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What generates the observed differences in economic outcomes by health? How costly it is to be

unhealthy? We show that health dynamics are largely driven by ex-ante fixed heterogeneity, or health

types, even when controlling for one’s past health history. In fact, health types are the key driver of long

spells of bad health. We incorporate these rich health dynamics in an estimated structural model and

show that health types and their correlation with other fixed characteristics are important to account for

the observed gap in economic outcomes by health. Monetary and welfare losses due to bad health over

the life-cycle are large, concentrated, and to a large extent due to factors pre-determined earlier in life. A

large portion of the related monetary costs is due to income losses, especially for people of working age,

while a substantial portion of the welfare losses arises because health affects life expectancy.
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1. INTRODUCTION

There are substantial differences in economic outcomes by health. For example, even among the

relatively homogeneous group of men with a high-school degree, the healthy earn, on average,

37% more than the unhealthy conditional on working. The difference in wealth is even more

remarkable. The gap in wealth by health starts at a relatively young age and becomes very large

by retirement time: in the same group, the median wealth of the healthy at age 65 is 65% larger

than that of the unhealthy (own calculations, see Section 5.1 for details).

These facts raise two important questions. First, what generates such a large difference in

economic outcomes by health? Second, given these large and prolonged differences, how costly

it is to be unhealthy from the entire life-cycle perspective?

We address these questions using a structural framework. In general, the differences in

economic outcomes by health can be due to three mechanisms: (1) health changes economic

circumstances; (2) economic circumstances affect health, and (3) healthy and unhealthy people
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are ex-ante different. While we adopt the first mechanism, the novelty of our approach is that we

also allow for the third mechanism. In fact, modelling the latter is where we see a big gap in the

literature. While the existence of the third mechanism is well-recognised, most structural mod-

els adopt a simple structure in which all ex-ante differences across people are entirely captured

by an observable and unidimensional variable, such as education.

Hence, a related fundamental, and still unanswered question is what is the role of fixed unob-

served characteristics—for instance, characteristics driven by genetics and experiences early in

life—and what are their long-lasting effects on health and economic outcomes. A convincing

answer to this question necessitates a much richer modelling of ex-ante differences, which are

likely multidimensional, and possibly correlated with each other.

Our focus on the role of factors that are pre-determined early in life, or at birth, goes in

parallel with the recently growing empirical literature that documents the importance of the

effects of early-in-life factors over the entire life-course (Felitti et al., 1998; Case et al., 2005;

Anda et al., 2006; Case and Paxson, 2010; Conti and Heckman, 2010; Cronqvist and Siegel,

2015; Harris et al., 2017; Barth et al., 2020). Because the findings from this literature are very

compelling, it is crucial to incorporate these new forces in structural models. Our paper does so

in the context of a rich quantitative framework.

Our analysis proceeds in several steps. We document several novel facts about long-run

health dynamics showing that they are complex and not consistent with a low-order Markov

process. Specifically, health transitions display strong duration dependence: the longer people

have been unhealthy (healthy), the less likely they are to become healthy (unhealthy). We for-

mulate and estimate a parametric model of health shocks that allows for both history dependence

and fixed heterogeneity, and that matches the patterns that we observe. Finally, we incorporate

our estimated health process in a life-cycle model. The ex-ante differences across individuals

in our model are three-dimensional and include fixed heterogeneity in health (or health types),

in labour productivity, and in the rate of time preferences. We estimate the first two fixed fac-

tors and their correlation together with our health process. We estimate the correlation between

health types and the rate of time preferences in our structural model by using the Method of

Simulated Moments.

We focus on high school men to avoid the confounding effect of education and gender on

health and economic outcomes and to emphasise the role of fixed heterogeneity within this rel-

atively homogeneous group. For more accurate measurement, we use three datasets: the Health

and Retirement Study, the Panel Study of Income Dynamics, and the Medical Expenditure Panel

Survey.

Our estimated model is consistent with three sets of important facts. First, it captures the

dynamics of health, including its duration dependence. Second, it matches the observed impact

of bad health on earnings and labour supply (income-health gradient), medical spending, and

life expectancy. Third, it captures the wealth–health gradient by matching the large difference in

wealth levels between the healthy and unhealthy over the lifespan.

Our first set of results relates to the estimation of the health process. We find that both history

dependence and fixed heterogeneity (or health types) are important drivers of health dynamics

and that the role of health types is significant even when we control for long history dependence.

In addition, and importantly, the variation in the transition probabilities across health types is

much larger than that across health histories. This implies that health types play an important

role in explaining the high persistence of health and the occurrence of long spells of bad health.

Specifically, health types account for more than 70% of the variation of the fraction of lifetime

spent being unhealthy. We also show that fixed heterogeneity in one’s health process is correlated

with fixed heterogeneity in labour productivity: people with low fixed productivity are more

likely to be of a worse health type.
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Our second set of results relates to the implications of our estimated structural life-cycle

model. Our estimates imply a strong correlation between one’s health type and rate of time

preferences: among the long-term unhealthy a larger fraction is less patient and has a lower

propensity to save. This is important to account for the wealth–health gradient: when the corre-

lation between patience and health type is shut down, the model substantially underpredicts the

wealth gap between the healthy and unhealthy, even though it still matches the income-health

gradient.

We find that the lifetime costs of bad health are large when measured both in monetary and

welfare terms. On average, people lose about $1,500 per year (in 2013 USD) over their entire

life because of bad health. Our measure of monetary costs includes both direct (out-of-pocket

medical spending) and indirect (loss in labour earnings) costs. We find that the latter component

is a large contributor to the lifetime costs of bad health, especially for working-age people, and

arises because unhealthy individuals are less productive and work less than healthy ones. In

fact, even though total medical costs are substantial for the long-term unhealthy, the effects of

out-of-pocket costs are smaller due to health insurance coverage.

Our welfare measure of the lifetime costs of bad health represents the consumption equivalent

variation for individuals in the counterfactual situation when they (unexpectedly) never draw

bad health realisations. We find that moving from this counterfactual to the baseline would be

equivalent to losing 10% of annual consumption, on average. A decomposition exercise shows

that the major contributor to the welfare costs is the effect of bad health on expected lifespan:

because life is valuable, bad health reduces welfare by shortening the length of life.

Finally, we show that the monetary and welfare costs of bad health are very concentrated

and highly unequally distributed across health types. This happens because people with different

health types are strikingly different in terms of the fraction of their lifetime that they spend being

unhealthy. For example, on average, people with the worst health type spend almost two third of

their lifetime in bad health. This translates into a substantial contribution of health types to the

variation in the lifetime costs of bad health. That is, health types account for close to 70% for the

monetary costs and about a third for welfare costs due to bad health. The smaller contribution of

health types to the variation in welfare costs is due to the fact that welfare costs are very sensitive

to lifespan length and that health types affect the length of unhealthy spells much more than they

affect life expectancy.

Our study thus provides several novel contributions. First, it documents new facts related to

the long-run dynamics of health and shows that to account for this, health process has to feature

both long memory and fixed health types.

Second, it shows that the correlated multidimensional ex-ante heterogeneity in health, labour

productivity, and patience to a large extent contributes to the joint evolution of health, income,

and wealth over the life-cycle. Thus, to account for the observed disparities in economic out-

comes by health in a life-cycle model, it is important to take ex-ante heterogeneity seriously. We

thus add to the existing studies that commonly attribute the observed health-related disparities

in economic outcomes to ex-post health shocks and economic circumstances during adulthood.

Third, we develop a quantitative model designed to gauge the long-run or accumulated effects

of bad health over the entire life-cycle. Using our framework, we are able to measure the com-

prehensive effects of bad health both in terms of monetary and welfare costs, and evaluate the

role of factors pre-determined early in life in generating these costs. To the best of our knowl-

edge, the accumulated effects of bad health over the life cycle have not been assessed before due

to the lack of data or an appropriate structural framework.

Related literature. The robust relationship between health and economic outcomes is well-

documented in the literature (see Cutler et al., 2011 for a review). There is growing interest in

using structural models including health to study a broad set of issues such as health insurance
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reform (see Fang and Krueger, 2022, for an extensive review) or the contribution of heath to

inequality in earnings (Capatina et al., 2021; Hosseini et al., 2021). The findings of these stud-

ies crucially depend on what generates difference in economic outcomes by health: a direct

link between the two or ex-ante differences across individuals. We contribute to the literature

by emphasising the role of correlated fixed characteristics for the systemic economic disparity

between health groups.

At a methodological level, quantitative structural studies on health-related questions empha-

sise the importance of three points: (1) how we measure health, (2) how best to describe health

dynamics, and (3) how to model the direct link between health and economic outcomes.

In our study, we use self-reported health status, a discrete measure of health. This variable is

most commonly used in structural work partly because it is available in several micro datasets

and is consistently measured across them.1 In addition, several studies find that self-reported

health is highly correlated with other subjective and objective measures of health and also has

significant explanatory power in predicting future mortality, even after controlling for many other

factors (see Idler and Benyamini, 1997 for a review, Van Doorsaler and Gerdtham, 2002, and

Pijoan-Mas and Rı́os Rull, 2014 for a more recent examination). Finally, and very importantly,

this measure is available for a long period of time in the Panel Study of Income Dynamics (PSID)

(and the Health and Retirement Study (HRS)), which makes it ideally suited to investigate the

lifetime costs of bad health.

Several recent studies have suggested an alternative measure of health: a continuous index

constructed by aggregating several variables such as diagnosis of most common health condi-

tions, limitations of activities of daily living, cognitive impairments, etc. Blundell et al. (2020),

Hosseini et al. (2022), and Poterba et al. (2017). Capatina et al. (2021) and Prados (2018) con-

struct a more complex measure of health based on an extended list of detailed diagnosed medical

conditions available in the Medical Expenditure Survey (MEPS) Dataset. Such a measure is

arguably closer to the objective underlying health, but the short panel dimension of the MEPS

offers limited opportunities to study its long-term dynamics. Importantly, Blundell et al. (2023)

point out that properly accounting for ex-ante differences across individuals is a more important

modelling issue than the choice of health measure. Our estimation provides new insights about

the role of these ex-ante differences.

Turning to the dynamics of health, structural studies commonly assume it follows a first-order

Markov process. Some studies using a continuous health measure assume the AR(1) specifica-

tion augmented with transitory shocks and/or fixed effects (Blundell et al., 2020; Hosseini et al.,

2021). One of the key contribution of our study is to show that health process has a long memory.

Regarding the mechanism directly linking health and economic outcomes, structural studies

follow one of the following approaches. The most common approach is to assume that health

is exogenous and affects medical spending, labour productivity, and other economic variables

(Jeske and Kitao, 2009; Pashchenko and Porapakkarm, 2013, 2017; Conesa et al., 2018). The

second approach is to assume that health is endogenous and can be affected by medical spending

(Jung and Tran, 2016; Ozkan, 2023), effort (Cole et al., 2019) or healthy/unhealthy habits (Bolt,

2021; Hai and Heckman, 2021).2 In modelling the direct link between health and economic

1. We show that this variable is consistently measured in the PSID and the HRS (see Figures 1–2 in the next

section). Attanasio et al. (2011) compare this variable in the HRS and MEPS, and shows that the two datasets are

consistent.
2. A somewhat mixed approach is used by De Nardi et al. (2016) and Pashchenko and Porapakkarm (2019)

who assume medical spending are (partially) endogenous but cannot affect health. Another hybrid approach is used by

Capatina et al. (2021) who assume (endogenous) employment status can affect heath transitions.
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outcomes, we follow the first approach, but we emphasise the indirect link coming from the fact

that both health and economic variables are affected by correlated fixed factors.

At an applied level, there is a long list of empirical studies documenting the impact of health

on labour marker outcomes (see Currie and Madrian, 1999, for a review). Several structural

studies investigate the importance of health for economic decisions such as savings (Hubbard

et al., 1994; De Nardi et al., 2010, 2016; Lockwood, 2018; Ameriks et al., 2020; Nakajima and

Telyukova, 2020) or labour supply (French, 2005; French and Jones, 2011; Capatina, 2015).

However, the total losses imposed by bad health over the entire life-cycle has not been assessed

before. Arguably, fully understanding the accumulated costs of bad health, its sources, and

to what extent these costs are pre-determined by factors formed at birth or early age is very

important for analysing any health-related policy issues.

It is also important to mention the relationship to the literature assessing the value of changes

in longevity from the perspective of an individuals’ maximisation of expected lifetime util-

ity. Early examples include Arthur (1981), Rosen (1988), and Shepard and Zeckhauser (1984).

More recently, Murphy and Topel (2006) apply this approach to quantify the welfare gains from

increased longevity during the 20th century and find that they are substantial. These studies

typically abstract from individual-level heterogeneity and focus on how a representative cohort

values longevity increases. We contribute to this line of research by evaluating the welfare losses

from shorter life expectancy arising from health shocks of individuals who differ in ex-ante fixed

characteristics and by decomposing these costs.

The rest of the paper is organised as follows. Section 2 documents empirical facts related to

health dynamics and estimates the health processes. Section 4 introduces our life-cycle model

and Section 5 describes its estimation. We present the results and conclusions in Section 6 and

Section 7, respectively.

2. HEALTH AND LABOUR PRODUCTIVITY

For our health process estimation, we primarily use the PSID. When possible, we also use

the HRS to cross-check moments from the PSID and to validate our estimated model. We

report more detail about these datasets, our samples, and how we use them in Appendix A,

Supplementary Material.

For each dataset, we use a sample of male household heads with 12–14 years of education

(corresponding to the high-school degree or at most 2 years of college education). We normalise

all nominal variables to the base year (2013) using the consumer price index (CPI).

We start by documenting the cross-sectional and time-series properties of self-reported health

status and individual-level fixed labour productivity. We then estimate a rich process for health

dynamics that is consistent with these moments and discuss its implications.

2.1. The evolution of health

In the PSID and the HRS, people rank their health as excellent, very good, good, fair, or poor.

As common in the literature, we aggregate these answers into a binary measure of health (see,

e.g. Rust and Phelan, 1997; French, 2005; Capatina, 2015) and classify as healthy or in good

health people who report their health to be in the first three categories, and as unhealthy or in

bad health people who report being in fair or poor health.

The left graph of Figure 1 displays the percentage of people that we classify as in bad health

by age. The dots correspond to the PSID data, while the crosses refer to HRS data. The centre

and right panels display the 2-year health transition probabilities. Details of their construction

are in Appendix B.1, Supplementary Material.
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FIGURE 1

Health
Notes: Left panel: percentage of people in bad health by age. Middle panel: percentage of people moving from bad to good health in the

next 2 years. Right panel: percentage of people moving from good to bad health in the next 2 years. “Model” refers to the simulated data

from our estimated health process described in Section 2.3

(a)

(b)

FIGURE 2

Dynamics of health conditional on duration of previous health status. (a) Percentage of transitions from bad to good

health conditional on being in bad health and (b) percentage of transitions from good to bad health conditional on being

in good health

Notes: Each period is every 2 years. “Model” refers to the simulated data from our estimated health process described in Section 2.3

Consistent with previous findings, more people are in bad health when older, the probability

of recovering from bad health decreases with age, and that of becoming sick increases with age.

In addition the PSID and the HRS yield a very similar picture.

To better understand the dynamics of health, the top (and bottom) panel of Figure 2 display

the probabilities of moving from bad (good) to good (bad) health over the next 2 years, con-

ditional on being in bad (good) health for at least τ consecutive periods (with a period being

2 years). We group observations in three age groups: 30–54, 55–69, and older than 70 and report

the resulting statistics from left to right.
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An important feature of these graphs is that both the probability of recovering from bad health

and that of becoming unhealthy decline monotonically with duration: the longer an individual

has been unhealthy (healthy), the less likely he is to become healthy (unhealthy). This pattern

holds for all age groups.3

This form of duration dependence cannot be captured by the low-order Markov processes

for health that are commonly used in the literature (e.g. French, 2005; French and Jones, 2011;

Capatina, 2015). In fact, a first order Markov process implies that the transition probability does

not depend on how long one has been in the current health state. A second-order Markov process

implies that one’s transition probability is the same for durations longer or equal to two periods.

This negative duration dependence can be generated by two mechanisms. First, the effects

of health can compound. People who are sick for a long period of time might have a lower

recovery probability than those who are sick for a shorter period of time. Similarly, people who

recently recovered from bad health might have a larger probability of relapsing than those who

have been in good health for longer. This mechanism can be well represented by a high-order

Markov process.

