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I. INTRODUCTION 

When did economic growth begin? A traditional view holds 

that economic growth began with the Industrial Revolution 

around 1800. Recent work has challenged this view, pushing 

back the date of the onset of growth. Crafts (1983 , 1985) and 

Harley (1982) revised downward previous estimates of growth 

in Britain during the Industrial Revolution. These new esti- 

mates indicate that British output per capita was larger by the 

mid-eighteenth century than was previously thought, imply- 

ing that substantial growth must have occurred at an earlier 

date (see also Crafts and Harley 1992 ). Acemoglu, Johnson, and 

Robinson (2005) argue that a first Great Divergence occurred 

starting around 1500 with Western Europe growing apart from 

other areas of the world after the discovery of the Americas and 

the sea route to India. They support this view with data on urban- 

ization rates. Broadberry et al. (2015) argue that growth began 

even earlier than this. They present new estimates of GDP per 

person for Britain back to 1270. These data show slow but steady 

growth in GDP per person from the beginning of their sample. 

Finally, Kremer (1993) uses world population estimates to argue 

for positive but glacially slow growth for hundreds of thousands 

of years. 

An important facet of the debate about when growth began 

is when productivity growth began. We contribute to this debate 

by constructing a new series for productivity growth (total fac- 

tor productivity, TFP) in England back to 1250. Figure I plots 

our new productivity series (solid black line). Our main finding 

is that productivity growth in England began in 1600. Between 

1250 and 1590, we estimate that productivity growth was zero. 1 

We estimate productivity growth of about 2% per decade between 

1600 and 1800. Productivity growth then increased to 5% per 

decade between 1810 and 1860. We attribute much of the increase 

in output growth during the Industrial Revolution to structural 

change—a fall in the importance of land in production—rather 

than to an increase in productivity growth. 

Our results help distinguish between different theories of 

why growth began. They suggest that researchers should focus 

1. The positive but glacially slow productivity growth rate implied by 

Kremer’s (1993) population data for the period 1200 to 1500 lies within our credi- 

ble set. 
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FIGURE I 

Estimates of Productivity in England 

Each series is the natural log of productivity. The series denoted by “Clark 
(2016) ∗” is the series from Clark (2016) extended to 1860. We received this se- 
ries from Clark in private correspondence. Clark’s series estimates TFP for the 
entire economy based on a dual approach. Allen’s (2005) estimates are for TFP in 

the agricultural sector using a primal approach. Our preferred productivity series 
is normalized to zero in 1250. The other two series are normalized to match our 
preferred series in 1300. 

on developments proximate to the sixteenth and seventeenth cen- 

turies. An important debate regarding the onset of growth cen- 

ters on the role of institutional change. Our results help sharpen 

this debate. We find that productivity growth began almost a 

century before the Glorious Revolution and well before the En- 

glish Civil War. While the institutional changes associated with 

these events ma y ha ve been important for subsequent growth, 

researchers must look to earlier events for the seeds of modern 

growth. Plausible candidates include the Reformation, the decline 

of feudalism, the rise of the yeoman, movable type printing and 

the associated increase in literacy, and expansion of international 

trade. We discuss these in more detail below. 

The most comprehensive existing productivity series for Eng- 

land was constructed by Clark (2010 , 2016) . Clark estimated 

changes in TFP for the entire English economy from 1209 on- 

ward using the “dual approach”—that is, as a weighted average 

of changes in real factor prices (e.g., Hsieh 2002 ). Figure I plots 
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Clark’s series over our sample period (broken black line). 2 A strik- 

ing feature of this series is that it implies that productivity in 

England was no higher in the mid-nineteenth century than in the 

fifteenth century. This result does not line up well with other ex- 

isting (less comprehensive) measures of productivity in England 

or with less formal assessments of the English economy. For ex- 

ample, Allen (2005) estimates that TFP in agriculture was 162% 

higher in 1850 than in 1500 (gray diamonds in Figure I ). 3 Clark 

himself commented that if the fluctuations in his series are not 

measurement error “they imply quite inexplicable fluctuations in 

the performance of the preindustrial economy.”

Our conclusions about productivity in England are quite dif- 

ferent from those of Clark (2010 , 2016) . According to our esti- 

mates, productivity in England was 95% higher in 1850 than in 

1500 rather than being essentially unchanged. We also estimate 

smaller fluctuations in productivity prior to 1600. In particular, 

our productivity series falls much less between 1450 and 1600. 

These substantial differences arise from differences in the data 

and methodology we use. We take the labor demand curve as our 

starting point and estimate changes in productivity as shifts in 

the labor demand curve. This means that the key data series that 

inform our estimates are real wages and population. These are 

arguably among the best measured series of all economic time 

series over our long sample period. 

Our approach is best understood by considering Figure II . 

This figure presents a scatter plot of the log of real wages in 

England ( y -axis) against the log of the population in England ( x - 

axis). From 1250 to 1300, the population of England increased 

and real wages decreased. The period from 1300 to 1450 was a pe- 

riod of frequent plagues—the most famous being the Black Death 

of 1348. Over this period, the population of England fell by a fac- 

tor of two and real wages rose substantially. From 1450 to 1600, 

the population recovered and real wages fell. In 1630, the English 

2. Clark (2016) published an update of his better-known 2010 series for the 

shorter time period 1250–1600. The series we plot in Figure I is Clark’s 2016 

series extended to 1860. We received this series from Clark by private correspon- 

dence. The 2016 series differs from the 2010 series prior to 1600 due to a new land 

rent series and because Clark corrected an important error in the 2010 series. We 

discuss this in more detail in Online Appendix H. 

3. Allen (2005) employs the familiar “primal approach” of Solow (1957) , that 

is, subtracts a weighted average of growth in factor inputs from output growth, 

but is only able to do this for agriculture and for a few years. 
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FIGURE II 

Real Wages and Population 

The figure presents a scatter plot of the log of real wages in England against 
the log of the population in England over the period 1250–1860. The data on real 
wages are from Clark (2010) . Estimates of the population are based on our calcu- 
lations (baseline case). 

economy was back to almost exactly the same point it was at in 

1300. 

One way to explain these dynamics between 1300 and 1630 is 

as movements along a stable labor demand curve with no change 

in productivity. Had productivity grown between 1300 and 1630, 

the economy could not have returned to essentially the same point 

in 1630 as it was in 1300 since the labor demand curve would have 

shifted up and to the right over the intervening period. Then in 

the seventeenth century, something important seems to change. 

The points start moving off the prior labor demand curve. Specif- 

ically, they start moving up and to the right relative to the earlier 

curve. This suggests that productivity started growing in the sev- 

enteenth century in England. 

The basic idea behind our approach is to estimate a labor 

demand curve for England and then back out productivity growth 

as shifts in this labor demand curve. To get a better sense for how 

this approach works, consider the following simple labor demand 

curve for a premodern economy: 

W t = (1 − α) A t 

(

Z 

L t 

)α

, 
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where W t denotes real wages, A t denotes productivity (TFP), Z 

denotes land (which is fixed), and L t denotes labor. We consider 

more general models later in the article, but the basic challenge 

we face can be grasped using this simple model. If we take logs, 

this equation becomes 

w t = φ − αl t + a t , 

where lowercase letters denote logs of uppercase letters. Armed 

with data on real wages, the population, and an estimate of the 

slope of the labor demand curve α, one can back out estimates of 

productivity a t . 

We consider two approaches to estimating the slope of the 

labor demand curve α. The first is to use the Black Death as a 

large exogenous shock to the population. In this case, we estimate 

α simply from data on real wages and population before and after 

the Black Death. Our second method is to structurally estimate a 

Malthusian model. In this case, we are modeling the endogenous 

response of the population to changes in the real w age . These two 

methods yield similar results. 

Because our analysis extends into the early industrial era, 

we must confront the fact that the importance of land as a factor 

of production fell rapidly with the spread of steam power, which 

meant that the production of energy was no longer land intensive 

( Wrigley 2010 ). To capture this crucial development, we allow the 

output elasticity of land, capital, and labor to change over time 

after the onset of the Industrial Revolution. We use data on land 

rents after 1760 to pin down how rapidly the importance of land 

in production fell. The modest increase in land rents that we ob- 

serve in the face of explosive growth in labor and capital after 

1760 leads us to estimate a rapidly falling importance of land in 

production. 

The fact that we allow for this structural transformation im- 

plies that the standard way of measuring productivity (a multi- 

plicative A t in front of a function F (L t , K t , ... ) ) is no longer valid. 

Following Caves, Christensen, and Diewert (1982) we derive a 

Malmquist productivity index ( Malmquist 1953 ) for our setting. 

The Malmquist index reduces to A t in the familiar setting of con- 

stant factor elasticities, but remains valid even when the struc- 

ture of the production function is changing. 

Allowing the importance of land in production to fall after the 

start of the Industrial Revolution has important implications for 

our estimates of productivity. If we don’t allow for this change, we 
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estimate a much larger break in productivity in 1810. Productiv- 

ity growth is, of course, just a measure of our ignorance. Model- 

ing the shift of production a wa y from land-intensive technology 

allows us to explain a larger part of growth during the Industrial 

Revolution, leaving less for the residual. 

Our estimates shed light on the lack of real wage growth dur- 

ing the latter part of the eighteenth century, sometimes referred 

to as Engels’ Pause ( Engels 1845 ; Allen 2009b ). Our Malthusian 

model implies that during this period real wages were held back 

by very rapid increases in the population, which in a Malthusian 

world put downward pressure on the marginal product of labor. 

This explanation contrasts with the common idea that the ab- 

sence of real wage growth during this period resulted from the 

lion’s share of the fruits of technical change going to capital as 

opposed to labor. This idea has received attention in the modern 

context in relation to the development of automation and artificial 

intelligence ( Acemoglu and Restrepo 2019a ). 

In addition to estimates of productivity, our methodology 

yields estimates of the speed of Malthusian population dynam- 

ics in premodern England. Our estimates imply that these pop- 

ulation dynamics were very slow: a doubling of real incomes led 

to an increase in population growth that was only about 3 to 6 

percentage points per decade. Together with our other estimates, 

this implies that the half-life of a plague-induced drop in the pop- 

ulation was more than 100 years before the onset of the Indus- 

trial Revolution. As the importance of land in production fell after 

1760, the Malthusian population dynamics became even slower 

and weaker. By 1860, our estimate of the half-life of a population 

shock have risen to several hundred years. Earlier estimates of 

the speed of Malthusian population dynamics in England also in- 

dicate that they were slow. For example, Lee and Anderson (2002) 

find a half-life of 107 years, while Crafts and Mills (2009) find 

a half-life of 431 years. Chaney and Hornbeck (2016) document 

very slow population dynamics in Valencia after the expulsion of 

the Moriscos in 1609. 

The weakness of the Malthusian population dynamics we es- 

timate imply that our model is consistent with sustained devia- 

tions from “the iron law of wages” (i.e., that wages in a Malthusian 

economy are stuck at subsistence). Modest productivity growth 

over a few centuries can temporarily overwhelm the Malthusian 

population dynamics in our model and result in sustained periods 

of real wages several times higher than at other times. Our model 
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can therefore make sense of episodes that historians sometimes 

refer to as “golden ages” or “effloresences” ( Goldstone 2002 ). Once 

productivity growth falters, real wages will slowly fall back to a 

lower level. But this will take several centuries. 

We are not the first to plot a figure like Figure II and ar- 

gue that it has implications about the evolution of productivity 

in England. We formalize this intuitive idea and assess what ex- 

actly it implies about productivity. Clark (2005 , 2007a) discusses 

informally how shifts in the labor demand curve of a Malthusian 

model can be informative about the timing of the onset of eco- 

nomic growth. The existing papers most closely related to ours 

from a methodological point of view are Lee and Anderson (2002) 

and Crafts and Mills (2009) . These papers structurally estimate 

a Malthusian model of the English economy, as we do. Relative to 

these publications, we extend the sample period back in time con- 

siderably (theirs starts in 1540, while ours start in 1250). This 

allows us to assess when growth began. We also estimate α dif- 

ferently, incorporate capital, and allow the importance of land to 

change after the onset of the Industrial Revolution, among other 

differences. 

The timing of the onset of productivity growth that we es- 

timate lines up well with recent estimates of the onset of struc- 

tural transformation in Wallis, Colson, and Chilosi (2018) . They 

estimate that the share of workers in agriculture began a long 

and large fall around 1600 after having been stable in the six- 

teenth century. Making use of data on GDP and population from 

Broadberry et al. (2015) , they also estimate that labor produc- 

tivity in agriculture, industry, and services began to rise around 

1600. 

This article is also related to the literature in macroeco- 

nomics on the transition from preindustrial stagnation to mod- 

ern growth—often referred to as the transition “from Malthus to 

Solow.” Important papers in this literature include Galor and Weil 

(2000) , Jones (2001) , and Hansen and Prescott (2002) . Relative to 

these works, our study is more empirical. We contribute detailed 

estimates of the evolution of productivity, while the other pa- 

pers propose theories of how productivity growth rose. Our work 

is also related to recent work by Hansen, Ohanian, and Ozturk 

(2020) . 

The article proceeds as follows. Section II presents a simple 

estimate of productivity growth in England with α estimates from 

the Black Death. Section III presents our full Malthusian model 
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of the economy. Section IV presents our results on productivity 

based on the full model. Section V presents our results on the 

strength of the Malthusian population force. Section VI presents 

our estimates of the population. Section VII concludes. 

II. A SIMPLE ESTIMATE OF PRODUCTIVITY GROWTH IN ENGLAND 

We begin by presenting a very simple estimate of productivity 

growth in England. Later sections develop a number of extensions 

and refinements to the basic approach adopted here. We model 

time as discrete and denote it by a subscript t. Because we use 

decadal data throughout the article, each time period in the model 

is meant to represent a decade. Our sample period is from 1250 to 

1860. All the data we use are decadal averages. In our figures, a 

data point listed as 1640 refers to the decadal average from 1640 

to 1649. We sometimes refer to a variable at a point in time (say, 

1640) when we mean the decadal average for that decade. In other 

words, we use 1640 and “the 1640s” interchangeably. 

Consider an economy where output is produced with land and 

labor according to the following production function: 

Y t = A t Z 
αL 

1 −α
t , 

where Y t denotes output, Z denotes land, L t denotes labor, and 

A t denotes productivity (TFP). We model the quantity of land 

as being fixed. Literally speaking, the stock of land in England 

has always been fixed. However, the way land has been used has 

changed over time. The sharp fall in population after the Black 

Death led land to be converted to pastoral farming (which is land 

intensive). Growth in the population later in our sample period 

resulted in more land being used for arable farming (less land 

intensive). A growing population implied that people were forced 

to use lower and lower quality land to grow crops and farm each 

hectare of land more intensively. This meant that for a given level 

of productivity, the marginal product of labor was decreasing in 

the size of the population. Our production function with Z being 

fixed captures this fact. 4 

Land use also changed due to improvements such as drain- 

ing swamps, clearing fields, and cutting down forests. Later we 

4. This is entirely analogous to the standard way the use of capital in pro- 

duction is usually modeled. Consider an ice cream maker who has one ice cream 

machine and one worker. If they hire more workers, the machine will be used more 

intensively and the marginal product of labor will fall. 
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consider a model with capital. Investments in land improve- 

ment are captured as additions to the capital stock. Finally, in- 

stitutional change resulted in changes in land use. Two impor- 

tant examples are the confiscation and sale of monastic land by 

Henry VIII ( Heldring, Robinson, and Vollmer 2021 ) and enclo- 

sures ( Allen 1992 ). The effects of these institutional changes will 

show up as changes in productivity in our analysis. 

We assume that producers hire workers in a competitive la- 

bor market taking wages as given. Producer optimization then 

gives rise to the following labor demand curve: 

W t = (1 − α) A t Z 
αL 

−α
t , 

where W t denotes the real daily w age . Taking logs of this equa- 

tion yields 

w t = φ + a t − αl t , (1) 

where lowercase letters denote logs of uppercase letters and 

φ = log (1 − α) + α log Z . Assuming that labor is paid its marginal 

product in preindustrial England is a strong assumption that we 

discuss in greater detail below. 

To estimate changes in productivity using equation (1) , we 

need data on real wages, data on labor supply, and an estimate of 

the slope of the labor demand curve α. We discuss these in turn. 

