows at a constant rate 

and the talent distribution is stationary. 
The following proposition describes the equilibrium in the 

market for ideas. 

PROPOSITION 1. Along a BGP, technology is sold at per unit price 

p c,t , independent of j, as follows: 

p j,c,t = p c,t = α
1 + r 

r 
L c Ā c,t . (8) 

Proof. See Online Appendix A. 
In equilibrium, the per unit price of technology is increasing 

in the market size L c , in aggregate productivity Ā c,t , and in the 

contribution of intermediate quality to final good production ( α), 
while it is decreasing in the interest rate r . Note that along a BGP, 

the technology price is equal across all product lines, because the 

value of owning a product line, J(A j,c ) , is linear in equilibrium, as 
shown in Online Appendix A. 

I describe the aggregate productivity growth rate in equilib- 
rium. The change in aggregate productivity in country c is given 

by the increase in quality of each intermediate product, which de- 

pends on the probability of firm-inventor matching and the size 

of bundles purchased from inventors. Define the average bundle 

of ideas available in country c as Q c,t = 

∫ ∞ 

1 
qdF c,t (q ) , which is the 

weighted average of the technology bundles produced by inven- 
tors. Then define the total innovation in country c as the prob- 
ability that an intermediate firm is matched with an inventor 

times the expected quality of ideas available in country c , that is, 
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ιc (t) ≡ I νc Q c (t) . The following proposition describes the evolution 

of aggregate productivity in equilibrium. 

PROPOSITION 2. Along a BGP, the aggregate productivity growth 

rate, g c , is equal to the total innovation in country c : g c = ιc = 

I νc 
∫ ∞ 

1 
qdF c (q ) . 

Proof. See Online Appendix A. 

In the closed economy, sustained long-run growth is driven 

by innovation, which increases the quality of intermediates, fol- 

lowing innovation-based endogenous growth theories ( Grossman 

and Helpman 1991b ; Aghion and Howitt 1992 ). As in these theo- 
ries, the step-size increase in productivity from innovation is pro- 

portional to the current level of productivity (see equation (6) ), 
capturing the idea that new technologies are “standing on the 

shoulders of giants.” The step size is then increasing over time, 

enabling endogenous growth. Total innovation depends on the 

number of inventors and the average size of the technology bun- 
dles they produce, which in turn depends on inventors’ talent and 

their interactions with others, as in diffusion models ( Lucas and 

Moll 2014 ; Perla and Tonetti 2014 ). 

II.B. Two Economies Setup: Knowledge Diffusion, Migration, 

and Growth 

I turn to the description of an environment consisting of 
two economies that allow for the migration of inventors. In this 

setup, the growth rate still depends on the number of inventors 
and the average size of the technology bundles, but both terms 
are affected by migration, interactions, and technology diffusion 

across countries. Country-specific variables are indexed with c , 
for c ∈ { A, B } . The economies are populated by a unit mass of in- 
dividuals of each nationality, A or B. The two economies are open 

to final-good trade and capital markets, sharing a common exoge- 
nous interest rate r . By contrast, the technology sector is closed 

to trade, as in Grossman and Helpman (1991a) . 9 

9. Trading technologies and intermediate goods could allow innovations to in- 

stantly diffuse across countries. While this type of trade is not explicitly studied 

in this framework, the model captures it with an exogenous technology diffusion 

parameter σ , introduced later in this section. The speed of technology diffusion 

determines the relative productivity level across countries, which is a target mo- 

ment in the quantitative section. 
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Inventors are allowed to move across countries. I use the 

term “local inventors” to denote those who live in their country of 
birth, and the term “migrant inventors” for those who, in a given 

period, live in a different country from where they are born. The 

mass of local inventors in country A is endogenous and denoted 

by μAA , where the first letter of the index indicates the country of 
origin and the second one is the country of residence. Similarly, 

the mass of migrants from country A to B is endogenous and de- 
noted by μAB . The endogenous masses of locals and migrants from 

country B are denoted, respectively, by μBB and μBA . The sum of 

locals and migrants thus equals the total number of inventors of 
each nationality, μAA + μAB = I A , and similarly for B . 

1. Inventors’ Productivity and Interactions across Countries. 

As in the closed economy case, inventors are born with heteroge- 

neous talent z , drawn from an exogenous country-specific Pareto 

distribution, ˜ F c (z ) , with scale parameter equal to one and shape 

parameter θc . In addition, they draw an idiosyncratic country- 

specific productivity differential ε from an exogenous distribution, 
ϒc (ε) , with support on the real line. 10 

In every period t, an inventor with talent z t and foreign pro- 
ductivity shock εt produces a bundle of technologies q t with a lin- 
ear production function: 

q t (z t , εt ) = 

{

z t if local (living in the country of origin) 

max { z t + εt , 1 } if migrant (living abroad) . 

Given that the talent distribution has support z � 1 , it follows 

that q � 1 , even if ε can take negative values. 11 The foreign pro- 
ductivity differential captures idiosyncratic reasons why an in- 

ventor could be more productive abroad. 12 

10. In the quantitative section, the process for ε matches the average change 

in productivity for migrants after migration. Notably, both EU and U.S. migrants 

increase their patenting after moving. A model without the country-specific pro- 

ductivity differential would not be able to match this result. 

11. The assumption that q t is bounded below by one implies that inventors’ 

talent is weakly increasing after a meeting. In addition, it guarantees that mi- 

grants’ productivity is always positive, even if they draw a negative value of the 

foreign productivity shock such that z t + εt < 0 . 

12. For example, an inventor with expertise in a specific industry (e.g., auto- 

motive engineering) could be a good fit for a new project in a country where that 

industry is more developed (e.g., Germany). The productivity differential ε does 

not capture the network of inventors of a given country, which is instead explicitly 

modeled. 
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I denote as F j,t (q ) the endogenous distribution of innovation 

bundles produced by type j at time t. 13 I also denote the en- 
dogenous distribution of technology bundles produced in country 

c ∈ { A, B } as F c , which combines locals and immigrants. 14 

The evolution of foreign productivity, ε, for an inventor born 

in c , follows an exogenous mean-reverting process. In particular, 
ε evolves following an AR(1) stochastic process: 

εt = ρεt−1 + v t , 

where v t ∼ N(0 , ω 
2 
c ) . I denote by υc,εt | εt−1 the cumulative distribu- 

tion function of εt , conditional on the t − 1 value εt−1 . I assume 

that at birth, individuals draw the value ε from the stationary 

distribution of the AR(1) process, that is, the distribution ϒc is a 

normal distribution with mean zero and variance 
ω 2 c 

1 −ρ2 . 
15 

The evolution of talent, z , is endogenous due to interactions 

and learning. In this environment, every inventor can meet and 

learn from any of the four types of inventors in the global econ- 

omy: AA, AB, BA, BB . The probability of meeting a specific in- 
ventor with bundle ˆ q depends on meeting frictions, based on in- 
ventors’ location of birth and residence. Conditional on having a 

meeting, the probability of an individual of type i meeting an in- 
dividual of type j is denoted by ψ i, j,t , for i, j ∈ { AA, AB, BA, BB } . 
The endogenous probability ψ i, j,t is the product of the endogenous 

relative frequency of type j in the economy multiplied by an ex- 
ogenous meeting friction ξi, j , for i � = j: 

ψ i, j,t = 
μ j,t 

∑ 

j ′ ∈J μ j ′ ,t 

ξi, j . 

For the cases i = j, the values ψ i, j,t are derived from the 

condition that the probability of meeting any type must add up 

to 1: 
∑ 

j∈J ψ i, j = 1 for all i . 16 The set of probabilities { ψ i, j } cap- 
tures the endogenous interactions in the global economy, where 

13. The distribution F j,t (q ) captures the joint density over ε and z . 

14. The endogenous distributions satisfy the following condition: 

F c (q ) = 
μAc F Ac (q ) + μBc F Bc (q ) 

μAc + μBc 
. 

15. Note that under these assumptions, the distribution of ε in the population 

of individuals is equal to the stationary distribution of the AR(1) process. 

16. The number of meetings between individuals of type i and j is: μi λψ i, j = 

μ j λψ j,i , which implies that ξi, j = ξ j,i . 
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inventors meet within and across countries. The set of frictions 

{ ξi, j } captures meeting frictions across any two types. 17 

In general, locals and migrants meet a given type with differ- 
ent probabilities, as captured by the meeting frictions. 18 Thus, 

moving allows individuals to access different interaction net- 
works and learning opportunities. In addition, a migrant of ori- 
gin c can still meet a local in origin country c after moving. 19 

This type of meeting allows the migrant to generate knowledge 

spillovers onto locals at origin, who learn from migrants’ innova- 
tions and become more productive. Given that learning depends 

on the size of the innovation bundle, meeting a migrant is partic- 
ularly beneficial for locals because migrants produce larger inno- 
vations while abroad, due to the productivity differential ε. 

Based on their talent, z , and productivity ε, inventors will 
compare expected values in country A and B to make their mi- 
gration decision. These values capture learning prospects and re- 

turns to innovation. Before turning to migration decisions, I de- 
scribe the production of the final good, intermediate goods, and 

the market for ideas, which determine the returns for inventors. 

2. Production, the Market for Ideas, and Technology Diffu- 

sion. The production side in each economy follows the same 

structure as in the closed economy setup, described in Section 

II.A . 
Each economy produces the final good, Y c,t , at time t using 

local labor and a continuum of local intermediate goods as in 

equation (2) . The final good is traded, so the price is the same 

for the two countries. In each country, each intermediate good is 
produced by a monopolist using the local final good at marginal 
cost 1 − α, subject to the demand curve expressed in equation (3) . 

The resulting equilibrium workers’ wage and aggregate output 
are given by equations (4) and (5) . 

In the open economies environment, intermediate goods mo- 

nopolists improve the quality of their product line in two ways. 

17. Note that ξi, j = 1 for all i and j corresponds to the frictionless case; ξi, j � = 1 

for some i and j captures frictions in meetings. For example, frictions may indicate 

that two individuals are more likely to meet if they are in the same country or of 

the same type. Online Appendix C.2.4 describes an extension with a richer model 

of network formation. 

18. In particular, this is the case whenever ψ AA, j � = ψ AB, j and ψ BB, j � = ψ BA, j 

for any j ∈ { AA, AB, BA, BB } . 

19. In particular, this is the case whenever ψ AA,AB � = 0 and ψ BB,BA � = 0 . 
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First, they purchase technologies from local inventors, 20 as in the 

closed economy. Second, intermediates in the country with the 

lowest aggregate productivity (i.e., the laggard economy) benefit 

from exogenous technology diffusion from the country with the 

highest aggregate productivity (i.e., the frontier economy). I de- 
scribe each process in detail. 

The country-level market for ideas and the innovation step 

size are the same as in the closed economy. The only difference 

is that the number of inventors residing in c is the sum of local 

inventors and migrant inventors. The number of matches is then 

given by: 

x c,t = ( μAc,t + μBc,t ) 
ν ( N c ) 

1 −ν, 

where μAc are inventors of nationality A active in c , μBc are inven- 
tors of nationality B active in c , and N c is the number of interme- 
diate firms, which is equal to one. The parameter ν now captures 

the idea that immigration can crowd out innovation by locals, by 

reducing the technology-selling probability for inventors. It fol- 
lows that the tec hnology-purc hasing probability for firms and the 

technology-selling probability for inventors are, respectively: 
x c,t 

N c 

= 

(

μAc,t + μBc,t 

)ν
and 

x c,t 

μAc,t + μBc,t 

= 

(

μAc,t + μBc,t 

)−(1 −ν) 
. 

In addition to purc hasing tec hnologies, intermediate firms in 

the laggard country receive exogenous technology diffusion from 

the frontier economy at rate σ , at no cost. As a result, the quality 

of an intermediate firm will exogenously increase by the amount 
˜ σc,t = σ max { ̄A −c,t − Ā c,t , 0 } . 21 

20. Intermediate monopolists cannot purchase technologies from foreign in- 

ventors. This assumption is meant to capture the local nature of “innovative labor 

services,” as in Grossman and Helpman (1991a) . That is, while inventors act as 

independent agents in this model, in the real world most inventors are employed 

by firms. Thus, they need to move to the country where a firm is located to sell 

their labor services to that firm. 

21. Note that the size of the exogenous diffusion spillover is proportional to 

the productivity gap between the two economies. This structure guarantees the 

existence of a balanced growth path equilibrium where the two economies grow 

at the same rate. The parameter σ captures improvements in productivity of the 

laggard economy not due to local innovation, such as technology diffusion driven 

by trade or foreign direct investment. There is a large literature studying the role 

of technology diffusion, starting from Nelson and Phelps (1966) , and including 

Grossman and Helpman (1991c) , Eaton and Kortum (2001) , Santacreu (2015) , 

Sampson (2016) , Buera and Oberfield (2020) , Cai, Li, and Santacreu (2022) , 
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Thus, the value of owning a product line with quality A j,c,t , 
denoted by J(A j,c,t , t) , is: 

J(A j,c,t , t) = 
 j,c,t + 
1 

1 + r 

[

x c,t+1 

(

∫ ∞ 

1 
(J(A j,c,t + ˜ σc,t + q ̄A c,t+1 , t + 1) 

− p j,c,t+1 ( q )) dF c,t+1 ( q ) 
)

+ ( 1 − x c,t+1 ) J(A j,c,t+1 + ˜ σc,t , t + 1) 

]

. 