Second, people may differ in their ability to recover or in their predisposition to become

sick. In this case, people who are more likely to recover move out of the bad health state faster.

Hence, the pool of the long-term unhealthy is predominantly composed of individuals who are

inherently less likely to recover. Likewise, among the pool of healthy people, some might be

more susceptible to a certain health condition, for instance due to their genetics or lifestyle. This

second mechanism is consistent with fixed heterogeneity in health transition probabilities. In

formulating our health process, we allow for both mechanisms (Section 2.3).

2.2. Health status and labour productivity

Previous work documents large heterogeneity in unobserved fixed characteristics that affect

people’s labour market outcomes, even within the same education group. Among others, see

Guvenen (2009) and Capatina (2015) for estimations that adopt different specifications of labour

income processes. Our goal now turns to determining whether fixed labour productivity is related

to health and its dynamics.

To compute fixed labour productivity, we start by computing real labour income from the

PSID for workers younger than 70, who work at least 520 h per year, and earn at least the federal

minimum wage. As French (2005), we then estimate the age profile of labour income by health

status among working individuals using the following fixed-effect regression:

log(inci t ) =

69∑

t=21

∑

j={G,B}

d
j

t × D
age

it × Dhi t = j + γ̂i + ui t , (1)

where inci t is persons’ i labour income at age t, d
j

t is the coefficient on a dummy variable cap-

turing the interaction between one’s age and health status, and γ̂i is unobserved fixed labour

productivity. Since this specification includes cohort effects in individual fixed productivity,

we subsequently regress individual-level estimated fixed productivity on birth-year dummies to

remove them. We denote the resulting estimates as γi .

3. This negative duration dependence is a robust pattern. It also holds when we use the annual data (using the

1984–97 waves of the PSID). See De Nardi et al. (2017) for those results. It is also present when we exclude people ever

receiving Social Security Disability Insurance.
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FIGURE 3

Fixed labour productivity by health status for both workers and non-workers: fractions of individuals with fixed

productivity below the median (solid line for the healthy and line with dots for the unhealthy)

Figure 3 reports the fraction of people whose fixed labour productivity (γi ) is below the

median for the healthy and the unhealthy. It shows that, for all age groups, the fraction of

unhealthy people having γi below the median (dotted line) is much higher than 50%, while the

corresponding fraction among the healthy (solid line) is about 50%. The results from the HRS

(crossed line) are very similar. This indicates that the composition of fixed labour productivity

of the healthy and unhealthy is different and that we need to account for this.

2.3. Our health process

From the previous sections, we have learned that health dynamics are not well represented by

low-order Markov processes and that a larger fraction of the unhealthy have low fixed labour

productivity. In this section, we formulate a process for the evolution of health that can capture

both observations.

To account for the first observation, we allow our health process to feature both fixed het-

erogeneity and a long history dependence. One important consideration, however, is that the

negative duration dependence that we find could partly result from the fact that we combine poor

and fair health in our measure of bad health, but that, in reality, these two health states may dif-

fer in their persistence. To address this possibility, we no longer merge poor and fair health into

“bad” health. That is, we allow for three health states in our estimated health process: {P, F, G}

for poor, fair, and good health, respectively.

To account for the second observation, we allow one’s fixed health type to be correlated

with one’s fixed heterogeneity in labour productivity. A similar approach is taken by Low and

Pistaferri (2015), who allow fixed productivity to affect the stochastic evolution of disability

shocks.

Furthermore, we set up our process for health dynamics based on two criteria. First, it

must capture the cross-sectional and dynamic moments of health that we document. Second,

it must be parsimonious, so that a structural life-cycle model including this health process is

computationally manageable.
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As a result, we formulate our three-state health process as an ordered-logit model with fixed

unobserved heterogeneity. We also assume that the future evolution of health depends on an age

polynomial, whose coefficients depend on which of the three health states the person is in during

the current period. In terms of memory dependence, we restrict the evolution of health to depend

on the number of consecutive periods of previous good or bad health, that is, we combine the

states of poor and fair health. In addition to preserving tractability, combining the history of poor

and fair health avoids the problem that the number of people being in poor health for several

consecutive waves is small.

More specifically, we assume that for an individual with current poor or fair health (ht ∈

{P, F}), who has been in bad health for τB periods, the probability of being in poor health,

conditional on surviving to age t + 1, follows a logistic function (for the ease of notation, we

suppress individuals’ level subscript i)

Pr (Pt+1 | ht , τB, η) = �

(
T −1∑

τ=1

aB
τ 1(τB=τ) + aB

T 1(τB≥T ) + f ht

age (t) + aB
η Dη

)
, (2)

and that the probability of being in either fair or worse health at age t + 1 is

Pr (Ft+1 ∪ Pt+1 | ht , τB, η) = �

(
T −1∑

τ=1

aB
τ 1(τB=τ) + aB

T 1(τB≥T ) + f ht

age (t) + b1 + aB
η Dη

)
, (3)

where � is the logistic function, and 1(·) is an indicator function which is equal to one if its

argument is true and zero otherwise. The first two terms in the bracket capture the history depen-

dence, where τB is the number of consecutive periods an individual has been in bad health

(either poor or fair). We denote as T the longest possible history dependence (i.e. how many

lags, including the current period, are included in our process).

We allow the transition probability to depend on age through f P
age(t) and f F

age(t), which

are second-order polynomials in age. Their coefficients can differ depending on whether one’s

current health status is poor or fair. The term b1 is a non-negative constant to ensure that the

cumulative probability is monotonically increasing.

The last term in the logit function, Dη, is the dummy variable for one’s fixed health type. We

assume there are three such types, which we denote as {η1, η2, η3}, and impose the following

rank in our estimation: aB
η1

> aB
η2

> aB
η3

. Thus, η1-type has a lower chance to be in better health

than η2- and η3-types. We will refer to an individual with η1 and η3 as the worst and best health

types, respectively.

Similarly, the probability of being in poor health (and probability to be in poor or fair health),

conditional on surviving to age t + 1 and being healthy for τG periods, is

Pr (Pt+1 | G t , τG, η) = �

(
T −1∑

τ=1

aG
τ 1(τG=τ) + aG

T 1(τG≥T ) + f G
age (t) + aG

η Dη

)
, (4)

Pr (Ft+1 ∪ Pt+1 | G t , τG, η) = �

(
T −1∑

τ=1

aG
τ 1(τG=τ) + aG

T 1(τG≥T ) + f G
age (t) + b2 + aG

η Dη

)
,

(5)

where the type-dependent coefficients aG
η allow each health type to have a different effect on the

transition probabilities of people currently in good and bad health.
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It is worth noting that our specification nests the first-order Markov process for health shocks

that is commonly used in the literature, when we restrict: T = 1 and aB
η = aG

η = 0 for all health

types.

Since one’s health type η is unobservable, we model the probability of an individual having a

certain health type as an ordered-logit model. Hence, the cumulative probability of an individual

having health type η ≤ η j can be expressed as follows:

Pr(η ≤ η j | X
η
t0) =

{
�(bη j

+ Bη × X
η
t0) for j = {1, 2},

1 for j = 3,
(6)

where bη1
and bη2

are the constant terms in the ordered-logit model, with bη1
< bη2

, t0 is the

earliest age at which we observe an individual in our sample, X
η
t0 is a set of characteristics that

can be informative about one’s health type and are observable as of at age t0, and Bη are the

corresponding coefficients (we provide more details on the construction of the log-likelihood

function in Appendix B.2, Supplementary Material).

The variables that we include in X
η
t0 are age t0, birth-year dummies (in 10-year windows),

health status ht0 , fixed labour productivity γ , and net worth kt0 . We allow for tercile dummies for

fixed productivity (γL , γM , γH ), and hence for a non-linear relationship between γ and η. We

allow for quintile dummies for net worth, for each 5-year age window. The next section reports

our estimation results and discusses why we include these variables and what we learn from our

estimated processes.

Next, we turn to modelling survival. We do so by specifying the following logit model for

the 2-year survival probability of an individual at age t, who has been in health state ht for τh

periods,

ζt (ht , τB) = �

(
2∑

τ=1

aζ B
τ 1(τB=τ) + a

ζ B

3 1(τB≥3) + f ζht

age (t)

)
if ht ∈ {P, F} ,

ζt (ht , τG) = �

(
2∑

τ=1

aζ G
τ 1(τG=τ) + a

ζ G

3 1(τG≥3) + f ζ G
age (t)

)
if ht = G.

(7)

The first two terms in the logit function capture history dependence. Similar to the health process,

we combine the history of poor and fair health into that of bad health. The terms f
ζht
age (t), where

ht ∈ {P, F}, and f
ζ G
age(t) are linear functions of age.

Since the PSID’s sample size for older people is small, we estimate our survival probabilities

using data on males with a high-school degree from the HRS. We then extrapolate them to

obtain the survival probabilities for younger people. Figure B1 in Appendix B.3, Supplementary

Material shows our estimated 2-year survival probabilities.

After estimating our survival probabilities, we estimate equations (2)–(6) jointly by maxi-

mum likelihood. We report the results in the next section. In estimation, we do not impose any

restrictions other than those necessary for a standard ordered-logit model. That is, in equations

(2) and (3) we impose aB
η1

> aB
η2

> aB
η3

where aB
η2

is normalised to zero. Similarly, in equations

(4) and (5) aG
η2

is normalised to zero but there are no restrictions on aG
η1

and aG
η3

. Thus, we allow

for any possible ranking among {aG
η1

, aG
η2

, aG
η3

}. Finally, a cumulative probability must be mono-

tonically increasing; thus, b1 in equation (3) and b2 in equation (5) must be non-negative, and

bη1
≤ bη2

in equation (6).

It is worth noting that the identification of fixed heterogeneity comes from the dependence

of the health transition probabilities on how long one has been in the current health state. That

is, in a health process in which we allow for T lags, in the absence of health types, the implied
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TABLE 1

Estimation results for the health process in equations (2) and (3) in the top panel and equations (4) and (5) in the

bottom panel

T = 5 T = 4 T = 3 T = 2 T = 1

Coefficients of history-dependence terms and health types in equations (2) and (3)

aB
2 0.075 0.071 0.129 0.288 -

aB
3 0.826*** 0.810** 0.675**

aB
4 0.527 0.704**

aB
5 0.772**

aB
η1

2.270*** 1.994*** 1.604*** 1.987*** 2.111***

aB
η3

−2.043*** −2.104*** −1.346* −1.303** −1.506**

Coefficients of history-dependence terms and health types in equations (4) and (5)

aG
2 −0.391* −0.366* −0.369* −0.770*** −

aG
3 −0.241 −0.183 −1.086***

aG
4 −1.007*** −1.691***

aG
5 −1.921***

aG
η1

4.527*** 3.786*** 1.637*** 1.806*** 2.006***

aG
η3

−1.447*** −1.639*** −2.317*** −2.555*** −2.871***

N 9,028 9,765 11,126 12,096 13,083

Notes: The columns refer to specifications controlling for different number of lags of past health. The terms aB
η2

and

aG
η2

are normalised to zero. Being in bad/good health for one period (τB = 1, τG = 1) is the base case. All estimations

include a quadratic in age whose coefficients depend on current health status (poor, fair, good). ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

TABLE 2

Estimation results to predict health type in equation (6)

T = 5 T = 4 T = 3 T = 2 T = 1

Age t0 −0.039 −0.025 0.005 0.001 −0.016

ht0 = G −1.457*** −1.429*** −1.879*** −1.921*** −2.250***

ht0 = P 1.462 2.072* 2.409 2.385 1.021

Second tercile of γ −0.247 −0.337 −0.508** −0.546** −0.642***

Third tercile of γ −1.203*** −1.374*** −1.189*** −1.286*** −1.355***

Second quintile of kt0 −0.001 −0.129 −0.048 −0.459* −0.469*

Third quintile of kt0 −0.621 −0.429 −0.367 −0.378 −0.601**

Fourth quintile of kt0 −0.748 −0.606 −0.691* −0.701** −0.761***

Fifth quintile of kt0 −2.347*** −1.616*** −1.169*** −1.280*** −1.265***

Notes: The columns refer to specifications controlling for different number of lags of past health. Fair health status, first

tercile of γ and first quintile of kt0 are the base for the corresponding dummy variables. All estimations include dummy

variables for 10-years windows of birth year. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

health transition probabilities are the same for people who spend T or more periods in particular

health state. Thus, the lower probability of exiting the current health status after T lags in the

data is attributed to the effect of fixed heterogeneity.

2.4. Estimation results

We estimate several versions of our health process by allowing for history dependence T from

1 to 5 lags. We report the results in Tables 1 and 2. Two results are worth noting. First, in

all specifications, the coefficients on health types (aB
η1

, aB
η3

, aG
η1

, aG
η3

) are statistically significant.
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Hence, even when we allow for five periods (corresponding to 8 lagged years) of history depen-

dence, health types matter for health evolution. This suggests that our result that health types are

important is not an artefact of projecting a high-order Markov process into a low-order one.

Second, in all specifications, the estimated coefficients on health types imply that a person

with the best (worst) health type has a lower (higher) probability to be in poor health regardless

of his current health status.

It is worth noticing that, for ease of interpretation, Tables 1 and 2 report our parameters’ sta-

tistical significance without taking into account that one’s productivity and survival probabilities

are estimated in a previous step and thus subject to uncertainty. To quantify the effects of this

simplification, Appendix B.4, Supplementary Material reports the results when we bootstrap to

compute the 90% and 95% confidence intervals for our estimated health process and health types

parameters.4 This check shows that the inference drawn in this case is consistent with the one in

our baseline case.

2.4.1. Predicting health types. Table 2 reports our estimated coefficients for the ordered-

logit predicting one’s health type which we specify in equation (6). It shows that one’s observed

health status ht0 , fixed labour productivity γ , and net worth kt0 are informative about one’s health

type.

A larger positive coefficient on a variable implies that a person is more likely to be of the

worst health type (η1) and less likely to be of the best health type (η3). As expected, if an

individual’s health at age t0 is good (second row), he is significantly less likely to be of η1-type.

The opposite is true if his health is poor (third row).

In addition, in all specifications, the coefficients on both fixed productivity γ and net worth

kt0 are negative and decreasing in fixed productivity and net worth. Thus, people with the worst

health type are more likely to also have low fixed productivity. This can help explain the patterns

documented in Section 2.2. Moreover, after controlling for fixed productivity, people from the

upper quintile of the wealth distribution are less likely to be of the worst (η1) health type.

Two forces can give rise to the fact that initial wealth at the first period that we observe people

is predictive of their health type conditional on fixed labour productivity. First, the correlation

between health type and patience might generate that healthier and more patient people save

more. Second, people with bad health types are more likely to be sick for long, to incur large

earnings and medical expenses losses, and thus to have lower wealth. It is plausible to think that

the second pathway plays a relatively small role at younger ages because typically at those ages

medical costs and earning losses due to bad health are small.

To further evaluate the importance of the first pathway, that is the correlation between

patience and health types, we re-estimate our health model using only individuals whose ini-

tial wealth kt0 is observed at younger ages (i.e. age 39 and younger).5 These results are similar

to those that we obtain from the full sample. We report them in Appendix B.6, Supplementary

Material. They confirm that people’s wealth the first time we observe them is informative about

4. Our bootstrap procedure takes into account the sampling error arising from the limited number of observed

individuals, but not from the limited number of periods for which each individual is observed. While the precision of the

estimated fixed productivity increases with the latter, the length of observed periods per person is a common limitation of

any panel survey dataset. To maximise the number of observations per person in our estimation, we utilise the long panel

structure of the PSID and use twenty-four waves of data (from 1984 to 2017). In addition, when estimating our health

process, we classify individuals into relatively large groups based on the terciles of the fixed productivity distribution.

The latter also mitigates the sampling error concern due to the fact that we classify individuals in bins rather than using

our point estimates for fixed productivity.
5. The average initial age of observation in this restricted sample is between 25 and 30, depending on the

specification of lag dependence T.
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their health types and is significant for those in the top wealth quintile, even in this younger sam-

ple. This suggests that the correlation between health types and patience is important and further

supports our choice of incorporating this mechanism in our life-cycle model.