II.A. Data on Real Wages and the Population 

Our baseline measure of real wages in England is Clark’s 

(2010) series for unskilled building workers. Figure III plots this 

series. The main features of the series are a large and sustained 

rise between 1300 and 1450, a large and sustained fall between 

1450 and 1600, some recovery over the seventeenth century, stag- 

nation during the eighteenth century, and finally a sharp increase 

after 1800. Online Appendix Figure A.1 compares this series with 

several other series for real wages in England. This comparison 

shows that the real wage series we use is quite similar to Clark’s 

real wage series for farmers and for craftsmen. We have redone 

our analysis with these series and discuss this analysis in Section 

IV.C . 5 

5. Much controversy has centered on the behavior of real wages in England 

between 1770 and 1850. This debate revolves around the extent to which laborers 

shared in the benefits of early industrialization ( Feinstein 1998 ; Clark 2005 ; Allen 

2007 , 2009b ). In Online Appendix Figure A.1, we also plot Allen’s (2007) wage se- 
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FIGURE III 

Real Wages in England, 1250–1860 

The figure presents estimates of the real wages of unskilled building workers in 

England from Clark (2010) . 

Our baseline assumption is that labor supply is proportional 

to the population of England. Figure IV presents the population 

data we use. For the period from 1540 onward, we use population 

estimates from Wrigley et al. (1997) , which in turn build on the 

seminal work of Wrigley and Schofield (1981) . Sources for pop- 

ulation data before 1540 are less extensive. Clark (2007b) uses 

unbalanced panel data on the population of villages and manors 

from manorial records and penny tithing payments to construct 

estimates of the population prior to 1540. We build on Clark’s 

work to construct an estimate of the population before 1540. 

We cannot directly use Clark’s pre-1540 population series 

because the method for constructing his series involves making 

assumptions about the evolution of productivity. 6 Since we aim 

to use the population series to make inference about the evolu- 

tion of productivity in England, we cannot use a population se- 

ries that already embeds assumptions about productivity growth. 

However, as an intermediate input into constructing his pre-1540 

ries (which starts in 1770). The figure shows that the differences discussed in the 

prior literature are modest from our perspective and therefore do not materially 

affect our analysis. 

6. Online Appendix B discusses Clark’s method in more detail. 
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FIGURE IV 

Population Data for England, 1250–1860 

The figure presents population estimates for England for 1540–1860 from 

Wrigley et al. (1997) (gray line) and the population trend estimates by Clark 
(2007b) for the period 1250–1520 (black line). The black line is normalized for 
visual convenience such that its last point is equal to the first point of the gray 
line. 

population series, Clark estimates a regression of his village- and 

manor-level population data on time and village/manor fixed ef- 

fects. Clark refers to the time effects from this regression as a 

population trend. We plot this population trend in Figure IV (nor- 

malized for visual convenience). We base our estimates of the pop- 

ulation of England before 1540 on this population trend series. In 

Section IV.C , we discuss how this series compares with (lower fre- 

quency) population data reported in Broadberry et al. (2015) . 

We assume that the true population is measured with er- 

ror. Specifically, we assume that n t = ψ + ˜ n t + ιn t , where n t de- 

notes the true unobserved population, ˜ n t denotes our observed 

population series (Clark’s population trend series prior to 1530 

and the population series from Wrigley et al. 1997 after 1530), 

ιn t ∼ t νn (0 , σ 2 
n ) denotes measurement error, and ψ denotes a nor- 

malization constant. We normalize ψ to zero after 1530 and esti- 

mate its value for the pre-1530 Clark series. We allow for a struc- 

tural break in the variance of the measurement error σ 2 
n in 1540. 

Finally, population data are missing for 1530. We view it as unob- 

served and estimate its value. 
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II.B. Identification and Estimation 

We estimate the slope of the labor demand curve—α in 

equation (1) —under the assumption that the Black Death is an 

exogenous shock to the population. Specifically, we estimate α as 

the ratio of the change in real wages and the change in the popu- 

lation between 1340 and 1360. This is the slope between the point 

for 1340 and the point for 1360 in Figure II . 7 The identifying as- 

sumption is that the Black Death dominates the change in wages 

and population between 1340 and 1360. We choose 1360 as op- 

posed to 1350 as our post–Black Death point due to attempts by 

the lords in England to keep wages low in the immediate after- 

math of the Black Death. In 1351, the Statute of Laborers was 

passed, which set a maximum wage equal to the prevailing wage 

prior to the Black Death. These attempts ma y ha ve had some ef- 

fect on wages during the 1350s, but wages responded strongly in 

the 1360s. 

This procedure yields a value of α = 0 . 70 , which lines up well 

with the overall slope of the points in Figure II before the sev- 

enteenth century. This suggests that much of the variation in 

the population and real wages of England before the seventeenth 

century was driven by labor supply shoc ks suc h as plagues and 

other disease. With a Cobb-Douglas production function, α is also 

the land share of production. However, in Online Appendix C, we 

show that the relationship between the land share of production 

and the slope of the labor demand curve is sensitive to the elastic- 

ity of substitution between land and labor. A constant elasticity 

of substitution production function implies that the land share is 

σα, where σ is the elasticity of substitution between land and la- 

bor. Assuming an elasticity of substitution of 0.66 ( Boppart et al. 

2023 ) implies a land share of 0 . 66 × 0 . 70 = 0 . 46 . More generally, 

additional parameters are needed to go from the slope of the labor 

demand curve to factor shares. 

Armed with data on w t and l t and an estimate of α, we can 

“back out” values for log productivity, a t , from equation (1) (up 

to a constant). Because we are primarily interested in persistent 

changes in productivity, we filter out high-frequency variation in 

a t by assuming that a t is made up of a permanent and transi- 

7. Figure II adjusts for measurement error. To estimate α, we use the raw 

data for 1340 and 1360. Our estimate of α is therefore only approximately the 

slope between the point for 1340 and the point for 1360 in Figure II . 
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tory component. We assume the permanent component follows a 

random walk process with drift μ: 

˜ a t = μ + ˜ a t−1 + ε1 t . (2) 

The average growth rate of productivity is given by the pa- 

rameter μ. To capture changes in long-run growth, we allow for 

structural breaks in μ. Recall that changes in productivity corre- 

spond to shifts in the labor demand curve. We allow for a break 

in 1810 associated with the Industrial Revolution. But Figure II 

suggests that the labor demand curve began shifting out earlier. 

As a consequence, we allow for one additional break earlier in 

the sample. This allows for the possibility that there may have 

been a break in average growth before the Industrial Revolution. 

We consider a range of possible dates for the first break between 

1550 and 1800. 8 The method we use to pin down the timing of 

this earlier break and to estimate the model more generally is 

described in detail in Section III . 

II.C. When Did Growth Begin? 

Figure V plots our estimates of the probability that a pre–

Industrial Revolution break in productivity growth occurred at 

different dates between 1550 and 1800. The probability of a 

break spikes in 1600. It stays high in 1610 and 1620 and then 

falls off. The probability is very low prior to 1590 and also low 

after 1650. The probability of a break occurring before 1640—

that is, before the English Civil War—is estimated to be 59%. 

The probability of a break occurring before 1680—that is, before 

the Glorious Revolution—is 73%. For expositional simplicity, we 

date the break in 1600. Results from our more complex models 

in Sections III and IV yield 1600 as the most likely break date 

(see Online Appendix Figure A.2). 

Table I presents our estimates of the average growth rate 

of productivity μ for the three regimes over our sample. We es- 

timate that average productivity growth prior to 1600 was zero. 

Kremer (1993) used data on the growth rate of the world popu- 

lation to argue that growth has been nonzero and increasing for 

8. The fact that we allow for permanent breaks in productivity growth im- 

plies that productivity growth has a unit root component. This allows our model 

to match the fact that the population is integrated of order two in our sample, 

which has been emphasized in prior work on this topic ( Bailey and Chambers 

1993 ; Crafts and Mills 2009 ). 
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FIGURE V 

Probability of Different Productivity Growth Break Dates 

The figure plots our estimate of the probability that a structural break occurred 
in the parameters μ, σ1 , and σ2 in different decades between 1550 and 1800. 

TABLE I 

PRODUCTIVITY GROWTH 

Mean Std. dev. 2 .5% 97.5% 

μa, 1 0.00 0.01 − 0 .01 0.02 

μa, 2 0.04 0.02 0 .02 0.10 

μa, 3 0.19 0.01 0 .17 0.22 

Notes. The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile of the posterior 
distribution we estimate for average productivity growth μ in the three regimes, using the simple procedure 
described in Section II . See Online Appendix Table A.1 for the posterior distribution of σε1 ,t and σε2 ,t . 

many millennia. The world population estimates he used indi- 

cate that world population growth from 1200 to 1500 was 0.6% 

per decade. In our Malthusian model (as well as Kremer’s model), 

steady-state productivity growth is α times steady-state popula- 

tion growth. Using our estimate of α discussed above, this sug- 

gests that growth in productivity was 0.4% per decade over the 

period 1200 to 1500, that is, positive but glacial. This slow growth 

rate is well within the credible set of our pre-1600 estimate 

of μ. 
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FIGURE VI 

Permanent Component of Productivity 

The figure plots our estimates of the evolution of the permanent component of 
productivity ˜ a t over our sample period (natural log relative to its value in 1250). 
The black line is the mean of the posterior for each period, and the gray shaded 
area is the 90% central posterior interval. 

Our results indicate that sustained productivity growth be- 

gan in 1600 (or around that time). We estimate average produc- 

tivity growth of 4% per decade over the period 1600 to 1810. In the 

early nineteenth century, productivity growth accelerated sharply 

to 19% per decade. We conclude from these estimates that the pe- 

riod from 1600 to 1810 was a time of transition in England from 

an era of total stagnation to an era of modern economic growth. 

We refine these estimates in Sections III and IV . 

Figure VI presents our initial estimate of the time series evo- 

lution of the permanent component of productivity. These esti- 

mates indicate that the level of productivity in England was very 

similar in 1600 to what it had been in the late thirteenth century. 

In the intervening period, productivity fluctuated a slight bit. Af- 

ter 1600, productivity began a sustained increase, which acceler- 

ated sharply in 1810. As in most models in macroeconomics, pro- 

ductivity growth is a residual. In later sections, we consider more 

complex models with capital and in which we allow the elastic- 

ity parameters in the production function to change over time. In 

these cases, we attribute a substantial fraction of the post-1800 
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FIGURE VII 

Productivity and Real Wages 

The figure plots our estimates of the evolution of the permanent component of 
productivity ˜ a t along with the real wage series we use. 

productivity growth in Figure VI to capital deepening and the 

falling importance of land in production. 9 

II.D. Real Wages, Productivity, and Engels’ Pause 

Figure VII compares our estimate of productivity with the 

data we use on real wages. This figure illustrates well the impor- 

tance of accounting for Malthusian population forces when esti- 

mating productivity in the preindustrial era. Our analysis implies 

that the large changes in real wages before 1600 are explained 

almost entirely by changes in the population and almost not at 

all by changes in productivity. During this period, the economy 

moved up and down a relatively stable labor demand curve as 

suggested by Figure II . First, plagues reduced the population and 

this increased wages. Then, the population recovered from these 

9. Online Appendix Table A.1 presents estimates of the standard deviation of 

the permanent and transitory productivity shocks. These vary very little across 

the three regimes. The standard deviation of the permanent productivity shocks 

is 0.03 prior to 1600 and 0.02 after 1600. The standard deviation of the transitory 

productivity shocks is 0.05 prior to 1600 and 0.04 after 1600. 
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plagues and real wages fell. As a result, changes in productivity 

were very substantially muted relative to changes in real wages. 

Real wages are also a poor guide to changes in productivity 

for the period from 1600 to 1860. Over this period, however, the 

pattern is reversed: productivity moved substantially more than 

real wages. Productivity started to grow after 1600. But this in- 

duced rapid growth in the population. Since the labor demand 

curve was downward sloping due to land being a fixed factor, 

growth in the population put downward pressure on wages. Over 

this period, real wages, therefore, lagged behind growth in pro- 

ductivity. 

Our analysis provides a simple explanation for Engels’ Pause, 

the fact that real wages did not rise appreciably during the early 

decades of industrialization in England. We see in Figure VII 

that over 1730 and 1800, real wages in England fell slightly de- 

spite substantial productivity growth. (The real wage series of 

Feinstein (1998) and Allen (2007) —which differ somewhat from 

Clark’s real wage series—extend the pause a few decades into 

the nineteenth century.) One explanation for this fact—famously 

articulated by Engels (1845) —is that the gains from capitalism 

overwhelmingly accrue to capitalists as opposed to laborers. Our 

analysis suggests an alternative Malthusian explanation: rapid 

growth in the population put downward pressure on the marginal 

product of labor and thus reduced the growth in wages relative to 

productivity. 10 

One reason we chose to use the wage series for unskilled 

building workers in our analysis is to capture a part of the la- 

bor market that involved relatively voluntary labor and therefore 

a better measure of the marginal product of labor than, say, the 

10. Allen (2009b) comes to a similar conclusion using quite different data and 

methods. He also concludes that population growth was a crucial contributor to 

stagnant real wages in England during Engels’ Pause: “population growth was a 

necessary condition for stationary real wages: Engels’ pause looks like Malthus’ 

dismal science come true” (430). Allen’s model is more complex than the simple 

model we analyze in this section. In his model, slow accumulation of capital and 

a low elasticity of substitution between capital and labor also contribute to low 

growth in real wages during Engels’ Pause. We extend our model to include cap- 

ital in Section III . In Allen’s model, growth in capital eventually catches up to 

growth in the population leading real wage growth to pick up. Our later analysis 

places a greater emphasis on reductions in the importance of land in production in 

eliminating the Malthusian character of growth over the course of the nineteenth 

century. 



WHEN DID GROWTH BEGIN? 853 

work of the villein in the countryside. Nevertheless, our assump- 

tion of a competitive labor demand curve is clearly a simplifica- 

tion, and it is important to consider how our results might change 

were we to weaken this assumption. A constant wage markdown 

due to monopsony power or coercion by employers would not af- 

fect our results. It would only affect the estimate of the constant 

φ in equation (1) . A wage markdown that was getting smaller 

over time as the labor market became more free and competitive 

would show up as an increase in productivity in our analysis. So 

long as this process was slow—which seems likely—the bias in 

our results arising from this issue would also be small. 

II.E. From When to Why 

By dating the onset of productivity growth, our results help 

discriminate between competing explanations for why growth be- 

gan. We estimate that sustained productivity growth began in 

England substantially before the Glorious Revolution of 1688. 

According to our estimates, productivity in England rose by 

34% from 1600 to 1680. North and Weingast (1989) argue that 

the political regime that emerged in England after the Glori- 

ous Revolution—characterized by a power-sharing arrangement 

between Parliament, the Crown, and the common law courts—

resulted in secure property rights and rule of law and thereby laid 

the foundation for economic growth. The institutional changes as- 

sociated with the Glorious Revolution may well have been impor- 

tant for growth, but our results indicate that the seeds of growth 

were sown earlier. 

Our results support explanations of the onset of growth 

that focus attention on developments that occurred in the pe- 

riod around 1600. The Reformation is an obvious candidate. In 

particular, Henry VIII’s confiscation of monastic lands was a big 

shock to land-ownership patterns and the land market in Eng- 

land ( Heldring, Robinson, and Vollmer 2021 ). England also be- 

came a favored destination for skilled immigrants fleeing reli- 

gious persecution on the continent. This was also a period of 

rapidly increasing urbanization in England. London experienced 

an explosion of its population around this time—from 55,000 in 

1520 to 475,000 in 1670 ( Wrigley 2010 )—likely due to a rapid in- 

crease in international trade. English woolen exports expanded 

rapidly over this period (new draperies) as did intercontinen- 

tal trade, colonization, and privateering. The British East India 
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Company was founded in 1600, and the Virginia Company 

founded its first permanent settlement in North America in 1607. 

Our finding that the onset of growth preceded both the Glori- 

ous Revolution and the English Civil War (1642–1651) lends sup- 

port to the Marxist view that economic change propelled history 

forward and drove political and ideological change. Marx (1867) 

stressed the transition from feudalism to capitalism. He argued 

that after the disappearance of serfdom in the fourteenth cen- 

tury, English peasants were expelled from their land through the 

enclosure movement. That spoliation inaugurated a new mode of 

production: one where workers did not own the means of produc- 

tion and could only subsist on wage labor. This proletariat was 

ripe for exploitation by a new class of capitalist farmers and in- 

dustrialists. In that process, political revolutions were a decisive 

step in securing the rise of the bourgeoisie. To triumph, capital- 

ism needed to break the remaining shackles of feudalism. As the 

Communist Manifesto puts it, “they had to be burst asunder; they 

were burst asunder” ( Marx and Engels 1848 , 40–41). Hill (1940 , 

1961) offers more recent treatments of the political revolutions in 

England in the seventeenth century that stress class conflict and 

their economic origins. 