Compared with the closed economy setup, the second term also 

captures the exogenous technology spillovers. 

Finally, the profits of an inventor with talent z working in 

country c now also depend on migration through the endogenous 
number of locals and immigrants and are given by the probability 

of matching with a firm multiplied by the revenues from selling 

technology q : 

πc (z, t) = (μAc + μBc ) 
ν−1 p c,t (q (z )) . (9) 

Given their expected profits and learning opportunities in dif- 
ferent countries, inventors make their migration decision. 

3. Migration Decisions. In every period, inventors decide 

whether they want to move based on their idiosyncratic talent z , 
foreign productivity differential ε, and the conditions of the global 

economy. Locals can emigrate subject to a fixed cost of migration 

κĀ c,t . Migrants can return to their country of origin at no cost, 
and they can later emigrate again. 22 

Let V AA (z, ε, t) denote the value of a local inventor of national- 
ity A , living in A , with talent z , and productivity abroad ε at time 

t. Similarly, let V AB (z, ε, t) denote the value of a migrant born in 

A , living in B , with talent z , and productivity abroad ε at time t. 
Let the value W AA (z, ε, t) describe the migration problem 

for a local inventor in A , which satisfies the following Bellman 

Hsieh, Klenow, and Nath (2023) , Ayerst et al. (2023) , and Lind and Ramondo 

(2023) . For a review, see Barro and Sala-i-Martin (2004) , chap. 8, or Buera and 

Lucas (2018) . 

22. The main cost of migration in this setup involves familiarizing oneself 

with and adapting to a new environment in a new country (e.g. learning a new 

language, adapting to new customs). Arguably, this cost is small for return mi- 

grants, who go back to their origin country that they already know, especially if 

they have not been abroad for too long, which motivates the assumption that they 

can return at no cost. This assumption is not necessary to solve the model. Al- 

ternatively, an additional parameter for the cost of returning could be introduced 

into the model. 
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equation for j ∈ { AA, AB, BB, BA } : 

W AA (z, ε, t) = max { V AA (z, ε, t) , V AB (z, ε, t) − κĀ A (t) } . (10) 

The interpretation of this value is the following. A local inventor 
in A makes a binary choice between the value of remaining a local, 

V AA (z, ε, t) , and the value of moving to B and becoming a migrant, 
V AB (z, ε, t) , minus the cost of migration κĀ A (t) . 

The value of a local inventor V AA (z, ε, t) satisfies the following 

Bellman equation for j ∈ { AA, AB, BB, BA } : 23 

V AA (z, ε, t) = πA (z, t) + βδ

∫ ∞ 

−∞ 

(

λ
∑ 

j 

ψ AA, j,t 

×

∫ ∞ 

1 

(

W AA (z ̂  q 
η, ε′ , t + 1) 

)

dF j,t ( ̂  q ) 

+ (1 − λ) W AA (z, ε
′ , t + 1) 

)

dυε′ | ε . 

This value has the following interpretation. On the right 
side, the first term indicates the current-period expected prof- 
its for the inventor, πA (z, t) . The second term captures the con- 

tinuation value, which is discounted by a factor β and survival 
probability δ. In period t + 1 , with probability λ, the inventor 

will have a successful meeting. If the meeting occurs, with prob- 
ability ψ AA, j , the inventor will meet an individual of group j

and his talent will evolve to a value z ̂  q 
η, which depends on the 

distribution of bundles for inventors of type j. With probabil- 
ity 1 − λ, no meeting occurs and talent remains unchanged at 
z . In addition, in t + 1 , the idiosyncratic relative productivity 

term ε evolves to value ε′ . After meetings occur, the inventor 
makes the migration decision, captured by the continuation value 

W AA (z, ε, t) . 

23. This is the value of an inventor before being matched to an intermediate 

firm. The timing of events is the following: (i) inventors produce the technology 

bundle; (ii) if they meet a firm, they sell the bundle; (iii) if the inventor survives, 

the following period starts; (iv) the new productivity differential ε′ is realized; (v) 

meetings occur; (vi) the inventor decides where to move. 
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The value V AB (z, ε, t) of a migrant of nationality A and living 

in B takes the following form for j ∈ { AA, AB, BB, BA } : 

V AB (z, ε, t) = πB (z + ε, t) + βδ

∫ ∞ 

−∞ 

(

λ
∑ 

j 

ψ AB, j,t 

×

∫ ∞ 

1 

(

W AB (z ̂  q 
η, ε′ , t + 1) 

)

dF j,t ( ̂  q ) 

+ (1 − λ) W AB (z, ε
′ , t + 1) 

)

dυε′ | ε . 

The value of a migrant V AB (z, ε, t) has a similar interpretation 

to the value of a local V AA (z, ε, t) , with three important differ- 
ences. First, current profits for a migrant, πB (z + ε, t) , depend on 

features of economy B . For example, if country B has higher ag- 

gregate productivity, all else equal, the same inventor will earn 

higher profits in B than in A . Second, while working in B , the 

migrant inventor will be subject to a productivity differential ε, 

which could be positive or negative. Third, the migrant will in- 
teract with the various types of inventors with different proba- 
bilities than a local, governed by ψ AB, j . These three differences 

correspond to three reasons inventors choose to migrate in this 
model: (i) higher profits, (ii) idiosyncratic productivity gains, and 

(iii) learning opportunities. 
Finally, a migrant of type AB can choose to return to the coun- 

try of origin, A , at no cost. The return problem for a migrant in- 

ventor born in A , living in B , with talent z , and productivity shock 

ε at time t is described by the continuation value W AB : 

W AB (z, ε, t) = max { V AB (z, ε, t) , V AA (z, ε, t) } . (11) 

The return decision depends on the evolution of the productivity 

differential ε. When ε falls to a sufficiently low value, the migrant 
decides to return to the country of origin, where innovation pro- 

duction only depends on talent z . 
The migration and return problem for individuals of country 

B follow the same structure: 

W BB (z, ε, t) = max { V BB (z, ε, t) , V BA (z, ε, t) − κĀ B (t) } (12) 

W BA (z, ε, t) = max { V BA (z, ε, t) , V BB (z, ε, t) } , (13) 

where V BB is the value of a local inventor born in B and living 

in B ; V BA is the value of a migrant inventor born in B and living 
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in A . The values of inventors of origin B are specular of those of 

inventors of origin A , and are omitted for brevity. 
The allocation of individuals across locations is central to ag- 

gregate productivity and the growth of each country, described 

next. 

4. BGP. I analyze a BGP equilibrium of the global economy 

where aggregate productivity grows at a constant rate in each 

country and talent distributions are stationary. 24 Definiton 1 for- 
mally describes the BGP equilibrium concept. 

I begin by describing the equilibrium in the market for ideas. 

PROPOSITION 3. Along a BGP, technology is sold at per unit price 

p c,t , independent of j, as follows: 

p j,c,t = p c,t = α
1 + r 

r 
L c Ā c,t . (14) 

Proof. See Online Appendix A. 
Note that the price in the market for ideas follows the same 

expression as in the closed economy setup (see equation (8) ) and is 

not affected by migration rates. Inventors’ profits and firm values 
still depend on migration rates, which determine the matching 

rate x c,t between firms and inventors. 

The next proposition describes the migration decisions in 

equilibrium. 

PROPOSITION 4. Along a BGP, migration decisions are time- 
invariant. 

Proof. See Online Appendix A. 
Along a BGP, both countries grow at the same rate and distri- 

butions are stationary, so inventors’ values in each location also 

grow at the same rate, resulting in a constant flow of migrants. 
I describe aggregate productivity growth in equilibrium. The 

change in aggregate productivity in country c is given by the in- 
crease in quality of each intermediate product, which depends on 

the probability of matching and the size of bundles purchased 

from inventors. The average bundle of ideas available in coun- 
try c , defined as Q c , is now given by the weighted average of the 

24. Online Appendix A presents a description of the law of motion for the 

distributions of talent and requirements for stationarity. 
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technologies produced by locals and immigrants in c : 

Q c,t = 
μAc,t 

∫ ∞ 

1 
qdF Ac,t (q ) + μBc,t 

∫ ∞ 

1 
qdF Bc,t (q ) 

μAc,t + μBc,t 

. (15) 

Recall that total innovation in country c is the probability that an 

intermediate firm is matched with an inventor multiplied by the 

expected quality of ideas available in country c , that is 

ιc (t) ≡ x c (t) Q c (t) 

= 
(

μAc,t + μBc,t 

)(ν−1) 
[

μAc,t 

∫ ∞ 

1 

qdF Ac,t (q ) + μBc,t 

∫ ∞ 

1 

qdF Bc,t (q ) 

]

. 

Total innovation is affected by migration both through the num- 
ber of inventors in the economy, which depends on the number of 

locals and immigrants, and through the average size of the bundle 

of ideas, which depends on the realized country-specific produc- 
tivity shocks of migrants , interactions , and knowledge transfers 

across countries. 
In addition, let the productivity gap between economy A and 

B be defined as the ratio of their aggregate productivity; that is, 

a (t) = 
Ā A (t) 

Ā B (t) 
. The following proposition describes the evolution of 

aggregate productivity in equilibrium. 

PROPOSITION 5. Along a BGP, aggregate productivity grows at 

the same rate in each country: 

g A = g B = g = max { ιA , ιB } , (16) 

and the productivity gap is constant and equal to: 

a = 

{ 
σ

σ+ ιB −ιA 
if ιB > ιA 

σ+ ιA −ιB 
σ

if ιB < ιA . 
(17) 

Proof. See Online Appendix A. 
The two countries grow at the same constant rate, which is 

determined by total innovation in the frontier economy, while in- 
novation in the laggard economy determines the productivity gap. 

This result indicates that even if innovation in the laggard 

economy declines, the two countries grow at the same rate, be- 
cause the exogenous technology diffusion, governed by the param- 
eter σ , is proportional to the TFP gap between the two economies. 

However, if innovation declines in the laggard economy, the TFP 

gap relative to the frontier will increase. Finally, if innovation in 

the frontier economy declines, the growth rate for both countries 

will decline. 
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Migration and interactions affect innovation and productiv- 

ity through the mass of local and immigrant inventors and the 

average size of their innovations, which depends on the distribu- 
tions F j , illustrated by equation (15) . When an inventor relocates 

from the laggard to the frontier economy, it produces several ef- 
fects. First, the mass of inventors decreases in the laggard econ- 
omy but increases at the frontier. Second, the migrant produces 

larger innovations at the destination due to the productivity dif- 
ferential ε. Third, the migrant also transfers knowledge to the 

laggard economy by meeting local inventors at the origin. Finally, 

the laggard economy benefits from higher innovation at the fron- 
tier through the exogenous technology diffusion. 

Definition 1 summarizes the characteristics of a BGP where 

aggregate productivity in each country grows at a constant rate 

and the productivity distributions are time-invariant. 

DEFINITION 1. Balanced Growth Path. A BGP equilibrium con- 
sists of a constant growth rate g, a constant productivity gap 

a , and, for each country c ∈ { A, B } , paths for production work- 
ers wages w c (t) , inventor profits πc (t) , price of ideas p c (t) , al- 
location of inventors across locations, μAA , μAB , μBA , μBA , and 

productivity distributions F c (q ) such that 

(i) The wage of production workers satisfies equation (4) . 
(ii) Profits of inventors satisfy equation (9) . 

(iii) Migration decisions are time-invariant and solve 

equations (10) , (11) , (12) , and (13) . 
(iv) The price of technology clears the market for ideas and sat- 

isfies equation (14) . 
(v) The growth rate g and the productivity gap a satisfy 

equations (16) and (17) . 
(vi) Aggregate productivity Ā c and aggregate output Y c grow at 

rate g in each country. 
(vii) The endogenous productivity distributions F A and F B are 

stationary, and the mass of individuals of each type 

μAA , μAB , μBA , μBA is constant. 

II.C. Taxation and Migration Policies 

I introduce two policies in the model: taxes on inventors’ prof- 

its, and immigration caps. Inventors are subject to a country- 
specific tax rate τc , as net profits are 

πc (z, t) = (1 − τc )(μAc + μBc ) 
ν−1 p c,t (q (z )) . (18) 



192 THE QUARTERLY JOURNAL OF ECONOMICS 

The government uses the tax revenues to fund a lump-sum trans- 

fer to production workers, balancing the budget in every period. 25 

Country A admits a free flow of foreign inventors, whereas 
country B enforces migration restrictions: every period, a mass of 

at most μ̄ inventors of nationality A is allowed to enter country 

B . If more than μ̄ inventors of nationality A want to move to B in 

a certain period, then μ̄ inventors are selected at random among 

those willing to move and are allowed into country B. 
Let μ∗

AB,t 
be the mass of local inventors of origin A who want 

to move to B at time t: 

μ∗
AB,t = 

∫ ∫ 

1 { V AB (z, ε, t) − κĀ A (t) − V AA (z, ε, t) > 0 } 

×g AA,t (z, ε) dεdz, 

where g AA,t (z, ε) indicates the joint distribution over z and ε for 
locals in A . Then the probability of being allowed to move, m t , 

is given by the mass of people allowed to move over the mass of 
people who would like to move: 

m t = min 

{ 

μ̄

μ∗
AB,t 

, 1 

} 

. 