2.4.2. Transition probabilities. In our life-cycle model, we use our estimated health pro-

cess with T = 3, which means 4 years of lagged dependence. We make this choice to keep our

computational costs manageable while preserving the rich dynamics of our health process.

Figure 4 plots the estimated transition probabilities to poor and good health for this version

of our health process—the full set of health transition probabilities are shown in Figure B3 in

Appendix B.8, Supplementary Material. The top, middle, and bottom panels refer to the case

in which people are currently in poor, fair, and good health, respectively. Different line styles

represent different health histories. The key take-aways are as follows.

First, for all health states, as people get older, the probability of moving to a worse health

state increases, while the probability of moving to a better health state declines. The speed of

the increase/decline varies both by heath type and the duration of the current health state.

Second, one’s health status is persistent: the longer an individual spends in the current health

state, the higher is the probability to stay in this state. The difference is especially pronounced

for those who spend at least three periods in the current health state (τ ≥ 3) versus those who

only spend two periods (τ = 2). The difference between the history of one (τ = 1) versus two

periods (τ = 2) is smaller, especially for people in fair and poor health.

Third, the variation in transition probabilities across health types is much larger than that

across health histories. For example, consider a 60-year old person who is in poor health for one

period (solid lines in top left panel). If he is of the best health type η3 he has an 20% probability

of staying in poor health next period, while if he is of the worst health type η1, this probability

increases to 80%. If, instead, he has been in bad health for three periods (lines with markers),

the corresponding probabilities increase approximately by 10 percentage points for both best

and worst health types.

The large variation by health types is similar for the transition probabilities from fair and

good health. This implies that health types play an important role in explaining the high per-

sistence of one’s health status and occurrence of long spells of bad health. In Appendix B.9,

Supplementary Material we illustrate this point in more details by showing the distribution of

people by the number of periods in bad health over the life-cycle.

Consistent with our findings about the importance of health types, Halliday (2008) uses the

PSID to estimate a dynamic process for health with fixed heterogeneity and heterogeneous per-

sistence coefficients and finds that, for a large part of his sample, persistence is mostly driven

by fixed heterogeneity. Lange and McKee (2012) estimate a dynamic latent health process using

multiple health measures from HRS and document that heterogeneity across individuals (ran-

dom effects) is important in capturing the high persistence of objective and self-reported health

measures.

2.4.3. Initial distributions. Table 3 reports the initial distribution of individuals over health

types and the joint distribution over health types and fixed labour productivity, based on our

estimates of equation (6) when T = 3. Our ordered-logit model allows the initial distribution of

individuals over health types to be asymmetric over three discrete points and to depend on the

empirical joint distribution of health status (poor/fair/good) and fixed productivity γ . We use the

distribution of health status and estimated fixed productivity γ of people aged between 19 and

24. Almost all individuals in this age range have been either in fair health for one period or in

good health for at least three periods. We report the joint distribution of health status and fixed

productivity in Table B7 in Appendix B.8, Supplementary Material.
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FIGURE 4

Estimated 2-year transition probabilities (T = 3)

Notes: The group of lines corresponding to each health type i is jointly labeled as ηi . Within each group, different line types correspond

to the number of consecutive periods in current health status (τ ): with the solid line refering to τ = 1, the dashed line to τ = 2, and the

line with markers to τ ≥ 3

At age 21, only 8.3% of people are of the worst health type. The rows from second to fourth

of Table 3 show that there are proportionately more η1- and less η3-types among people in the

bottom tercile of the fixed productivity distribution (γL ) compared to the top tercile (γH ). In

other words, less productive people are also more likely to be of the worst health type.
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TABLE 3

Top row: Initial distribution of individuals over health types at age 21. Other rows, joint distribution of {η, γ } at age 21

η1 η2 η3

Pr(η) 0.08 0.35 0.57

Pr(η | γL ) 0.13 0.44 0.43

Pr(η | γM ) 0.08 0.36 0.56

Pr(η | γH ) 0.04 0.24 0.72

Notes: The terms γL , γM , and γH refer to the bottom, middle, and top terciles of the estimated fixed productivity

distribution, respectively.

FIGURE 5

The number of waves being in bad health between age 57–58 and 65–66 conditional on health status at age 55–56
Notes: Bad health includes both fair and poor health

2.4.4. Comparing the implications of our processes with the data. We now turn to show-

ing that our health and labour productivity processes generate data that are consistent with those

from the PSID and the HRS. Figures 1 and 2 show that they match well the fraction of people in

bad health by age and the 2-year transition probabilities between good and bad health by age, as

well as their duration dependence.

For an additional external validation of our health process, we turn to a balanced panel of

males with a high-school degree aged 55–66 years old in the HRS. Figure 5 reports the number

of waves spent in bad health over a 10-year period, conditional on one’s initial health at age 55–

56. Since the HRS is a bi-annual survey, an individual can only report being unhealthy for at most

five periods over the 10 year period that we focus on. The darker bars refer to the HRS data, the

medium-shaded ones refer to the PSID data, and the lightest ones come from simulations from

our estimated processes. The PSID data in the left graph of Figure 5 show that while almost

70% of those initially healthy at age 55–56 continue being healthy in all five waves, a non-trivial

fraction (5.7%) becomes unhealthy and stays unhealthy for four to five waves during the next

10 years. The right panel shows that among those already unhealthy at age 55–56, 51% stay

unhealthy during the next four to five waves. Overall, there is a substantial fraction of people

with very long spells of bad health. This figure also shows that our estimated processes match

the long-term distribution of people in bad health.

As we have seen in Section 2.2, there are more people with low fixed productivity among

the unhealthy. Hence, as a final validation exercise, we report the joint distribution of health and

fixed labour productivity. Figure 6 displays the fraction of people in the bottom two terciles of

fixed labour productivity (blue lines) or bottom tercile (red lines) among those in good health
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FIGURE 6

Fraction of people in the bottom two terciles of fixed labour productivity (γL + γM ) or bottom tercile of labour

productivity (γL ) among those in good health (left panel) and bad health (right panel)

Notes: Bad health includes both fair and poor health. The terms γL and γM correspond to the lowest and middle terciles of the fixed

productivity distribution

(left panel) and bad health (right panel) from the PSID data, the HRS data, and the data simulated

from our estimated processes, during all of the working period. The terms γL and γM correspond

to the lowest and middle terciles of the fixed productivity distribution, respectively. This graph

reveals that our statistical model for health and productivity also reproduces these features of the

data well.

It is important to point out that, in our simulations, we fix the initial joint distribution of

health status and fixed productivity at age 21 as we observe it in the data. Hence, the relationship

between fixed productivity and health later in the life-cycle is generated solely by two forces.

First, the correlation between one’s health type (η) and fixed productivity (γ ) at age 21, and

second by how one’s health type affects one’s evolution of health. At age 21, the percentage of

γL -people (worst productivity) among the unhealthy is above 50%. If health type and fixed pro-

ductivity were independently distributed, after the age of 21 this number would quickly decrease

since the fraction of newly sick people of each γ -type will always be 1/3. Note that we do not

directly exploit this joint evolution of health and labour productivity in our estimation, i.e. the

health transitions are not a function of fixed labour productivity (see equations (2)–(5)). Thus,

the ability of our model to reproduce it gives our model additional credibility.

2.5. What are the health types?

As we have seen, health types play an important role in determining health persistence. They

also imply that people differ in their predisposition to fall sick and to recover from illness.

Health types can be related to variation in genetic predisposition and/or lifestyle, where

the latter can be partly due to habits developed in childhood. In fact, several studies find that

childhood circumstances have a long-lasting effect on adult health.

For evidence supporting these mechanisms, we turn to the HRS, which contains a wealth of

information that is useful to study these questions. From it, we use a balanced panel of healthy

men age 55–56, and whom we observe until they are aged 65–66 (the same sample used to

construct Figure 5).

Table 4 sorts our HRS sample based on the total number of unhealthy periods that they

report over the subsequent 10-year interval. It shows a correlation between the future number of

unhealthy periods and factors that can be linked to lifestyle recorded at age 55–56 or genetics.
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TABLE 4

Characteristics of a balanced panel of people who are healthy at age 55–56 and alive for the subsequent 10 years,

organised by the number of unhealthy periods between ages 57 and 66

Individuals’ characteristics (HRS) Model

# Unhealthy Smoking Father Mother Parents’

periods (%) BMI alive (%) alive (%) educ (years) η1 (%) η3 (%)

0–1 22.6 27.9 21.6 48.4 10.1/10.5 0.1 78

2–3 27.1 29.5 21.5 50.4 9.2/9.9 3 12

4–5 44.4 29.8 16.1 36.5 8.4/9.2 25 2

Notes: BMI is the average body mass index. The first and second numbers in the education column refer to average

education years of father and mother in each cell, respectively.

TABLE 5

Average polygenic scores of people who are healthy at age 55–56 and alive for the subsequent 10 years, organised by

the number of unhealthy periods between ages 57 and 66

Polygenic scores (HRS)

# Unhealthy periods Educational attainment Smoking BMI Longevity

0–1 −0.120 0.003 −0.006 −0.06

2–3 −0.216 0.023 0.127 −0.065

4–5 −0.708 0.092 0.140 −0.250

In particular, individuals who report being unhealthy for four to five periods between ages

57 and 66 are much more likely, at age 55, to have ever smoked, to have a higher body mass

index (BMI), and less likely to have living parents. In addition, people with longer unhealthy

spells have less educated parents. This is consistent with the findings of Case et al. (2002), who

show that parental income and education have a significant impact on child’s health and thus on

subsequent health in adulthood.

Overall, Table 4 shows that even among a relatively homogeneous sample of healthy males

at age 55–56 with the same educational attainment, there is heterogeneity in some fixed or long-

lasting factors, which in turn are correlated with their health evolution over the next 10 years.

These features of the data are consistent with our model of health dynamics: the last two

columns of Table 4 show that in a comparable sample simulated from our model, there are sub-

stantial differences in health type composition. While among people with at most one unhealthy

period, 78% are of the best health type and almost no one is of the worst health type, among

people experiencing four to five unhealthy periods, only 2% are of the best health type and 25%

are of the worst health type.

Table 5 documents the relationship between the number of unhealthy periods (our proxy for

health types) and genetic variables that have been found to predict key economic outcomes: poly-

genic scores. That is, polygenic scores (PGSs) are indices created by combining genetic markers

that predict certain individuals’ outcomes (for more details, see Barth et al., 2020; Papageorge

and Thom, 2020).

We report four PGSs: for educational attainment, for lifestyle-related behaviours such as

smoking and BMI, and for longevity. A higher score refers to genetic variation that predicts

higher education level, higher propensity to be a smoker, to have higher BMI, and a longer

lifespan, respectively. Each scores is normalised to have mean of zero and variance of one.

Table 5 reports the average scores of the same HRS sample as the previous table and also sorts

by the number of unhealthy periods.
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People reporting four to five unhealthy periods between the ages of 57 and 66 have, on

average, a noticeably lower score for educational attainment and longevity, and higher scores

for smoking and BMI compared with those who report at most one unhealthy period. Appendix

C.1, Supplementary Material shows that this finding is robust when we use the 25th, 50th, and

75th percentiles of the PGS distribution.

These features of the data confirms the view that health outcomes can, to a certain extent, be

traced back to factors determined early in life. Because our agents start adult life at age 21, we

capture these features of the data as health types in our stylised model.

In addition, the existence of pre-determined factors affecting health is supported by a growing

empirical literature, which we review in Appendix C.2, Supplementary Material.

3. WHAT ABOUT ENDOGENOUS HEALTH?

Our paper assumes that one’s health evolution is pre-determined and thus exogenous in adult-

hood. That is, we do not allow either monetary investments or healthy behaviours to affect the

evolution of health. A key reason for our choice is that we want to identify the effect of health

types while keeping our model tractable, both in terms of computations and parameter identifi-

cation. But because the evolution of health is an important topic, in this section, we discuss what

we know from the literature in terms of the effects of medical spending on health, and what the

PSID data tells us about the effects of exercise, a potentially key determinant of health (see for

instance Cole et al., 2019) for which the PSID has good data.

Starting from medical expenses, the key problem is that sick people spend more on medical

goods and services and tend to stay sick longer and die faster than people who are healthy and

spend less on medical goods and services. Thus, the raw data makes it hard to find that medical

spending has a positive effect on health. Among the studies which use some credible (and hard

to find) exogenous sources of variation in medical spending, many find that medical expenses

have small or no effects on health and mortality (for instance Brook et al., 1983; Fisher et al.,

2003; Finkelstein and McKinight, 2008; Black et al., 2017). Also, and importantly, Danesh

et al. (2024) shows that in the Netherlands, where medical care is free, there is no differential

access to medical care and yet people with higher income live substantially longer than those

with lower income. This paper also finds that a large share of these mortality differences is

explained by chronic diseases whose prevalence is already heterogenous by income earlier in

life. Hence, these findings indicate that there are important factors determining mortality and

health differences that have little to do with the health care system and heterogeneity in medical

spending. Given that it is difficult to convincingly establish to what extent medical spending

improves health and extends lives, and that in many cases the empirical evidence suggests that

these effects can be small, we abstract from this interesting force in this paper.

Turning to exercise, our goal is to evaluate whether allowing for a link between exercise and

health overturns our findings about the importance of health types. Thus, we include exercise in

our model of health dynamics.

More specifically, the PSID asks people about the number of times per week that they engage

in light or heavy exercise. In each survey wave, we assign people who report doing no exercise

to a “no exercise” category, those who report doing only light exercise at least once per week

to “light” exercise, and those who report doing heavy exercise at least once per week (while

also possibly engaging in light exercise) to “heavy” exercise.6 We denote with DE X the dummy

6. There is a strong correlation between light and heavy exercise, hence people who engage in heavy exercise

often also report engaging in light exercise.
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TABLE 6

Estimation results for the health process including exercise behaviour

T = 5 T = 4 T = 3 T = 2 T = 1

Coefficients of history-dependence terms and health types including exercise

aB
2 0.094 0.031 0.048 0.244 −

aB
3 0.827** 0.656* 0.618**

aB
4 0.755** 0.630

aB
5 1.052***

aB
η1

1.576*** 1.679*** 1.894*** 2.149*** 2.157***

aB
η3

−1.773*** −1.459*** −1.031 −1.202*** −1.395***

Light#poor health 0.324 0.250 0.158 0.030 0.059

Light#fair health 0.007 0.055 0.027 −0.002 0.026

Heavy#poor health −0.248 −0.284 −0.328 −0.321 −0.339

Heavy#fair health −0.505** −0.530** −0.554** −0.606** −0.569**

Coefficients of history-dependence terms and health types including exercise

aG
2 −0.380 −0.277 −0.383* −0.535*** −

aG
3 −0.0803 0.121 −0.741***

aG
4 −0.872** −1.072***

aG
5 −1.597***

aG
η1

2.509*** 2.245*** 1.961*** 2.066*** 2.023***

aG
η3

−1.596*** −1.991*** −2.516*** −2.647*** −2.815***

Light −0.248 −0.224 −0.248 −0.298* −0.328*

Heavy −0.702*** −0.754*** −0.722*** −0.752*** −0.741***

N 8,799 9,521 10,381 11,279 12,181

Notes: The columns refer to specifications controlling for different number of lags of past health. The terms aB
η2

and aG
η2

are normalised to zero. No exercise, being in bad/good health for one period (τB = 1, τG = 1) and the first tercile of

fixed productivity (γ1) is the base case. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

for each exercise category. We modify our health transition dynamics as follows. We add the

term aG
E DE X for the health transitions from good health in equations (4) and (5), and the term

aB
E DE X Dht

for the transitions from poor or fair health in equations (2) and (3). In the latter, Dht

is the dummy variable of whether an individual is currently in poor or fair health. This way we

allow for possibly different effect of exercise for those in fair versus poor health. Our health type

prediction equation remains that in equation (6).

Furthermore, we estimate these processes by making the identifying assumption that a future

health shock realised over the next 2 years (i.e. between t and t + 1) does not influence exercise

in the current period. Cole et al. (2019) follow a similar strategy for 6-year health transitions.