Acemoglu, Johnson, and Robinson (2005) synthesize the 

Marxist and institutionalist views. They argue that Atlantic trade 

enriched a merchant class that then demanded secure property 

rights and secured these rights through the Civil War and Glori- 

ous Revolution. This last narrative lines up well with our result 

that steady growth—perhaps driven by the Atlantic trade—began 

about half a century before the Civil War . However , we do not de- 

tect a radical increase of growth in the immediate aftermath of ei- 

ther the Civil War or the Glorious Revolution: 3.2% (1600–1640), 

4.2% (1640–1680), and 4.5% (1680–1810). 

Allen (1992) argues that a long and gradual process of in- 

stitutional change in England over the 600-year period from the 

Norman Conquest to the Glorious Revolution resulted in a situ- 

ation in the sixteenth century where the yeoman class had ac- 

quired a substantial proprietary interest in the land, and thus 

an incentive to innovate. The timing of Allen’s “rise of the yeo- 

man” lines up reasonably well with our estimate of the onset 

of growth. According to Allen, property rights, rule of law, and 

personal freedom gradually expanded, and the social order was 

gradually transformed from a feudal to a capitalist order. From 

the twelfth century, royal courts helped freeholders gain full 



WHEN DID GROWTH BEGIN? 855 

ownership over their land. After the Black Death, serfdom col- 

lapsed as landlords competed for scarce labor. Early enclosures 

(fifteenth and early sixteenth centuries) involved brutal evictions 

and depopulation of manors. The Crown reacted to this by in- 

creasing protection of tenant farmers. 

The spread of movable-type printing across Europe after 

1450 led to a large increase in literacy in England in the six- 

teenth and seventeenth centuries ( Cressy 1980 ; Houston 1982 ) 

and a huge drop in the price of books ( Clark and Levin 2011 ). 

Dittmar (2011) argues that cities exposed to printing grew sub- 

stantially faster than otherwise similar cities. More generally, 

Rosenberg and Birdzell (1986) argue for the emergence of institu- 

tions favorable to commerce in the early modern period in West- 

ern Europe, especially in England and Holland. These included 

impartial commercial courts, bills of exchange, marine insurance, 

and double-entry bookkeeping in addition to several of the insti- 

tutions discussed above. 

Printing and literacy likely had wide ranging effects on cul- 

ture. Mokyr (2009 , 2016) and McCloskey (2006 , 2010 , 2016) have 

argued that the crucial change that caused growth to begin was 

the emergence of a culture of progress based on the idea that 

humanity can improve its condition through science and ratio- 

nal thought. Others have stressed a Protestant ethic ( Weber 

1904 , 1905 ) and Puritanism ( Tawney 1926 ). The timing of these 

changes lines up reasonably well with our estimates, although it 

is not straightforward to pinpoint precisely what these theories 

imply about the timing of the onset of growth. 

Bogart and Richardson (2011) stress the importance of the 

post–Glorious Revolution regime’s push to reorganize and ratio- 

nalize property rights through enclosures, statutory authority 

acts, and estate acts. While our results contradict the notion that 

growth began with the Glorious Revolution, the fact that Eng- 

land underwent massive institutional change in the seventeenth 

and eighteenth centuries may have played an important role in 

sustaining growth during this period. 

Allen (2009a) argues that the Industrial Revolution occurred 

in Britain around 1800 because innovation was uniquely prof- 

itable then and there. His theory relies on growth in the sev- 

enteenth century leading to high real wages in England in the 

eighteenth century as well as the development of a large coal 

industry. High wages and cheap coal made it profitable to in- 

vent labor-saving technologies in textiles, such as the spinning 
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jenny, water frame, and mule, as well as coal-burning technolo- 

gies such as the steam engine and coke smelting furnace. While 

our theory does not point to the Industrial Revolution as the gen- 

esis of economic growth, Allen’s theory helps explain how growth 

was sustained and the particular direction it took that led to the 

huge fall in the importance of land in production that we estimate 

later. 

III. A MALTHUSIAN MODEL OF THE ECONOMY 

The simple analysis in Section II makes a number of strong 

assumptions. In the remainder of the article, we explore a richer 

framework that allows us to relax some of these. Most important, 

we model the evolution of the population. Thus, we can present 

novel estimates of the strength of Malthusian population forces 

in preindustrial England. We explicitly incorporate plague shocks 

into this part of the model, which helps the model distinguish be- 

tween measurement error and true variation in the population. 

We also incorporate capital accumulation into the model, explore 

alternatives to the assumption that labor supply was proportional 

to the population, allow for a falling importance of land in produc- 

tion after the onset of industrialization, and estimate the slope of 

the labor demand curve using the entire data set as opposed to 

identifying it from the Black Death. This richer framework al- 

lows us to explore the robustness of our conclusions from Section 

II and present a number of additional interesting results. 

While our focus is on the preindustrial period, our data ex- 

tends well into the early industrial period. It is therefore impor- 

tant for our model to capture the character of the preindustrial 

economy and of the early industrial economy. The role of land 

in production is particularly important in this regard. Before the 

Industrial Revolution, land was a hugely important factor of pro- 

duction. The advent of steam power led to a sharp fall in the role 

of land in production as fossil fuels substituted for human and 

animal power in the production of energy (and the role of food 

production in the economy shrank). To capture this change, we 

distinguish between the pre-industrial period and the early in- 

dustrial period and allow the importance of land in production to 

change after the onset of the Industrial Revolution. Section III.A 

presents our model of the preindustrial economy, and Section 

III.B presents our model of the early industrial economy. 
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III.A. A Model of the Preindustrial Economy 

Output is produced with land, capital, and labor according to 

the production function: 

Y t = F t (Z, K t , L t ) = A t Z 
αK 

β
t L 

1 −α−β
t , 

where K t denotes capital. 11 Producer optimization gives rise to 

the labor demand curve: 

W t = (1 − α − β ) A t Z 
αK 

β
t L 

−α−β
t . 

Taking logs of this equation yields 

w t = ˜ φ + a t + βk t − (α + β ) l t , (3) 

where ˜ φ = log (1 − α − β ) + α log Z . 

Producers accumulate capital to the point where the 

marginal product of capital is equal to its user cost. This gives 

rise to a capital demand equation: 

r t + δ = βA t Z 
αK 

β−1 
t L 

1 −α−β
t , (4) 

where r t is the rental rate for capital and δ is the rate of de- 

preciation of capital. Because we do not have data on capital 

for the preindustrial period, we use the capital demand equation 

( equation (4) ) to eliminate K t from the labor demand equation 

( equation (3) ). Taking logs of the resulting equation yields 

w t = ˜ φ′ + 
1 

1 − β
a t −

α

1 − β
l t −

β

1 − β
log ( r t + δ) , (5) 

where 

˜ φ′ = 
β

1 − β
log β + log ( 1 − α − β ) + 

α

1 − β
log Z. 

The log of productivity a t is the sum of a permanent and tran- 

sitory component: 

a t = ˜ a t + ε2 t , (6) 

where ε2 t ∼ N (0 , σ 2 
ε2 

) is the transitory component and ˜ a t is the 

permanent component of productivity, which follows a random 

walk with drift 

˜ a t = μ + ˜ a t−1 + ε1 t , (7) 

with ε1 t ∼ N (0 , σ 2 
ε1 

) . Both ε1 t and ε2 t are independently distributed 

over time. The transitory component of productivity may reflect 

11. Online Appendix D presents results for a more general production func- 

tion. 
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both measurement error and true transitory variation in pro- 

ductivity (e.g., due to transitory variation in weather). As in 

most macroeconomic models, productivity is a catch-all variable 

capturing the influence of all variables that are not explicitly 

modeled in the production function. Relative to the model in 

Section II , we now incorporate capital accumulation. Our mea- 

sure of productivity is narrower as a consequence. Productivity 

in this model nonetheless captures a number of features of real- 

ity in addition to technology, including institutions, the effects of 

international trade, and colonial exploitation. 

The average growth rate of productivity is given by the pa- 

rameter μ. As in Section II , we allow for two breaks in μ, that 

is, two changes in the average growth rate of productivity. (We 

allow the variances of the transitory and permanent productivity 

shocks—σ 2 
ε1 

and σ 2 
ε2 

—to break at the same times.) We fix one of 

these breaks in 1810. This break captures the Industrial Revolu- 

tion. We allow for another break earlier in the sample between 

1550 and 1800. 

To pin down the timing of the first break, we estimate a 

mixture model. Since μ, σ 2 
ε1 

, and σ 2 
ε2 

break twice, they take on 

three values, one for each regime. We denote these as μ(i ) with 

i ∈ { 1 , 2 , 3 } (with analogous notation for σ 2 
ε1 

and σ 2 
ε2 

). From the 

beginning of our sample until 1540, μ = μ(1) . From 1550 un- 

til 1800, μ = (1 − I) μ(1) + I μ(2) , where I is an indicator variable 

that switches from zero to one at the time of the first break. Fi- 

nally, from 1810 until 1860, μ = μ(3) . The indicator variable I has 

a multinomial distribution with probabilities of switching from 

zero to one at each date between 1550 and 1800. We estimate the 

probabilities of the multinomial distribution for I. The prior for 

these probabilities is a Dirichlet distribution with concentration 

vector c b × (1 , ..., 1) . We choose a small value for c b . This ensures 

that each draw from the distribution is close to a corner of the 

distribution, that is, chooses a specific break date. In particular, 

we set c b = 0 . 001 . 12 The output from our estimation of these prob- 

abilities is a posterior probability distribution over break dates. 

We assume that the labor force in the economy is proportional 

to the population and that each worker works D t days per year. 

12. For a simple exposition of the Dirichlet distribution and the role of the con- 

centration parameter, see Stan Function Reference, section 23: https://mc-stan. 

org/docs/functions- reference/dirichlet- distribution.html . 
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This implies that 

L t = �D t N t , 

where N t denotes the population and � is a constant. Taking logs 

of this equation and using the resulting equation to eliminate l t 
in equation (5) yields 

w t = φ + 
1 

1 − β
a t −

α

1 − β
(d t + n t ) −

β

1 − β
log ( r t + δ) , (8) 

where φ = ˜ φ′ − α
1 −β

λ with λ = log �. 

A central aspect of our model is the law of motion for the 

population. Following Malthus (1798) , we assume that population 

growth is increasing in real income: 

N t 

N t−1 

= 
(W t−1 D t−1 ) 
γ �t , 

where 
 is a constant, γ is the elasticity of (gross) population 

growth with respect to real income, and �t denotes other (ex- 

ogenous) factors affecting population growth. Taking logs of this 

equation yields 

n t − n t−1 = ω + γ (w t−1 + d t−1 ) + ξt . (9) 

Malthus argued that the birth rate and the death rate var- 

ied with real income. He described “preventive c hec ks” on pop- 

ulation growth that lowered birth rates. These included contra- 

ception, delayed marriage, and regulation of sexual activity dur- 

ing marriage. Malthus also described “positive c hec ks” on popu- 

lation growth that raised death rates. These include disease, war, 

severe labor, and extreme poverty. Modern research on fertility 

emphasizes a quantity-quality trade-off where parents invest in 

child quality rather than child quantity when their income rises 

( Becker and Lewis 1973 ; Becker and Barro 1988 ). In our model, 

the parameter γ captures the combined effect of all these effects. 

We allow for two types of exogenous population shocks: 

ξt = ξ1 t + ξ2 t . (10) 

First, we allow for “plague” shocks: 

exp (ξ1 t ) ∼

{

β(β1 , β2 ) , with probability π

1 , with probability 1 − π. 
(11) 

These plague shocks occur infrequently (with probability π ) but 

when they occur, they kill a (potentially sizable) fraction of the 

population. The fraction of the population that survives follows 
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TABLE II 

ENERGY CONSUMPTION (PETAJOULES) IN ENGLAND AND WALES 

1560 1700 1750 1800 1850 

Draught animals 21.1 32.8 33.6 34.3 50.1 

People 14.9 27.3 29.7 41.8 67.8 

Firewood 21.5 22.5 22.6 18.5 2.2 

Wind 0.2 1.4 2.8 12.7 24.4 

Water 0.6 1.0 1.3 1.1 1.7 

Coal 6.9 84.0 140.8 408.7 1,689.1 

Total 65.1 168.9 230.9 517.1 1,835.3 

Total less coal 58.2 84.9 90.1 108.4 146.2 

Notes. The table shows energy consumption in England and Wales from various sources in petajoules. It 
reproduces a portion of Table 2.1 in Wrigley (2010) . 

a beta distribution β(β1 , β2 ) . We also allow for a second type 

of population shock: ξ2 t ∼ N (0 , σ 2 
ξ2 

) . Both population shocks are 

independently distributed over time. Together, these population 

shocks are meant to capture a host of potential influences on pop- 

ulation growth, in addition to plagues. 

III.B. A Model of the Early Industrial Economy 

The last century of our data covers the early industrial pe- 

riod in England. A crucial development over this time was the 

rapid fall in the importance of land as a factor of production. The 

primary driving force in this development was the introduction 

of the steam engine, powered by fossil fuels. This technological 

advance meant that the production of energy was no longer land 

intensive ( Wrigley 2010 ). Table II presents data on energy con- 

sumption from various sources over our sample period. Prior to 

the introduction of steam power, the vast majority of energy was 

derived from draught animals, human power, and firewood. These 

energy sources were extremely land intensive. Both draught an- 

imals and human power rely on the production of food (feed in 

the case of animals), and firewood requires vast forests. In this 

environment, the fixed nature of land created a severe bottleneck 

for economic expansion. Our preindustrial model captures this by 

explicitly modeling the reliance of production on land. 

With the introduction of the steam engine, energy produc- 

tion was gradually decoupled from land use. This dramatically re- 

duced the importance of land in production. The last two columns 

in Table II show just how enormous the increase in energy 

consumption was during even the relatively early phase of the 
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industrial era. By 1850, total energy consumption had risen by 

over a factor of 10 relative to 1700, with virtually all of this in- 

crease coming from coal. It is clear that nothing remotely like 

this would have been possible without steam power or some other 

dramatically less land-intensive energy source. 

To capture this change parsimoniously, we allow the expo- 

nents in the production function to change after the onset of 

the Industrial Revolution. Acemoglu and Restrepo (2018 , 2019b) 

show how a production function that is explicit about how inter- 

mediate inputs (such as energy) produced by completing various 

tasks and new technologies (such as the steam engine) can change 

the factor content of production is equivalent to a traditional pro- 

duction function written in terms of primary factors only as long 

as the exponents on the factors are allowed to vary with technical 

progress. We take this approach and assume for the early indus- 

trial period that 

Y t = F t (Z, K t , L t ) = A t Z 
αt K 

βt L 
1 −αt −βt 
t , (12) 

which is the same as before except that the exponents αt and βt 

are now time varying. A fall in αt will then capture the fall in 

the importance of land as a factor of production, and the evolu- 

tion of βt will determine to what extent it is capital or labor that 

increases in importance. We do not model the use of fossil fuels ex- 

plicitly. Their use is reflected in the changing output elasticities 

and in higher productivity. 

In this case, the labor demand curve ( equation (8) ) becomes: 

w t = φt + 
1 

1 − βt 

a t −
αt 

1 − βt 

(d t + n t ) −
βt 

1 − βt 

log ( r t + δ) , (13) 

where 

φt = 
βt 

1 − βt 

log βt + log ( 1 − αt − βt ) + 
αt 

1 − βt 

log Z − (αt + βt ) λ. 

The fact that αt and βt can change implies that more data 

is needed to identify the model: an increase in wages for a given 

level of labor supply could be due to an increase in a t or a fall in 

αt . To address this issue, we make use of the demand curves for 

land and capital and data on the quantity of capital and the price 

of land after 1760. We assume that potential renters and owners 

of land will trade until the rental price of land equals its marginal 

product: 

S t = αt A t Z 
αt −1 K 

βt L 
1 −αt −βt 
t , (14) 
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where S t denotes the rental price of land. Capital demand is the 

same as before ( equation (4) ) except that αt and βt are time vary- 

ing. Taking logs and manipulating the land, capital, and labor 

demand curves yields: 

s t = w t + n t + d t − log Z + log αt − log (1 − αt − βt ) + λ(15) 

log (r t + δ) = w t + n t + d t − k t + log βt 

− log (1 − αt − βt ) + λ. (16) 

These two extra equations pin down αt and βt . Simple manipu- 

lation of the demand curves for labor, land, and capital—which 

we spell out in detail in Online Appendix E—establishes three in- 

tuitive results. First, an increase in s t (land rents) holding other 

variables constant implies an increase in αt and a decrease in βt 

and 1 − αt − βt . Second, an increase in r t (the return on capital) 

holding other variables constant implies an increase in βt and 

a decrease in αt and 1 − αt − βt . Third, an increase in w t (wages) 

holding other variables constant implies an increase in 1 − αt − βt 

and a decrease in αt and βt . At a mechanical level, we are adding 

two equations per time period—equations (15) and (16) —and two 

observable variables per time period—s t and k t . 