Thus, the continuation value W AA (z, ε, t) for a local inventor born 

in A and living in A satisfies the following Bellman equation for 

j ∈ { AA, AB, BB, BA } : 

W AA (z, ε, t) = max { V AA (z, ε, t) , m t 

(

V AB (z, ε, t) − κĀ A (t) 
)

+ (1 − m t ) V AA (z, ε, t) } . (19) 

Next I study the equilibrium of the model under a specific 

configuration of policies. 

1. Application: Asymmetric Tax Rates. This model admits a 

variety of applications to different scenarios, depending on the 

configuration of the parameters. In the remainder of the article, I 

consider an application to two countries with asymmetric tax poli- 
cies, τA < τB . In addition, countries have asymmetric migration 

policies, as previously outlined: country A has a free immigration 

policy, whereas B admits no more than μ̄ inventors per period. I 

25. Thus, total income for production workers is w c + T c where T c is the lump- 

sum transfer from the government. To balance the budget, transfers must satisfy 

the following condition: τc ( μAc + μBc ) 
ν
∫ 

p c,t ( q ( z )) dF c ( z ) = T c L c . 



THE GLOBAL RACE FOR TALENT 193 

assume that the talent structure is identical across countries, as 

outlined in Assumption 1 . 26 

ASSUMPTION 1. The exogenous occupational allocation and tal- 
ent distribution are identical across countries: I A = I B and 

θA = θB . 

I also consider a particular structure for the meeting fric- 

tions, reflecting that individuals are more likely to meet others 
in the same location. Thus, a migrant inventor is more likely to 

meet individuals at the destination than at the origin. This struc- 
ture is formalized in Assumption 2 . 27 

ASSUMPTION 2. Compared with locals in A , migrants of nation- 

ality A are 

(i) more likely to meet other migrants from A ( ξAB,AB > 

ξAA,AB ), 
(ii) more likely to meet locals in B ( ξAB,BB > ξAA,BB ), and 

(iii) less likely to meet migrants from B in A ( ξAB,BA < ξAA,BA ). 

Similarly, for country B , ξBA,BA > ξBB,BA , ξBA,AA > ξBB,AA , and 

ξBA,AB < ξBB,AB . 

Under Assumptions 1 and 2 , along a BGP, migration deci- 
sions take a threshold form. In particular, more talented indi- 

viduals are more likely to move from A to B and less likely to 

move from B to A for any given value of their productivity shock 

ε. This characterization of migration decisions is formalized in 

Proposition 6 . 

PROPOSITION 6. Under Assumptions 1 and 2 , along a BGP, there 

exist thresholds z̄ AA (ε) , z̄ AB (ε) , z̄ BB (ε) , and z̄ BA (ε) such that in- 

dividuals with state (z, ε) of type: 

� AA move to B if z > z̄ AA (ε) , given ε; AB return to A if z < z̄ AB (ε) , 
given ε; 

26. This structure mimics the migration corridor between the EU (country A ) 

and the United States (country B ), which is analyzed in Section III and Section 

IV.A . A different application of this model could illustrate migration between a de- 

veloped and a developing country. For instance, if θB > θA , the exogenous average 

talent is lower in A , representing a less developed education system. 

27. This structure is consistent with the observations on collaborations in the 

microdata, as discussed in Section III . These data are used to calibrate meeting 

frictions in Section IV . 
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� BB move to A if z < z̄ BB (ε) , given ε; BA return to B if z > z̄ BA (ε) , 

given ε. 

Proof. See Online Appendix A. 
The intuition for the threshold migration rules is the follow- 

ing. Profits are higher in B because of lower taxation, and they 

are linear in talent, z . Thus, given the fixed moving cost κ, in- 
dividuals with higher talent gain relatively more from moving 

to B . The flow of talented individuals toward B endogenously 

increases average talent in B , due to interactions, despite the 

exogenous talent distributions being identical across countries. 

Higher average talent, in turn, attracts more talented inventors 
to B for two reasons. First, due to Assumption 2 , inventors in 

country B are more likely to meet locals in B and immigrants 
who have high talent. Second, the learning technology features 
positive complementarity in talent; thus, more talented inventors 

gain more from an interaction network with a higher average tal- 
ent. Thus, the assumptions that profits and learning opportuni- 
ties are increasing in talent generate positive sorting of migrants 

from B to A . In equilibrium, country B has more numerous and 

talented inventors, resulting in higher innovation and aggregate 

productivity. 

Why do migrant inventors ever return to their origin coun- 
try? In this model, return decisions result from the evolution 

of the productivity shock, ε. For a given value of z , locals move 

when their productivity abroad, ε, is high enough. Once they are 

abroad, they decide to return if ε evolves to a sufficiently low 

value. This result is formalized in Proposition 7 . Heterogeneity 

across ε also implies that not all individuals with the same talent 
z make the same decisions. Those with high enough ε choose to 

move abroad, whereas the others stay. 

PROPOSITION 7. Along a BGP, there exist thresholds ε̄AA (z ) , 
ε̄AB ( z ) , ε̄BB ( z ) , and ε̄BA ( z ) such that individuals with state ( z, ε) 

of type: 

� AA move to B if ε > ε̄AA (z ) , given z ; AB return to A if ε < ε̄AB (z ) , 

given z ; 
� BB move to A if ε > ε̄BB (z ) , given z ; BA return to B if ε < ε̄BA (z ) , 

given z . 

Proof. See Online Appendix A. 
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The equilibrium of the model is solved numerically in 

Section IV . A visualization of the migration thresholds and sta- 
tionary talent distributions is provided in Online Appendix C. 

III. DA T A, MEASUREMENT, AND EMPIRICAL FINDINGS 

This section documents empirical results on migration flows, 
migrants’ productivity, interactions, and spillovers on local inven- 

tors. I begin with a description of the data and proceed to the 

empirical strategy and results. 

III.A. Data 

Two primary sources of data on patents and inventors are 

used for the empirical analysis: the data on migratory patterns of 

inventors by Miguelez and Fink (2013) and disambiguated inven- 
tor data by Coffano and Tarasconi (2014) . 

Patent data have unique features for studying international 

migration. The empirical study of international migration is chal- 
lenging because of the limited availability of data that track in- 
dividuals across countries and consistently measure their output. 

Patent documents contain rich information on patent assignees 
(who own property rights on the patent and can be a firm, an in- 
dividual, or other types of institutions), the individual inventors 

who worked on the innovation, and a description of the innova- 
tion itself. Importantly, patent documents allow for inventors to 

be tracked over time and for their addresses to be recorded, which 

is helpful to identify migrants. As a result, patent data provide (i) 
a measure of individual-level mobility, tracking inventors across 

countries when they move; (ii) a consistent measure of inventors’ 
output and productivity, as measured by patent applications; and 

(iii) information on collaborations, given by the list of individuals 

appearing as co-inventors on each patent. 
The data on migratory patterns of inventors by Miguelez and 

Fink (2013) are extracted from information included in patent ap- 

plications filed under the Patent Cooperation Treaty (PCT). The 

PCT is an international treaty administered by the World Intel- 
lectual Property Organization (WIPO), which facilitates the route 

for seeking international patent protection. The PCT data cover 
about 54% of all international patent applications. Individuals 
can file a PCT application only if they are nationals or residents of 

a PCT member country. Thus, PCT applications have the unique 
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feature of recording both the residence and nationality of inven- 

tors for most patents to verify the applicants’ eligibility. A migrant 
is defined as someone who lives in a country other than the coun- 
try of nationality. Due to records on nationality, these data offer 

a comprehensive measure of migration that I use to quantify ag- 
gregate migration flows. Nevertheless, the migratory patterns of 
inventors by Miguelez and Fink (2013) are only available at the 

country level and do not allow observation of individual patents. 
For this reason, I turn to the data by Coffano and Tarasconi (2014) 
to enrich the analysis with individual-level observations. 

The disambiguated inventor data by Coffano and Tarasconi 
(2014) cover inventors who filed patents with the EPO in the 

period 1978–2016. They include the patent number, the name, 

and address of all inventors who contributed to the patent, the 

name and address of the assignee who owns property rights on 

the patent, the tec hnology c lass of the patents, and all citations 

to prior work listed on the patents. Notably, the disambiguated 

data identify the same inventor over time in different patent ap- 
plications, even across different addresses. 

An additional description and comparison of the patent data 

sets from the PCT and the EPO is provided in Online Appendix 

B. 

1. Measuring Individual-Level Migration. The disam- 
biguated EPO data do not provide information on the nationality 

of inventors . Thus , I develop a procedure to identify international 

migrants . The inventor’ s address provides information on the 

country of residence and reveals when a person migrates to a dif- 

ferent country. I identify migration as a change of address across 
different countries over time. I measure the time of migration as 
the date of the first patent application in the new country. This 

procedure allows the observation of rich information on migrants 
before and after migration, including the number of patent ap- 
plications, the firm they work for, and the individuals they work 

with. This classification also has some shortcomings. First, only 

people with at least two patents can be categorized into migrants 
and nonmigrants, because the procedure compares addresses in 

different patent applications. Second, those who migrate before 

ever filing a patent will not be categorized as migrants with this 
procedure. As a result, the migrants classification in the EPO 

data yields an undercount of the total number of migrants. To 
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address this limitation, I rely on the PCT data to provide an 

accurate measure of aggregate inventors’ migration flows. 
The result of the migrants’ classification procedure in the 

EPO data is a new data set that records the mobility of inventors. 

Nonetheless, observing an inventor moving from a specific origin 

to a destination does not imply that the place of origin coincides 
with the individual’s nationality. I complement the data set with 

an analysis of the ethnic origin of names using the commercial 
software Namsor. 28 The software takes as inputs the first and last 
name and country of residence and returns the most likely coun- 

try of origin, based on an algorithmic search of administrative 

databases. I use this information to infer the most likely country 

of origin of the international migrants in my data set. 29 

The EPO data contain records of 4,009,660 unique inventors, 
of which 1,287,257 file more than one patent and can be clas- 
sified into migrants and nonmigrants. I identify 12,713 unique 

migrants. For individuals who file at least three patents, I can 

also define “return migrants” as those who return to their first 
country after filing patents in another country for a certain pe- 

riod. I identify 2,489 return migrants in the data. The EU and 

the United States are the two most prominent geographical loca- 

tions covered in the data set, accounting for 67% of total inventors 
and 79% of all migrants. For this reason, in the calibration of the 

model, I set the EU to be location A and the United States to 

be country B (see Section IV.A ); thus, the empirical results focus 
on migration between the United States and the EU. Summary 

statistics on inventors and migrants in the EPO data are reported 

in Online Appendix Table B.1. 
The PCT data and the EPO data provide complementary in- 

formation on migration. The PCT data provide systematic infor- 

mation on aggregate migration flows. The EPO data provides rich 

micro-level data on migrants. Together, the data sets offer a com- 
prehensive view of the migration of inventors. 

2. Measuring Productivity and Interactions. The empirical 
analysis sheds light on key channels of the model, particularly on 

28. See Kerr (2008) and Breschi and Lissoni (2013) for a similar approach to 

the analysis of the ethnic origin of inventors’ names. 

29. Online Appendix B provides further details on the sample construction 

and on different assumptions on the imputation of migrants’ nationality and the 

migration year. 
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how migration is connected with changes in the productivity and 

interactions of inventors. In this section, I describe the measure- 
ment of individuals’ productivity and interactions in the patent 
data, following the literature on innovation (most closely, Akcigit 

et al. 2018 ). 
My benchmark measure of the innovative output of an in- 

ventor is the number of patent applications submitted by indi- 

vidual i in year t, denoted by p i,t . Other measures of produc- 
tivity commonly used in the innovation literature are based on 

the number of forward citations. I produce two additional mea- 

sures of an inventor’s productivity: (i) total citations per year, 
given by the sum of all citations received by all patents submit- 
ted in year t by inventor i ; and (ii) truncation-adjusted citations 

per year, given by the sum of citations in a three-year window 

after application for all patents submitted in year t by inven- 
tor i . The second measure accounts for the issue of truncation of 

citations, that is, the fact that older patents mechanically have 

more time to accumulate citations, as described in Hall et al. 
(2001) . 

The literature commonly considers forward citations as a 

measure of patent quality. However, for EPO and PCT, the proce- 

dure to collect citations can differ across regions and across patent 
filing procedures (see OECD 2009 ). 30 As a result, using citations 
to assess the productivity of a migrant across different locations 

can be misleading because citations could be collected differently 

in different locations. This issue is evident in Online Appendix Ta- 
ble B.1, Panel B, presenting the average value of a set of variables 

in the full sample , EU sample , and U.S. sample. All variables take 

similar values across the EU sample and U.S. sample except for 
citation measures, which are substantially lower in the U.S. sam- 

ple. Because of this issue, I use patent count as the main measure 

of productivity and use citations for robustness c hec ks. 
To measure interactions, I rely on records of co-inventors, 

that is, inventors listed on the same patents. In particular, I 

30. The literature on innovation and citations is mostly based on data from 

the U.S . P atents and Trademarks Office (USPTO). Applicants at the USPTO are 

legally required to include a full list of the prior art known or believed to be rel- 

evant, and failure to do so can result in patent litigation and penalties. Such a 

requirement does not exist at EPO, where citing prior art is optional, and exam- 

iners add most citations. See OECD (2009) for further details. 
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(A) (B)

FIGURE II 

Immigration and Emigration of Inventors in the U.S. and EU, 2000–2010 

Panel A illustrates the patents filed by immigrants as a share of patents filed 
by nationals in the United States and EU. Panel B illustrates the patents filed by 
U.S. and EU emigrants in foreign countries as a share of patents filed by U.S. and 
EU nationals in the home country. The darker shaded areas also highlight the 
share of patents accounted for by the migrants in the EU–U.S. corridor for each 

group. Source: PCT data set. 

define the co-inventors of individual i in year t as all inventors 

who are listed on patent applications submitted by i in year t. 