Table 6 reports the resulting estimates for these health processes, while Appendix C.3, Sup-

plementary Material displays those for our health types prediction equation. Several things are

worth noticing about these results. First, both the size and the significance of the coefficients in

our original specification without exercise are very consistent with the specification that includes

exercise. In particular, the effect of health types remains important for one’s future health evo-

lution even when conditioning for exercise behaviour. Second, light exercise has little effect on

one’s future health dynamics, regardless of one’s previous health history. Third, some heavy (and

a combination of heavy and light) exercise does play some role in preventing future bad health,

but only if one is in good or fair health to start with. Instead, once one is in poor health, both light

and heavy exercise do little to improve one’s future health outcomes. Fourth, and importantly,

the coefficients on one’s health types are larger than those on exercise, indicating that not only

health types remain important once we condition for exercise, but they have a larger impact.
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FIGURE 7

Estimated 2-year probabilities of turning to poor health (left panel) and good health (right panel) after having been in

good health for one period (when keeping track of three periods of past health) by exercise category

Notes: On the left-hand side, the top three lines refer to the low health types (η1), the middle three lines to the middle health type (η2),

and the bottom three lines to the best health types (η3). On the right-hand side, the ordering of these groupings is reversed. Within each

grouping, different line types correspond to exercise behaviour, with the dotted line referring to the no exercise group, the dashed line to

the light exercise group, and the solid line to the heavy exercise group

To better illustrate the effects of each exercise category (none, light, heavy), Figure 7 reports

a subset of transition probabilities for our baseline health process (in which we keep track of

health during the previous three periods) for people who have been in good health for one period.

The graph on the left-hand side plots the estimated probability of turning to poor health over the

next 2 years, while the graph on the right-hand side plots the probability of remaining in good

health.

The figure helps quantify what we already see in the tables: people who exercise have better

health transitions compared to those who do not, and the difference is especially pronounced for

heavy exercise. However, the variation in health transitions due to exercise is much smaller than

the variation due to health types.

For instance, at age 61 the probability of turning to poor health for η1 types (top three lines)

decreases from 41% to 35%, and to 25% as one goes from no exercise to heavy exercise. The cor-

responding numbers for η2 types (middle three lines) fall from 9% with no exercise to 4.5% with

heavy exercise. For η3 types (bottom three lines), exercise only marginally affects the chance

of moving to poor health. Interestingly, the graph on the right-hand side shows that exercise

increases the probability of staying in good health for η3 types from 92% with no exercise to

96% with heavy exercise. When comparing across health types we can see that the probability

of turning to poor health for a 61-year-old individual who does not exercise is 41% for η1, 7%

for η2, and 0.4% for η3. The gaps by type in the probability of staying healthy are also big.

To quantify the maximum possible contribution of exercise to health over one’s lifetime

(rather than just from one period to the next) and compare it with that of health types, we next

simulate a large number of individuals for each health type, and for whom we fix one’s exercise

behaviour to be always the same over all of the life-cycle. That is, every person can only exercise

as follows: either never exercise, or always engage in light exercise, or always exercise heavily.

We then use these simulated paths to compute the expected number of unhealthy periods between

the ages of 21 and 80 by one’s health type and exercise behaviour.

Table 7 reports the results and confirms that exercise does matter but that health types have a

larger effect. For instance, comparing columns reveals that people of the worst health type (η1)

can decrease the average number of lifetime unhealthy periods from 14.4 to 12.3 (hence by over
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TABLE 7

Average number of unhealthy periods (each lasts 2 years) between 21 and 80 years old by health type when keeping

track of health during the current period and the two previous ones

Exercise category

Health type Always none Always light Always heavy

η1 14.4 13.9 12.3

η2 7.0 6.4 4.5

η3 1.0 0.8 0.5

All 5.7 5.3 4.0

Notes: The first, second, and third columns correspond to the cases when individuals never exercise, Always only do

light exercise, or Always engage in heavy exercise.

4 years), by going from no exercise to always exercising heavily. People of the intermediate

health type (η2) can decrease the number of lifetime unhealthy periods from 7 to 4.5 (5 years),

while those of the best health type (η3) can reduce their lifetime unhealthy periods from 1 to 0.5

(1 year). However, comparing rows shows that among people who never exercise the number

of lifetime unhealthy periods goes from 14.4 for the worst health types, to 1 for the best health

types. The variation by types is similarly large for light and heavy exercise behaviour.

Thus, we find that even when controlling for exercise behaviour, health types are a key

determinant of the number of unhealthy periods during one’s life, which in turn, is a crucial

determinant of the lifetimes costs of bad health. We now turn to our structural model to quantify

the effects of these forces.

4. OUR LIFE-CYCLE MODEL

In this section, we develop a life-cycle model with health uncertainty. In it, health affects people

through multiple channels and evolves according to the processes described in the previous

section.

4.1. Demographics, preferences, and labour income

A model period is 2 years long and each individual lives at most T periods. During the first R − 1

periods of life people chooses whether to work or not. At age R everyone retires. We denote the

health-dependent survival probability from age t to t + 1 as ζ h
t .

At age t an agent’s health, ht , can be either good (G), fair (F), or poor (P), and next period’s

health status depends on current health status, the length of the current health spell τ , and health

type ηi ∈ {η1, η2, η3}. See Section 2.3 for more details.

Health and economic outcomes in our model are linked via two mechanisms. First, health

directly affects medical spending, productivity, disutility from work, access to health insur-

ance, and survival probabilities. These direct effects have been used in other structural models

with health uncertainty, including by Capatina (2015), French (2005), French and Jones (2011),

Pashchenko and Porapakkarm (2013), Pashchenko and Porapakkarm (2016), Pashchenko and

Porapakkarm (2017), and Rust and Phelan (1997).

Second, individuals differ in ex-ante characteristics, that is in their fixed labour productivity,

health type, and patience, and these characteristics can be correlated with each other.7 This

correlation captures the fact that some factors that are determined early in life can influence

7. Many studies find heterogeneity in patience, including Epper et al. (2020), Lawrance (1991), and Warner and

Pleeter (2001). In addition, Cronqvist and Siegel (2015) find that genetic differences explain a significant fraction of
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all three fixed factors (see discussion in Section 2.4.1). This mechanism creates an additional

compositional difference between the healthy and the unhealthy. That is, among the unhealthy

there can be more impatient people, and this can partially account for the observed disparities in

economic outcomes between the two groups.

Formally, we assume that the discount factor (βi ) can take two values, βi ∈ {βlow, βhigh},

where βlow < βhigh . At age 21 (when an individual enters the model) the joint distribution

of the discount factor and health type, {βi , ηi }, is captured by Pr(β j |ηm) ∈ [0, 1], where

j ∈ {low, high} and m ∈ {1, 2, 3}. The total number of types in the model is 3 × 2 × 3, that

is three health types, two patience types, and three fixed productivity types. We assume that β

and γ are correlated through the health types. Hence, controlling for one’s health type, β and γ

are independent.

An individual is endowed with one unit of time that can be used for either leisure or work.

Labour supply (lt ) is thus indivisible; lt ∈ {0, 1}. Work implies a fixed utility cost φW . For people

with fair and poor health, there is an additional disutility from working, denoted φF and φP ,

respectively. We assume that the preferences of individuals over consumption and leisure take

the following form:

u(ct , lt , ht ) =
(ct/nt )

1−ρ

1 − ρ
− φW 1{lt >0} − φF 1{ht =F,lt >0} − φP 1{ht =P,lt >0} + b, (8)

where ρ is risk aversion and nt is an age-specific household size.8 We follow Hall and Jones

(2007) by adding a positive term b to ensure that individuals in our model value their life; i.e.

the continuation value of being alive exceeds the utility when deceased. This matters when we

compute the welfare costs of bad health, because otherwise sick people would be happy about

dying sooner.

As in De Nardi (2004), individuals also derive utility from leaving a bequest of size k

υ(k) = θBeq

(k + kBeq)
1−ρ

1 − ρ
,

where θBeq determines the strength of the bequest motive and kBeq determines to what extent

bequests are a luxury good.

Earnings are given by zh
t lt , where zh

t is an idiosyncratic productivity component given by

zh
t = λh

t ϒt , (9)

where λh
t is a deterministic function of age and current health (good, fair, or poor), while ϒt is

the stochastic shock that we specify in Section 4.4.

the variation in saving propensities across individuals, potentially through a link to the rate of time preferences or self-

control. Several macroeconomic studies point out the importance of heterogeneity in rates of time preferences to explain

wealth inequality (Krusell and Smith, 1998; Samwick, 1998; Hendricks, 2007a, 2007b; Krueger et al., 2016; Carroll

et al., 2017).
8. We incorporate the family size nt into the model in order to make the wealth profile produced by the model

consistent with the profiles constructed from the PSID. (See Section 5.1 for details on the construction of the targeted

wealth profile). We take the average family size nt from the PSID. The average family size is 1.9 at age 21, it increase

to 3.18 at age 39 before declining to 2.07 at age 65 and further to 1.02 at age 99.
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4.2. Medical expenses and health insurance

During each period, every agent receives a medical expense shock (xh
t ) which depends on age

and current health. We denote the distribution of medical shocks as Gt (xh
t |ht ). Appendix D.1,

Supplementary Material discusses how we estimate these shocks.

Individuals in our model also differ in their health insurance status: working-age people can

be uninsured or covered by different types of private insurance, that is individual or employer-

sponsored health insurance (ESHI). In contrast, retirees are covered by Medicare. We index

the individual’s insurance status by using iH , where iH = 0 corresponds to being uninsured,

iH = 1 corresponds to having individual insurance, iH = 2 corresponds to group insurance (or

ESHI), and iH = 3 corresponds to Medicare. All types of insurance only provide partial medi-

cal expenses coverage. We denote by cvg(xh
t , iH ) the fraction of medical expenses covered by

insurance and allow it to be a function of one’s medical shock and insurance type. Note that

cvg(xh
t , 0) = 0.

A working-age individual receives an offer to buy ESHI with probability Probt , which

depends on age (t), fixed labour productivity (γ ), and health (ht ∈ {G, F, P}). We estimate

Probt from the MEPS. The variable gt characterises the status of the offer: gt = 1 if an individ-

ual gets an offer, and gt = 0 otherwise. Only working individuals with an offer (lt = 1, gt = 1)

can purchase the ESHI insurance. We assume that an employer who offers ESHI fully covers

the premium, i.e. the employer contribution is 100%. On average, employers who offer ESHI

contribute about 80% of the premium for single coverage and about 70% for family coverage

(Kaiser Family Foundation, 2004). We abstract from workers’ contribution for simplicity. This

assumption does not affect our results but helps lower computational costs because working

individuals with an ESHI offer always buy insurance.

Every working-age individual can buy health insurance in the individual health insurance

market at the price pI (ht , t), which depends on one’s age and health. We assume that an

individual’s insurance premium is based on his expected medical costs and administrative loads:

pI (ht , t) = ξ E Mt (ht , t) + ϕh . (10)

The term ξ is a proportional load, while ϕh is a fixed load. We allow the fixed load to depend on

health to capture the fact that unhealthy individuals may face more frictions when purchasing

insurance through the individual market, for example, through search costs or a larger probability

of being denied coverage due to pre-existing conditions.

The expected medical costs covered by insurance are

E Mt (ht , t) =
∑

xh
t

xh
t cvg

(
xh

t , 1
)
Gt (xh

t |ht).

We denote the Medicare premium as PMC R . This corresponds to the Medicare Part B premium.

4.3. Taxation and social transfers

We model the tax system as follows. Working households pay payroll taxes, which include the

Medicare tax (τMC R) and the Social Security tax (τss). The latter only affects earnings below

yss . There is a consumption tax τc and a tax on capital income τk . There is a progressive labour

income tax T (y) which we specify as Heathcote et al. (2020)

T (y) = y − aτ0 y1−aτ1 . (11)
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The progressivity of the tax system is captured by aτ1. We explain how we set taxes and transfers

in Appendix D.2, Supplementary Material.

We represent several existing means-tested programmes (Medicaid, food stamps, Disability

Insurance, and Supplement Security Income) in a stylised way through a public safety-net pro-

gramme, T SI (c). This programme guarantees every household a minimum consumption floor c.

This floor also captures the existence of uncompensated care or medical bankruptcy. In fact, in

2004, 85% of the uncompensated care was paid by the government.

Retirees receive Social Security benefits ss. In practice, these payments depend on an individ-

ual’s history of earnings. To capture the existing variation in pension benefits without increasing

computational costs, we approximate the benefits using the following approach. First, we divide

individuals into groups based on their health just before retirement h R−1, on their last draw

of the persistent productivity shock νR−1 (see Section 4.4), and on their ex-ante heterogeneity

(γ ,η,β). Then, for each group, we compute average earnings over the seventeen model peri-

ods (34 years) with the highest earnings. Then we apply the Social Security benefits formula to

these average earnings. This way, Social Security benefits in our model can be represented as

ss(h R−1, νR−1, γ, η, β).

4.4. The labour productivity shock

Our labour productivity process is given by

zh
t = λh

t ϒt = λh
t exp(νt ) exp(γ ), (12)

νt = ρννt−1 + εt ; εt ∼ N (0, σ 2
ε ),

γ ∼ N (0, σ 2
γ ),

(13)

where λh
t is a deterministic component that depends on age and health (ht ∈ {G, F, P}) and

the idiosyncratic component ϒt consists of a persistent shock νt and fixed productivity γ . We

assume that γ is normally distributed and Appendix B.5, Supplementary Material shows that

this assumption is consistent with the data. To obtain the initial distribution of fixed productivity

and health type, we discretise γ into three terciles. Table 3 reports the conditional probability

distribution from our maximum likelihood estimation.

To account for selection, we estimate the deterministic component of labour productivity λh
t

in the second stage of our estimation procedure, as in French (2005). This is important because

the fraction of unhealthy workers is significantly below 100%, so the average income conditional

on working could be a biased estimate of λh
t if there is selection into employment. Though

computationally costly, our strategy also ensures that the model reproduces the income-health

gradient in the data (Figure 10 and Table 9), which is important for evaluating the costs of bad

health through the labour market channel.9 Appendix D.3, Supplementary Material details the

estimation of the stochastic part of the productivity component.

4.5. Timing of the model

The timing of the model is as follows. At the beginning of the period, individuals learn their

productivity, health and ESHI offer status. Based on this information, an individual decides his

labour supply (lt ) and insurance choice (iH ). At the end of the period, the medical expenses

9. An alternative method would be to perform the Heckman selection correction to the data, but this approach

requires a variable serving as a valid exclusion restriction, which is typically hard to find.



De Nardi et al. THE LIFETIME COSTS OF BAD HEALTH 25

shock (xh
t ) is realised. After paying the out-of-pocket medical expenses, an individual chooses

his consumption (ct ) and savings for the next period (kt+1). The problem of retirees is simpler;

they only choose consumption and savings for the next period.

4.6. The optimisation problem

Working-age individuals (t < R). At the beginning of each period, the state variables for an

individual i are capital (kt ), health status (ht ∈ {G, F, P}), length of the current health spell

(τ ∈ {1, 2, 3}), productivity shock (νt ), ESHI offer status (gt ∈ {0, 1}), age (t ∈ {1, 2, . . . , R −

1}), fixed productivity (γ ∈ {γL , γM , γH }), health type (η ∈ {η1, η2, η3}), and discount factor

(β ∈ {βlow, βhigh}). To make our expression less cluttered, we omit the subscript i for all state

variables. We denote the vector of state variables as St .

The value function of a working-age individual at the beginning of period t is

Vt (St ) = max
lt ,iH

∑

xh
t

Gt (xh
t |ht)Wt (St ; lt , iH , xh

t ) (14)

where

Wt (St ; lt , iH , xh
t ) = max

ct ,kt+1

u(ct , lt , ht ) + β

[
ζ h

t Et (Vt+1(St+1)) + (1 − ζ h
t )θBeq

(kt+1 + kBeq)
1−ρ

1 − ρ

]

(15)

subject to

kt (1 + (1 − τk) r) + zh
t lt − xh

t

(
1 − cvg(xh

t , iH )
)
− Ph

t − T ax + T SI (c)

= (1 + τc)ct + kt+1 (16)

Ph
t =

{
0 ; if iH ∈ {0, 2}

pI (ht , t) ; if iH ∈ {1}

T SI (c) = max
(
0, (1 + τc)c + T ax + Ph

t + xh
t

(
1 − cvg(xh

t , iH )
)

− kt (1 + (1 − τk) r) − zh
t lt

)
(17)

T ax = T
(
zh

t lt

)
+ τMC Rzh

t lt + τss min
(
zh

t lt , yss

)
(18)

Wt (St ; lt , iH , xh
t ) is the interim value function conditional on the labour supply and insurance

choices after the medical shock is realised. The conditional expectation on the right-hand side of

equation (15) is over {ht+1, zh
t+1, gt+1}. Equation (16) is the budget constraint; in this constraint

Ph
t is the insurance premium, which is described in equation (17). In equation (18), the first term

is the income tax and the last two terms are payroll taxes.