III.C. Measuring Productivity with Structural Transformation 

Allowing the exponents in the production function to change 

raises an important complication. In this case, A t is no longer a 

natural measure of productivity. 13 Productivity is meant to cap- 

ture the rate at which inputs can be converted into outputs. In set- 

tings with multiple inputs (or outputs), how to operationalize this 

concept is ambiguous. In some cases, such as Y t = A t F (X t ) where 

X t denotes a vector of inputs, all reasonable measures of produc- 

tivity agree (in this case A t ). But in the more general case of 

Y t = F t (X t ) , this is not the case. Caves, Christensen, and Diewert 

(1982) introduce the notion of a Malmquist productivity index for 

a quite general case of production technologies, based on ideas in 

13. One simple way to see this is to consider a change in the units 

that we use to express labor. Suppose L̈ t ≡ ψL t , then Y t = A t Z αt K 
βt 
t L 

1 −αt −βt 
t = 

A t 
ψ 1 −αt −βt 

Z αt K 
βt 
t L̈ 

1 −αt −βt 
t . With the new units for labor, it is A t 

ψ 1 −αt −βt 
rather than 

A t that multiplies the factors of production. If αt and βt change over time, A t 
ψ 1 −αt −βt 

will behave differently from A t . Clearly, a more general concept of productivity 

is needed. See Online Appendix F for a discussion of how the Malmquist index 

(introduced below) avoids this issue. 
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Malmquist (1953) . This index uses the notion of the distance be- 

tween the input-output vector chosen at one point in time and the 

technological frontier at another point in time. For example, the 

distance of the input-output vector that is chosen in period t + 1 

from the time t technological frontier is D t (X t+1 , Y t+1 ) = 
F t+1 (X t+1 ) 
F t (X t+1 ) 

—

that is, actual output at time t + 1 divided by counterfactual out- 

put using the input vector of time t + 1 but the time t production 

function. Analogously, the distance of the input-output vector that 

is chosen at time t from the time t + 1 technological frontier is 

D t+1 (X t , Y t ) = 
F t (X t ) 

F t+1 (X t ) 
. 

Caves, Christensen, and Diewert (1982) recommend using 

a geometric average of D t (X t+1 , Y t+1 ) and D t+1 (X t , Y t ) 
−1 as a 

Malmquist index of productivity: 

M t 

M t−1 

= 

√ 

F t (Z, K t , L t ) F t (Z, K t−1 , L t−1 ) 

F t−1 (Z, K t , L t ) F t−1 (Z, K t−1 , L t−1 ) 
, M 0 = 1 . (17) 

We adopt this recommendation. With constant exponents α and 

β, the growth rates of M t and A t are the same (i.e., M t 
M t−1 

= 
A t 

A t−1 
). 

More generally, the growth rate of M t will differ from the growth 

rate of A t in important ways. See Online Appendix F for a more 

detailed discussion of the Malmquist index. 

With production function (12) , the log of the Malmquist index 

is 

ˆ m t = ˆ a t + ˆ αt log Z + ˆ βt ̄k t − ( ̂  αt + ˆ βt )( d̄ t + n̄ t + λ) , (18) 

where hats denote deviations from the previous period, ˆ x t = x t −

x t−1 , and bars denote the average of period t − 1 and period t, 

x̄ t = 
x t−1 + x t 

2 
. Once again, if αt and βt are constant, this expression 

collapses to ˆ m t = ˆ a t . 

As in the preindustrial era, we assume that the log of pro- 

ductivity ( m t ) is subject to permanent and transitory shocks in 

the early industrial era: 

m t = ˜ m t + ε2 t , (19) 

where 

˜ m t = μ + ˜ m t−1 + ε1 t , (20) 

ε1 t ∼ N (0 , σ 2 
ε1 

) , ε2 t ∼ N (0 , σ 2 
ε2 

) , and ε1 t and ε2 t are independently 

distributed over time. Here, ˜ m t is the permanent component of 

productivity, which follows a random walk with drift, while ε2 t is 

the transitory component of productivity. 
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FIGURE VIII 

Rates of Return on Land and Rent Charges 

The figure plots the data we use on rates of return on land and rent charges. 
These data are from Clark (2002 , 2010) . 

III.D. Data on Interest Rates, Land Rents, Capital, and Days 

Worked 

For the preindustrial period, we use data on rates of return to 

estimate the evolution of the capital stock. Figure VIII plots our 

data on rates of return on agricultural land and “rent charges”

compiled by Clark (2002 , 2010) . The rate of return on agricul- 

tural land is measured as R 
P 

, where R is the rent and P is the 

price of a piece of land. “Rent charges” should not be confused 

with land rents. Rent charges were yields on perpetual nominal 

debt obligations secured by land or buildings (i.e., a collateral- 

ized loan). These are also measured as R 
P 

, where R is the annual 

payment and P is the price of the obligation (which was usually 

much smaller than the value of the collateral). See Clark (2010) 

for more detail. 

We view our series on rates of return of agricultural land and 

rent charges as two noisy measures of the rate of return on cap- 

ital in England over our sample period. In other words, we as- 

sume that r t = ˜ r it + ιr it , where r t denotes the true rate of return on 

capital at time t, ˜ r it denotes noisy measure i , and ιr it ∼ t νir (0 , ˜ σ 2 
ir ) 

denotes measurement error. In periods when neither measure is 
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FIGURE IX 

Land Rents and Capital after 1760 

The figure plots the data we use on land rents from Clark (2002 , 2010) and the 
net capital stock from Feinstein (1988 , Table VIII). 

available, we assume that the interest rate follows a random walk 

with truncated normal innovations: r t ∼ N (0 ,. 2) (r t−1 , 0 . 01 
2 ) . 

We date the shift from the preindustrial period to the early 

industrial period to between 1760 and 1770. This is a tradi- 

tional date for the beginning of the Industrial Revolution. Also, 

estimating a changing production function—changes in αt and 

βt —requires systematic data on rents and the capital stock. The 

capital stock series we use is from Feinstein (1988) and is only 

available after 1760. Figure IX plots the data on land rents and 

the capital stock that we use. The land rents series we use is an 

index from Clark (2002 , 2010) . Feinstein’s series is for the net 

capital stock and is expressed in millions of pounds in 1851–1860 

prices. It reflects both industrial and agricultural investment. We 

assume that both variables are observed with measurement error 

s t = ˜ s t + ιs t and k t = ˜ k t + ιk t , where s t and k t denote the true land 

rent and capital stock, respectively; ˜ s t and ˜ k t denote our noisy 

measures of land rents and the capital stock, respectively; and 

ιs t ∼ t νs (0 , ˜ σ 2 
s ) and ιk t ∼ t νk (0 , ˜ σ 2 

k 
) denote the measurement error in 

these variables. 
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TABLE III 

PRIORS FOR MODEL PARAMETERS 

Parameter Prior Parameter Prior 

β U (0 , 1) γ U (−2 , 2) 

ϕ x N (0 , 100 2 ) ψ N (10 . 86 , 0 . 07 2 ) 

ω N (0 , 1) μ N (0 , 1) 

μξ1 U (0 . 5 , 0 . 9) νξ1 P I (1 , 1 . 5) 

π U (0 , 0 . 5) δ N (0 , 0 . 2) (0 . 1 , 0 . 05 2 ) 

σ 2 
ε1 

I �(3 , 0 . 001) σ 2 
ε2 

I �(3 , 0 . 005) 

σ 2 
ξ2 

I �(3 , 0 . 005) σ 2 
n I �(3 , 0 . 005) 

σ 2 
d I �(3 , 0 . 005) σ 2 

ri I �(3 , 0 . 005) 

˜ σ 2 
d I �(3 , 0 . 005) ˜ σ 2 

s I �(3 , 0 . 005) 

˜ σ 2 
k I �(3 , 0 . 005) ν−1 

n U (0 , 1) 

ν−1 
d U (0 , 1) ν−1 

s U (0 , 1) 

ν−1 
k U (0 , 1) ν−1 

ir U (0 , 1) 

III.E. Priors and Estimation Details 

We use Bayesian methods to estimate our model. In par- 

ticular, we use a Hamiltonian Monte Carlo sampling procedure 

( Gelman et al. 2013 ; Betancourt 2018 ). 14 Table III lists the 

priors we assume for the model parameters. In all cases, we 

choose highly dispersed priors. Most of the priors are self- 

explanatory, but some comments are in order. Our baseline esti- 

mation for the slope of the labor demand curve is based on move- 

ments in real wages and the population between 1340 and 1360 

as discussed in Section II . With capital, the slope of the labor de- 

mand curve becomes ˜ α = 
α

1 −β
. We set a uniform prior for β be- 

tween zero and one and recover α from α = ˜ α(1 − β ) . The prior 

listed for β in Table III is for this case. We also present results 

where (α, β ) are estimated structurally from our full model. We 

explain the prior for that case below. 

The prior for ψ is set such that the peak population before 

the Black Death is between 4.5 and 6 million with 95% prob- 

ability. This range encompasses the estimates of Clark (2007b) 

and Broadberry et al. (2015) . Rather than specifying priors for 

β1 and β2 , we specify priors for the mean of ξ1 which we denote 

μξ1 = 
β1 

β1 + β2 
and the pseudo sample size of ξ1 which we denote 

νξ1 = β1 + β2 . The priors we choose for these parameters follow 

the recommendations of Gelman et al. (2013 , 110) for a flat prior 

14. We implement this procedure using Stan ( Stan Development Team 2017 ). 
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for a beta distribution. Online Appendix Figure A.3 plots the prior 

densities for the standard deviations of ε1 , ε2 , and ξ2 . In Section 

IV.C , we discuss how varying our priors affects our main results. 

To discipline the behavior of αt and βt after 1760, we assume 

that the simplex (αt , βt , 1 − αt − βt ) follows a Dirichlet distri- 

bution with concentration vector c s × (αt−1 , βt−1 , 1 − αt−1 − βt−1 ) , 

where c s = 3 . For any value of c s , this implies that the mean of 

αt is αt−1 and the mean of βt is βt−1 . The choice c s = 3 implies 

that, with αt−1 = βt−1 = 
1 
3 
, the distribution is uniform over sim- 

plexes. A smaller value of c s would concentrate the prior dis- 

tribution toward the corners of the simplex—draws where one 

of the coefficients is close to one and the others close to zero. 

A larger value, on the other hand, concentrates the prior to- 

ward the mean of the distribution—most draws would be close 

to (αt−1 , βt−1 , 1 − αt−1 − βt−1 ) . Thus, our prior choice is a way to 

center the distribution around the previous value of the coeffi- 

cients, while allowing them to change if the likelihood dictates 

it. In the case where (α, β ) is estimated structurally before 1760, 

our prior distribution for (α, β, 1 − α − β ) is a Dirichlet distribu- 

tion with concentration vector (1 , 1 , 1) = 3 × ( 1 
3 
, 1 

3 
, 1 

3 
) which, once 

again, corresponds to a uniform distribution over simplexes. 

We allow for a structural break in the probability of a plague 

π in 1680. The timing of this break is chosen to immediately fol- 

low the Great London Plague of 1665. 15 This break is meant to 

capture the fact that plagues are less frequent in the latter part 

of our sample. The exact timing of this break does not affect our 

main results in a material way. 

Finally, we need to normalize some of the variables in our 

model. Labor demand ( equation (13) ) features log Z and λ, which 

we normalize to zero. The observed w age , land rents, and our cap- 

ital series are indices. They are thus not normalized in a the- 

oretically consistent fashion. For wages, for instance, we would 

want to observe the marginal product of an additional unit of la- 

bor expressed in units of aggregate output. What we observe is 

an index that is normalized to 100 in 1860. Our Bayesian frame- 

work allows us to handle this issue in a straightforward fashion. 

For wages we assume that w t = ϕ 
w + ˜ w t , where ˜ w t is the observed 

15. Notice that the change in the population between the 1660s and the 1670s 

is affected by the Great London Plague. So ξ1 t for t = 1670 will be affected by the 

Great London Plague. This is why we assume that ξ1 t for t � 1680 is governed by 

a different π than earlier values of ξ1 t . 
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w age , w t is the true w age , and ϕ 
w ∼ N (0 , 100 

2 ) is a normalization 

constant. For land rents and the capital stock, we add the fol- 

lowing normalization constants to their measurement equations: 

ϕ 
s ∼ N (0 , 100 

2 ) and ϕ 
k ∼ N (0 , 100 

2 ) , respectively. We reproduce 

the equations and distributional assumptions of our full model in 

Online Appendix G for convenience. 

IV. ESTIMATES OF PRODUCTIVITY FROM THE FULL MALTHUSIAN 

MODEL 

We present results on the evolution of productivity in Eng- 

land for several variants of the model presented in Section III . 

We consider a case in which we maintain our earlier assump- 

tions that the importance of land in production ( α) is constant, 

days worked are constant, and that the slope of the labor demand 

curve is pinned down by movements in wages and the population 

at the time of the Black Death. This case differs from the simple 

model presented in Section II in that we have added capital and 

the Malthusian model of population dynamics. We refer to this 

case as the constant α, β case. 

Figure X presents results on the evolution of productivity 

over time for the constant α, β case (gray solid line). We also 

include results for the simple model from Section II for compar- 

ison (black solid line). While the overall pattern is similar, the 

constant α, β case of the full model implies slower productivity 

growth than the simple model. The reason for this is that the full 

model incorporates capital accumulation. As a result, a portion of 

the increase in labor demand over our sample period is attributed 

to capital accumulation as opposed to productivity and less is left 

in the residual to be attributed to productivity growth. 16 

IV.A. Productivity and the Falling Importance of Land 

The models we have discussed so far make the standard but 

highly unrealistic assumption that the elasticity of output with 

respect to land α is constant through the early industrial period 

up to 1870. We relax this assumption by allowing the production 

function parameters α and β to change over time after the onset 

16. Online Appendix Figure A.2 presents our estimate of the timing of the 

preindustrial structural break in productivity growth in the constant α, β case, 

our baseline case discussed below, and several other variants of the model. All 

these cases strongly favor a break in 1600. 
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FIGURE X 

Permanent Component of Productivity 

The figure plots our estimates of the evolution of the permanent component of 
productivity ˜ a t over the sample period for several variants of our full Malthusian 

model (natural log relative to its value in 1250). 

of the Industrial Revolution. As described in Section III , we use 

data on the quantity of capital and the price of land after 1760 

to pin down the evolution of αt and βt during the early industrial 

period. 

Figure XI plots our estimates of the evolution of αt and βt 

over time. Recall that αt corresponds to the elasticity of output 

with respect to land, and βt corresponds to the elasticity of out- 

put with respect to capital. We estimate a value for α before the 

Industrial Revolution of 0.54 (with a standard deviation of 0.05) 

and a value for β of 0.23 (with a standard deviation of 0.07). 17 

After 1760, we estimate a sharp fall in αt . By 1860, αt had fallen 

by roughly half to a value of 0.29. This sharp fall in αt reflects the 

nature of technical change during the Industrial Revolution. As 

we discuss in Section III , the advent of the steam engine powered 

17. As we discuss in Section II , the land share of production differs from α

when the elasticity of substitution between land and labor differs from one. In 

particular, if land and labor are complements in production, the land share is 

lower than α. Explicitly, allowing for a production function that is more general 

than the Cobb-Douglas production function is complicated when the structure of 

the production function is changing as it is for us after 1760. 
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FIGURE XI 

Parameters of the Production Function 

The figure plots our estimates of the evolution of the parameters αt and βt in our 
baseline case. They are constant until 1770 by assumption. The black line is the 
mean of the posterior for each period, and the gray shaded area is the 90% central 
posterior interval. 

by fossil fuels meant that the production of energy was no longer 

land intensive. This led to a large fall in the importance of land 

in production. As αt falls, both βt and 1 − αt − βt (the elasticity of 

output with respect to labor) rise. Between 1760 and 1860, βt in- 

creased from 0.23 to 0.35, and 1 − αt − βt increased from 0.23 to 

0.36. 18 

Allowing for a fall in the importance of land in production af- 

ter 1760 has a substantial effect on our estimate of productivity 

growth after that date. The dashed black line in Figure X plots 

our estimates of productivity growth in this case, which we refer 

to as our baseline case. Productivity growth up until 1760 is very 

similar to the constant α, β case, but after 1760 it is much slower. 