III.B. Empirical Findings 

Here I present the empirical results, which document four 
main findings: 

(i) Migration flows between the EU and the United States are 

asymmetric: the United States exhibits net immigration 

(brain gain), and the EU net emigration (brain drain). 
(ii) Migrants tend to become more productive after migration. 

(iii) Collaboration networks are heterogeneous for locals and 

migrants and migrants continue working with inventors 
at origin after moving. 

(iv) Local inventors tend to become more productive after a co- 

inventor emigrates. 

These results inform important channels of the model, and I 

use them to calibrate key parameters, detailed in Section IV.A . 

1. Migration Flows between the EU and the United States. 

Migration flows for the EU and the United States are shown in 

Figure II , based on PCT data. Panel A shows patents filed by im- 
migrants as a share of all patents filed by U.S. locals. Over the pe- 

riod 2000–2010, patents filed by immigrants in the United States 
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accounted for about 22% of patents filed by locals in the United 

States under the PCT. EU immigrants accounted for about 27% 

of all patents filed by immigrants in the United States. 31 By con- 
trast, in the EU, patents filed by immigrants accounted for only 

about 3% of patents filed by EU locals. U.S. immigrants in the EU 

accounted for about 15% of all patents filed by immigrants. 
Panel B shows patents filed by emigrants as a share of domes- 

tic patents in the location of origin. The magnitude of flows across 
locations is now reversed. Patents filed by U.S. emigrants account 
for only about 1% of patents filed by locals in the United States; 

40% of emigrant patents are accounted for by U.S. emigrants to 

the EU. On the other hand, patents filed by EU emigrants are 

about 7% of patents filed by local EU inventors and emigrants to 

the United States account for 62% of all emigrants’ patents. 
Migration flows are thus largely asymmetric. The United 

States attracts many foreign immigrants and exports relatively 

few emigrants, thus experiencing a brain gain. On the other hand, 
more emigrants are leaving the EU than immigrants are arriv- 
ing, resulting in a brain drain. This asymmetry is true both when 

considering the U.S.–EU migration corridor and when consider- 
ing broader migration flows with the rest of the world. 

After documenting aggregate migration flows, I turn to 

individual-level data to document results about individual mi- 
grants and their co-inventors. In particular, I explore whether 

the aggregate migration flows are accompanied by indirect effects 
along two dimensions: whether migrants become more productive 

after moving and whether migrants generate positive spillovers 

on locals. 

2. Evolution of the Productivity of Migrants. The previous 

section documented large and asymmetric migration flows. A po- 
tential positive consequence of migration, at the individual level, 
is that individuals might relocate to a place where they are more 

productive, thus producing more innovation. This motive for mi- 
gration is consistent with the model, where individuals make mi- 
gration decisions based on location-specific productivity shocks. 

This section describes how patenting activity evolves for migrants 
before and after they move. Migration decisions are endogenous 
to productivity outcomes. Thus, this section does not aim to 

31. The EU is the largest origin of immigrant inventors to the United States, 

followed by China and India. 
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identify the causal effect of migration on innovative activity; 

rather, it documents the dynamics of patenting productivity 

around the time of migration. 
The evolution of innovative activity for migrants is docu- 

mented with an event study centered around the time of migra- 
tion, using a difference-in-differences design. A potential concern 

is that inventors’ productivity may follow a different trajectory 

than the general population of inventors. To address this con- 
cern, I compare migrants with a “placebo” control group of local 
inventors who appear similar to migrants before migration, never 

moved internationally, and are not co-inventors of migrants, fol- 
lowing Jaravel, Petkova, and Bell (2018) . To build the control 
group, I use a one-to-one exact matching procedure on the coun- 

try of origin, the first year in the sample, the cumulative number 
of patent applications at the time of migration, and experience at 
migration. 32 In addition, I require individuals in the control group 

to file for a patent in the first year after the migration, consis- 
tent with the sample construction of actual migrants. Using this 
procedure, 855 out of 1,065 migrants from the EU to the United 

States find an exact match, and 490 out of 512 migrants from the 

United States to the EU find an exact match. Thus, the matching 

procedure results in a total of 2,690 individuals, which I use for 
the analysis. Online Appendix B presents the summary statistics 
and balance tables before and after matching for individuals of 

EU and U.S. origin, respectively. 
Figure III , Panel A shows the path of mean patent appli- 

cations per year for migrants (solid line) and the placebo con- 

trol group (dashed line) around the year of migration. This fig- 
ure shows that the patenting activity of migrants is on a similar 
trajectory as the placebo control group before the time of migra- 

tion, but it increases afterwards. Notice that the construction of 
the control group is such that migrant and placebo inventors have 

the same cumulative stock of patent applications by the time of 

migration, but the dynamic trajectory is not matched. The raw 

means for migrant and placebo inventors offer a transparent de- 
piction of the data and bolster the credibility of the empirical 

32. When more than one exact match is made, ties are broken at random. 

When individuals migrate more than once, I consider the time of the first migra- 

tion. Matching on additional variables such as the cumulative number of citations 

at the time of migration or the technology field is possible, but it reduces the num- 

ber of exact matches substantially. 
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(A) (B)

FIGURE III 

Patenting Activity by Migrant Inventors Around the Time of Migration 

The figure displays changes in migrants’ productivity around migration time 
relative to the placebo control group. Panel A displays the raw means. Panel B dis- 
plays the estimated coefficients from the regression specification in equation (20) . 
Unbalanced panel. EU migrants: 4,731 observations. U.S. migrants: 2,598 obser- 
vations. EU placebo: 4,673 observations. U.S. placebo: 2,463 observations. Stan- 
dard errors are clustered at the inventor and year level. 

exercise, but cannot control for potential individual, year, or age- 

profile fixed effects nor for potential mechanical effects due to the 

construction of the sample. To address these concerns, I turn to a 

regression framework. 
To study the dynamics of productivity around the time of mi- 

gration, I implement an OLS specification that includes the fol- 

lowing elements. First, I include a set of leads and lags around 

migration time for migrants ( L 
Mig 
it 

) associated with the coefficients 

{ βMig 
τ } 5 

τ= −5 , where τ denotes time relative to the year of migration. 
Second, I include a set of leads and lags around the time of migra- 
tion that is common to both the migrants and the controls ( L 

All 
it 

) 

associated with the coefficients { βAll 
τ } 5 

τ= −5 . I also include individ- 
ual fixed effects ( αi ), year fixed effects ( αt ), and experience fixed 

effects ( αe ). The resulting OLS specification is the following: 

x it = 

5 
∑ 

τ= −5 

βMig 
τ 1 [ L 

Mig 
it 

= τ ] + 

τ=5 
∑ 

τ= −5 

βAll 
τ 1 [ L 

All 
it = τ ] 

+ αi + αt + αe + εit . (20) 

The main outcome variable of interest, x it , is the number of 
patent applications per year. The coefficients of interest are 

{ βMig 
τ } 5 

τ= −5 , which denote the differential productivity of migrants. 

The individual fixed effects control for permanent individual 
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TABLE I 

PATENTING ACTIVITY OF MIGRANTS AROUND THE TIME OF MIGRATION 

Number of patent applications per year 

All EU origin U.S. origin 

(1) (2) (3) 

Post migration 0.6915 ∗∗∗ 0.6053 ∗∗∗ 0.8670 ∗∗∗

(0.0624) (0.0759) (0.1418) 

Observations 14,463 9,403 5,060 

R 2 0.351 0.408 0.318 

Inventor FE X X X 

Year FE X X X 

Notes. The table displays the estimated change in migrants’ productivity around migration time relative to 
the placebo control group from the regression specification in equation (21) . Column (1) displays the bench- 
mark regression results for all migrants along the U .S.–EU corridor . Column (2) includes only the sample of 
migrants of EU origin. Column (3) includes only the sample of migrants of U.S. origin. Standard errors in 
parentheses are clustered at inventor and year level. ∗ p < .10; ∗∗ p < .05; ∗∗∗ p < .01. 

characteristics, whereas the lags and leads common to all ( L 
All 
it ) 

control for joint dynamics around the time of migration. 
To summarize the results, I use a more parsimonious specifi- 

cation, with a dummy turning to one after the time of migration 

for migrants ( A f t erMigrat ion 
Mig 
it 

) and another dummy turning to 

one after migration for all ( A f t erMigrat ion 
All 
it ). The specification 

is the following: 

x it = βMig A f t erMigrat ion 
Mig 
it 

+ βAll A f t erMigrat ion 
All 
it 

+ αi + αt + αe + εit . (21) 

Figure III , Panel B reports the estimates and the 95% point- 

wise and uniform confidence intervals for the coefficients βMig 
τ

from specification (20) . 33 The figure indicates that migration is 
associated with an increase in patent applications per year for 

migrants, compared with the placebo control group. The increase 

in productivity accrues immediately on migration and declines 
over time. The figure also shows no pre-trends before migration, 

bolstering the credibility of the empirical exercise. 
To summarize the results, I implement specification (21) . The 

results are reported in Table I , column (1). The estimated coeffi- 
cient for βMig indicates that migrants apply for 0.69 more patents 
per year than the locals in the placebo control group after migra- 

tion on average, with a standard error of 0.06. The coefficient is 

33. The point estimate on the lag in the year before migration is normalized 

to one. 
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statistically significant at the 1% confidence level, and the mag- 

nitude is economically large: it indicates that patent applications 
for migrants after migration increase by about 33% relative to the 

sample average (equal to about 2.1 patent applications per year 

for individuals in the event study sample). 
I use the same specification to investigate the heterogeneity 

of this result. In Table I , columns (2) and (3), I explore whether 

the effect is different for the subsample of migrants of EU and 

U.S. origin, respectively. The point estimates indicate that the 

average increase in patents relative to the locals per year after 

migration is 0.61 for EU and 0.87 for U.S. inventors. These esti- 
mates correspond to an increase in patent applications per year 
after migration of about 29% for EU inventors and 40% relative 

to the sample average (which is 2.1 patent applications per year 
for EU and 2.15 for U.S. inventors). 34 

Online Appendix B reports a series of additional robustness 

c hec ks. A recent literature highlights limitations of the two-way 

fixed-effects regressions model as in equation (20) . I show that 
results are similar when using alternative estimators. An addi- 

tional concern is that many migrants remain employed by a for- 
eign subsidiary of the same company after moving. The observed 

change in patenting could be the consequence of a reorganization 

at the firm level, which involves the reallocation of individuals 
and increases in productivity. To rule out this possibility, I show 

that the effects are robust for migrants who switch companies. Fi- 
nally, I show robustness when using citation-based measures and 

different assumptions on the imputation of migrants’ nationality 

and the migration year. 
Overall, these findings suggest that migrants tend to become 

more productive after migration, consistent with the model. The 

larger productivity change for U.S. migrants than for EU mi- 
grants is consistent with the model, where U.S. inventors are will- 
ing to move to the EU only when they draw a large foreign pro- 

ductivity differential, which makes them more productive in the 

EU, to compensate them for giving up better returns and learning 

opportunities in the United States, which is the frontier economy 

with the higher return to innovation and higher human capital. 
These results help inform the calibration of the expected increase 

in productivity for a migrant relative to a local inventor. 

34. Dynamic event studies for the EU and U.S. samples are reported in Online 

Appendix B. 
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FIGURE IV 

Interaction Networks 

The figure is based on the inventor-coinventor pairs in the EPO data set. Inven- 
tors are grouped into four categories: EU locals, EU migrants, U.S. migrants, and 
U.S. locals. For each category, the co-inventors are also grouped into the same four 
categories. The figure displays the share of co-inventorship relationships belong- 
ing to each category. 

3. Interaction Networks. In the model, collaboration net- 
works are different for locals and migrants. Nonetheless, mi- 

grants continue interacting with inventors in their origin country 

after migration. To discipline interactions in the data, I explore 

the network of co-inventors of locals and migrants. 

I consider four groups of inventors in the data: EU locals, EU 

emigrants (i.e., migrants from the EU to the United States), U.S. 
locals, and U.S. emigrants (i.e., migrants from the United States 

to the EU). For each inventor, I collect the set of all their collabo- 
rations , that is , the list of all of their co-inventors. 35 For inventors 

in each group, I compute the share of co-inventors who belong to 

the same group or each of the other three groups. The results are 

displayed in Figure IV , which reveals that the interaction net- 

works are very different for locals and migrants and depend on 

the country of origin. 