Retired individuals (t ≥ R). The state variables for retired people are assets (kt ), health

status (ht ), length of the current health spell (τ ), medical shock (xh
t ), health status at 64

(h R−1 ∈ {P, F, G}), productivity shock before retirement (νR−1), age (t ∈= {R, . . . , T }), fixed

productivity type (γ ), health type (η), and discount factor (β). We denote the vector of state

variables as S
R
t .

The value function of a retired household is

Vt

(
S

R
t

)
=

∑

xh
t

Gt (xh
t |ht )Wt (S

R
t ; xh

t ) (19)
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where

Wt (S
R
t ; xh

t ) = max
ct ,kt+1

u(ct , 0, ht ) + β

[
ζ h

t Et (Vt+1(S
R
t+1)) + (1 − ζ h

t )θBeq

(kt+1 + kBeq)
1−ρ

1 − ρ

]

(20)

subject to

kt (1 + (1 − τk) r) + ss − xh
t

(
1 − cvg(xh

t , 3)
)

− PMC R − T (ss) + T SI (c)

= (1 + τc)ct + kt+1

T SI (c) = max(0, (1 + τc)c + T (ss) + PMC R + xh
t (1 − cvg(xh

t , 3)) − kt (1 + (1 − τk) r) − ss)

(21)

Wt (S
R
t ; xh

t ) is the interim value function conditional on medical shock realisation. The condi-

tional expectation on the right-hand side of equation (20) is over ht+1. Equation (21) is the

budget constraint.

5. MODEL ESTIMATION

In this section, we explain our strategy to estimate the model parameters, describe the estimation

results, and illustrate the fit of the model to the data, including non-targeted moments.

5.1. Estimation strategy

We adopt a two-step estimation strategy. In the first step, we set parameters related to demo-

graphics, taxes, social security benefits, and health insurance, and estimate the shock processes

directly from the data. We explain how we estimate our first-step parameters in Appendix D,

Supplementary Material. The survival probability and health process are taken from Section 2.4.

We fix the interest rate r at 2%. We set risk aversion ρ to 3, a value commonly used in structural

life-cycle studies.

Given the parameters and the shock processes from the first step, we implement the Method

of Simulated Moments to estimate our remaining model parameters. We minimise the weighted

sum of square differences between the targeted and simulated moments using the inverse of

squared standard errors as the weights. The set of parameters estimated at the second stage

is {b, φW , φF , φP , λG
t , λF

t , λP
t , βlow, βhigh, Pr(βlow|η), Pr(βhigh|η), θBeq , kBeq , c}. Our targeted

moments are described below.

The value of statistical life (VSL). We set the target average VSL among the working-age

population in our model to $2 millions. The VSL represents the monetary value corresponding

to the reduction in mortality risk that would prevent one statistical death. More formally, it is the

marginal rate of substitution between wealth and survival probability. In our framework, it can

be expressed as follows:10

VSL t =
∂Vt/∂ζ h

t

∂Vt/∂kt

Viscusi (1993) provided an extensive review documenting that the estimates vary from $1 million

to $16 millions (in 1990 dollars). The U.S. government agencies (Department of Transportation,

10. Since b enters the utility function additively, we can estimate b that reproduces the targeted VSL after getting

the estimates of the other parameters.
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FIGURE 8

Wealth profiles by health status: data versus model

Food and Drug Administration, Environmental Protection Agency) use the VSL of $1–10 mil-

lions in their analysis involving a mortality risk (Robinson, 2007). Because we set the targeted

VSL to the lower end of the empirical estimates, we obtain a lower bound for the non-pecuniary

effects of health. As discussed below, our results show that even under this parameterisation the

non-pecuniary effects of health are large. In Appendix E.4, Supplementary Material, we report

the results from an alternative parameterisation when the VSL is equal to $6 millions, which

emphasises the non-pecuniary effects of health more.

Labour market outcomes. We target the fraction of workers and average labour income con-

ditional on working for each age and health status (good, fair, and poor). Figure 10 reports our

targeted moments from the PSID as dots/crosses and our model implications as solid lines. The

labour income profiles in the right panel come from our estimated coefficients in equation (1)

and include fixed productivity (γ ) for each age and health. Since the estimated labour income

profiles among workers in poor and fair health are quite similar, we estimate their targeted labour

income profiles from the pooled sample of people in poor and fair health. Related, it is worth

pointing out that, even though the targeted labour income profile for people in poor and fair

health is the same, their estimated deterministic productivities (λF
t , λP

t ) are different due to their

selection into employment.

Wealth moments. We target the 25th, 50th, and 75th percentiles of wealth, conditional on

being healthy and unhealthy (poor + fair) by 5-year age windows (dashed lines in Figure 8). We

discard the wealth moments below age 25 because we assume that individuals enter the model

with zero assets.

To construct our targeted wealth profiles, we use net worth from the PSID (1994, 1999–

2017).11 Because net worth is measured at the household level and our model abstracts from

heterogeneity in family size, we adjust observed wealth by family size as follows:

wealthi t =
∑

j=G,B

(
d j

age D
age

it + d
j

1 ni t + d
j

2 n2
i t + d

j

3 n3
i t

)
1{hi t = j} +

2013∑

t=1994

dt Dt + resi t , (22)

11. Net worth is given by the sum of the values of business/farm, checking/saving accounts, real estate, stock,

vehicles, other assets, annuity/IRA accounts, and home equity, less the value of mortgages/debts. We convert it to 2013

dollars using the CPI.
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FIGURE 9

Wealth gradient: data versus model

where wealthi t is net worth, D
age

it and Dt are age and year dummy variables, and ni t is the

number of individuals in a family unit. Given the estimated coefficients and the residuals resi t ,

we replace ni t in the above equation with the average family size at each age, nt , to get our

measure of net worth.12 Then we construct the targeted 25th, 50th, and 75th percentiles of wealth

distribution among people in good and bad health, and report them as dashed lines in Figure 8.

As a comparison, we also apply the same method to net worth in the HRS (1994–2012) and plot

the results as dotted/crossed marks in Figure 8.

The wealth profiles from the two datasets are remarkably similar. Figure 8 displays the

wealth–health gradient typically documented in the literature: Figure 9 emphasises this gradient

by plotting the gap in wealth between the healthy and the unhealthy. This gap starts at relatively

young ages and widens until retirement age. This feature of the data suggests that it is important

to model the entire life-cycle to understand the costs of bad health.

5.2. Second step estimation results

The third column of Table 8 reports our estimated preference parameters and consumption floor.

The discount factors play an important role in wealth accumulation before retirement and its

distribution; our estimated βlow and βhigh are 0.877 and 0.992, respectively.13 The correlation

between the discount factor and health type is identified by matching the wealth levels of the

healthy and the unhealthy. We find a strong correlation between one’s discount factor and health

type: the fraction of impatient people (βlow) among those with η1- and η2-types is about 80%,

while the fraction among those with the best health type (η3) is slightly less than 40%. The

average discount factors among η1- and η2-types is 0.90 and the average among η3−type is 0.95.

The unconditional average of the discount factor in our model, E(β), is 0.932.

The estimated bequest parameters θBeq and kBeq , which mostly affect wealth decumulation

after retirement, are 1,905 and 182,707, respectively. In a one-period consumption-saving model

with a risk aversion of 3, these values imply that, during the last period of life, the bequest motive

becomes operational at an asset level of $15,000 and the marginal propensity to bequeath (MPB)

is 0.92. In other words, individuals with assets below $15,000 would not leave bequests, while

individuals with assets above $15,000 would leave 92 cents out of every additional dollar for

12. We compute
∑

j=G,B (d̂
j

age D
age
it

+ d̂
j

1 nt + d̂
j

2 n2
age + d̂

j
3 n3

age)1{hi t = j} + d̂2013 + r̂ esi t , where d̂ j and

r̂ esi t are the estimated coefficients and the residuals from equation (22). By construction, we remove the variation in

net worth due to the variation in family size that is orthogonal to health status and age.
13. In Appendix E.1, Supplementary Material, we explain in detail how the difference in estimated discount

factors in our model compares to other studies that allow for heterogeneity in the rate of time preferences.
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TABLE 8

Preference parameters and the consumption floor

Parameters Baseline No correlation

(Annual) discount factor {βlow, βhigh} {0.877, 0.992} {0.895, 0.992}

% βlow by ηi at age 20 Pr(βlow |η1) 78% 55.6%

Pr(βlow |η2) 79% 55.6%

Pr(βlow |η3) 38% 55.6%

Bequest parameter θBeq 1,905 1,256

κBeq $182,707 $168,577

(Annual) consumption floor c $3,505 $4,116

Notes: Both β and c are converted into annual values.

FIGURE 10

Employment by health (left panel) and average labour income among workers by health (right panel)

Notes: The dotted and crossed marks are from the PSID while the solid lines are from our model

bequests. These numbers are within the range of values found in other studies. For example, the

estimation in De Nardi et al. (2010) implies a bequest threshold of about $36,000 and a MPB

of 0.88. Pashchenko (2013) provides a comparison of the MPBs and bequest thresholds across

several structural life-cycle studies.

The annual consumption floor, which mostly affects the savings of those with lower income,

is $3,505. This estimate is consistent with those from other structural models featuring the full

life-cycle, medical spending uncertainty, and endogenous labour supply. More specifically, Cap-

atina’s (2015) estimate of the consumption floor is $4,114 (in 2006 USD) while Pashchenko and

Porapakkarm’s (2017) estimate is $1,540 (in 2003 USD).

5.3. Model fit

Figure 10 compares the employment rate (left panel) and the average labour income of workers

(right panel) generated by our model (solid lines) with the targeted profiles from the PSID (dots

and crosses).14 Our model matches the important differences in labour market outcomes across

health status very well.

14. The annual labour income profiles from the model are constructed from dividing 2-year labour income by

two.
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TABLE 9

Percentage of unhealthy (poor + fair) individuals in each earnings tercile

PSID (HRS) Model

Bottom 1/3 (%) Middle 1/3 (%) Top 1/3 (%) Bottom 1/3 (%) Middle 1/3 (%) Top 1/3 (%)

25–34 14 5 3 11 3 1

35–44 18 7 3 17 3 3

45–54 26 9 6 23 8 4

55–64 30 (38) 17 (21) 9 (13) 32 10 7

Notes: Left panel: data from PSID (data from HRS is in parentheses). Right panel: model.

TABLE 10

Percentage of unhealthy (poor + fair) individuals in each wealth tercile

PSID (HRS) Model

Bottom 1/3 (%) Middle 1/3 (%) Top 1/3 (%) Bottom 1/3 (%) Middle 1/3 (%) Top 1/3 (%)

25–34 10 10 6 6 5 4

35–44 14 14 5 9 9 5

45–54 20 15 9 15 13 6

55–64 32 (37) 17 (23) 12 (15) 23 18 8

65–74 35 (39) 26 (24) 16 (16) 32 24 11

75+ 46 (43) 34 (31) 21 (28) 38 31 21

Notes: Left panel: data from PSID (data from HRS is in parentheses). Right panel: model.

Figure 8 displays the wealth profiles from our model (solid line) and the data (with dashed

lines for the PSID and dots/crosses for the HRS).15 Our model matches the wealth gap between

healthy and unhealthy people for the 25th, 50th, and 75th percentiles. It is especially worth

noting that, even though everyone starts with zero assets in our model, our simulated profiles

track very well the widening wealth–health gradient by age. Since the monetary costs of bad

health (low earnings and high medical spending) among the young are relatively small compared

to older groups, the wealth gradient for the younger group is mostly explained by the larger

fraction of βlow-individuals among the unhealthy.

Our model also matches additional dimensions of the data by health that we do not target. The

first three columns of Tables 9 and 10 show that it replicates the distribution of people by health

conditional on both income and wealth. More specifically, the table reports the percentage of

unhealthy people by income and wealth terciles. In the data, conditioning on age group, there are

much more unhealthy people in the lowest terciles of earnings and wealth. Our model matches

these additional features of the data well. Capturing these aspects of the data is important to

properly evaluate the long-term effects of bad health.

6. RESULTS

In this section, we use our estimated life-cycle model to deliver several interesting results. First,

we illustrate the importance of the correlation between our ex-ante fixed characteristics in gen-

erating the observed health-related wealth inequality. Second, we construct a comprehensive

15. While we capture overall wealth inequality quite well, our model does not generate enough wealth inequality

at the very top. Previous literature shows that two important economics mechanisms are crucial to explain that. They are

entrepreneurial choices (Quadrini, 1999; Cagetti and De Nardi, 2006) and the intergenerational transmission of bequests

and human capital (De Nardi, 2004). For tractability, and because our paper is not about modelling the saving decisions

of the very rich, we abstract from these mechanisms.



De Nardi et al. THE LIFETIME COSTS OF BAD HEALTH 31

TABLE 11

Unconditional wealth quartiles at age 60–64 (in 1,000 USD).

No correlation

Wealth percentile PSID (HRS) Baseline Pr(βlow |ηi ) = 0.556

25th pct $92 ($117) $89 $93

50th pct $213 ($220) $224 $201

75th pct $476 ($383) $502 $435

measure of the monetary costs of bad health over the life-cycle. Third, we evaluate the wel-

fare losses due to bad health realisations, a metric that takes into account both the pecuniary and

non-pecuniary consequences of bad health. For both monetary and welfare losses, we first report

the average annual losses over the life-cycle and we then provide a decomposition analysis to

understand how different aspects of bad health contribute to its total effect.

6.1. Compositional differences and the wealth–health gradient

As we have seen in the previous subsection, our estimates imply a non-trivial compositional dif-

ference between the healthy and unhealthy, which is due to the estimated correlation between

health types and the rate of time preferences. To quantify its importance, we estimate an alterna-

tive model in which one’s discount factor is orthogonal to one’s health type and, consequently,

to one’s health status.

Formally, we set Pr(βlow|ηm) = 0.556 for all health types. This number corresponds to the

overall fraction of people with low patience in our baseline economy. Then, we re-estimate our

model by matching the same targets. We call this version of our model the “no-correlation”

model. It is important to notice that it still features all of the channels through which bad health

can affect individuals’ savings.

Our estimated parameters for the “no-correlation” model are similar to those from our

baseline model, including for the rates of time preferences (βlow, βhigh) (see the last column

of Table 8 for their values). It is worth pointing out that even the “no-correlation” model

requires heterogeneity in time preferences to match the age-profile of the wealth distribution.

This is a commonly used approach in the literature that aims at matching wealth inequality

(e.g. Hendricks, 2007a, 2007b). Our model-simulated data matches the wealth quartiles uncon-

ditional on health status. See the second and fourth columns of Table 11 for a comparison of the

25th, 50th, and 75th wealth percentiles for the 60–64 age group in the PSID (and HRS) and in

the “no-correlation” model, respectively. As a reference, we also report the corresponding statis-

tics from the baseline model. The “no-correlation” model also matches the employment rate and

the average labour income by health status conditional on working (the income-health gradient).

The “no-correlation” model, however, falls short of replicating the observed large differences

in wealth by health status (see Table 12). For example, for people near retirement, the difference

between the median wealth of the healthy and that of the unhealthy is only $35k in this no-

correlation model, compared to about $140k in the PSID and our baseline model.

From these findings, we conclude that, even for a relatively homogeneous group of males

with the same education level, the direct effect of bad health (low earnings, high out-of-pocket

medical expenses and shorter life expectancy) only partially accounts for the observed difference

in accumulated wealth between the healthy and unhealthy, and that the income-health gradient

does not imply the wealth–health gradient.

Consistent with our findings, Poterba et al. (2017) use HRS data to document that there is a

large difference in asset growth between those in the top and bottom one-third of health status
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TABLE 12

Wealth–health gradient at age 60–64 (in 1,000 USD)

No correlation

Wealth difference by health status PSID (HRS) Baseline Pr(βlow |ηi ) = 0.556

25th pct $56 ($47) $67 $58

50th pct $142 ($98) $146 $35

75th pct $210 ($222) $260 $99

Notes: The table reports the wealth difference between healthy and unhealthy (poor + fair) people for each wealth

quartile.