In the constant α, β case, our estimate of average productivity 

growth between 1800 and 1870 is 16% per decade ( Table IV ). 

When we allow αt and βt to change in the early industrial pe- 

riod, our estimate of average productivity growth falls to a more 

modest level of 5% per decade over this period. This baseline case 

18. Estimates of μ and γ are discussed below. Estimates of other model pa- 

rameters are presented in Online Appendix Table A.1. 
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TABLE IV 

PRODUCTIVITY GROWTH 

Mean Std. dev. 2 .5% 97.5% 

Simple 

μa, 1 0 .00 0.01 − 0 .01 0.02 

μa, 2 0 .04 0.02 0 .02 0.10 

μa, 3 0 .19 0.01 0 .17 0.22 

Constant α, β

μa, 1 − 0 .00 0.01 − 0 .01 0.01 

μa, 2 0 .03 0.01 0 .01 0.05 

μa, 3 0 .16 0.02 0 .11 0.20 

Baseline 

μa, 1 − 0 .00 0.01 − 0 .01 0.01 

μa, 2 0 .02 0.01 0 .01 0.04 

μa, 3 0 .05 0.01 0 .03 0.08 

Notes. The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile of the posterior 
distribution we estimate for average productivity growth μ for three cases of our model. See Online Appendix 
Table A.1 for estimates of the posterior distribution of other model parameters. 

is the specification used in Figures I and II of the introduction. 

Also, the numerical estimates discussed in the abstract and in- 

troduction are for this case. 

Intuitively, in the constant α, β case with a large α, the 

marginal product of labor is sharply downward sloping. After 

1760, England experienced explosive growth in its population 

( Figure IV ). This led to strong downward pressure on real wages. 

Since real wages actually rose over this period, large increases 

in productivity are needed to fit the data. When α is allowed to 

fall after 1760, the labor demand curve becomes less downward 

sloping, which implies that the downward pressure on real wages 

from population growth is smaller, and therefore less productivity 

growth is needed to explain the increase in real wages. 

The model with falling importance of land after 1760 at- 

tributes a substantial portion of the explosive economic growth of 

the early industrial period not to productivity growth but to struc- 

tural change. Before the Industrial Revolution, land was a severe 

bottleneck for economic growth. The advent of the coal-powered 

steam engine changed this dramatically, freeing the economy to 

grow more rapidly. Whether one wants to view this change as an 

increase in productivity (as we do in the constant α, β case) or as 

structural change is a matter of how detailed a model one consid- 

ers. Productivity captures both forces in the simple model. In the 

more detailed model here, we provide an explanation for a large 
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FIGURE XII 

Days Worked per Worker in England, 1260–1840 

The figure presents an estimate of the evolution of days worked per worker in 

England from Humphries and Weisdorf (2019) . 

chunk of this variation in the early industrial period, through the 

lens of structural change. 

The data we use on the capital stock and land rents starts in 

1760. We view these variables as being unobserved prior to that 

time. Online Appendix Figure A.4 plots what our model implies 

about their evolution over our full sample period. We infer that 

capital grew at a modest pace before 1600, with faster growth 

thereafter. We infer relatively stable land rents prior to 1600 with 

growth thereafter. 

IV.B. Days Worked and Structural Identification of the Slope of 

Labor Demand 

The results we have presented up to this point have made 

the assumption that labor supply was proportional to the pop- 

ulation of England over our sample. This is a common assump- 

tion in the literature. However, recent work by de Vries (2008) 

and Humphries and Weisdorf (2019) argues that days worked per 

worker fluctuated substantially over our sample. Figure XII plots 

Humphries and Weisdorf ’s series. It indicates that days worked 

dropped sharply after the Black Death and then recovered to its 



WHEN DID GROWTH BEGIN? 873 

FIGURE XIII 

Permanent Component of Productivity 

The figure plots our estimates of the evolution of the permanent component of 
productivity ˜ a t over our sample period for several variants of our full Malthusian 

model (natural log relative to its value in 1250). 

previous level by the early seventeenth century. After that, days 

worked kept increasing, rising far above their previous level. 19 

Figure XIII presents results on productivity for a case where 

we incorporate Humphries and Weisdorf’s (2019) estimates of 

days worked into our analysis. Here, we assume that days worked 

are exogenous and are measured with error d t = ˜ d t + ιd t , where d t 

denotes the true number of days worked per worker, which are 

unobserved; ˜ d t denotes Humphries and Weisdorf ’s estimates of 

19. Other researchers have referred to the increase in worker industrious- 

ness over this period as an Industrious Revolution ( de Vries 1994 , 2008 ). How- 

ever, the degree to which days worked changed over time in England is contro- 

versial. Comparisons of direct estimates by Blanchard (1978) for 1400–1600 and 

Voth (2000 , 2001) for 1760–1830 support the idea that days worked were low in 

the post–Black Death period and rose sharply in the seventeenth and eighteenth 

centuries. Earlier indirect estimates by Clark and Van Der Werf (1998) , however, 

suggest modest changes in days worked over our sample. Humphries and Weisdorf 

(2019) argue that their new series on the income of workers on annual contracts 

represents an important improvement relative to the series used by Clark and 

Van Der Werf (1998) . 
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days worked; and ιd t ∼ t νd (0 , ˜ σ 2 
d 

) denotes the measurement error. 20 

Allowing for changing days worked does not affect our conclusion 

about the timing of the onset of productivity growth. However, 

we estimate a somewhat larger increase in average productiv- 

ity growth after 1600 in this case. Intuitively, more productiv- 

ity is needed to compensate for the additional labor supply asso- 

ciated with increased days of work. With Humphries and Weis- 

dorf ’s estimates of variable work hours, we estimate that average 

productivity growth μ is 3% per decade for 1600–1800 and 6% per 

decade for 1810–1870. 

We have used the Black Death as an exogenous shock to iden- 

tify the slope of the labor demand curve in the preindustrial era. 

We also consider the alternative approach of using the structure 

of the full model to identify this slope. In this case, we specify a 

relatively diffuse prior for both α and β and use Bayesian updat- 

ing to calculate a posterior mean for these and for the slope of the 

labor demand curve conditional on the entire sample, as we do for 

other parameters. We are then relying on the Malthusian model 

of population dynamics to account for the endogeneity of the pop- 

ulation. Figure XIII presents results on productivity for this case. 

The results are very similar to the baseline case. 

IV.C. Robustness 

1. Alternative Real Wage Data. Our results up to this point 

use real wage data for unskilled builders from Clark (2010) . 

Online Appendix Figure A.5 presents five alternative produc- 

tivity series where we instead use other wage series. First, we 

present estimates of productivity using the following day wage 

series: (i) Clark’s (2010) real wages series for farm laborers, (ii) 

Clark’s (2010) real wages series for building craftsmen, and (iii) 

Allen’s (2007) real wage series for the period 1770 onward (with 

our baseline wage series before that time). We present estimates 

of productivity based on the assumption that the builders, farm- 

ers, and craftsmen series from Clark (2010) are all noisy sig- 

nals of the underlying true w age . Finally, we use Humphries and 

Weisdorf’s (2019) annual income series and the assumption that 

days worked are constant. We do this robustness analysis for the 

structural-slope case. These alternative productivity series yield 

20. Humphries and Weisdorf do not provide estimates for 1250, 1850, and 

1860. We extrapolate days worked on these dates assuming that d t = d t−1 + ηt 

where ηt ∼ N (0 , σ 2 
d ) . 
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similar results to the baseline productivity series, although there 

is some divergence early in the sample period. 

2. Population Data. Our results up to this point use pop- 

ulation data prior to 1540 from Clark (2010) . Online Appendix 

Figure A.6 presents estimates of productivity using population 

data from Broadberry et al. (2015) for the period before 1540. 

Broadberry et al.’s (2015) estimates of the population are infre- 

quent and irregular in their frequency. There are quite a few 

decades for which Broadberry et al. (2015) have no estimate, for 

example, they present no estimate between 1450 and 1522. In this 

robustness analysis, we view the population as an unobserved 

variable in decades for which we do not have an estimate from 

Broadberry et al. (2015) . Our results on the evolution of produc- 

tivity for this case are very similar to our baseline model. 

3. Break Dates. Online Appendix Figure A.7 compares the 

evolution of the permanent component of productivity for four 

different assumptions about when the pre–Industrial Revolu- 

tion break to the productivity component occurred. Recall that 

Figure X presents the evolution of the permanent component 

of productivity integrating over the probability of breaks oc- 

curring at different dates as in Online Appendix Figure A.2. 

Online Appendix Figure A.7 compares these results with results 

when we condition on the break occurring at a specific date. We do 

this for the baseline case and present results for several different 

dates between 1550 and 1760. These alternative results are very 

similar. 

4. Prior s. Online Appendix F igure A.8 presents estimates 

of productivity using different prior distributions than we use in 

our main analysis. First, we present results for a case where we 

change the prior on σε1 —the variance of permanent productivity 

shocks—to be I �(3 , 0 . 005) , that is, the same as the prior on the 

other productivity and population shocks. Second, we present re- 

sults for a case where we change the prior on ψ—the level of the 

population before 1540—to be N (10 . 86 , 10 
2 ) , that is, much wider 

than in our main analysis. In both cases, the resulting productiv- 

ity series are very similar to our main results. Other priors are 

quite dispersed. 
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5. Comparison with Clark (2010 , 2016) . Our estimates of 

productivity differ substantially from those of Clark (2010 , 2016) . 

Online Appendix H presents a detailed decomposition of the fac- 

tors leading to the differences. Several factors are important. One 

important contributor to the difference between our series and 

Clark’s (better known) 2010 series is an error in that series that 

leads to a spurious 25 log point drop between 1540 and 1550. Us- 

ing the average of factor output elasticities at time t and t − 1 

when calculating changes in productivity between time t and t − 1 

also explains an important part of the difference in our results rel- 

ative to Clark’ s , especially for the period before 1600. Differences 

in the factor prices and factor output elasticities implied by our 

approach, relative to those used by Clark, explain the remaining 

differences. 

V. LIBERATING THE ECONOMY FROM THE IRON LAW OF WAGES 

In Section IV , we estimate a gradual increase in productivity 

growth μ and a sharp fall in the importance of land in production 

α after the onset of industrialization. Here we discuss how both of 

these developments—as well as our small estimate of the elastic- 

ity of population growth to real income γ (see later discussion)—

contributed to liberating the economy from the Malthusian “iron 

law of wages,” that is, the notion that wages tend to a very low 

(subsistence) level. These estimates also reconcile the Malthu- 

sian model with episodes historians have identified prior to the 

Industrial Revolution when some parts of the world have expe- 

rienced substantial economic growth over a sustained period of 

time, sometimes several hundred years. Goldstone (2002) refers 

to these episodes as efflorescences. They include ancient Greece, 

ancient Rome, Song China, the Islamic golden age, and the golden 

age of Holland, to name a few. These episodes have often been 

used as evidence against the Malthusian model (e.g., Persson 

2008 ). 

It is important to recognize that steady positive productiv- 

ity growth in a Malthusian model like ours results in a per- 

sistent force pushing wages higher. As wages rise, a counter- 

acting force comes into play pushing wages lower (population 

growth). The strength of the force pushing wages lower is increas- 

ing in the level of the real w age . This implies that as wages rise 

the downward force gets stronger and stronger and eventually 

chokes off further increases in wages. In other words, there is a 
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TABLE V 

ESTIMATES OF γ

Mean Std. dev. 2.5% 97.5% 

Baseline (constant days worked) 0.03 0.05 −0.06 0.12 

Variable days worked 0.09 0.02 0.05 0.14 

Notes. The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile of the posterior 
distribution we estimate for the elasticity of population growth to income γ . The first row presents results 
assuming constant days worked (our baseline case), and the second row presents results assuming days 
worked vary as in Humphries and Weisdorf (2019) . 

steady-state real wage for each level of average productivity 

growth in a Malthusian model. This steady state is not at subsis- 

tence. Rather, the steady-state real wage is increasing in average 

productivity growth. 

In Online Appendix I, we show that the steady state wage in 

our Malthusian model is given by 

w̄ = 
μ

αγ
+ constant . (21) 

As we discussed already, faster productivity growth μ results in 

a stronger force pushing wages up and therefore a higher steady- 

state w age . The strength of the counteracting force—which we 

call the Malthusian population force—is governed by two param- 

eters in our model: the importance of land in production α and 

the elasticity of population growth with respect to per capita in- 

come γ . Intuitively, α determines the slope of the long-run labor 

demand curve, that is, how rapidly real wages fall as population 

rises, while γ determines how rapidly the population increases 

when real wages are high. 

With zero productivity growth, the steady-state real wage is 

potentially very low. Its level depends on factors outside of the 

scope of our analysis, such as hygiene, the marriage rate, contra- 

ceptive technology, and the level of violence in society. With posi- 

tive productivity growth, the steady-state real wage can be much 

higher. Whether it is depends on the size of α and γ . We discussed 

our estimates of α in Section IV . We turn to our estimates of γ . 

V.A. The Responsiveness of Population Growth to Income 

Table V presents our estimate of the elasticity of (gross) pop- 

ulation growth—that is, N t+1 
N t 

—with respect to real income γ for 

our baseline case and the case with variable days worked. In our 

baseline case, our estimate of γ is extremely small at 0.03. This 
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means that a 100 log point increase in real wages increases popu- 

lation growth per decade by only 3 log points. Between 1270 and 

1440, real wages in England rose by 161% (or 96 log points). This 

increase in real wages stimulated population growth by a mere 3 

log points per decade. 

Table V also presents results on γ for our variable days 

worked case. In this case, we estimate a somewhat larger γ of 

0.09. The lower bound of the credible interval in this case ex- 

ceeds zero. While this estimate is somewhat larger, it remains 

very small. Allowing for changes in days worked, real incomes in 

England rose by 70% between 1270 and 1440. A γ of 0.09 implies 

that this stimulated population growth by 5 percentage points per 

decade, while a doubling of real income would stimulate popula- 

tion growth by 6 percentage points per decade. 

Another way to gauge the quantitative magnitude of our es- 

timates of γ is to calculate the half-life of population dynamics 

after an exogenous shock to the level of the population, for exam- 

ple, due to a plague. Assuming for simplicity that days worked 

and the return on capital are constant, that all shocks are equal 

to their average value, and that there’s no productivity growth 

( μ = 0 ), we show in Online Appendix I that the dynamics of the 

population after an initial disturbance are given by the following 

AR(1) process: 

n t+1 = 

(

1 −
γα

1 − β

)

n t + constant . (22) 

The speed of population recovery after a plague-induced decrease 

is thus governed by 1 −
γα

1 −β
in this case. In particular, the half-life 

of the population dynamics (the time it takes for the population 

to recover half of the way back to steady state after a plague- 

induced drop) is log 0 . 5 
log (1 − αγ

1 −β
) 
. (The half-life of real wage dynamics is 

the same.) 

Plugging our estimates of the parameters γ , α, and β into the 

formula, we find that the half-life of population and real wage dy- 

namics before the Industrial Revolution for our baseline case is 

356 years. For the variable-days case, the half-life is 115 years. 

Since α falls sharply after 1760 and β changed little, the Malthu- 

sian population force becomes even weaker after 1760. By 1860, 

the half-life of population and real wage dynamics have risen to 

560 years in the baseline case and 240 years with variable days. 

These long half-lives imply that the strength of the Malthusian 

population force was weak in England over our sample period—a 
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result that is sometimes referred to as weak homeostasis. Prior 

work has also found weak homeostasis. Lee and Anderson (2002) 

find a half-life of 107 years, and Crafts and Mills (2009) find a 

half-life of 431 years. 

One possible reason we estimate a small value for γ is that 

the strength of the positive and preventive c hec ks emphasized 

by Malthus may not have been very sensitive to modest changes 

in real income. Another possible reason is the quantity-quality 

trade-off emphasized by modern scholars: higher income may 

have mostly increased child quality rather than child quantity. 