35. If two inventors co-patent more than one time, I include the pair multiple 

times. Results are similar when including a unique observation per pair. 
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The figure shows that locals co-invent mostly with other 

locals in the same location. In particular, for EU locals, the 

share of interactions with other EU locals is 96%, and the 

same number holds for the share of collaborations of U.S. lo- 

cals with other U.S. locals. For EU locals, other interactions 
are accounted for by EU emigrants for 1%, U.S. locals for 3%, 
and U.S. emigrants for only 0.1%. For U.S. locals, collabora- 

tions with U.S. emigrants account for 0.2% of their interactions, 
EU locals for about 3.5%, and EU migrants for 0.3%. Migrants 
have more heterogeneous co-inventors. In particular, for EU em- 

igrants, 64% of co-inventors are EU locals, 2% are other EU em- 
igrants, 33% are U.S. locals, and 1% are U.S. emigrants. For U.S. 
emigrants, 63% of interactions are with U.S. locals, 2.5% with 

other U.S. emigrants, 32% with EU locals, and 2.5% with EU 

emigrants. 
Figure IV provides evidence that migrants have a different 

interaction network than locals, but it does not reveal whether 
the interaction network changes for migrants after migration, 
or whether migrants already had a different pattern of interac- 

tion than the average local before moving. To explore the dy- 
namics of the migrants’ interactions, I implement the regres- 

sion model described in equation (21) on the sample of migrant 
inventors and the placebo control group. The results are dis- 
played in Table II . The outcomes of interest are the share of mi- 

grants’ co-inventors who are locals in the place of origin (Panel 
A) and locals at destination (Panel B). Column (1) indicates 
that the migrants’ share of local co-inventors at origin declines 

by about 0.13 on average after migration relative to the con- 
trol group, while the share at destination increases by about 
0.11. The estimates are statistically significant and sizable, given 

that they amount to an increase of about 15% and 89% rel- 
ative to the sample average of the share of local co-inventors 
at origin and destination, respectively. The results are similar 

for migrants of EU origin, in column (2), and U.S. origin, in 

column (3). 36 

Overall, these results provide evidence that migrants access 

different interaction networks after migration, but importantly, 
they also keep collaborating with inventors at origin after moving. 

36. Additional details and dynamic specifications are described in Online 

Appendix B. 
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TABLE II 

INTERACTIONS OF MIGRANTS AROUND THE TIME OF MIGRATION 

All EU origin U.S. origin 

(1) (2) (3) 

Panel A: Co-inventors at origin 

Post migration −0.1274 ∗∗∗ −0.1347 ∗∗∗ −0.1145 ∗∗∗

(0.0077) (0.0097) (0.0126) 

Observations 12,839 8,206 4,631 

R 2 0.735 0.712 0.765 

Inventor FE X X X 

Year FE X X X 

Panel B: Co-inventors at destination 

Post migration 0.1064 ∗∗∗ 0.1201 ∗∗∗ 0.1088 ∗∗∗

(0.0078) (0.0101) (0.0122) 

Observations 12,839 8,206 4,631 

R 2 0.715 0.689 0.747 

Inventor FE X X X 

Year FE X X X 

Notes. The table describes the change in the share of local co-inventors at origin (Panel A) and destination 
(Panel B) for migrants after migration relative to the placebo control group. Column (1) displays the estimates 
for the full sample. Column (2) displays the estimates for inventors of EU origin. Column (3) displays the 
estimates for inventors of U.S. origin. Standard errors in parentheses are clustered at the inventor and year 
level. ∗ p < .10; ∗∗ p < .05; ∗∗∗ p < .01. 

4. Local Inventors and Interactions with Emigrants. The 

previous results documented that migrants become more 

productive after migration and keep collaborating with inven- 
tors in their origin country. A potential positive spillover from 

the brain drain is that emigrants could be a vector of knowledge 

transfer from their host countries to the locals in their place of ori- 

gin, especially if, after moving, emigrants continue to collaborate 

with inventors in the country of origin. This section investigates 
the productivity dynamics of local co-inventors of migrants in the 

country of origin. 
To document changes in productivity for co-inventors of mi- 

grants, I build the network of co-inventors in the country of ori- 

gin for each of the migrant and placebo control inventors from 

the previous section. I exclude co-inventors who are also mi- 
grants. Whenever a local inventor is associated with multiple 

migrants, I consider the time of migration of the first migrant. 
I also exclude co-inventors associated both with a migrant and 

a placebo inventor. This procedure yields 12,627 co-inventors of 

EU migrants, 4,733 co-inventors of U.S. migrants, 19,478 co- 
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(A) (B)

FIGURE V 

Patenting Activity by Co-inventors of Migrants Around the Time of Migration 

The figure displays the changes in the productivity of local co-inventors of mi- 
grants in the country of origin around migration time relative to the co-inventors 
of the placebo control group. Panel A displays the raw means. Panel B displays the 
estimated coefficients from the regression specification in equation (20) . Unbal- 
anced panel. EU co-inventors of migrants: 20,073 observations; U.S. co-inventors 
of migrants: 9,196 observations; EU co-inventors of placebo: 17,233 observations; 
U.S. co-inventors of placebo: 12,397 observations. Standard errors are clustered at 
the associated migrant inventor and year levels. 

inventors of EU placebos, and 8,621 co-inventors of U.S. placebos. 

Online Appendix B presents the summary statistics and balance 

tables for co-inventors of migrants and placebo inventors of EU 

and U.S. origin. 

I explore the productivity dynamics of local co-inventors after 
their migrant collaborator moves a wa y, using a similar empirical 
setup to the one in the previous section. In particular, I implement 

event studies for locals and set the event’s time equal to zero (i.e., 
τ = 0 ) when the emigrant leaves. I then compare the productiv- 

ity of co-inventors of migrants to co-inventors of placebo inven- 
tors. In principle, the departure of a migrant could either benefit 
or damage local inventors’ productivity. Benefits could derive, for 

example, from knowledge spillovers. On the other hand, distance 

and reduced interactions with the migrant could decrease the lo- 
cal inventor’s productivity. 

Figure V , Panel A shows the path of mean patent applica- 
tions per year for co-inventors around the year of migration of 
their associated migrant or placebo inventor. The figure shows 

that patenting for co-inventors of migrants is on a similar trajec- 
tory to the placebos before the time of migration, but it increases 
after. The similarity in the raw mean of patent applications per 

year before migration is remarkable because the two groups of co- 
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inventors are not matched on any variable. After observing pat- 

terns in the raw data, I turn to a regression framework. 
I repeat the OLS specification as in equation (20) on the sam- 

ple of co-inventors of migrants and placebos, who never migrate. 

The relative time in this event study, denoted by τ , now indicates 
the number of years relative to the year of migration of the associ- 
ated emigrant. Figure V , Panel B shows the estimated coefficients 

and 95% point-wise and uniform confidence intervals for βMig 
τ

from specification (20) run on the sample of co-inventors. The fig- 
ure shows no pre-trends in the patenting activity of co-inventors 

of migrants relative to the co-inventors of placebos before the year 
of migration, bolstering credibility that the observed effect is not 
driven by differential trends. After migration, co-inventors of mi- 

grants file more patents per year than the co-inventors of place- 
bos, and the effect is persistent up to five years after the time of 
migration. 37 

To summarize the results, I implement specification (21) on 

the sample of co-inventors, where time is relative to the year 
of migration of the associated co-inventor. Table III reports the 

results. Column (1) indicates that co-inventors of migrants file 

about 0.35 more patents a year than co-inventors of placebo in the 

five years after the migration of their associated inventors on av- 
erage. This effect is statistically significant at the 1% confidence 

level. The magnitude of the estimated coefficients corresponds to 

a 16% increase in patenting relative to the sample mean. 
Columns (2) and (3) show the results for the subsamples of 

inventors of EU and U.S. origin, respectively. The estimated co- 

efficients are positive and statistically significant in both cases. 
The point estimates are 0.25 for EU inventors and 0.48 for U.S. 
inventors, corresponding to an average increase in patenting of 

about 11% and 22% per year, respectively, relative to the sample 

mean. 38 

Online Appendix B presents more results and robustness 

c hec ks. I replicate the event studies with alternative estimators. 

37. In this setup, there may be serial correlation in an inventor’s outcomes 

over time and the outcomes of local co-inventors associated with the same migrant 

may be correlated. To account for both forms of correlation, I cluster standard er- 

rors at the level of the associated migrant inventor and year; see Jaravel, Petkova, 

and Bell (2018) . 

38. Dynamic event studies for the EU and U.S. samples are reported in Online 

Appendix B. 
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TABLE III 

PATENTING ACTIVITY OF CO-INVENTORS OF MIGRANTS AROUND THE TIME OF 

MIGRATION 

Number of patent applications per year 

All EU origin U.S. origin 

(1) (2) (3) 

Post co-inventor migration 0.3507 ∗∗∗ 0.2498 ∗∗ 0.4831 ∗∗∗

(0.0674) (0.0934) (0.1136) 

Observations 58,898 37,305 21,591 

R 2 0.440 0.455 0.416 

Inventor FE X X X 

Year FE X X X 

Notes. The table displays the estimated coefficients for the changes in the productivity of local co-inventors 
of migrants in the country of origin around migration time relative to the co-inventors of the placebo con- 
trol group from the regression specification in equation (21) . Column (1) displays the benchmark regression 
results for co-inventors of migrants at origin. Column (2) includes only the sample of co-inventors of EU ori- 
gin. Column (3) includes only the sample of co-inventors of U.S. origin. Standard errors in parentheses are 
clustered at the associated migrant inventor and year level. ∗ p < .10; ∗∗ p < .05; ∗∗∗ p < .01. 

I document that the increase in productivity is more pronounced 

for local co-inventors who continue to co-invent with the migrant 
after she moves a wa y. 39 I show that results are robust for co- 

inventors of migrants who switch firm upon migration and co- 
inventors of return migrants. I also show that results are robust 
when excluding patents that are co-invented with migrants. I im- 

plement an IV strategy to provide causal identification of the ef- 
fect of exposure to migration on local inventors’ productivity, us- 
ing a shift-share instrument based on immigrant enclaves. 

The results of this section show that individuals tend to be- 
come more productive when they are exposed to the migration 

of a co-inventor. This finding is consistent with the model, where 

local inventors become more productive after interacting with mi- 
grants, because migrants are more productive on average. These 

results help quantify the magnitude of the knowledge-transfer 

channel. 

IV. QUANTIT A TIVE ANALYSIS 

This section quantifies the effects of migration and knowl- 
edge transfers on innovation and productivity and studies the 

39. About 9% of local co-inventors at origin continue to co-invent with the 

associated migrant after migration. 
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effects of counterfactual taxation and immigration policy. To do 

this, I calibrate the model from Section II along a BGP to match 

the empirical results from Section III . I show that the calibrated 

model closely fits the data for both targeted and non-targeted mo- 

ments, and I use it to study counterfactual policy exercises. 

IV.A. Calibration 

I calibrate the model along a BGP equilibrium to match fea- 

tures of the EU–U.S. migration corridor, setting the EU to be 

country A and the U.S. to be country B . The benchmark calibra- 
tion aims to study the role of policies on equilibrium migration, 

innovation, and allocation of talent. To highlight the role of policy, 
I set the parameters for the distribution of talent and the share 

of inventors to be the same across locations; that is, θA = θB , and 

I A = I B . The total population is also the same in the two locations 
and normalized to a mass of one. 40 

Given this restriction, 23 parameters remain to be calibrated, 
described in Table IV . 

These parameters are { β, r, δ, α, ν, τA , τB , I A , μ̄, κ, λ, η, σ, θA , ρ, 

ω A , ω B } and six free parameters in the set of { ψ i, j } for i, j ∈ 

{ AA, AB, BA, BB } (discussed in further detail below). 
The calibration proceeds in three steps. First, eight pa- 

rameters are calibrated to match existing results in the lit- 
erature ( β, r, δ, α, ν, τA , τB , I A ). Second, six parameters are di- 
rectly matched to the microdata on interactions of inventors 

( ξAB,AA , ξAB,BB , ξBB,AA , ξBA,AA , ξBA,AB , and ξBA,BB ). Third, the re- 
maining nine parameters are jointly calibrated using the simu- 
lated method of moments (SMM) to match important features of 

the microdata ( ̄μ, κ, λ, η, σ, θA , ρ, ω A , ω B ). 