(they construct a continuous health index) between the ages of 51 and 61. They also find that only

20–40% of the differences in asset growth can be attributed to the lower earnings and annuity

income of those in poor health.

6.2. The monetary losses due to bad health

While previous literature has noted that health deterioration leads to worse outcomes, a com-

prehensive evaluation of the effects of bad health was not previously done. To achieve this goal,

we fold the consequences of bad health on a number of dimensions (income, medical spending,

etc.) into one measure. We do so by comparing each individual with his counterfactual self when

he does not face any bad health realisation throughout his lifetime, but faces the same environ-

ment. This computation allows us to capture both the pecuniary (by comparing net income) and

non-pecuniary (by comparing utility) costs of bad health over all of the life-cycle. In addition, it

allows us to decompose the portion of health costs that is due to ex-ante differences (the types)

and ex-post bad luck (the shocks).

Importantly, our approach has an important advantage over estimating the costs of bad health

directly from the data. Without a model, in fact, we can only compare different individuals,

either healthy or unhealthy, after controlling for observable characteristics. But, as we show

earlier in this paper, healthy and unhealthy people differ in unobservable characteristics (health

type, permanent productivity, and preferences), and this biases the estimated costs of bad health.

Instead, we compare the exact same people, in the exact same environment.

To formalise our computation, denote income net of total medical spending of an individual

i at time t in the baseline and counterfactual cases as yBS
it and yH

it , respectively. The difference

between yBS
it and yH

it represents the pecuniary costs of bad health in period t. Our measure

of the lifetime costs of bad health averages these costs over the life-cycle and is computed as
1

T̂

∑T̂
t=1

yH
it −yBS

it

(1+r)t , where T̂ is either the age of death or the last year of the working stage of

life-cycle (64 years old).16 We use r = 2% for all calculations in this section and report the

corresponding results when r = 0% in Appendix E.2, Supplementary Material.

Table 13 displays the average lifetime costs of bad health over the entire life-cycle (top panel)

and over the working period (bottom panel), starting from age 21. Two main points are worth

noticing. First, on average, because of bad health realisations, people experience monetary losses

over their entire life-cycle of about $1,500 per year, and average losses over the working period

of about $1,000 per year.

16. For the monetary losses over working age (21–64), T̂ is set to the age of death if an individual dies before

reaching the age of 64 years old.
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TABLE 13

Annual monetary losses due to bad health (poor + fair)

All η1 η2 η3

Over life-cycle (21-death)

Percentage of time in bad health 15% 58% 23% 4%

Income losses + total medical costs $1,511 $8,896 $1,935 $225

(Percentage of average earnings) (3.9%) (23%) (5%) (0.6%)

Over working age (21–64)

Percentage of time in bad health 10% 55% 14% 1%

Income losses + total medical costs $1,031 $7,147 $1,201 $76

(Percentage of average earnings) (2.7%) (18%) (3%) (0.2%)

Notes: The top panel is over life-cycle till death while the bottom panel is between 21 and 64 (working ages). The

interest rate for computing the present value is 2%. Average earning in our baseline model is $38,648 per year.

TABLE 14

Composition of annual monetary loss due to bad health (poor + fair) using 2% interest rate when computing the

present value

Over life-cycle (21-death) Over working periods (21–64)

All η1 η2 η3 All η1 η2 η3

Annual monetary losses $1,511 $8,896 $1,935 $225 $1,031 $7,147 $1,201 $76

Composition (%)

Medical costs paid by insurance 36 33 39 39 32 33 33 18

Out-of-pocket medical costs 27 22 30 36 20 20 21 11

Income losses 37 45 31 24 48 47 46 71

Second, the inequality in monetary losses across different health types is large. While people

with the best health type (η3) experience losses of only about $200 per year over the entire life-

cycle, this number is close to $9,000 for people with the worst health type (η1). The reason for

this remarkable difference can be seen in the second row of the table: while people with the

best health type spend only 4% of their lifetime being unhealthy, people with the worst health

type find themselves in bad health for more than half of their life (58%). Thus, the large lifetime

losses of the worst health type are driven by the long sickness spells which make up for a large

portion of their relatively short lifespans.

Next, we turn to decomposing the sources of the monetary losses due to bad health. Table 14

displays the distribution of these losses by three components: medical costs paid by insurance,

out-of-pocket medical costs, and income losses. The left-hand-side panel in this table refers to

the entire life-cycle, while the right-hand-side panel refers to the working stage only (age 21–

64). In both cases, a substantial portion of the losses is due to income drops: it is the largest

component of the losses that are not covered by insurance. In case of the working-age population,

income losses represent almost half of total monetary losses due to bad health. Over the entire

life-cycle the contribution of income losses due to bad health is about 40%. This difference is

mainly due to the fact that medical spending increases quickly with age and thus plays a more

important role for older people. Another important observation is that only about a third of

monetary losses due to bad health are covered by insurance.

Overall, two important conclusions can be drawn from the results presented in this section.

First, the lifetime monetary costs of bad health are substantial and those born with the worst

health type have significantly higher costs over their life-cycle. Second, studies that confine the

effects of bad health only to medical expenses significantly underestimate the total losses that

unhealthy people experience over their lives.
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TABLE 15

Average age at death in the baseline case

Baseline

When everyone is

always healthy

All η1 η2 η3 Variation due to η (%)

Average age at death 77.4 63.0 73.8 81.5 21 83.4

Notes: In the counterfactual scenario, since everyone is healthy, the distribution of age at death is the same for all ηi .

6.3. The welfare losses due to bad health

Because bad health also affects one’s disutility from working and life expectancy, welfare is a

more comprehensive measure than the monetary costs of bad health. The first and last column

of Table 15 suggest that the effects of bad health on welfare could be large because of its effects

on life expectancy: people who do not experience any bad health shocks live, on average, six

additional years. Hence, we now turn to computing how bad health affects one’s welfare and

through which channels.

To construct our welfare measure, we follow the same logic used when measuring the mon-

etary costs: we compare each individual with his hypothetical self in a situation when his health

is always good but everything else is the same. We then compute the percentage reduction in

annual consumption that makes the person’s welfare in the counterfactual environment to be the

same as in the baseline.

Formally, the realised lifetime utility of an individual in the baseline is

U BS =

T̂d+1∑

t=1

β t

(
u(c∗

t , l∗t , ht ) × 1alivet
+

(
1 − 1alivet

)
θBeq

(
k∗

t + kBeq

)

1 − ρ

1−ρ
)

,

where {c∗
t , l∗t , k∗

t }
T̂d

t=20 are optimal decisions, and T̂d is age at death. 1alivet
is an indicator function

that equals one if a person is alive in period t and zero otherwise. We can similarly define the

counterfactual lifetime utility of the same person in case of good health during each period.

The (realised) welfare costs of bad health is the reduction in consumption (λc) such that

one’s lifetime utility in the counterfactual is the same as that in the baseline:

U BS =

T̂ H
d +1∑

t=1

β t

(
u
(
(1 − λc) c∗∗

t , l∗∗
t , ht = G

)
× 1alivet

+
(
1 − 1alivet

)
θBeq

(
k∗∗

t + kBeq

)

1 − ρ

1−ρ
)

,

where {c∗∗
t , l∗∗, k∗∗

t } and T̂ H
d are the optimal decisions and age at death in case of unexpected

continuous good health, respectively. To convert this magnitude to dollar values, we also report

it as an annual consumption reduction or λcc∗∗, where c∗∗ is one’s average consumption over

the lifetime when drawing only good health realisations.

Table 16 displays the compensating consumption equivalent (CCE) averaged over all indi-

viduals and by health type and discount factor type.17 The first line shows that, on average, CCE

17. The dollar values of monetary and welfare losses are not directly comparable. To compute monetary losses,

we discount the reduction in resources at each age by 1/(1 + r) = 0.98. To compute welfare losses, we discount the

sum of lifetime utilities by discount factors 0.877 and 0.992 for inpatient and patient people, respectively.
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TABLE 16

Welfare losses due to bad health (poor + fair)

all η1 η2 η3 βL βH

Compensated consumption equivalence $1,933 $6,380 $2,690 $854 $1,866 $2,018

(% consumption equivalence, λc) (10.6) (36.8) (14.8) (4.4) (10.3) (11)

Contribution (%)

Only medical expenses losses 25 39 22 17 24 26

Only income losses 38 57 42 9 55 17

Only non-monetary losses 44 32 33 77 14 79

Notes: The dollar value is calculated from λcc∗∗ where λc and c∗∗ are the percentage of consumption reduction and

average life time consumption of each individual when always healthy.

represents 10.6% of annual consumption (or $1,933), thus indicating substantial welfare conse-

quences of experiencing bad health. While the welfare losses vary little by discount factor type,

there are remarkable differences by health types. Removing bad health realisations for people

with the worst health type (η1) is worth around a third of their annual consumption, while for

people with the best health type (η3) it is worth less than 5%. This is perhaps not surprising

given the average person with the worst heath type spend more than half of their life in bad

health. Table E13 in Appendix E.3, Supplementary Material reports welfare losses by patience,

health, and productivity types.

The other lines of Table 16 report the contribution of various factors to the welfare losses of

bad health. We compute them by performing three counterfactual experiments. In the first exper-

iment, bad health only affects one’s medical spending. In the second one, bad health only affects

one’s productivity and disutility from work, i.e. there is no effect on life expectancy or medical

spending. In the third one, bad health only affects one’s survival probability, i.e. individuals who

become sick experience a decline in their life expectancy but no change in their productivity,

disutility from work, or medical spending. In each of these three experiments, we recompute the

corresponding CCE by comparing one of the counterfactual baselines with the hypothetical sit-

uation of no bad health realisations. We report the resulting CCE as the percentage of the CCE

corresponding to the situation when health affects people through all channels (first row of the

table).18

The largest source of welfare losses due to bad health is its effect on life expectancy (44%),

followed by its effect on income (38%). There is, however, substantial heterogeneity in terms of

the importance of different channels for people with different health types and discount factors.

While for people with the worst health type, almost 60% of welfare losses come from the

income channel, for people with the best health type this number is only 9%. At the same time,

while the survival channel contributes only a third to the welfare losses of people with the worst

health type (η1), it represents almost 80% of the welfare losses of those with the best health type

(η3). This difference is largely due to the correlation between health type and discount factor. In

fact, the survival channel has little impact on the welfare of impatient people (only 14%), but

plays a dominant role for patient people (almost 80%), as reported in the last two columns of

this table. The latter is due to their different discount factor and hence valuation of events that

happen later in life, like a reduction in life expectancy.

Another important dimension to consider is the concentration of losses due to bad health and

the contribution of health types to its total variation. The first three columns of Table 17 display

18. Our decomposition exercise is not supposed to sum to 100% by construction. The purpose of this exercise is

to rank the importance of each channel through which health affects individuals.
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TABLE 17

Concentration of losses due to bad health (poor + fair) and variation of losses due to health types

Over life-cycle (21-death)

Top 5% Top 10% Top 20% Variation due to η (%)

Monetary losses (21-death)

Income losses + total medical costs 38% 56% 75% 69

Welfare losses

Compensated consumption equivalence 24% 42% 71% 30

Notes: The reported numbers in columns 2–4 are in percentage of aggregate loss at top 5%, 10%, and 20%. For monetary

loss, we use 2% interest rate when computing the present value and include the costs paid by insurance. The results when

the costs paid by insurance are excluded are very similar.

the percentage of aggregate losses experienced by people in the top 5%, 10%, and 20% of the

distribution for monetary and welfare losses, respectively. For both measures, the distribution of

lifetime costs of bad health is highly concentrated: for example, people at the top 10% of the

distribution account for 56% and 42% of the monetary and welfare losses due to bad health,

respectively. There is, however, a significant difference depending on the measure of costs used.

Monetary costs are noticeably more concentrated: while the top 5% accounts for 24% of welfare

losses, the top 5% accounts for almost 40% of monetary losses. The difference is much smaller

for the top 20% of the distribution, thus indicating that this gap is largest among people at the

very top of the losses distribution. The lower concentration of welfare losses is due to the fact

that individuals’ consumption is shielded from the highest monetary losses by means-tested

insurance (guaranteed consumption floor).

The last column of Table 17 displays the contribution of health types η to the variance of the

lifetime losses due to bad health. It shows that health types play an important role in explaining

the variance of lifetime losses: its contribution counts for 69% of the variation in monetary losses

and for 30% in that of welfare losses.

The difference in the contribution of health types to the variance of two different measures

of losses is due to the following. Health types account for 73% of the variation of the fraction of

lifetime spent being unhealthy (see also second row of Table 13), this, in turn, is an important fac-

tor generating monetary losses. In contrast, the contribution of health types to life expectancy is

smaller (about 20%, see Table 15). Because the largest contributor to welfare is life expectancy,

health types play less of a role in explaining variation in welfare.

In sum, bad health generates large welfare costs, of the order of 10% of annual consumption

on average. This happens because bad health lowers life expectancy and because of limited

insurance opportunities against monetary losses. In addition, and importantly, the variation in

welfare losses and (even more) in monetary losses, is due to fixed health types and is thus related

to factors that are likely pre-determined earlier in life.

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Understanding and quantifying an issue is a necessary condition to design an effective pol-

icy intervention. We develop a structural framework for evaluating the differences in economic

outcomes by health and for measuring the lifetime consequences of being unhealthy over the

life-cycle. Our approach emphasises the complex nature of health dynamics and the role played

by multidimensional ex-ante differences across individuals. Our measurement exercise provides

a comprehensive assessment that can be used as a starting point for policy analysis.
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We provide several important findings. Regarding our estimated health process, we find that

health types are important drivers of health dynamics and that the variation in health transitions

due to health types is much larger than that due to history dependence. Regarding the implica-

tions of our estimated life-cycle model, we show that taking into account the correlated structure

of ex-ante differences across individuals is important to understand the disparity in economic

outcomes by health. More specifically, the worse economic outcomes of the unhealthy are to a

large extent due to the fact that, compared to the healthy, they are more likely to have lower fixed

labour productivity and to be less patient.

We use our estimated model to evaluate the lifetime consequences of being unhealthy and

we find these consequences to be substantial, both in monetary and welfare terms. On average,

people lose about $1,500 per year (in present terms) over the life-course because of bad health

realisations. In welfare terms, bad health realisations are, on average, equivalent to a 10% reduc-

tion in annual consumption. Our decomposition analysis shows that an important component of

the monetary costs is the loss in labour income, especially for people of working age, while the

effects of health on life expectancy are very important drivers of welfare costs. We also docu-

ment that both measures of lifetime costs are very concentrated and unequally distributed across

health types and that the contribution of health types to the variation in the lifetime costs of bad

health is large, especially for monetary costs.

Thus, our measure of the lifetime costs of bad health and its decomposition emphasises

several points that are important to take into account when designing policy. First, that bad health

creates large costs that accumulate over one’s lifetime. Second, that these costs far exceed those

of medical expenses (in fact, we find that foregone labour income and lower life expectancy are

key determinants of the costs of bad health). Third, that, to a significant extent, one’s lifetime

costs of bad health are pre-determined by one’s health type, i.e. by genetic endowments and

early life circumstances.

Thus, our measure of the lifetime costs of bad health and its decomposition emphasises

several points that are important to take into account when designing policy. First, bad health

creates large costs that accumulate over one’s lifetime. Second, these costs far exceed those of

medical expenses (in fact, we find that foregone labour income and lower life expectancy are

key determinants of the costs of bad health). Third, to a significant extent, one’s lifetime costs

of bad health are pre-determined by one’s health type, i.e. by genetic endowments and early life

circumstances.

These findings have several important policy implications. To start, health insurance only

partly insures the costs of bad health in that it covers, at best, only medical expenses, which

are only one portion of the costs of bad health. Then, labour market policies targeted towards

unhealthy people are potentially very beneficial. Finally, most effective polices should target

one’s health type’s formation. These policies include various genetic treatments and improv-

ing a child’s early life environment. Our results thus move the focus to these policies and our

paper provides a framework that can be used to better measure the long-term consequences of

improving people’s health types earlier during the life-cycle.