Though we estimate a positive γ for our sample, the relationship 

between real income and fertility switched to being negative in 

the late nineteenth century and twentieth centuries. This switch 

ma y ha ve been due to increases in the value of education tilting 

behavior even more toward child quality and to increases in the 

bargaining power of women in marriages. 

V.B. Prosperity and the Slope of the Long-Run Labor Demand 

Curve 

We can now use equation (21) and our parameter estimates 

to assess how changes in the economy after the onset of growth 

in 1600 affected the long-run steady-state real wage the econ- 

omy was tending toward. Figure XIV plots the steady-state wage 

in our Malthusian economy for different values of productivity 

growth μ and the slope of the long-run labor demand curve α

relative to the steady-state wage with zero productivity growth. 

Each line in the figure gives the steady-state wage for a particu- 

lar value of productivity growth as the value of α varies. We do 

this analysis for the variable-days case, that is, using γ = 0 . 09 . 

The figure illustrates clearly how important the fall in α is for 

liberating the economy from the iron law of wages. Consider first 

how steady-state real wages respond to productivity growth when 

α is equal to our preindustrial estimate of 0.49. In this case, pro- 

ductivity growth of 3% per decade raises the real wage by a factor 

of two in the long run, while 6% productivity growth raises the 

real wage by a factor of four. These results show that our Malthu- 

sian model is consistent with substantial, multi–hundred year ef- 

florescences of the kind discussed by Goldstone (2002) if we allow 

for modest productivity growth. The small value we estimate for 

γ and the associated weak homeostasis are key to this result. 
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FIGURE XIV 

Steady-State Wage with Productivity Growth 

The figure plots the steady-state real wage for different average levels of pro- 
ductivity growth ( μ) and output elasticity of land ( α) relative to the steady-state 
real wage with zero productivity growth. The parameter α varies on the x -axis and 
each line plots real wages for a given level of average productivity growth. These 
impulse responses are calculated assuming that all other model parameters are 
at their posterior mean values. We do this for the variable-days case. 

As α falls, the steady-state real wage for any given level of 

average productivity growth rises sharply. With our estimate of 

α for 1860 ( α = 0 . 22 ), productivity growth of 6% per decade can 

raise the real wage by a factor of 18 in the long run. In other 

words, this level of productivity growth would have eventually 

led to a 18-fold increase in real wages even if the demographic 

transition had not occurred and the Malthusian population force 

had continued at its 1860 strength. Clearly, a flattening of the 

long-run labor demand curve is a powerful force for liberating the 

economy from the iron law of wages when productivity growth is 

positive. 

Another way to visualize these effects is to plot the steady- 

state wage relative to the actual wage over time. We do this in 

Figure XV . Before 1600, the ratio of the steady-state wage to the 

actual wage is relatively stable around one. Once productivity 

growth begins, the steady-state wage jumps higher and the ac- 

tual wage only gradually catches up. After 1760, the steady-state 

wage begins to rise rapidly as the slope of the long-run labor 
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FIGURE XV 

Steady-State Wage Relative to Actual Wage 

The figure plots the ratio of the steady-state wage—given by equation (49) in 

the Online Appendix —and the actual wage over time. Note that the steady-state 
wage is a function of days worked. In the figure, we use the days worked at each 

date as the d ∗ in equation (49). The black line is the median of the posterior for 
each period, and the gray shaded area is the 90% central posterior interval. We do 
this for the variable-days case. 

demand curve flattens. By 1860, the steady-state wage is more 

than five times higher than the actual w age . 

V.C. P ost-1750 P opulation Explosion 

The modest strength of the Malthusian population force in 

our model raises the question of whether our model can explain, 

with these parameter values, the large increase in the population 

of England that occurred after 1750 (see Figure IV ). In 1740, the 

population of England was 6 million. By 1860, it had risen to al- 

most 20 million. The population grew at a compound rate of 10.4% 

per decade over this 120-year period. 

Figure XVI compares the evolution of the population in Eng- 

land from 1750 to 1860 with the predicted evolution of the 

population from the variable-days version of our model. We con- 

struct the predicted evolution by taking the evolution of real 

wages and days worked in England as given and simulating the 

evolution of the population using equation (9) starting from its 

actual value in 1740 and assuming no population shocks. This 

analysis shows that in fact our model with variable days worked 
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FIGURE XVI 

Actual and Predicted Population Dynamics after 1750 

The dashed line is the evolution of the population in England. The solid line is 
the predicted evolution of the population in England from our Malthusian model. 
In calculating this line, we take the evolution of real wages and days worked in 

England as given and simulate the evolution of the population using equation (9) 
starting from its actual value in 1740. The gray shaded area is the 90% central 
predictive interval given our estimates of α and γ . 

can explain the vast majority of the rapid increase in the popula- 

tion between 1740 and 1860. This may seem surprising given the 

weak Malthusian population force and the somewhat modest in- 

crease in real wages over this period. However, allowing for vari- 

able days worked, per capita income in England over this period 

rose quite substantially (see Figure XII ). 

VI. PLAGUES AND THE POPULATION 

Figure XVII plots our baseline estimate of the evolution of 

the population of England from 1250 to 1550 along with prior es- 

timates from Clark (2007a) , Clark (2010) , and Broadberry et al. 

(2015) . Our estimates are very similar to Clark’ s . This implies 

that our estimation procedure largely validates the assumptions 

Clark makes regarding the evolution of productivity in construct- 

ing his population estimates. The estimates of Broadberry et al. 

(2015) are substantially lower early in the sample period, but 

then gradually converge. 
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FIGURE XVII 

Comparison of Population Estimates for England 

The figure plots our estimates of the evolution of the population of England 
along with estimates from Clark (2007a) , Clark (2010) , and Broadberry et al. 
(2015) . 

The evolution of the population in England over our sample 

period is heavily affected by plagues. Our model captures plagues 

(and other influences on the population other than changes in 

real income) through the shocks ξ1 t and ξ2 t . Online Appendix 

Figure A.9 plots the evolution of the sum of these population 

shocks over the sample period. The largest population shock by 

far is the Black Death of 1348. We estimate that the popula- 

tion shocks associated with the Black Death led the population of 

England to shrink by 32%. But Online Appendix Figure A.9 also 

makes clear that England faced steady population headwinds—

persistent negative population shocks—from the early fourteenth 

century until about 1500. 

VII. CONCLUSION 

We estimate the evolution of productivity in England from 

1250 to 1870 as shifts in the labor demand curve. Our principal 

finding is that productivity growth began in 1600. Before 1600, 

productivity growth was zero. We estimate a growth rate of pro- 

ductivity of 2% per decade between 1600 and 1800 and an in- 
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crease to 5% per decade between 1810 and 1870. Our results in- 

dicate that sustained growth in productivity began well before the 

Glorious Revolution and Industrial Revolution. We demonstrate 

that the early seventeenth century was a crucial turning point 

for productivity growth in England, a result that helps distin- 

guish between competing lines of thought regarding the ultimate 

causes of the emergence of growth. 

We attribute the high output growth of the Industrial Revolu- 

tion only partly to productivity growth. A second important factor 

was the rapidly falling importance of land in production associ- 

ated with the transition to steam power fueled by coal. We lever- 

age our model to estimate the strength of the Malthusian popu- 

lation force in preindustrial England. This force was quite weak. 

The half-life of the response of real wages after a plague-induced 

decrease in the population was more than 100 years before the on- 

set of the Industrial Revolution and increased to several hundred 

years by 1860. 
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Appendix to:

When Did Growth Begin? New Estimates of Productivity Growth

in England from 1250 to 1870



A Appendix Figures and Tables

Figure A.1: A Comparison of Real Wage Measures in England, 1250-1860

Note: The figure presents four estimates of the real wages in England. Three are from Clark (2010): builders,
farmers, and craftsmen. The remaining series is from Allen (2007). The builders series is the series we use in
our main analysis. The builders series is normalized to 100 in 1860. The levels of the farmers and craftsmen
series indicate differences in real earnings relative to builders. The Allen (2007) series is normalized to equal
the builders series in 1770.
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Figure A.2: Probability of Breaks Dates for Different Specifications

Note: The figure plots our estimate of the probability that a structural break occurred in the parameters µ, σ1,
and σ2 in different decades between 1550 and 1800 for various specifications of our model.

Figure A.3: Prior Densities for Standard Deviations
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Figure A.4: Capital and Rents

Note: The figure plots our estimates of the evolution of the logarithm of capital, kt, and rents, st. They are
normalized to 0 in 1250. The black line is the mean of the posterior for each period and the gray shaded area
is the 90% central posterior interval.

Figure A.5: Productivity using Alternative Wage Series

Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different wage series. The “Farmers” series is the farm worker series from Clark
(2010), the “Craftsmen” series is the building craftsmen series from Clark (2010), the “Allen (2007)” series uses
Allen’s (2007) series from 1770 onward (but our baseline wage series before that). Finally, we present estimates
of productivity based on the assumption that the builders, farmers, and craftsmen series are all noisy signals
of the true underlying wage. These estimates are labeled “3 series”.
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Figure A.6: Productivity using Different Population Data

Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using data on the population of England prior to 1540 from Broadberry et al. (2015).

Figure A.7: Productivity Allowing for Different Break Dates

Note: The figure compares estimates of the evolution of the permanent component of productivity m̃t when
we allow for different dates for the first productivity break. B1 and B2 stand for break 1.
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Figure A.8: Productivity using Different Priors

Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different prior distributions. The “Productivity shocks” series changes the prior
on σε1 to be IΓ(3, 0.005), i.e., the same as the prior on the other productivity and population shocks. The
“Population level” series changes the prior on ψ to be N (10.86, 10.0).

Figure A.9: Population Shocks

Note: The figure plots our estimates of the population shocks hitting the English economy over our sample
period, i.e., ξ1t + ξ2t. The black line is the mean of the posterior for each period and the gray shaded area is
the 90% central posterior interval.
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Figure A.10: Measurement Error in Population Data

Note: The figure plots our estimate of the measurement error in our population data ιnt .
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Table A.1: Parameter Estimates—changing α, β

Mean St Dev 2.5% 97.5%

Main Parameters

α 0.54 0.05 0.44 0.62

β 0.23 0.07 0.11 0.37

γ 0.03 0.05 -0.06 0.12

ω 0.03 0.02 -0.01 0.08

Productivity Shock Parameters

σε1,1 0.03 0.01 0.02 0.05

σε1,2 0.02 0.01 0.01 0.03

σε1,3 0.02 0.01 0.01 0.04

σε2,1 0.06 0.01 0.04 0.08

σε2,2 0.04 0.01 0.02 0.05

σε2,3 0.04 0.01 0.02 0.06

Population Parameters

πt<1680 0.26 0.14 0.03 0.49

πt≥1680 0.10 0.09 0.00 0.35

µξ1 0.82 0.08 0.59 0.90

νξ1 7.18 29.07 1.04 36.32

σξ2 0.06 0.01 0.04 0.08

Population Measurement Error Parameters

σn,t<1540 0.04 0.01 0.02 0.06

σn,t≥1540 0.03 0.00 0.02 0.04

νn,t<1540 18.45 1127.28 1.14 42.78

νn,t≥1540 74.50 1984.14 2.13 258.69

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile
of the posterior distribution we estimate for , using the three procedures described in sec-
tions 2–3. Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5%
quantile of the posterior distribution we estimate for the parameters of the production func-
tion α, β, the elasticity of population growth to income γ, the subsistence wage parameter
ω, the standard deviation of the permanent and transitory productivity shocks ε1t and ε2t in
the three regimes, the probability of a plague shock π, the mean of the plague shock µξ1 , the
pseudo sample size of the plague shocks νξ1 , the standard deviation of the normal popula-
tion shock σξ2 , the scale and degrees of freedom parameters of the population measurement
error shocks, σn and νn, respectively.
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B Clark’s Population Series

As we discuss in the main text, Clark (2007b) uses unbalanced panel data on the population of

villages and manors from manorial records and penny tithing payments to construct estimates of

the population prior to 1540. Clark starts by running a regression of this data on time fixed effects

and manor/village fixed effects. He refers to the time fixed effects from this regression as as a

population trend series.

Clark’s population trend series does not provide information on the overall level of the popu-

lation prior to 1540, only changes in the population (i.e., a normalization is needed). In addition,

Clark’s microdata is sufficiently unreliable for the 1530s that he does not make use of his estimated

population trend for that decade. Clark uses the following procedure to surmount these problems.

First, he regresses his population trend on real wages from 1250 to 1520, and separately regresses

the Wrigley et al. (1997) population series on wages from 1540 to 1610. He observers that the R2

in both regressions are high and that they yield similar slope coefficients. He concludes from this

that (i) the English economy moved along stable labor demand curves during both subsamples

and (ii) these two labor demand curves had similar slopes.

Clark next makes the assumption that there was no productivity growth between 1520 and

1540—the labor demand curve did not shift during this time. This allows him to extrapolate the

relationship that he finds in the post-1540 data to the earlier sample, and infer both the population

in 1530 and the missing normalization from the level of real wages. Clark also uses the fitted

values for the population from his labor demand curve as an alternative estimate of the population

and averages this with the trend series to get what he calls the “best” estimate of population before

1540.

C CES Production Function

Consider the production function

Yt = At

[

α′ 1
σZ

σ−1

σ + (1− α′)
1

σ (Lt)
σ−1

σ

]
σ

σ−1

,
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where σ denotes the elasticity of substitution between land and labor in production. Optimal

choice of labor by land owners gives rise to the following labor demand curve

Wt = (1− α′)
1

σAt

[

α′ 1
σ

(

Z

Lt

)
σ−1

σ

+ (1− α′)
1

σ

]

1

σ−1

.

A log-linear approximation of this equation yields

wt = φ− αlt + at,

where

α =

[

σ

(

1 +

(

1− α′

α′

)
1

σ
(

L

Z

)
σ−1

σ

)]−1

and L is the level of labor we linearize around. Notice that α→ α′ when σ → 1.

It is furthermore easy to show that with the CES production function given above, the labor

share of output is

L̄S = 1−

[

1 +

(

1− α′

α′

)
1

σ
(

L

Z

)
σ−1

σ

]−1

.

Combining these last two equations, we get that

α =
1− L̄S

σ
.

This implies that the land share is σα in this case.

D More General Production Function for Pre-Industrial Era

Consider the concave production function

Yt = AtF (Z,Lt,Kt) (23)

The first-order conditions are

Wt = AtFL(Z,Lt,Kt)

rt + δ = AtFK(Z,Lt,Kt)
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where δ is the depreciation rate of capital.

Taking logs in the FOC

wt = at + log (FL(Z,Lt,Kt)) ≈ φ̃
′

+ at +
LFLL

FL
lt +

KFLK

FL
kt (24)

log(rt + δ) = at + log (FK(Z,Lt,Kt)) ≈ φ̃
′′

+ at +
LFLK

FK
lt +

KFKK

FK
kt (25)

Solving for kt in equation (25)

kt = φ̃
′′′

+
FK

KFKK
(log(rt + δ)− at)−

LFLK

KFKK
lt (26)

Substituting into equation (24)

wt ≈ φ̃+

(

1−
FKFLK

FLFKK

)

at +
L

FLFKK

(

FLLFKK − F 2
LK

)

lt +
FKFLK

FLFKK
log(rt + δ)

Which can be rewritten

wt ≈ φ̃+
(

1 + β̃
)

at − α̃lt − β̃ log(rt + δ) (27)

where

α̃ = −
L

FLFKK

(

FLLFKK − F 2
LK

)

β̃ = −
FKFLK

FLFKK

Equation (27) shows that at is identified up to a first-order approximation. This result does not

require a Cobb-Douglas production function, not even constant returns to scale.

E Identification of αt and βt

Consider the demand curves for labor, land, and capital in the early-industrial era:

Wt = (1− αt − βt)AtZ
αtKβt

t L
−αt−βt

t , (28)

St = αtAtZ
αt−1KβtL1−αt−βt

t , (29)

rt + δ = βtAtZ
αtKβt−1

t L1−αt−βt

t . (30)
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We begin by dividing land demand and capital demand by labor demand:

St
Wt

=
αt

1− αt − βt

Lt

Z
, (31)

rt + δ

Wt
=

βt
1− αt − βt

Lt

Kt
. (32)

Manipulating equation (31) yields

αt = Xt −Xtβt, (33)

where

Xt =
St/Wt

(Lt/Z) + (St/Wt)
.

Manipulation equation (32) yields

αt = Yt − Ytβt, (34)

where

Yt =
(rt + δ)/Wt

(Lt/Kt) + ((rt + δ)/Wt)
.