1. External Calibration. In the model, production and 

preferences are similar to the existing literature. The key inno- 

40. The assumption that the two locations have the same total population is 

motivated by the application to the United States and the EU, which have roughly 

similar population sizes. In Online Appendix C.2.1, I present a robustness exercise 

where I allow the number of inventors to be different across the two locations. The 

relative scale of the two countries in terms of total population is relevant for the 

results of the model, because inventors’ profits are increasing in the population 

size. If the United States were compared to another smaller country, or to any of 

the single EU countries taken alone instead of the EU altogether, it would be more 

difficult for a small country to attract U.S. migrant inventors because of the small 

market size. 
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TABLE IV 

PARAMETER VALUES 

Parameter Description Value Standard error 

Panel A: External calibration 

β Discount rate 0.97 

r Interest rate 0.03 

δ Survival rate 0.95 

α Final-good production 0.11 

ν Inventor-firm match rate 1.00 

τA Tax rate EU 0.40 

τB Tax rate United States 0.30 

I A Share R&D workers 0.01 

Panel B: Direct match to data 

ξAB,AA Meeting frictions 1.34 

ξAB,BB Meeting frictions 0.67 

ξBB,AA Meeting frictions 0.07 

ξBA,AA Meeting frictions 0.68 

ξBA,AB Meeting frictions 1.04 

ξBA,BB Meeting frictions 1.27 

Panel C: SMM calibration 

μ̄ Migration cap to United States (share 

of inventors) 

0.010 0.0003 

κ Cost of migration 0.128 0.039 

λ Meeting intensity 0.052 0.005 

η Learning technology 0.531 0.008 

σ Technology absorption 0.011 0.001 

θ Talent cumulative distribution 

function 

14.533 2.074 

ρ Location shock persistence 0.460 0.128 

ω A Location shock SD A 0.530 0.040 

ω B Location shock SD B 0.285 0.011 

Notes. For the simulated method of moments (SMM) calibration (Panel C), all parameters are calibrated 
jointly; standard errors are computed with a bootstrap procedure. 

vation in the framework is how individuals interact and make 

migration decisions. Therefore, the parameters for preferences 
and production are externally calibrated to closely follow the 

literature. I set α = 0 . 11 ( Akcigit and Kerr 2018 ), β = 0 . 97 , 
r = 0 . 03 , δ = 0 . 95 , and I A = 0 . 01 ( Akcigit, Pearce, and Prato 

forthcoming ). The parameter ν governs the matches between 

firms and inventors. A value ν < 1 means that a larger number 
of inventors in the economy leads to a lower matching rate per 
inventor, resulting in lower “realized” innovation per individ- 

ual. Thus, immigration can crowd out innovation by locals by 
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reducing the technology-selling probability for inventors. Kerr 

and Lincoln (2010) and Hunt and Gauthier-Loiselle (2010) study 

the effects of immigration on innovation and find no evidence 

of displacement of locals and, if anything, evidence of crowding 

in. I set the baseline value of ν = 1 . On the other hand, Borjas 
and Doran (2012) find evidence that Soviet mathematicians 
who immigrated to the United States displaced U.S. scientists 

working in the same field. To account for contrasting evidence, 
in Online Appendix C, I explore robustness to different values of 
ν. Finally, I set τA = 0 . 4 and τB = 0 . 3 . Although the tax system 

cannot be thoroughly summarized with one parameter, these 

values approximate the different taxation of labor income, which 

is higher in the EU than in the United States ( OECD 2021b ). 41 

The parameters are listed in Table IV , Panel A. 

2. Direct Match to Microdata. The parameters for the meet- 
ing frictions are calibrated to directly match the microdata 

on co-inventors, presented in Figure IV . This figure displays, 
for any group of inventors, the share of co-inventors that are 

EU locals, U.S. locals, EU migrants, or U.S. migrants. Thus, 

eac h bloc k in this figure corresponds to a model object ψ i, j for 
some i, j ∈ { AA, AB, BB, BA } . Mapping the data to the model re- 
quires accounting for some additional restrictions. First, the to- 

tal number of matches between individuals of groups i and 

j must satisfy the following condition: μi λψ i, j = μ j λψ j,i . Sec- 
ond, for every i , the probabilities of meeting each group in the 

economy must add up to one; that is, 
∑ 

j∈J ψ i, j = 1 . Thus, six 

free parameters remain to be matched directly to the data, 
ψ AB,AA , ψ AB,BB , ψ BB,AA , ψ BA,AA , ψ BA,AB , and ψ BA,BB , summarized in 

Table IV , Panel B. 

3. Internal Calibration Using SMM. For the remaining 

nine parameters { ̄μ, κ, λ, η, σ, θA , ρ, ω A , ω B } , I select nine informa- 

tive moments from the data and empirical results in Section III . I 
compute the corresponding moments in the model by simulating 

the behavior of the economy along a BGP equilibrium and simu- 

lating a sample of inventors, their migration decision, their inter- 
actions, and their resulting productivity. I implement the SMM, 

41. I consider taxes on labor income because most inventors in the EPO 

patent data are employees for private firms and for consistency with the litera- 

ture ( Akcigit, Baslandze, and Stantcheva 2016 ). 
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minimizing the squared percent distance between the model- 

simulated moments, M(�) , and their empirical counterparts, M 
E , 

by searching over the parameter space �, using a simulated 

annealing algorithm: 

min 
�

8 
∑ 

i =1 

( 

M 
E 
i − M i (�) 

0 . 5( M 
E 
i 

+ M i ( �)) 

) 2 

. 

Even though the parameters are jointly calibrated, I provide a 

heuristic discussion of the most relevant moment for each param- 
eter. 

i. Share of Migrants EU–U.S. The share of inventors with 

nationality from one of the 28 EU countries who patented from a 

U.S. address was, on average, 5.7% of local Europeans in the years 
2000–2010 in the PCT data ( Figure II ). This moment primarily 

informs the mass of inventors allowed to enter country B in every 

period, μ̄. 42 

ii. Share Migrants U.S.–EU. The share of inventors with U.S. 
nationality who patented from a EU address was, on average, 
0.4% of local Americans in the years 2000–2010 in the PCT data 

( Figure II ). This moment primarily informs the cost of migration, 
κ. 

iii. Share of Return Migrants. The share of inventors who re- 
turn to their original country in any given year, as a fraction of 

active migrants, is 0.135, on average, in the EPO data. This mo- 
ment primarily informs the persistence of productivity shocks, ρ, 
because in the model, inventors choose to return to their country 

of origin when they are affected by a negative enough productivity 

shock abroad. 

iv. � Productivity Migrants from the EU to the United States. 

I target the average change in productivity after migration for mi- 

grant inventors from the EU to the United States. I replicate an 

event study equivalent to Figure III using data generated from 

the model. Specifically, I simulate the steady state of the model 

and collect a sample of migrants, with the same number of indi- 
viduals as the data sample. 43 I match every migrant with a local 

42. The migration restriction to country B is modeled to represent features of 

the H1B visa program for high-skilled immigrants into the United States. 

43. In the data, individuals need to file for a patent before and after moving 

to different countries to be classified as migrants. For consistency, I drop from the 

model-simulated sample those inventors who move before their first innovation or 

exit the economy after moving but before producing an innovation at destination. 
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individual with the same location of origin, and the same level 

of productivity ( z ) and experience (years since birth) in the year 
before migration, obtaining a control group of “placebo migrants.”
I run the following regression from the simulated data: 

q it = 

5 
∑ 

τ= −5 

βMig 
τ 1 [ L 

Mig 
it 

= τ ] + 

τ=5 
∑ 

τ= −5 

βAll 
τ 1 [ L 

All 
it = τ ] + εit , 

where i indexes the simulated inventors and t the simulated pe- 

riods. The variable q is the bundle of technologies produced by 

the simulated inventors, according to the model. I take the av- 
erage value of coefficients βMig 

τ for five periods after migration. I 

transform it into a percentage change by dividing it by the aver- 
age number of patents (in the data) or bundle q (in the model- 
simulated data) per year for migrants in the sample before mi- 

gration. I obtain a target value of 0.231. In the model, the produc- 
tivity of migrants, after they move, is boosted by the productivity 

shock ε. Thus, this moment primarily informs the standard devi- 

ation of the productivity shock for EU-born inventors, ω A . 

v. � Productivity of Migrants from the United States to the 

EU. The construction of the target moment in the model and in 

the data is analogous to the case for migrants from the EU to 

the United States. In this case, I target the average percentage 

change in productivity after migration for migrant inventors from 

the United States to the EU, with a target value of 0.333. This mo- 

ment primarily informs the standard deviation of the productivity 

shock for U.S.-born inventors, ω B . 

vi. � Productivity of Co-inventors of Migrants in the EU. I 
target the average change in productivity for locals in the EU af- 

ter they interact with a EU emigrant in the United States, as 
reported in Table III , column (2). I produce an event study us- 
ing data generated from the model. In particular, given the sim- 

ulated migrants and control group described above, I collect all 
the local individuals who interact with them in the simulated 

sample. I run an event study on the group of locals who inter- 

act with migrants versus locals who interact with “placebo.” Time 

0 in the event study corresponds to the first interaction of the lo- 
cal with a migrant (or placebo). I match the coefficient from the 

model-simulated event study to the coefficient in the empirical 
event study. I transform it into a percentage change by divid- 
ing it by the average number of patents per year for locals in 

the sample before interaction with migrants, obtaining a target 
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value of 0.118. In the model, locals can boost their productivity as 

they learn from interactions . Thus , this moment, along with the 

equivalent coefficient for U.S. locals, primarily informs the pa- 
rameters that govern the learning process, η and λ. 

vii. � Productivity of Co-inventors of Migrants in the United 

States. I target the average change in productivity for locals in 

the United States after they interact with an American emigrant 
in the EU, as reported in Table III , column (3). The description 

of the moment is analogous to the one for EU locals. The target 

percentage change in productivity is 0.230. 

viii. Growth Rate. I target a growth rate of 1.5%. In the 

model, the growth rate is tightly connected to the distribution of 
talent in the economy. Thus, this moment primarily informs the 

shape of the exogenous talent distribution, θA . 

ix. TFP Gap. In the model, the parameter σ governs the av- 
erage productivity gap between the two locations (see equation 

(17) ). To obtain a similar counterpart in the data, I rely on the in- 
dicator of GDP per hour worked built by the Organisation for Eco- 
nomic Co-operation and Development ( OECD 2021a ) and com- 

pare the average productivity gap between the United States and 

the EU in the years 2000–2010. 

IV.B. Quantitative Results 

1. Calibrated Parameters and Targeted Moments. Table IV , 
Panel C displays the value of parameters calibrated with the 

SMM and the standard errors computed with a bootstrap pro- 

cedure. The calibrated value of μ̄ = 0 . 01 indicates that the flow 

of immigrant inventors allowed into the United States amounts 

to 1% of local U.S. inventors. The calibrated meeting intensity 

indicates that in the model, inventors have about a 5% proba- 
bility of meeting other inventors in every period. The parameter 

η = 0 . 531 indicates that inventors can learn substantially from 

interactions. Finally, the calibrated cost of migration of κ = 0 . 128 

indicates that the cost of moving is approximately equal to 0.3% 

of the discounted lifetime value of an inventor born in the EU. 
Table V reports the target moments from the data and the 

corresponding values obtained in the calibrated model. The cal- 

ibration provides a close fit for the targeted moments. Overall, 
the model predicts important features of migration and interac- 
tions. In particular, it replicates the asymmetric migration flows 

of inventors between the United States and the EU. In addi- 
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TABLE V 

MOMENTS 

Moment Data Model 

Share migrants EU–U.S. (% domestic inventors) 0.057 0.050 

Share migrants U.S.–EU (% domestic inventors) 0.004 0.004 

Share return migrants (% migrants) 0.135 0.239 

� productivity migrants from EU to U.S. (%) 0.231 0.229 

� productivity migrants from U.S. to EU (%) 0.333 0.334 

� productivity co-inventors of migrants EU (%) 0.118 0.136 

� productivity co-inventors of migrants U.S. (%) 0.230 0.228 

Growth rate (%) 1.50 1.25 

TFP gap 0.90 0.90 

Notes. The table presents the value of moments in the data and in the calibrated model. 

(A) (B)

FIGURE VI 

Event Studies on Productivity of Migrants and Locals: Data Versus Model 

The figure describes event studies for changes in the productivity of migrants 
(Panel A) and local co-inventors of migrants in the country of origin (Panel B) 
around migration time. The circles indicate estimates from a model-simulated 
sample. The crosses indicate estimates from the data, corresponding to Figures III 
and V . The dotted and dashed lines indicate the 95% confidence intervals for the 
data and the model, respectively. 

tion, the model generates an increase in productivity for mi- 
grants after migration. Importantly, the model also replicates the 

increase in productivity for local inventors due to interactions be- 
tween migrants and locals. 

2. Non-targeted Moments. Figure VI shows the event stud- 
ies for migrants and co-inventors in the data and in the model, as 
described in the previous section. The crosses represent the point 

estimates from Figures III and V . The circles represent the event 
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(A) (B)

FIGURE VII 

Experience at First Migration: Data Versus Model 

The figure displays histograms of the number of years of experience for migrants 
at migration time, in the data (Panel A) and the model (Panel B). Experience 
indicates the number of years since the first patent application. 

studies generated from model-simulated data. The figure reports 
also the 95% confidence intervals for the model (dashed line) and 

the data (dotted line). Even if only the average effect after the 

event is targeted, the model provides a good fit for the dynamic 
pattern. 

Panel A documents the change in migrants’ productivity. In 

the data, this does not represent the causal effect of migration. 
Instead, it describes dynamics around migration time, because 

individuals move in response to endogenous changes to opportu- 

nities abroad, which affect their productivity. Importantly, this 
mechanism is also present in the model, where individuals move 

in response to changes to their productivity differential abroad 

( ε), which results in a jump in productivity after moving. After 
the initial jump, productivity declines due to the mean-reverting 

nature of the process for ε. 
Panel B documents the change in productivity for local co- 

inventors of migrants in the origin country. In the model, the 

observed increase in productivity occurs because locals can meet 
emigrants abroad. These meetings increase the productivity of lo- 
cals substantially, because they can learn from the innovations of 

emigrants, which on average are sizable due to the foreign pro- 
ductivity differential ε. 