A second important direction for future research is to better understand the direct effects of

health on labour market productivity. Our results show that an important part of the monetary

costs of bad health comes from its effect on labour income. It is possible that this occurs because

health affects human capital accumulation. Modelling this relationship also raises several iden-

tification issues. For instance, how does health affect human capital? Is it through human capital

investment or learning by doing? How should we capture the correlation between health types

and fixed factors affecting labour productivity? In our approach, we estimate fixed labour pro-

ductivity directly from the data. With endogenous human capital the issue of estimating ex-ante
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fixed factors affecting human capital accumulation and estimating their correlation with health

types becomes very complex, especially since they must be estimated inside the structural model.

Finally, it is also important to understand the micro-foundations of the ex-ante difference

across individuals. Our estimates show that fixed characteristics, namely, health types, patience,

and fixed labour productivity, are correlated. What are the mechanisms generating this corre-

lation? What is the role of genetics and personality traits versus circumstances early in life?

Understanding and modelling these issues requires incorporating the childhood stage of the

life-cycle and modelling children’s human capital formation through parental time and mon-

etary investments. This approach also requires incorporating recent insights from personality

psychology into a structural framework (see for instance Almlund et al., 2011, for a review).

While challenging, the importance of this line of research for policy analysis cannot be underes-

timated: our results emphasise the importance of fixed characteristics for generating large losses

due to bad health. Hence, developing policies to prevent these losses requires understanding the

formation of these characteristics.
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PIJOAN-MAS, J. and RÍOS RULL, V. (2014), “Heterogeneity in Expected Longevities”, Demography, 51, 2075–2102.
POTERBA, J., VENTI, S. and WISE, D. (2017), “The Asset Cost of Poor Health”, The Journal of the Economics of

Ageing, 9, 172–184.
PRADOS, M. (2018), “Health and Earnings Inequality over the Life Cycle and The Redistributive Potential of Health

Policies” (Mimeo, University of Southern California).
QUADRINI, V. (1999), “The Importance of Entrepreneurship for Wealth Concentration and Mobility”, Review of Income

and Wealth, 45, 1–19.
ROBINSON, L. (2007), “How US Government Agencies Value Mortality Risk Reductions”, Review of Environmental

Economics and Policy, 1, 283–299.
ROSEN, S. (1988), “The Value of Changes in Life Expectancy”, Journal of Risk and Uncertainty, I, 285–304.
RUST, J. and PHELAN, C. (1997), “How Social Security and Medicare Affect Retirement Behavior In a World of

Incomplete Markets”, Econometrica, 65, 781–831.
SAMWICK, A. (1998), “Discount Rate Heterogeneity and Social Security Reform”, Journal of Development Eco-

nomics, 57, 117–146.
SHEPARD, D. and ZECKHAUSER, R. (1984), “Survival versus Consumption”, Management Science, 30, 423–439.
VAN DOORSALER, E. and GERDTHAM, U. (2002), “Does Inequality in Self-Assessed Health Predict Inequality in

Survival by Income? - Evidence from Swedish Data”, Social Science and Medicine, 57, 1621–1629.
VISCUSI, K. (1993), “The Value of Risks to Life and Health”, Journal of Economic Literature, 31, 1912–1946.
WARNER, J. and PLEETER, S. (2001), “The Personal Discount Rate: Evidence from Military Downsizing Programs”,

American Economic Review, 91, 33–53.



Online Appendix: The Lifetime Costs of Bad Health∗

Mariacristina De Nardi Svetlana Pashchenko Ponpoje Porapakkarm

November 9, 2023

∗De Nardi: University of Minnesota, Federal Reserve Bank of Minneapolis, CEPR, and NBER;
denardim@nber.org. Pashchenko: University of Georgia; svetlana@uga.edu. Porapakkarm: National Grad-
uate Institute for Policy Studies; p-porapakkarm@grips.ac.jp.

We thank Liran Einav, Christopher Flinn, Eric French, Joseph Altonji, Selahattin Imrohoroglu, John
Kennan, Naoki Aizawa, Sagiri Kitao, Rasmus Lentz, Vincenzo Quadrini, Yongseok Shin, Matthew White,
and seminar participants at many institutions for comments and suggestions. De Nardi gratefully acknowl-
edges support from the ERC, grant 614328 “Savings and Risks.” Porapakkarm gratefully acknowledges
support from the JSPS KAKENHI Grant Number 15K03505. Pashchenko acknowledges financial support
through the Terry-Sanford Research Award. The views expressed herein are those of the authors and do not
necessarily reflect the views of the National Bureau of Economic Research, the CEPR, any agency of the
federal government, or the Federal Reserve Bank of Chicago.

1



A The data

We use three data sets: the Panel Study of Income Dynamics (PSID), the Health and

Retirement Study (HRS), and the Medical Expenditure Panel Survey (MEPS). The PSID

tracks individuals over a long period of time and contains excellent information, for instance,

on self-reported health status, and on labor supply during the entire working stage. The

HRS has a large sample size and a lot of information on people age 50+, including wealth,

health, and labor supply. The MEPS contains high-quality information about both total

and out-of-pocket medical spending. Thus, using all three data sets allows us to exploit the

advantages of all of them and to construct the best possible data for the United States.

For each data set, we select a sample of male household heads with 12 to 14 years of

education (that is, with a high school degree or at most 2 years of college). We normalize

all nominal variables to the 2013 base year using the Consumer Price Index (CPI).

The PSID is a nationally representative panel that surveys individuals and their families.

It started in 1968, on an annual basis, but has been administered bi-annually since 1997.

Individuals’ self-reported health is available from 1984. We use all available waves from

1984 to 2017. To construct our panel data sample, we include individuals who do not have

missing observations on self-reported health status and assign the longitudinal weight in

2013 (our base year) as individual weight.1 This gives us a sample of 2,038 individuals or

26,194 individual-wave observations (on average, individuals are observed for 12.9 waves).

To construct the bi-annual panel data for the maximum likelihood estimation of our two-year

health process, we further drop every other wave prior to 1997.

In addition to using the PSID to estimate the health process that we describe in Section

2, we also use it for both our first and second steps estimation. At the first step, we use

the PSID to estimate the annual labor income shock process (which we model as an AR(1)).

We describe our estimation of the annual income process and its conversion to the bi-annual

discretized process to be used in our model in Appendix D.3.

At the second step, we use the PSID to construct the targeted moments for the estimation

of our life-cycle model listed in Section 5.1, namely, labor income, employment and wealth.

The wealth data is available only in the 1994 and 1999-2017 waves.

We use the HRS to estimate health-dependent survival probabilities after age 50. When

possible, we also use the HRS to validate moments from the PSID. In addition, we use

the HRS to validate our estimated model. We use 1994-2017 waves of the RAND HRS

Longitudinal file 2016 (v1).

We use MEPS for our first step estimation. Specifically, we use it to estimate total medical

1Our results are robust to using equal weights.
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expense shocks, coverage of employer-sponsored (ESHI) and individual health insurance, and

the probability of obtaining ESHI. The medical spending reported in MEPS is cross-checked

with insurers and providers and is thus very accurate.2 We use waves 1999/2000-2016/2017

of MEPS.

B Health process estimation

This section provides additional information regarding our paper’s empirical findings.

Specifically, it provides more details on the estimation of the health process described in

Section 2 and explains how we construct our health transition probabilities and likelihood

function. It also provides several estimation results, including our survival probabilities,

health process estimation using different samples, and the full set of transition probabilities.

Finally, it illustrates the implications of our health process in terms of the distribution of

people by length of unhealthy spells.

B.1 Constructing two-year health transition probabilities

The two-year transition probabilities in Figure 1 are constructed as follows. Denote hit as

health status of an individual i at age t. The probability of moving to good health conditional

on currently being in bad health can be expressed as

∑
i

1(hit=B ∩ hit+1=G)

∑
i

1(hit=B ∩ hit+1={B,G})
.

The term 1 (·) is the indicator function, which is equal to one if its argument is true and

zero otherwise.

To construct the health transition profiles in Figure 2, denote the sequence of health

statuses of an individual i in the past τ periods up to age t as hτ
it. For people age 30 to 54

years old, we compute the probability of moving to good health during the next two years

(t+ 1), conditional on being unhealthy for at least τ consecutive periods as follows:

54∑
t=30

∑
i

1(hτ

it
=B ∩ hit+1=G)

54∑
t=30

∑
i

1(hτ

it
=B ∩ hit+1={B,G})

.

2 Pashchenko and Porapakkarm (2016b) provide more details on the MEPS dataset.
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B.2 Likelihood function for the two-year health process

Consider an individual i whose health is observed for consecutive J periods. Denote as t0

the earliest age of an uninterrupted health sequence till age t0 + J : {hi,t0 , hi,t0+1, ...hi,t0+J}.

If an individual is of ηj-type, the conditional probability of the observed health sequence can

be constructed from Eq. (2)-(5) and the estimated conditional survival probability in Eq. (7).

Denote the conditional probability of this health sequence as Pr (ht0+τ .., ht0+J | hi,t0 ..., hi,t0+τ−1, ηj).

Since one’s health type ηj is unobserved, we compute one’s expected likelihood function

using ∑3
j=1 Pr

(
ηj|X

η
i,t0

)
× Pr (hi,t0+τ , .., hi,t0+J | hi,t0 ..., hi,t0+τ−1, ηj) ,

where Pr
(
ηj|X

η
i,t0

)
is derived from the cumulative probability in Eq. (6). The probability

above independent across individuals. Hence, we can write the overall log-likelihood as the

sum of individuals’ log-likelihoods,

L (Θ) =
∑N

i=1 log
(∑3

j=1 Pr
(
ηj|X

η
i,t0

)
× Pr (hi,t0+τ , .., hi,t0+J | hi,t0 ..., hi,t0+τ−1, ηj)

)
,

where Θ is the set of parameters in Eq. (2)-(6).

B.3 Estimating two-year survival probabilities

Figure B1 shows our estimated two-year survival probabilities from the HRS. Several

observations are in order. First, one’s survival probability decreases in health and the gap

between people in poor and fair health is significantly larger than that between people in fair

and good health. Second, one’s health history does not matter much for people currently

in poor or fair health, while it does matter for those whose current health is good. That is,

people older than 70 who spend at least three periods in good health have noticeably higher

chances to survive than their counterparts who have recently recovered from bad health and

have thus been in good health for just one or two periods.
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Figure B1: Estimated two-year survival probabilities by health status and health history.

B.4 Using bootstrapping to estimate confidence intervals

In the main text, we proceed in two steps when estimating our health process in Eq.(2)-

(6). We first estimate labor productivity from the PSID and survival probability from the

HRS, and then use these estimates in our maximum likelihood estimation. In this section,

we account for the estimation error in fixed labor productivity and survival probabilities by

using bootstrapping to compute the 90 and 95% confidence intervals for our estimated health

process and health types parameters. More specifically, we re-sample from both our HRS

and PSID samples for 1000 times. For each of these draws, we re-estimate fixed productivity

and survival probabilities, and use each set of results when estimating our health process

with a maximum likelihood.

Tables B1 and B2 report our estimated coefficients and their 95% confidence interval (in

parentheses and below each estimate). We mark each estimate with ∗∗ and ∗ when the 95%

and 90% bootstrapped confidence interval for that parameter excludes zero, respectively.

This check shows that the inference drawn in this case is consistent with the one in our

baseline case.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.0752 0.0715 0.129 0.288 −
(-0.31, 0.45) (-0.31, 0.42) (-0.25, 0.52) (-0.1, 0.74)

aB3 0.826∗∗ 0.810∗∗ 0.675∗∗

(0.21, 1.36) (0.2, 1.32) (0.14, 1.22)

aB4 0.528 0.704∗

(-0.12, 1.08) (-0.05, 1.21)

aB5 0.772∗

(-0.03, 1.38)

aBη1 2.270∗∗ 1.994∗∗ 1.604∗∗ 1.987∗∗ 2.111∗∗

(1.35, 3.29) (1.01, 3.1) (1.09, 2.7) (1.16, 2.58) (1.69, 2.52)

aBη3 -2.043∗∗ -2.104∗∗ -1.346∗∗ -1.303∗ -1.506∗∗

(-2.78, -0.77) (-3.08, -0.92) (-2.89, -0.0) (-2.21, -0.42) (-2.41, -0.44)

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.391∗∗ -0.366∗∗ -0.369∗∗ -0.770∗∗ −
(-0.68,-0.05) (-0.65,-0.001) (-0.7,-0.07) (-1.13,-0.48)

aG3 -0.242 -0.183 -1.086∗∗

(-0.58, 0.23) (-0.54, 0.33) (-1.7,-0.76)

aG4 -1.007∗∗ -1.691∗∗

(-1.55,-0.41) (-2.1,-0.92)

aG5 -1.921∗∗

(-2.24,-1.36)

aGη1 4.527∗∗ 3.784∗∗ 1.637∗∗ 1.806∗∗ 2.006∗∗

(1.78, 26.2) (1.79, 5.84) (1.2, 5.7) (1.24, 5.0) (1.52, 2.54)

aGη3 -1.447∗∗ -1.639∗∗ -2.318∗∗ -2.555∗∗ -2.871∗∗

(-1.98, -0.97) (-2.46, -1.1) (-3.07, -1.8) (-3.22, -2.24) (-3.39, -2.58)

N 9028 9765 11126 12096 13083

Table B1: Estimation results for the health process in Eq. (2)-(3) in the top panel and Eq. (4)-(5) in the
bottom panel. The columns refer to specifications controlling for different number of lags of past health.
The terms aBη2

and aGη2
are normalized to zero. Being in bad/good health for one period (τB = 1, τG = 1) is

the base case. All estimations include a quadratic in age whose coefficients depend on current health status
(poor, fair, good). The numbers in parentheses are the 95th confidence interval from bootstrapped samples.
The asterisks ∗∗ (∗) refer to estimates for which the 95% (90%) confidence interval excludes zero.
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T=5 T=4 T=3 T=2 T=1

age t0 -0.039 -0.025 0.005 0.001 -0.016
(-0.15, 0.02) (-0.11, 0.02) (-0.03, 0.05) (-0.04, 0.03 ) (-0.05, 0.01)

ht0 = G -1.457∗∗ -1.429∗∗ -1.879∗∗ -1.921∗∗ -2.250∗∗

(-2.4, -0.81) (-2.32, -0.58) (-2.47, -0.91) (-2.61, -1.41) (-2.92, -1.8)

ht0 = P 1.463 2.072∗∗ 2.410∗∗ 2.386∗ 1.022
(-0.51, 3.5) (0.17, 4.63) (0.24, 5.44) (-0.29, 3.9) (-1.26, 3.32)

2nd tercile of γ -0.247 -0.337 -0.509∗∗ -0.546∗∗ -0.642∗∗

(-1.25, 0.3) (-1.26, 0.19) (-1.16, -0.07) (-0.97, -0.16) (-1.05, -0.28)

3rd tercile of γ -1.203∗∗ -1.374∗∗ -1.188∗∗ -1.286∗∗ -1.355∗∗

(-2.3, -0.54) (-2.55, -0.74) (-2.2, -0.76) (-1.9, -0.83) (-1.85, -0.91)

2nd quintile of kt0 -0.002 -0.129 -0.048 -0.459∗∗ -0.469∗∗

(-1.12, 0.64) ( -1.32, 0.39) (-0.71, 0.33) (-1.02, -0.15) (-0.99, -0.18)

3rd quintile of kt0 -0.620 -0.429 -0.367∗∗ -0.378∗∗ -0.603∗∗

(-2.2, 0.08) (-1.82, 0.06) (-1.18, -0.07) (-1.06, -0.16) (-1.13, -0.32)

4th quintile of kt0 -0.749∗ -0.606∗ -0.691∗∗ -0.701∗∗ -0.759∗∗

(-3.0, 0.002) (-2.1, 0.02) (-1.57, -0.23) (-1.23, -0.26) (-1.21, -0.33)

5th quintile of kt0 -2.348∗∗ -1.616∗∗ -1.169∗∗ -1.280∗∗ -1.264∗∗

(-5.58, -1.48) (-4.3, -0.75) (-2.7, -0.8) (-2.36, -0.86) (-2.05, -0.87)

Table B2: Estimation results for the equation predicting health type, that is Eq. (6). The columns refer to
specifications controlling for different number of lags of past health. We set fair health status, 1st tercile of
γ and 1st quintile of kt0 as the base for the corresponding dummy variables. All estimations include dummy
variables for 10-years windows of birth year. The numbers in parentheses are the 95th confidence interval
from bootstrapped samples. The asterisks ∗∗ (∗) refer to estimates for which the 95% (90%) confidence
interval excludes zero.