Solving equations (33) and (34) for αt and βt yields

αt = Xt
1− Yt

1−XtYt
, (35)

βt = Yt
1−Xt

1−XtYt
, (36)

and we then also have that

1− αt − βt =
(1−Xt)(1− Yt)

1−XtYt
. (37)

Consider a case were St (land rents) goes up while all other variable remain constant. This

increase Xt but leaves Yt unchanged. As a consequence, αt increases and both βt and 1 − αt − βt

decrease.21

Next, consider a case were rt (rental rate of capital) goes up while all other variables remain

constant. This increases Yt but leaves Xt unchanged. As a consequence, βt increases and both αt

and 1− αt − βt decrease.

Finally, consider a case where Wt (wage) goes up while all other variables remain constant.

21The derivative of (1−Xt)/(1−XtYt) with respect to Xt is −(1− Yt)/(1−XtYt)
2, which is negative.
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This decreases bothXt and Yt. As a consequence, bothαt and βt decrease and 1−αt−βt increases.22

F The Malmquist Productivity Index

The concept of productivity is meant to measure the ratio of output to inputs (Diewert and Naka-

mura, 2007). In situations with more than one inputs (or outputs), the exact way in which this

basic concept is operationalized is ambiguous. In some special cases, all reasonable measures of

productivity will agree. This is, for example, the case if production is assumed to take the follow-

ing form Yt = AtF (Xt), where Yt denotes output and Xt denotes a vector of inputs. In this case,

At is the natural measure of productivity. In the more general case of Yt = Ft(Xt) the definition of

productivity is less clear cut.

Caves, Christensen, and Diewert (1982) introduce the notion of a Malmquist productivity in-

dex for a quite general case of production technologies, based on ideas in Malmquist (1953).

The discussion below builds on the exposition of these concepts in Färe et al. (1994). Con-

sider a production technology St that transforms inputs Xt ∈ R
N
+ into output Yt ∈ R+: St =

{(Xt, Yt) : Xt can produce Yt}. Written in terms of a production function Yt = Ft(Xt), we have

St = {(Xt, Yt) : Yt ≤ Ft(Xt)}. In other words, St defines the set of all feasible input-output vectors.

Caves, Christensen, and Diewert (1982) define the Malmquist productivity index in terms of

the distance function Dt(Xs, Ys) = inf{θ : (Xs, Ys/θ) ∈ St}. The distance Dt(Xs, Ys) is then the

minimum multiplicative proportion by which Ys needs to be scaled down for the input-output

vector (Xs, Ys) to be feasible with time t technology. For example, if period s is a later period than

period t and technology is “more advanced” at this later period, (Xs, Ys) may be feasible using

technology Ss, but Ys/Dt(Xs, Ys) with Dt(Xs, Ys) > 1 may be the largest output that is feasible

given input use Xs and the inferior technology St.

Given the definition of St, the distance is the smallest θ such that Ys/θ ≤ Ft(Xs), which means

Dt(Xs, Ys) = Ys/Ft(Xs). Under our maintained assumptions in this paper, Dt(Xt, Yt) = 1, i.e.,

the output actually produced at time t with inputs Xt is exactly feasible. (More generally, one can

imagine production at time t being inside the technical frontier at time t. In this case, Dt(Xt, Yt) <

1.)

Next consider Dt(Xt+1, Yt+1), i.e., the distance of the input-output vector at time t + 1 from

22The total derivative of 1− αt − βt with respect to Wt is: −
(

(1− Yt)
2
× ∂Xt/∂Wt + (1−Xt)

2
× ∂Yt/∂Wt

)

/(1−

XtYt)
2. Since Xt and Yt are both decreasing in Wt, this derivative is positive. For 1− αt − βt to increase, αt or βt must

decrease. Manipulating equations (31) and (32), we have: αt/βt = St/(rt + δ) × Z/Kt. Since the ratio of αt over βt is
constant and at least one of them decreases, both must decrease.
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the technical frontier at time t. Applying the definition of the distance function we have that

Yt+1/Dt(Xt+1, Yt+1) = Ft(Xt+1), which implies

Dt(Xt+1, Yt+1) =
Yt+1

Ft(Xt+1)
=
Ft+1(Xt+1)

Ft(Xt+1)
.

This is very intuitive: The distance of the time t+ 1 technology from the time t technology evalu-

ated at the time t+1 input-output vector is simply the output at time t+1, i.e., Ft+1(Xt+1), divided

by what output would be if the input vector at time t + 1 were used with the time t technology,

i.e., Ft(Xt+1).

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t as a reference technology is then defined as

M t
t,t+1 ≡

Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
=
Ft+1(Xt+1)/Ft(Xt+1)

1
=
Ft+1(Xt+1)

Ft(Xt+1)
.

We can also consider Dt+1(Xt, Yt), i.e., the distance of the input-output vector at time t from

the technical frontier at time t + 1. Applying the definition of the distance function, we have that

Yt/Dt+1(Xt, Yt) = Ft+1(Xt), which implies

Dt+1(Xt, Yt) =
Yt

Ft+1(Xt)
=

Ft(Xt)

Ft+1(Xt)
.

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t+ 1 as a reference technology is then defined as

M t+1
t,t+1

≡
Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)
=

1

Ft(Xt)/Ft+1(Xt)
=
Ft+1(Xt)

Ft(Xt)
.

Caves, Christensen, and Diewert (1982) recommend defining the Malmquist index as the geo-

metric average of M t
t,t+1 and M t+1

t,t+1
. In this case the Malmquist index becomes

Mt,t+1 ≡

(

Dt(Xt+1, Yt+1)

Dt(Xt, Yt)

Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)

)1/2

=

(

Ft+1(Xt+1)

Ft(Xt+1)

Ft+1(Xt)

Ft(Xt)

)1/2

.

This definition avoids favoring the technology in one of the two periods over the other.
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F.1 Normalization and the Malmquist Index

As we discuss in footnote 13 in the body of the paper, one symptom of At not being a good

measure of productivity in the case where the functional form of the production function changes

over time is that the growth rate of At will be sensitive to the choice of normalization of the inputs

to production. This is not the case for the Malmquist index.

To illustrate this, consider again the change in the unit in which labor is expressed that we

discussed in footnote 13: L̈t ≡ ψLt. In this case we have that

Ft(Z,Kt, Lt) ≡ AtZ
αtKβt

t L
1−αt−βt

t = ÄtZ
αtKβt

t L̈
1−αt−βt

t ≡ F̈t(Z,Kt, L̃t), (38)

where

Ät ≡
At

ψ1−αt−βt

Clearly, if αt or βt vary over time, the growth rates of At and Ät will not be the same.

The Malmquist index, however, suffers no such issue. Since, by equation (38), Ft(Z,Kt, Lt) =

F̈t(Z,Kt, L̃t), this equation immediately implies that the Malmquist index remains the same. In

fact, any rewriting of the production function that leaves the mapping from input to output un-

changed, i.e. that does not change the production possibility frontier, implies the same Malmquist

index because the formula for the Malmquist index only depends on output for some quantities

of inputs.

We can illustrate this point by deriving an expression for the Malmquist index in terms of the

observables in our model—equation (18)—for both Ft and F̈t and denoting the associated indices

as mt and m̈t:

m̂t = ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)l̄t

= ât + (α̂t + β̂t) logψ + α̂t logZ + β̂tk̄t − (α̂t + β̂t)(l̄t + logψ)

= ˆ̈at + α̂t logZ + β̂tk̄t − (α̂t + β̂t)
¯̈
lt

= ˆ̈mt.

Recall that hats denote deviations from the previous period, x̂t = xt − xt−1, and bars denote the

average of period t − 1 and period t, x̄t = (xt−1 + xt)/2. To go from the first to the second line,

we added and subtracted the normalization that transforms lt into l̈t: (α̂t + β̂t) logψ. In the third

line, this time-varying normalization is absorbed by the A residual, ˆ̈at, and l̄t + logψ is converted

14



to ¯̈
lt. From this we see that while the A residual is normalization-dependent the Malmquist index

is not.

G Model Equations

We reproduce the equations and distributional assumptions of our full model here for conve-

nience:

wt = φt +
1

1−βt
at −

αt

1−βt
(dt + nt)−

βt

1−βt
log (rt + δ)

φt = log βt + log (1− αt − βt) +
αt

1−βt
z − (αt + βt)λ

st = wt + nt + dt − z + logαt − log(1− αt − βt)

kt = wt + nt + dt − log(rt + δ) + log βt − log(1− αt − βt)

nt = nt−1 + ω + γ(wt−1 + dt−1) + ξ1t + ξ2t

m̂t = ât + α̂tz + β̂tk̄t −
(

α̂t + β̂t

)

(d̄t + n̄t)

mt = m̃t + ε2t

m̃t = µ+ m̃t−1 + ε1t

exp(ξ1t) ∼











β(β1, β2), with probability π

1, with probability 1− π

ε1t ∼ N (0, σ2ε1), ε2t ∼ N (0, σ2ε2), ξ2t ∼ N (0, σ2ξ2)

Before 1760, αt and βt are assumed to be constant. This implies that the sixth equation collapses

to ât = m̂t before 1760. As a result, rents st and the capital stock kt only appear in the equations

that define them (the third and fourth equations). This is also the period for which we do not have

data on st and kt. For this period, we therefore use the third and fourth equations to estimate st

and kt.

Below we reproduce the assumptions we make about measurement error and normalizations
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in our data:

wt = ϕw + w̃t

nt = ψ + ñt + ιnt

dt = d̃t + ιdt

rt = r̃it + ιrit

st = ϕs + s̃t + ιst ,

kt = ϕk + k̃t + ιkt ,

Here, the variables with tilde’s are the measured variables, while the variables without tilde’s are

the true variables, ϕw ∼ N (0, 1002), ϕs ∼ N (0, 1002), and ϕk ∼ N (0, 1002) are normalization

constants, and ιnt ∼ tνn(0, σ
2
n), ι

d
t ∼ tνd(0, σ̃

2
d), ι

r
it ∼ tνir(0, σ̃

2
ir), ι

s
t ∼ tνs(0, σ̃

2
s), and ιkt ∼ tνk(0, σ̃

2
k)

capture measurement error. A few additional details regarding missing observations are given in

the main text.

H A Comparison with Clark (2010, 2016)

Our approach to estimating productivity in England from the 13th to 19th centuries yields quite

different results than the most comprehensive existing estimates by Clark (2010, 2016). Here, we

consider from where the differences arise. We break this discussion into three parts. First, we

discuss Clark’s dual approach and differences between his 2010 series and his 2016 series. Second,

we discuss how Clark’s dual approach relates to our Malmquist approach. Third, we discuss

differences that arise from the fact that our approach has different implications for the evolution

of factor prices and factor output elasticities than Clark’s approach.

A summary of our conclusions is as follows. First, Clark (2010) made an error in calculating

the growth rate of his index from 1540 to 1550 which contributes to the difference between this

series and our series. Clark (2016) corrects this error. Second, using the average of factor output

elasticites at time t and t − 1 when calculating changes in productivity between time t and t −

1 explains an important part of difference in our results, especially prior to 1600. Conditional

on doing this Clark’s dual approach is approximately equal to our Malmquist approach. Third,

differences in the factor prices and factor output elasticites implied by our approach, relative to

those used by Clark, explain the remaining differences in the evolution of productivity.
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H.1 Clark’s Dual Approach and Differences Between Clark (2010) and Clark (2016)

Clark (2010, 2016) employs a “dual approach” to estimating productivity. Specifically, his estimate

of the growth rate of productivity is

Et

Et−1

=

(

St
St−1

)sZ,t−1
(

rt + λ

rt−1 + λ

)sK,t−1
(

Wt

Wt−1

)sL,t−1 1− τt−1

1− τt
. (39)

where we useEt (for efficiency) to denote the dual estimate of productivity, λ is a risk premium, τt

is the share of national income paid in indirect taxes, and sZ,t−1, sK,t−1, and sL,t−1 are time-varying

estimates of the elasticity of output with respect to land, capital, and labor, respectively.23

Clark’s 2016 productivity series is an updated version of his better known 2010 productivity

series for the sample period 1250-1600. Clark has shared with us the file he used to construct his

2016 series by private correspondence. This file extends his 2016 series from 1600 to 1860 and

contains the component series Clark uses to construct this series. Our discussion here is based

on these series. For the period after 1600, the new productivity series coincides with Clark’s 2010

series.

Figure H.1 plots Clark’s 2010 productivity series (solid gray line) and Clark’s 2016 productivity

series extended to 1860 using the file Clark shared with us (broken black line). We refer to the

extended 2016 series as “Clark (2016)*”. These series differ for two reasons. First, Clark’s 2010

series contains an error in the growth rate from 1540 to 1550. This error creates a 25 log point

spurious drop in the 2010 series. Clark’s 2016 series corrects this error. Second, Clark´s 2016 series

incorporates a new land rent series for the period 1250-1600. Both of these changes make Clark’s

2016 series more similar to our baseline productivity estimate (solid black line in Figure H.1) than

his 2010 series.

The Malmquist index we use for our baseline estimates uses average factor output elastici-

ties rather than lagged factor output elasticities. Using average factor output elasticities is also

recommended by Barro and Sala-i-Martin (2004, p. 435). We can modify Clark’s dual approach—

equation (39)—to use average factor output elasticities as follows:

Et

Et−1

=

(

St
St−1

)s̄Z,t
(

rt + λ

rt−1 + λ

)s̄K,t
(

Wt

Wt−1

)s̄L,t 1− τt−1

1− τt
. (40)

23The discussion in Clark (2010, 2016) suggests that Clark estimates the level of productivity rather than its growth
rate. However, data Clark has shared with us (discussed below) makes clear that he, in fact, estimates growth rates of
productivity. This distinction is important as the level formula Clark discusses in his 2010 and 2016 papers does not
provide a valid measure of productivity when factor shares are allowed to vary over time. See footnote 13 in the main
text for more detail on this point.
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Figure H.1: A Comparison between Clark (2010) and Clark (2016)

Note: The Figure plots four productivity series. The solid black line is our baseline Malmquist index. The solid
gray line is Clark’s (2010) original productivity series. The broken black line—labeled “Clark (2016)*”—is
Clark’s (2016) productivity series extended to 1860. We obtained this series from Clark in private correspon-
dence. The broken gray line is an estimate of productivity using equation (39) with decadal data, i.e., this
series moves to average output elasticities and time aggregates relative to the Clark (2016)* series. The latter
three series are normalized to be equal to the Malmquist index in 1600.

As in the main text, the bar on top of each s signifies an average between t − 1 and t: s̄Z,t =

(sZ,t−1 + sZ,t)/2 and similarly for s̄K,t and s̄L,t.

The fourth line plotted in Figure H.1 is productivity growth estimated using equation (40)

and Clark’s data series for factor prices and factor output elasticities (broken gray line). This line

also differs from the two Clark series because of time aggregation. Clark estimates productivity

using equation (39) at an annual frequency and then averages over decades. To be consistent

with our approach in the rest of the paper, we average the data over each decade and then use

equation (39) to estimate productivity at a decadal frequency. We see that moving from lagged to

average factor output elasticities and decadal time aggregation results in estimates of productivity

that are lower early in the sample. This difference is mostly due to the switch to average factor

output elasticities—time aggregation only makes a small difference. These changes result in a

productivity series that is closer to ours between 1350 and 1600.
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H.2 The Dual Approach versus the Malmquist Approach

We next show that our Malmquist index and the dual approach are equivalent up to a first-order

approximation. To see this, we go back to equation (18), which we reproduce here for convenience:

m̂t =ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)lt.

In this equation, bars denote arithmetic averages across period t− 1 and t and hats denote differ-

ences between the two periods. Rearranging this equation yields24

m̂t = ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t. (41)

The right-hand side is the primal measure of the growth rate of productivity, i.e., the Solow resid-

ual (Solow, 1957). Here, weights are given by the arithmetic average of the factor output elastic-

ities across the two periods. To go from the primal measure to the dual measure, we can follow

Hsieh (2002) and start from the fact that the value of output must equal payments to factors:

Yt = StZ + (rt + δ)Kt +WtLt. Taking a log-linear approximation of this expression at times t− 1

and t around a situation where factor output elasticities are the averages of the two periods yields

the following expression:

ŷt = ᾱtŝt + β̄t

(

log

(

rt + δ

rt−1 + δ

)

+ k̄t

)

+ (1− ᾱt − β̄t)
(

ŵt + l̂t

)

,

24The derivation is

m̂t =at − at−1 +
1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

−
1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=at + αt logZ + βtkt + (1− αt − βt)lt − (at−1 + αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1)

−
1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

−
1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t.