The model also replicates important qualitative features of 

the data. Figure VII , Panel A displays a histogram of the num- 
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(A) (B)

FIGURE VIII 

Average Productivity of Migrants Before Migration: Data Versus Model 

Panel A depicts the average residualized patent applications per year for U.S. 
and EU migrants before migration in the data, after controlling for year and ex- 
perience fixed effects. Panel B shows the average innovation per year in the model 
( q ) for U.S. and EU migrants before migration. 

ber of years of experience (i.e., years since the first patent) of 
migrants at the time of their first migration, from the EPO data. 
Most migrants in the sample migrate early in their careers; as the 

experience at first migration increases, the frequency in the sam- 
ple declines. Panel B shows that the calibrated model replicates 
this qualitative aspect of migration data. 

Another relevant qualitative feature of this framework is 
the self-selection of migrants based on their talent, displayed in 

Figure VIII . In the model, inventors from location A have more in- 

centive to move to location B if they are more talented (i.e., higher 
z ). The reason is twofold: (i) more talented inventors gain more 

from moving to a location with higher TFP (formally, the cross- 
derivative of inventors’ profits with respect to talent and TFP is 
positive), and (ii) more talented inventors gain more from interac- 

tions with a more talented network. The same two reasons disin- 
centivize migration of highly talented individuals from B to A , be- 
cause they lose more from leaving a location with higher TFP and 

better learning opportunities. As a result, in the model, migrants 
from the EU to the United States tend to be more talented, be- 
fore migration, than migrants from the United States to the EU. 

This finding is also true in the data, as confirmed by Figure VIII , 
Panel A: U.S. migrants to the EU file, on average, 0.62 patents per 
year before migration, versus 0.89 for EU migrants to the U.S., af- 

ter controlling for calendar time and experience. Panel B verifies 
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this result for the simulated sample of inventors from the model: 

the innovation bundle ( q (z ) ) of U.S. migrants to the EU before 

migration is 1.10 on average, versus 1.19 for EU migrants to the 

United States. 

IV.C. Quantitative Exercises 

The previous section showed that the calibrated model pro- 
vides a good fit to the data for both targeted and non-targeted 

moments . Thus , the model is well suited for studying counter- 
factual exercises. First, I quantify the importance of interactions 
and knowledge transfers for innovation and growth. Second, I as- 

sess the effect of counterfactual policy exercises that resemble 

real-world policies to manage migration flows. From the point 
of view of the EU, I consider a reduction in the tax rate for for- 

eigners and return migrants to eliminate the brain drain. For the 

United States, I study changes in the immigration cap. The goal 
of these exercises is to illustrate the multiple channels through 

which inventors’ migration affects productivity growth. Among 

these channels, I emphasize the quantification of the forces cen- 
tral to this framework: talent reallocation through brain drain or 

brain gain and knowledge transfers through inventors’ interac- 
tions. 44 

1. Quantifying the Importance of Knowledge T ransfers . How 

important are interactions for developing human capital and in- 

novation? To answer this question, I run two counterfactual exer- 
cises. First, I set the migration cost to infinity ( κ = ∞ ), to generate 

an autarky scenario with no migration in equilibrium. Second, I 

shut down interactions across inventors ( η = 0 ). In each exercise, 
I keep all other parameters fixed at their calibrated value, and I 
solve for the BGP equilibrium. 

Table VI provides a decomposition of the growth rate for the 

EU and the United States comparing the baseline BGP to the 

cases of autarky and no interactions. The growth rate can be de- 
composed into the following components. First, for each country, 
total innovation is given by the weighted sum of the productiv- 

44. The baseline economy is inefficient because inventors do not internalize 

the effect of their migration decisions on innovation, knowledge spillovers to other 

inventors, and crowding in the market for ideas. The full solution of the efficient 

allocation or planning problem is outside of the scope of this article and is left for 

future research. 
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ity of local inventors and immigrant inventors, each weighted by 

their mass. Second, total innovation is summed to the technology 

diffusion from the frontier to the laggard country to obtain the 

growth rate. The results on innovation can thus be interpreted 

as the combination of quantity effects and quality effects on the 

allocation of talent. 
In the autarky case, the prohibitive migration costs result 

in no migration in equilibrium, so that both the EU and United 

States rely only on their own local inventors. In particular, this 
talent reallocation eliminates the brain drain from the EU to the 

United States. The average productivity of EU locals decreases 
only slightly, due to two opposing forces. On the one hand, locals’ 
productivity declines because they do not have the opportunity 

to interact with highly productive migrants. On the other hand, 
individuals who would migrate in the baseline, who are more tal- 
ented than locals on average, become locals in the autarky sce- 

nario, increasing the overall average productivity of locals. Be- 
cause of the talent reallocation, innovation increases in the EU, 
but it decreases in the United States, which loses the contribu- 

tion of migrants. The decline in innovation at the frontier (the 

United States) also results in lower technology diffusion to the 

EU. Inventors are less productive on average because they do not 
take advantage of their idiosyncratic country-specific productiv- 
ity shocks with migration and because their interaction opportu- 

nities decline. Overall, the growth rate declines by 6%. 
In the case with no interactions, the equilibrium level of mi- 

gration and brain drain from the EU to the United States are 

similar to the baseline. Despite the absence of interactions, in- 
dividuals have an incentive to move because of the idiosyncratic 
productivity shocks and the different tax rates. However, the av- 

erage productivity of EU and U.S. locals declines, as they cannot 
learn from interactions, resulting in lower innovation in both lo- 
cations and lower growth compared with the baseline. In partic- 

ular, in this scenario, the EU faces a similar level of brain drain 

as in the baseline, but EU innovation declines by 10% due to the 

lack of interactions. 

The overarching message from these exercises is that interac- 
tions and knowledge transfers are quantitatively important and 

they partly offset the negative effect of brain drain on innovation 

by enabling local inventors to learn and become more productive. 
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(A) (B)

FIGURE IX 

Tax Cut for Foreigners and Return Migrants in the EU: BGP Comparison 

The figures compare counterfactual BGP equilibria for different values of the 
tax cut for foreigners and return migrants in the EU with a moving average to 
smooth simulation noise. Panel A shows equilibrium migration of EU inventors 
(squares) and U.S. inventors (circles) and net emigration from the EU (dashed 
line). Panel B shows equilibrium aggregate innovation in the EU (squares) and in 

the U.S. (circles) and the aggregate growth rate (open circles). 

2. Policy Exercise: Tax Cut for Foreign Inventors and Return 

Migrants in the EU. The fear of a brain drain has motivated 

policy interventions in European countries to reduce the outflow 

of talented individuals. In this section, I analyze the consequences 

of a reduction in the EU tax rate for foreign inventors and return 

migrants, which I define as ˜ τA . This exercise replicates the scope 

of policies to “reverse the brain drain,” implemented in several 

EU countries, including the Netherlands, Denmark, Italy, France, 
Spain, and Ireland. 

F irst, in F igure IX , I document the effect of the policy change 

on the BGP for different values of the EU tax rate for for- 
eign inventors and return migrants, reported on the horizontal 

axis. Panel A describes the effect on the stock of EU migrants 
(squares), U.S. migrants (circles), and the net emigration rate, or 
brain drain, from the EU (dashed line). A lower tax rate encour- 

ages U.S. inventors to move to the EU, increasing the stock of U.S. 
migrants. At the same, a lower tax rate on return migrants has 
two effects on the stock of EU migrants. First, it increases the 

value of migration for EU inventors, who anticipate lower taxes 
if they migrate and then return to the EU. Thus, a larger mass of 
EU inventors would like to move, but they are constrained by the 

immigration cap in the United States, so that the flow of migrants 
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from the EU to the United States remains unchanged. Second, the 

return intensity for EU migrants increases because of the lower 
tax rate upon return. As a result, the lower tax for return mi- 
grants is associated with a lower stock of EU migrants. 

The reallocation of inventors toward the EU at lower values 
of ˜ τA is associated with two opposing forces. First, an increase 

in inventors is an expansion of the innovative talent pool with a 

positive effect on EU innovation, as additional inventors produce 

more ideas, by an amount that depends on their talent and pro- 
ductivity. Second, additional inventors also produce a crowding- 

out effect, reducing the matching probability between inventors 
and intermediate firms in the EU by an amount regulated by the 

parameter ν, with a negative effect on EU innovation. In the base- 

line calibration, the former effect dominates given that ν = 1 , as 
explained in Section IV.A . In Online Appendix C.2, I show that the 

results are robust to lower values of ν, associated with stronger 

crowding out. 
Figure IX , Panel B illustrates the effect of talent realloca- 

tion on innovation. At lower EU tax rates for foreigners and re- 

turn migrants, inventors reallocate toward the EU, and as a re- 
sult, EU innovation increases (circles) and U.S. innovation de- 

clines (squares). Recall that the growth rate is equal to the high- 
est level of innovation across the two locations, displayed by 

the open circles in Figure IX . The figure shows that in a re- 

gion with the EU tax rate between about 0.37 and 0.42, the 

United States is the frontier country with the highest innova- 
tion, which is lower, together with aggregate growth, when the 

EU tax rate is lower. In the region for ˜ τA between 0.32 and 

0.37, instead, the EU is the frontier country with the high- 
est innovation, which is higher, together with the growth rate, 

at lower tax rates . Thus , for small tax cuts, EU innovation 

increases, U.S. innovation declines, but the aggregate growth 

rate also declines. For larger tax cuts, the EU has the poten- 

tial to become the technology frontier by attracting foreign tal- 
ent, given that it has the same economic fundamentals as the 

United States (population size, talent distribution, innovation ca- 

pacity). 45 

45. Note that the model abstracts from details of the U.S. tax code, such as 

the taxation of foreign income for citizens, which would affect the migration rate 

for U.S. inventors. The growth rate reaches a higher value when the EU is the 

frontier because the EU does not have an immigration cap in place in the model. 
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Note that the growth rate is higher when inventors are more 

geographically concentrated in either location. This is due to 

multiple forces. First, recall that migrants from the laggard to 

the frontier are positively selected on talent. Thus, concentrat- 

ing migrants at the frontier improves the pool of highly pro- 
ductive interactions, generating learning opportunities that in- 
crease aggregate human capital and frontier innovation. Sec- 

ond, because of the exogenous technology diffusion, technolo- 
gies produced at the frontier will eventually be available to the 

laggard for production and consumption (at a speed governed 

by the parameter σ ). So the laggard benefits from higher in- 
novation at the frontier through a higher growth rate on the 

BGP. 

After describing the BGP effects, I study the transitional dy- 
namics from an initial BGP with a tax rate of 0.4 for all inventors 
in the EU to a new BGP with a EU tax rate of 0.365 for foreign 

inventors and return migrants, which would eliminate the brain 

drain in the long run. This exercise mimics the preferential tax 

schemes for foreigners implemented in several EU countries. 46 

For a tax cut of this size, the economies will transition toward 

a new BGP with lower net migration, higher innovation in the 

EU, lower innovation in the United States, and lower aggregate 

growth, as illustrated in Figure IX . 
Figure X , Panel A plots the evolution of the mass of EU mi- 

grants (squares) and U.S. migrants (circles) along the transition. 
The tax cut immediately attracts U.S. immigrants to the EU, 
whose stock jumps significantly on the implementation of the pol- 

icy, accounting for over 1% of local U.S. inventors. In addition, the 

stock of EU migrants (squares) to the US decreases over time, 
from about 5% to 3.5% of domestic EU inventors over 25 years. 

Thus, brain drain from the EU (or net emigration, depicted by 

The immigration cap reduces innovation at the frontier, as discussed in the next 

section. 

46. For example, in 1992, Denmark implemented a preferential tax scheme 

for foreign researchers and high-income foreigners in all other professions, who 

sign contracts for employment in Denmark after June 1, 1991. Foreigners would 

pay a flat tax of 25% instead of the regular progressive income tax. In Spain, a 

special tax scheme passed in 2005 (Royal Decree 687/2005), applicable to foreign 

workers moving to Spain after January 1, 2004. The special tax scheme is a flat 

tax of 24% in lieu of the regular progressive income tax with a top rate of 45% 

when the law was passed). See Kleven, Landais, and Saez (2013) . 
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(A) (B)

FIGURE X 

Transitional Dynamics After a Tax Cut for Foreigners and Return Migrants in 

the EU 

The figures display transitional dynamics upon the implementation of a coun- 
terfactual tax cut for foreign inventors and return migrants in the EU from 0.4 
to 0.365 with a moving average to smooth simulation noise. Panel A shows the 
equilibrium stock of EU emigrants (squares), U.S. emigrants (circles), and net 
emigration from the EU (dashed line). Panel B shows aggregate innovation in the 
EU (squares) and in the United States (circles), as well as the productivity gap 
(dashed line). 

the dashed line) declines toward zero. While the elasticity of mi- 
gration to the tax rate is not targeted in the calibration, the model 

produces an elasticity in line with empirical estimates in the lit- 
erature. 47 

Panel B displays the effect of talent reallocation across coun- 

tries on the evolution of EU innovation (squares), U.S. innova- 
tion (circles), and the productivity gap (dashed line). Twenty- 

five years after the policy implementation, innovation increases 
by about 3% in the EU and declines by 3% in the United States, 
due to the reallocation of inventors across countries. As a result of 

these two effects, aggregate productivity in the EU, relative to the 

United States, increases by about 1.5% in the span of 25 years, as 
predicted by equation (17) . 

What are the effects of the tax cut on aggregate productivity 

and output growth? The growth rate in the EU increases in the 

initial decades since policy implementation, but then it declines 

47. The elasticity of the number of domestic inventors to the tax rate in this 

exercise is in the range 0.07–0.3 over the years 1–25 since the policy implementa- 

tion. In comparison, Akcigit, Baslandze, and Stantcheva (2016) estimate elastici- 

ties to the net marginal tax rate of the number of domestic superstar inventors in 

the range of 0.02–0.7. 
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TABLE VII 

TAX CUT FOR FOREIGNERS AND RETURN MIGRANTS IN THE EU: EFFECTS ON THE 

EU’S GROWTH RATE 

Channel 

Change in EU growth 

(percentage points) 

After 25 years New BGP 

Direct reallocation (brain drain/gain) + 0.065 + 0.091 

Change in migrants’ productivity −0.006 −0.010 

Migrants’ selection + 0.014 + 0.018 

Change in technology diffusion from U.S. −0.018 −0.119 

Knowledge transfers −0.020 −0.021 

Net effect on the growth rate + 0.036 −0.040 

Notes. The table illustrates the change in the EU growth rate after 25 years and in the new BGP after a 
cut in the tax rate for foreigners and return migrants in the EU from 0.4 to 0.365. The table documents the 
separate impact of different channels and their net effect. 

due to the interaction of different forces, which are described in 

Table VII . 

Table VII provides a decomposition of the changes in the EU 

growth rate due to different channels at different time horizons: 
after 25 years (first column) and in the new long-run BGP (second 

column). The first row of Table VII illustrates the direct realloca- 
tion effect, which captures the change in the number of local and 

migrant inventors, if they maintained the same level of produc- 

tivity as in the old BGP. Twenty-five years after the tax cut, the 

reallocation of inventors to the EU increases the EU growth rate 

by 0.065 percentage points. However, those EU inventors who are 

migrants in the baseline BGP but are locals in the new equilib- 
rium are on average less productive in the EU, because they miss 

the productivity differential ε. This channel from a change in pro- 
ductivity reduces the direct effect by 0.006 percentage points. On 

the other hand, selection forces imply that returning EU migrants 

and U.S. immigrants have higher talent than the average local 
inventor, increasing growth by 0.014 percentage points. In addi- 
tion, lower innovation in the United States reduces the exogenous 

diffusion of technologies to the EU, reducing growth by 0.018 per- 
centage points. Finally, local EU inventors are less productive in 

the new equilibrium due to smaller knowledge transfers, since the 

mass of EU emigrants is smaller. The change in spillovers addi- 
tionally reduces output by 0.02 percentage points. The net effect 
of these different forces leads to an increase in the EU growth 

rate by 0.036 percentage points after 25 years. 
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The second column of Table VII illustrates that while growth 

in the EU initially increases, the negative effects get larger over 
time, eventually reducing growth in the new long-run BGP rel- 
ative to the old BGP. In particular, while the direct effect and 

change diffusion are the dominant forces, the decline in knowl- 
edge transfers also has a sizable effect on output in the long run, 
accounting for a −0.021 percentage point reduction in GDP. In the 

new long-run equilibrium, the EU and the United States grow at 
the same rate of 1.21%, which is about 0.04 percentage points 
lower than the old BGP. 

Table VII thus shows that the effect of the policy change 

on growth is the result of multiple forces with opposite effects 
through which migration affects talent allocation and knowl- 

edge transfers. In terms of quantification, the main results show 

the direct effect of reducing the brain drain and the magni- 
tude of knowledge transfers operating via inventors’ interactions 

and learning, calibrated with the direct evidence presented in 

Section III . The direct effect of reducing the brain drain accounts 
for an increase in the long-run EU growth rate of 0.091 percent- 

age points. This gain is more than offset by multiple negative 

forces, including the reduction in knowledge transfers, which has 

a sizable effect and accounts for about 50% of the decline in the 

long-run growth rate. 
Finally, I compute the welfare effects of the policy change 

along the transitional dynamics of the economy, discounting fu- 
ture periods since policy implementation by the discount factor β
multiplied by the survival probability δ. 48 The weighted average 

of welfare for EU individuals (including inventors and workers) 
increases by 0.7%. This result is driven by the initial increase 

in productivity and output, because the discounting implies that 

agents put close to zero weight on the distant future when out- 
put will decline. On the other hand, welfare for U.S. individuals 
decreases by 0.9%, due to declining innovation and output. 

The overarching message from this exercise is that the effec- 
tiveness of a tax cut for foreigners and return migrants in the 

EU, aimed at eliminating the brain drain, depends on the time 

horizon of the policy maker. In the short run, this policy attracts 
foreign inventors and return migrants to the EU and boosts EU 

innovation, aggregate productivity, and wages. In the long run, 

48. Online Appendix A describes the measure and computation of welfare. 
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(B)(A)

FIGURE XI 

Counterfactual Change to U.S. Immigration Threshold ( ̄μ): BGP Comparison 

The figures compare counterfactual BGP equilibria for different values of the 
immigration threshold to the United States with a moving average to smooth 

simulation noise. Panel A shows equilibrium aggregate innovation in the EU 

(squares) and in the United States (circles). Panel B shows the equilibrium mi- 
gration of EU inventors (squares) and U.S. inventors (circles). 

the growth rate of the global economy could either increase or 
decrease, depending on the overall effect of the policy on the 

allocation of inventors across locations and their ability to gen- 

erate knowledge spillovers and technology diffusion. 

3. Policy Exercise: Changing the Migration Limit in the 

United States. What are the implications of changing the num- 
ber of immigrants allowed to flow into the United States ( ̄μ)? This 

exercise mimics changes to the H1B visa program, which regu- 
lates the immigration of high-skill workers in the United States. 

Figure XI describes the BGP equilibrium of the model for dif- 

ferent values of the migration threshold μ̄, plotted on the horizon- 
tal axis. Panel B describes the effects on innovation: as the thresh- 
old μ̄ increases (i.e., more inventors are allowed to enter the 

United States in every period), innovation increases in the United 

States (circles) and declines in the EU (squares). This effect is 
mainly explained by the change in the mass of migrants of each 

nationality, depicted in P anel B . The increase in the migration 

threshold is accompanied by an increase in the mass of EU mi- 
grants (squares) and a decline in the mass of U.S. migrants (cir- 

cls). The mass of EU migrants increases with the threshold be- 
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(A) (B)

FIGURE XII 

Counterfactual Increase of the U.S. Migration Threshold: Transitional Dynamics 

The figures display transitional dynamics upon the implementation of a coun- 
terfactual increase of the migration threshold in the United States that doubles 
the inflow of immigrant inventors per year, with a moving average to smooth sim- 
ulation noise. Panel A shows aggregate innovation in the EU (squares) and in the 
United States (circles) and the productivity gap (dashed line). Panel B shows the 
equilibrium migration of EU inventors (squares) and U.S. inventors (circles). 

cause the migration threshold is binding in the initial BGP. 49 The 

mass of U.S. migrants declines with the threshold because higher 
innovation in the United States implies higher aggregate produc- 

tivity and profits for domestic inventors, increasing the opportu- 
nity cost of moving to the EU. Changes in both EU and U.S. migra- 
tion flows increase the number of inventors active in the United 

States in equilibrium, resulting in higher U.S. innovation. 50 

After comparing the BGP at different thresholds, I analyze 

the dynamic evolution of the economies on a doubling of the im- 
migration threshold in the United States, displayed in Figure XII . 
This exercise mimics an increase in the issuance of H1B visas for 

skilled immigrants to the United States. 
Figure XII , Panel A displays the evolution of innovation in 

the two economies and the productivity gap. Innovation increases 

in the United States, up by about 5% after 25 years. At the 

same time, innovation decreases by about 5% in the EU. These 

49. In BGPs with a migration limit μ̄ larger than 15% of domestic inventors, 

the threshold is no longer binding. 

50. In fact, in the baseline calibration, the value of ν = 1 implies that immi- 

grants do not crowd out local inventors, so that more immigration results in more 

innovation, as explained in Section IV.A . In Online Appendix C.2, I analyze the 

results for lower values of ν, associated with stronger crowding out. 
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FIGURE XIII 

Counterfactual Increase of the U.S. Migration Threshold: Growth Transitional 
Dynamics 

The figure displays the transitional dynamics of the implementation of a coun- 
terfactual increase of the migration threshold in the United States that doubles 
the inflow of immigrant inventors per year. The figure shows the growth rate in 

the EU (squares) and in the United States (circles), as well as the productivity 
gap (dashed line). 

effects increase the productivity gap between the United States 
and the EU by about 2%. Panel B plots the evolution of the mass 
of migrants of each nationality. The increase in the migration 

threshold leads to an increase in the stock of immigrants as a 

fraction of domestic inventors in the United States by about 80% 

after 25 years. The mass of U.S. migrants declines slightly; thus, 

the net brain drain from the EU increases. 
The change in migration policy affects output and productiv- 

ity growth. Figure XIII displays the evolution of the growth rate 

for the EU (squares) and the United States (circles) since the in- 
troduction of the policy. Due to the increase in U.S. innovation, the 

U.S. growth rate increases toward the new BGP, where the growth 

rate is 4% (or about 0.05 percentage points) higher compared with 

the initial equilibrium. On the other hand, the growth rate in the 

EU initially declines, because the policy lowers EU innovation. 
Twenty-five years after the policy change, the EU’s growth rate 

is still about 2% (or 0.03 percentage points) lower compared to 

the old BGP. As a result, the TFP level in the EU relative to the 

United States (dashed line) falls by about 2% after 25 years. How- 
ever, after the initial decline, the EU’s growth rate starts increas- 

ing due to higher knowledge spillovers and technology diffusion 
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from the United States, eventually converging toward the U.S . ’s 

growth rate at the new BGP, where the growth rate is 4% higher 
compared with the initial equilibrium. 

Overall this policy increases welfare in the United States by 

0.3%, but it decreases welfare in the EU by 1.2%. The sorting of 
inventors to the United States increases innovation in the United 

States, which is the frontier economy, benefiting both the U.S. and 

EU economies. In the latter, the short-term decline in productiv- 
ity from lower EU innovation generates a welfare loss that ex- 
ceeds the benefit from long-term productivity gains from more sig- 

nificant knowledge spillovers and technology diffusion from the 

United States. 

V. CONCLUSION 

Inventors’ migration has positive and negative effects on the 

allocation of talent and innovation of origin and destination coun- 
tries. Migrants bring valuable talent and spread knowledge, but 

they can create a brain drain in the country of origin and displace 

native workers at the destination. To capture these multiple ef- 
fects, this article builds an innovation-based endogenous model 

that microfounds migration decisions, interactions, and knowl- 
edge spillovers. One of the key contributions is to bring a general 
equilibrium macroeconomic model to a largely empirical litera- 

ture. 
This framework is apt for studying the global effects of mi- 

gration. I link the model to a novel data set of migrants, which 

I build from patent data. The empirical results show that mi- 
grants move to where they are most productive and facilitate 

cross-country collaborations, spreading knowledge. The quanti- 
tative model maps the empirical results to implications for the 

economy’s innovative capacity. I study a tax cut for foreigners 

and return migrants in the EU, aimed at eliminating the brain 

drain. The effectiveness of this policy depends on the time hori- 
zon of the policy maker: in the short run, this policy can at- 

tract foreign inventors and return migrants to the EU and boost 
EU innovation, aggregate productivity, and wages. In the long 

run, it could either increase or reduce the growth rate of the 

global economy, depending on the overall effect on talent allo- 
cation, knowledge spillovers, and technology diffusion. On the 

migration policy side, increasing the size of the U.S. H1B visa 

program increases productivity in the United States and in the 
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EU, because it sorts inventors to where they are most produc- 

tive and can learn most, increasing knowledge spillovers to other 
countries. 

This article paves the way for a new research agenda on the 

macroeconomic effects of migration for long-run growth. I discuss 
some compelling areas for future research. First, in this model, in- 
dividuals are exogenously split between production workers and 

inventors. A fruitful extension would be to endogenize occupa- 
tional choice and to study how migration interacts with the sort- 
ing of individuals between production and research. Second, the 

results highlight that migration policy has heterogeneous effects 
across different categories of workers. In future research, this 
framework can be applied to study the interaction between migra- 

tion and inequality. Third, the results rely on the assumption that 
knowledge produced in one country can freely flow and is relevant 
to other countries. However, in some contexts, such as industries 

with high security concerns, there are barriers in place that could 

considerably limit or prevent the diffusion of knowledge to other 
countries. Frontier technologies might not be relevant or appro- 

priate for developing countries further from the frontier. Explor- 
ing the role of knowledge spillovers in these contexts is an inter- 

esting avenue for further research. Fourth, this study highlights 
the importance of inventors’ interactions as a source of knowledge 

diffusion. It would be interesting to investigate further inventors’ 

incentives to endogenously shape their connections to gain use- 
ful information and resources in a richer model of dynamic and 

strategic network formation. 
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