For the first equality, we just use the definition of the bar and hat symbols. For the second equality, we add and subtract
the expression contained in the line that follows the second equal sign. The third equality is again a straightforward
use of the bar and hat symbols.
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where we have dropped higher order terms. Combining this equation and equation (41), we

obtain

m̂t = ᾱtŝt + β̄t log

(

rt + δ

rt−1 + δ

)

+ (1− ᾱt − β̄t)ŵt. (42)

This equation shows that the log-change in the Malmquist index is equal to the dual measure of

productivity growth up to a first order approximation.

The productivity measures in equation (42) differ in some details from the ones plotted in

Figure H.1. First, the left-hand-side of equation (42) is m̂t, the change in mt. The productivity

measure plotted as our baseline estimate in Figure H.1 (solid black line) is m̃t rather than mt.

Recall that m̃t is the permanent component of productivity (see equations (19)–(20)). Our base-

line estimate in Figure H.1, thus, filters out some high frequency variation in productivity, which

makes it smoother than estimates based on the dual approach.

Clark’s dual approach also differs in a few details from the right-hand side of equation (42).

Clark’s dual approach does not incorporate capital depreciation (δ), but it includes a risk premium

(λ) and taxes (τt) that are not incorporated into equation (42). The similarity (and difference in

details) between the right-hand side of (42) and Clark’s dual approach can be more easily seen by

taking logarithms of equation (40):

êt = s̄Z,tŝt + s̄K,t log

(

rt + λ

rt−1 + λ

)

+ s̄L,tŵt − log

(

1− τt
1− τt−1

)

(43)

Comparing this equation to equation (42), notice that in our model, αt, βt, and 1− αt − βt are the

land, capital, and labor output elasticities, while in equation (43) these are denoted by sZ,t, sK,t

and sL,t, respectively. The two formulas are, thus, the same apart from δ being replaced by λ, and

the presence of τt in equation (43).

These details turn out not to make much of a difference. To see this, Figure H.2 plots a dual

measure of productivity using the formula in equation (40) but with our factor price and factor

output elasticities series (broken black line). In other words, this measure of productivity, differs

from ours only in terms of method, not data. We see that the resulting productivity series tracks

our baseline productivity series very closely. The only difference is that our measure is smoother

at high frequency reflecting the fact that it filters out high-frequency movements in productivity.

20



Figure H.2: Our Productivity Measure Compared with the Dual Approach

Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). This
is the same line as the one we label “Clark (Time Aggregation/Average Shares)” in Figure H.1. The dashed
black line is the index constructed with our factor prices and factor shares using equation (40). The latter two
series are normalized to be equal to the Malmquist index in 1600.

H.3 Factor Prices and Factor Output Elasticities

We now turn to the role played by differences in the factor price and factor output elasticity series

used by Clark relative to those implied by our analysis. Since we have shown above that the dual

approach and the Malmquist approach are virtually equivalent, we will carry out the rest of the

analysis using the dual approach for concreteness. In particular, we will calculate productivity

using equation (40) with different combinations of Clark’s and our factor price and factor output

elastiticy series. (Clark refers to factor output elasticities as factor shares.) In the case of Clark’s

series, we will use Clark’s 2016 series extended to 1860. We have already plotted two such cases in

Figure H.2. The solid gray line uses Clark’s factor price and factor output elasticity series, while

the broken black line uses our factor price and factor output elasticity series. Next, we consider

intermediate cases.

A complication that arises if we seek a decomposition of the remaining difference between our

productivity index and Clark’s—the solid gray line and the broken black line in Figure H.2—into

the share explained by factor prices and the share explained by factor output elasticities is that

the productivity indexes we are considering are non-linear. This implies that the difference in
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Figure H.3: Contribution of Factor Prices to Differences in Productivity Estimates

Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and Clark factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

question is not simply the sum of the effect of changing the factor prices, on the one hand, and

the effect of changing the factor output elasticities, on the other hand. Rather, there is also an

interaction term, which is non-trivial.

With this in mind, we begin by considering how changing the factor price series alone affects

the productivity series. Figure H.3 plots a dual estimate of productivity using Clark’s factor output

elasticity but our factor price series (broken black line). The difference between the solid gray line

and the broken black line in Figure H.3 is thus due to moving from Clark’s factor price series

to our factor price series. Focusing on the period after 1600, we see that this change explains a

sizable portion of the difference between our results and the series using Clark’s factor prices and

factor output elasticities, especially during the 17th and early 18th centuries. Prior to 1600, moving

to Clark’s factor price series raises productivity which helps explain the difference between our

results and Clark’s early in the sample, but makes this difference larger between 1350 and 1600.

Figure H.4 plots Clark’s factor price series (solid gray lines) and our factor price series (solid

black lines). In the case of land rents, we also plot the series used in Clark (2010) (broken gray

line). Our real wage series looks similar to Clark’s. The raw real interest rate date we use is also

similar to that used by Clark. However, we allow for measurement error in real interest rates and
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Figure H.4: A Comparison of Price Series

Note: The top two panels plots the wage and interest rate series used in our analysis and used by Clark (2016).
The bottom two panels plot the land rent series used by Clark (2010, 2016) and the land rents that are implied
by our analysis.

make use of two return series (rates of return on land and rent charges). This implies that our real

interest rate series is substantially smoother in the early part of our sample and around 1600. In

particular, Clark’s interest rate series is constant between 1370 and 1540, reflecting Clark’s choice

of how to interpolate over a period of relatively sparse data, while our series falls more gradually

over the early part of this period.

For land rents, we use the same data as Clark after 1760 but choose to infer land rents from

the model prior to 1760. Our inferred series differs quite a bit from Clark’s series, especially early

in the sample. Clark’s data is quite noisy over this early period. But measuring land rents prior

to 1650 is difficult due to the complexity of the relationship between landlords and tenants in a

feudal era. It is also notable that Clark’s 2016 series for land rents differs quite substantially from

his earlier 2010 land rent series for the period prior to 1500. From 1250 to 1500, the 2016 series

increases by 45%, while the 2010 series falls by 32%.

Turning to factor output elasticities, Figure H.5 plots a dual estimate of productivity using

Clark’s factor prices but our factor output elasticity series (broken black line). The difference
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Figure H.5: Contribution of Factor Shares to Differences in Productivity Estimates

Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and our factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

between the solid gray line and the broken black line in Figure H.5 is thus due to moving from

Clark’s factor output elasticity series to our factor output elasticitiy series. For the period after

1600, this change has a minimal effect. Prior to 1600, the differences are larger. Shifting to our

factor output elasticity results in a sharp rise of the productivity series from 1250 to 1400. This

reflects the increase in Clark’s 2016 rent series (which both the solid gray and broken black lines are

using). It also results in high volatility and a substantial increase in the 16th century. Figures H.1,

H.2, H.3, and H.5 taken together indicate that the difference between Clark’s series and our series

before 1600 is a complicated combination of the effects of factor prices, factor output elasticities,

their interaction, time aggregation, and average versus lagged factor output elasticities.

Figure H.6 compares our estimates of factor output elasticities (black lines) with Clark’s (gray

lines). The largest difference is for the output elasticity of land. We estimate a substantially larger

output elasticity of land than Clark. Recall that our estimate of the output elasticity of land is de-

rived from our estimate of the slope of the labor demand curve. Clark constructs his estimate from

estimates of factor shares. His basic approach is to calculate payments to factors by multiplying

factor prices with the quantity of those factors. A challenge with this approach is that Clark does

not have much data on factor quantities. This forces him to make strong assumptions (educated
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Figure H.6: Factor Shares

Note: The figure presents the factor shares implies by our analysis (black lines) and those used by Clark (2016)
extended to 1860 (gray lines). We obtained the latter series from Clark in private correspondence.

guesses) about the factor quantities.

For instance, Clark’s estimate of payments to labor is: Wt× 300× νNt, where Wt is the average

daily wage, 300 is the assumed number of days worked, Nt is population, and ν is the fraction of

the population that is economically active, which he assumes to be 34%. Clark’s assumption that

days worked are constant over the entire sample period contrasts sharply with the estimates of

Humphries and Weisdorf (2019). Also, it is not clear why he choses 300 days. Earlier work often

chose 250. Finally, the notion that the fraction of the population that was economically active

was constant over our sample is also a strong assumption. In particular, an important literature

has highlighted variation in marriage patterns over our sample and associated variation in the

employment of women (De Moor and van Zanden, 2010, Voigtländer and Voth, 2013).

Similarly, to construct payments to capital, Clark makes educated guesses on the stock of hous-

ing, improvements to land, livestock, etc. He estimates payments to land by multiplying the rent

index with a fixed stock of land (28.24 million acres) before the 1840s and direct estimates from tax

returns after this date. With factor payments estimated in this manner, each factor’s share can be

obtained by dividing payments accruing to that factor by payments accruing to all factors. Clark’s

estimates of factor share are, thus, based on a number of strong empirical conjectures. A curious

aspect of his estimates is that he estimates a large capital share in the 13th century that then falls
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by about half in the 14th century (mostly before the Black Death).

I Impulse Response Functions

I.1 Dynamics After Change in Productivity Growth

Our Malthusian model implies that an increase in productivity growth will result in higher steady

state wages. To see this, we first abstract for notational simplicity from all the shocks in our model.

More precisely, we set the value of all shocks equal to their mean. The mean value of ε1t, ε2t, and

ξ2t is zero. The mean value of ξ1t, however, is Eξ1t = π(ψβ1) − ψ(β1 + β2)), where ψ(·) is the

digamma function. We furthermore, assume that days worked and the interest rate are constant

at d∗ and r∗.

Given these assumptions, our model simplifies to:

wt = φ+
1

1− β
ãt −

α

1− β
(nt + d∗)−

β

1− β
log (r∗ + δ) (44)

nt − nt−1 = ω + γ(wt−1 + d∗) + Eξ1t (45)

ãt = µ+ ãt−1. (46)

We can use equation (44) to eliminate wt in equation (45). This yields:

nt − nt−1 = ω + γφ+
γ

1− β
ãt−1 −

αγ

1− β
nt−1 −

βγ

1− β
log (r∗ + δ) + γ

1− α− β

1− β
d∗ + Eξ1t.

This equation can be rewritten as

nt+1 =

(

1−
γα

1− β

)

nt +
γ

1− β
ãt−1 + constant. (47)

Next, we subtract α times the second-to-last equation from equation (46) and rearrange. This

yields:

ãt − αnt = µ− κ+
1− αγ − β

1− β
(ãt−1 − αnt−1) , (48)

where

κ = α

(

ω + γφ+ γ
1− α− β

1− β
d∗ −

βγ

1− β
log(r∗ + δ) + Eξ1t

)

.

This shows that ãt−α×nt follows anAR(1) and therefore settles down to a steady state in the long
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Figure I.1: Real Wage Growth After an Increase in Productivity Growth

Note: Each line plots the growth rate of real wages over time after an increase in productivity growth from
µ = 0 to a higher value. These impulse responses are calculated assuming that all model parameters are at
their posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

run as long as |(1− αγ − β)/(1− β)| < 1. The steady state value of ãt − αnt is (µ− κ)(1− β)/(αγ)

and (using equation (44)) the steady state real wage is

w∗ =
µ

αγ
− d∗ −

ω

γ
−
Eξ1t
γ

(49)

We see from this that the steady state real wage in our Malthusian economy is increasing in the

productivity growth rate µ and the extent to which this is the case is influenced by the strength of

the Malthusian population force as summarized by αγ.

Figures I.1 and I.2 present impulse responses to a change in productivity growth that show

quantitatively how much changes in productivity growth increase wages over time according to

our model when α is set to our pre-Industrial estimate (α = 0.49). For each impulse response,

we start the economy off in a steady state with zero productivity growth (µ = 0). At time zero

in the figures, productivity growth increases. In Figure I.1, we show the evolution of the growth

rate of wages (log change) over the subsequent 500 years. In Figure I.2, we show the evolution of

the level of wages relative to its earlier steady state level over the subsequent 1000 years. In both

figures, we assume that all other shocks are constant at their mean values.

In Figure I.1, we see that the growth rate of wages is initially equal to the change in produc-

27



Figure I.2: Evolution of Real Wages After an Increase in Productivity Growth

Note: Each line plots the evolution of real wages over time after an increase in productivity growth from µ = 0
to a higher value. These impulse responses are calculated assuming that all model parameters are at their
posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

tivity. As wages rise and the Malthusian population force kicks in, the growth rate of wages falls.

This process takes a very long time due to the weakness of the Malthusian population force. As

we discussed above, the half-life of wage growth is roughly 115 years when the land share is at

its pre-1760 value. The fact that wage growth continues for hundreds of years after a change in

productivity implies that the cumulative increase in wages is substantial. In Figure I.2, we can

read off the long-run effect of higher productivity growth on wages. For a “modern” productivity

growth rate of µ = 0.1, we find that the long-run effect on the level of wages is an increase of a

factor of 20.

I.2 Dynamics after Change in α

We now study the impulse response function of our Malthusian economy to a change in α. The

thought experiment is the following: before time 0, the economy is on a balanced growth path

with α constant and equal to αH . At time 0, the value of α falls to αL. β is constant at all times.

Like before, we shut shocks down by setting them equal to their expected value. The permanent
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component of the Malmquist index follows its law of motion throughout the experiment:

m̃t = µ+ m̃t−1. (50)

Since the economy is on the balanced growth path before time 0, the derivations of section I.1

apply and we have for all t < 0:

wt =
µ

αHγ
− d∗ −

ω

γ
−
Eξ1t
γ

ãt − αHnt =
(µ− κH)(1− β)

αHγ
,

where κH is the value of κ when α = αH . Similarly, since α is constant for t ≥ 1, equations (44)–

(46) hold and so does equation (48). Therefore, the convergence result for at − αLnt and wt, t > 0,

apply with α = αL.

At time 0, things are more subtle as the change in α implies that equation (46) is replaced by

equation (50). Combining equation (45) at time 0 and the formula for wt with t < 0, we know n0:

n0 = n−1 +
µ

αH
.

Invoking equation (18), we can solve for a0:

ã0 = ã−1 + µ+ (αH − αL) (logZ − d∗ − n̄0 − λ) , (51)

where we have used the fact that β is constant, at = ãt, mt = m̃t, and ˆ̃mt = µ. Finally, w0 is given

by equation (44) with α = αL.

We show the impulse response functions of Wt and Nt in Figures I.3 and I.4. We set αH , the

value of α before time 0, to 0.49, which is the posterior mean before 1770 and show the results

for various values of αL. The lowest one, 0.22, is the posterior mean for αt in the last decade

of the sample. For simplicity, we set µ = 0 so that population has a well-defined steady state.

Both variables are expressed as a multiple of their steady state value with α = αH . Note that, by

assumption, the variables are in the latter steady state before time 0.

Real wages jump on impact. Since productivity, defined as the Malmquist index, is held con-

stant throughout, there is no change in output at time 0 and this jump is entirely explained by the
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Figure I.3: Response of Wt to a Change in α

Note: The figure plots the response of the real wage (Wt) to a drop in α from its posterior mean before 1770
(0.49) to the value in the legend. Wt is expressed in multiple of its steady state value before the drop.

increase in the labor share.25 Indeed, a drop in α from 0.49 to 0.22 implies a 92% increase in the

labor share, which is exactly the increase in Wt on impact. From time 1 onward, population in-

creases which pushes the wage down to the old steady state—without growth (µ = 0), the steady

state wage doesn’t depend on α.

Population is predetermined at time 0, so it does not change on impact. As income rose in

period 0, however, it starts increasing in period 1 and slowly converges to a permanently higher

level. With a larger labor share, a bigger population can be sustained in steady state.

25Formally, the change in output is:

ŷ0 = ˆ̃a0 + α̂0 logZ + βk̂0 − α̂0(n−1 + d∗ + λ) =
1

1− β

(

ˆ̃a0 + α̂0 (logZ − (n−1 + d∗ + λ))
)

= 0,

where we used the fact that n0 = n−1 when µ = 0 in the first equality, the capital demand in the second one, and
equation (51) in the third one.
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Figure I.4: Response of Nt to a Change in α

Note: The figure plots the response of population (Nt) to a drop in α from its posterior mean before 1770 (0.49)
to the value in the legend. Nt is expressed in multiple of its steady state value before the drop.
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