.
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B.5 The distribution of productivity fixed effects

To evaluate whether the assumption of the normal distribution in our quantitative model

is consistent with the data, we plot the standardized estimates of the fixed labor productivity

in Figure B2, together with the fitted curve of a standard normal distribution. The graph

shows that the distribution of our estimated γ is reasonably well approximated by the fitted

normal distribution.
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Figure B2: Distribution of estimated fixed productivity.

B.6 Estimating the two-year health process (younger starting ages)

Tables B3 and B4 report the estimation results from Eq. (2)-(6) when we restrict the

sample to individuals whose age t0 is less than or equal to 39. The average t0 in the restricted

sample is between 25 and 30 years old, depending on the specification of T . These tables

shows that the results for this more restricted sample are similar to those that we use for

our main specification.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.015 0.030 0.136 0.441∗∗ −

aB3 0.565 0.612∗ 0.543∗∗

aB4 0.045 0.179

aB5 0.289

aBη1 2.347∗∗∗ 2.143∗∗∗ 1.915∗∗∗ 1.698∗∗∗ 1.886∗∗∗

aBη3 -2.901∗∗∗ -2.870∗∗∗ -2.36∗∗∗ -2.388∗∗∗ -1.799∗∗∗

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.487∗ -0.283 -0.436∗ -0.795∗∗∗ −

aG3 -0.558∗ -0.433 -1.215∗∗∗

aG4 -1.401∗∗∗ -1.687∗∗∗

aG5 -1.979∗∗∗

aGη1 4.532∗∗∗ 4.418∗∗∗ 4.090∗∗∗ 3.683∗∗∗ 1.715∗∗∗

aGη3 -1.417∗∗∗ -1.567∗∗∗ -2.304∗∗∗ -2.741∗∗∗ -2.771∗∗∗

N 6064 7212 8668 9982 11346

Table B3: Estimation results for the health process in Eq.(2)-(3) in the top panel and Eq.(4)-(5) in the
bottom panel when the sample includes only individuals whose age t0 is less or equal to 39 years old. The
columns refer to specifications controlling for different number of lags of past health. The terms aBη2

and

aGη2
are normalized to zero. Being in bad/good health for one period (τB = 1, τG = 1) is the base case. All

estimations include a quadratic in age whose coefficients depend on current health status (poor, fair, good).
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

T=5 T=4 T=3 T=2 T=1

age t0 -0.162∗ -0.089∗ 0.038 -0.005 -0.026

ht0 = G -0.795 -0.995∗ -1.696∗∗∗ -1.892∗∗∗ -2.182∗∗∗

ht0 = P 1.466 1.507 1.936 0.866 -0.376

2nd tercile of γ -0.250 -0.357 -0.557∗ -0.494∗ -0.679∗∗∗

3rd tercile of γ -1.716∗∗∗ -1.865∗∗∗ -1.788∗∗∗ -1.529∗∗∗ -1.546∗∗∗

2nd quintile of kt0 -0.277 -0.0637 -0.0546 -0.830∗∗ -0.669∗∗

3rd quintile of kt0 -0.380 -0.233 -0.300 -0.348 -0.578∗∗

4th quintile of kt0 -1.289 -0.853 -0.667∗ -0.753∗∗ -0.677∗∗

5th quintile of kt0 -2.192∗∗ -1.345∗∗ -1.566∗∗∗ -1.547∗∗∗ -1.431∗∗∗

Table B4: Estimation results to predict health type in Eq.(6) when the sample includes only individuals
whose age t0 is less or equal to 39 years old. The columns refer to specifications controlling for different
number of lags of past health. Fair health status, 1st tercile of γ and 1st quintile of kt0 are the base for the
corresponding dummy variables. All estimations include dummy variables for 10-years windows for birth
year. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

.
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B.7 Estimating the two-year health process (all education groups)

Education is a common determinant of many important outcomes. To further investigate

the relationship between health types and education, we expand our PSID and HRS samples

to include all education groups, namely, less than high school, high school, and at least

college. We then repeat the estimation steps in Section 2.3 and include education dummy

variables as an additional covariate in Eq.(6). We report the results in Table B5 and B6.

The results confirm our finding that education is insufficient to capture the variation in

health types that we document. Moreover, these additional estimates confirm our estimated

relationship between fixed productivity and wealth quintiles, in the context of a larger sample

size.

Similar to our estimation when using only high school group, Table B6 shows that people

with a higher fixed productivity and higher initial wealth are less likely to be of the worst

health type. The last two rows of Table B6 also highlight that having higher education is a

significant predictor of better health types.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.554∗∗∗ 0.495∗∗∗ 0.507∗∗∗ 0.821∗∗∗ −

aB3 1.181∗∗∗ 1.094∗∗∗ 1.206∗∗∗

aB4 0.933∗∗∗ 1.236∗∗∗

aB5 1.562∗∗∗

aBη1 1.011∗∗∗ 1.204∗∗∗ 1.099∗∗∗ 1.324∗∗∗ 1.909∗∗∗

aBη3 -0.418 -0.646 -0.464 -0.732∗ -1.419∗∗∗

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.432∗∗ -0.363∗∗ -0.355∗∗ -0.729∗∗∗ −

aG3 -0.499∗∗ -0.382∗ -1.140∗∗∗

aG4 -1.039∗∗∗ -1.452∗∗∗

aG5 -1.856∗∗∗

aGη1 1.404∗∗∗ 1.669∗∗∗ 1.772∗∗∗ 1.914∗∗∗ 1.967∗∗∗

aGη3 -1.292∗∗∗ -1.775∗∗∗ -1.966∗∗∗ -2.486∗∗∗ -2.964∗∗∗

N 17811 19261 21918 23745 25593

Table B5: Estimation results for the health process in Eq.(2)-(3) in the top panel and Eq.(4)-(5) in the
bottom panel when the sample includes all education groups. The columns refer to specifications controlling
for different number of lags of past health. The terms aBη2

and aGη2
are normalized to zero. Being in bad/good

health for one period (τB = 1, τG = 1) is the base case. All estimations include a quadratic in age whose
coefficients depend on current health status (poor, fair, good). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

T=5 T=4 T=3 T=2 T=1

age t0 -0.140∗ -0.081∗∗ -0.018 -0.013 -0.022

ht0 = G -1.952∗∗∗ -2.150∗∗∗ -2.469∗∗∗ -2.598∗∗∗ -2.452∗∗∗

ht0 = P 0.099 0.275 3.059 0.425 -0.042

2nd tercile of γ -1.418∗∗ -1.024∗∗∗ -1.045∗∗∗ -0.949∗∗∗ -0.869∗∗∗

3rd tercile of γ -2.457∗∗ -1.750∗∗∗ -1.805∗∗∗ -1.721∗∗∗ -1.741∗∗∗

2nd quintile of kt0 -0.608 -0.304 -0.172 -0.274 -0.278
3rd quintile of kt0 -1.016∗ -0.429 -0.465 -0.660∗∗ -0.713∗∗∗

4th quintile of kt0 -1.614∗∗ -0.919∗∗ -0.794∗∗ -0.846∗∗∗ -0.830∗∗∗

5th quintile of kt0 -2.955∗∗ -1.421∗∗∗ -0.925∗∗ -0.899∗∗∗ -0.729∗∗∗

high school group -1.362∗ -0.881∗ -0.734∗∗ -0.568∗ -0.450∗

college group -3.369∗∗ -2.295∗∗∗ -1.966∗∗∗ -1.641∗∗∗ -1.414∗∗∗

Table B6: Estimation results to predict health type in Eq.(6) when the sample includes all education groups
(less than high school, high school, and college). The columns refer to specifications controlling for different
number of lags of past health. Less than high school, fair health status, 1st tercile of γ and 1st quintile of
kt0 are the base case for the corresponding dummy variables. All estimations include dummy variables for
10-years windows of birth year. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

.
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B.8 The two-year health transition probability (T = 3)

Table B7 reports the initial joint distribution of health status and fixed productivity

taken from our PSID sample for people between the ages of 19 and 24 and shows that worse

initial health and low fixed productivity are positively correlated.

γL γM γH

Pr (h21 = F, τ21 = 1 | γ) 0.084 0.062 0.026

Pr (h21 = G, τ21 = 3 | γ) 0.926 0.938 0.973

Table B7: Joint distribution between health status and fixed productivity (h21, τ21) between age 19 and
24. The term τ21 represents the number of consecutive periods that an individual has been in health status
h21. The terms {γL, γM , γH} refer to the three fixed productivity terciles.

Figure B3 reports our estimated transition probabilities for all health states when T=3.

It features very large differences by health types. Figure B4 shows that our health transition

probabilities, together with the initial measure of health types (η) in Table 3, reproduce the

fractions of people in fair and poor health by age that we observe in the data.
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Figure B3: Estimated two-year transition probabilities (T = 3). On the left hand side, the top three lines
refer to the low health types (η1), the middle three lines to the middle health type (η2) and the bottom
three lines to the best health types (η3). On the right hand side, the ordering of these groupings is reversed.
Within each grouping, different line types correspond to the number of consecutive periods in current health
status (τ), with the solid line referring to τ = 1, the dashed line to τ = 2, and the line with markers to
τ = 3. The panels in the first, second, and third rows correspond to the case when individuals are currently
in poor, fair, and good health, respectively. The first, second, and third columns correspond to poor, fair,
and good health in the next two years.
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Figure B4: Fraction of people in bad health

B.9 What accounts for the long spells of bad health?

We also use our estimated bi-annual model of health dynamics to compute the distribu-

tion of the number of unhealthy periods over one’s lifetime. The left graph of Figure B5

plots the distribution of people by the total number of periods spent unhealthy between the

age of 21 and 80, while the dashed line in the right panel shows the corresponding cumu-

lative distribution. Most people are relatively healthy over their life course: 70% of people

experience no more than 5 periods of bad health. However, a non-trivial number of people

spend more than a third of time being unhealthy between the age of 21 and 80: almost

10% of people experience 10 or more periods in bad health (note that the number of periods

between the age of 21 and 80 is 30).

The right panel of Figure B5 illustrate how this distribution differs across health types

by comparing two groups: the solid line with circles refers to people of the worst health

type (η1), while the dotted one refers to those with better health types (η2 and η3). Among

η2- or η3-individuals (solid line), almost no one experiences more than 15 unhealthy periods

between the age of 21 and 80. In contrast, slightly more than 30% of η1-people are unhealthy

for 15 periods or longer. Thus, even though the measure of η1-people is small (8.3% at age

21), they primarily account for the long right tail of the unhealthy period distribution in the

left panel. In other words, long spells of bad health are mostly due to fixed heterogeneity,

rather than to repeated bad realizations from a persistent health shock.
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Figure B5: Distribution by lifetime unhealthy periods (age 21-80). Left panel: distribution among all
individuals. Right panel: cumulative distribution of individuals with different heath types.

C Health types’ interpretation

C.1 Polygenic scores and health outcomes in the HRS

In Section 2.5, we report the relationship between health and individuals’ fixed char-

acteristics using a balanced panel of individuals observed consecutively between age 55/56

and 65/66. In Table 4, the sample size for individuals with 0-1 periods being unhealthy is

between 794 and 904, depending on the variable, while the sample size for 2-3 periods and

4-5 periods are 123-140 and 54-63, respectively. For the polygenic scores in Table 5, the

sample size for individuals with 0-1, 2-3, and 4-5 periods being unhealthy are 611, 73, and

31, respectively.

In this section, we further investigate the correlation between health and genetic en-

dowments. To do so, we use the same HRS sample as in Table 5 in the main text, and

report the 25th, 50th, and 75th percentiles of four polygenic scores among individuals with

different number of unhealthy periods. The resulting pattern is similar to the one reported

in Table 5, where we only reported average polygenic scores. Among people reporting 4-5

unhealthy periods, all percentiles of the polygenic score for educational attainment are no-

ticeably lower. In contrast, all percentiles of the polygenic scores associated with unhealthy

behaviors (smoking and BMI) are higher for this group (one exception is the 25th percentile

of polygenic score for BMI). All percentiles of polygenic score predicting longevity among

those reporting 4-5 unhealthy periods are also consistently lower.
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# unhealthy
periods

Polygenic scores (HRS)

educational attainment smoking BMI longevity

25th percentile

0-1 -0.761 -0.692 -0.665 -0.761
4-5 -1.610 -0.487 -0.725 -0.950

50th percentile

0-1 -0.120 0.036 0.003 -0.028
4-5 -0.682 0.127 0.215 -0.332

75th percentile

0-1 0.473 0.720 0.666 0.560
4-5 -0.075 0.734 1.089 0.486

Table C8: The 25th, 50th, and 75th percentiles of various polygenic scores by the number of unhealthy
periods between ages 57 and 66. All individuals are healthy at age 55-56.

C.2 Empirical studies supporting the existence of health types

In this section we review the empirical literature studying the role of pre-determined

factors in adult health. These studies can be broadly divided into two groups.

The first group of studies focuses on genetic contributions to health. Romeis et al. (2000)

use several thousands of male-male twin pairs from the Vietnam Era Twin Registry. They

find that the genetic contribution to adult health is 40%. Silventoinen et al. (2007) study a

sample of Finnish twins and conclude that heritability accounts for 33% of variation in self-

reported health at the age of 25. Studies that use actual genetic data find smaller but still

significant contribution of genetic factors to health. For example, Harris et al. (2017) show

that 13% of the variation in self-reported health can be explained by all common genetic

variants.

The second group of studies focuses on the contribution of early childhood circumstances

to adult health. Case et al. (2005) show that each chronic condition at age 7 raises the

probability of reporting a chronic condition at age 42 by 4%. Moreover, if the condition

is still present at age 16, the effect is twice as large. Conti and Heckman (2010) show

that childhood health has a significant effect on the probability of having poor health at

age 30, even controlling for cognitive and non-cognitive ability. Campbell et al. (2014)

use biomedical data and show that early childhood intervention can significantly improve

objective health measures in adulthood. Several studies investigate the role of Adverse

Childhood Experiences (ACE), such as having experienced or witnessed physical or mental

abuse. They show that ACE has long-lasting effects: individuals with high ACE score when

children have substantially worse health in their middle and old age (Anda et al., 2006;

Felitti et al., 1998).

Taken together, this (growing) evidence shows that genetic factors and early childhood

circumstances have significant impact on adult health, giving additional support to our
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findings that ex-ante heterogeneity is an important determinant of health dynamics.

C.3 Health types determination when including exercise behavior

in health transitions

Table C9 reports the estimates of one’s health type prediction when a dummy variable

for exercise categories is included in the evolution of the health process (see Section 3).

T=5 T=4 T=3 T=2 T=1

age t0 -0.0418 -0.0315 -0.0371 -0.0334 -0.0395

ht0 = G -1.886∗∗∗ -2.282∗∗∗ -3.001∗∗∗ -2.841∗∗∗ -2.943∗∗∗

ht0 = P 0.948 1.349 1.726 1.996 -0.448

2nd tercile of γ -0.223 -0.309 -0.440∗ -0.509∗∗ -0.543∗∗

3rd tercile of γ -1.056∗∗ -1.085∗∗∗ -1.097∗∗∗ -1.196∗∗∗ -1.215∗∗∗

2nd quintile of kt0 0.0377 -0.122 0.033 -0.277 -0.281
3rd quintile of kt0 -0.557 -0.177 -0.083 -0.136 -0.294
4th quintile of kt0 -0.441 -0.308 0.015 -0.077 -0.243
5th quintile of kt0 -2.092∗∗∗ -0.994∗∗ -1.194∗∗∗ -1.282∗∗∗ -1.383∗∗∗

Table C9: Estimation results for one’s health type prediction when allowing for exercise to affect health.
Fair health status, 1st tercile of γ and 1st quintile of kt0 are the base case for the corresponding dummy
variables. All estimations also include dummy variables for 10-years windows of birth year. ( ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001 )

.

D First step estimation details

D.1 Medical shocks and insurance coverage

To estimate medical expenses, we follow Pashchenko and Porapkkarm (2017). That

is, we first convert medical expenses in the MEPS to 2013 price using the CPI. Second,

we compute total medical expenses for each individual over two-year periods. Third, we

separate our sample into 12 age groups (20-24, 25-29, 30-34, ..., 75+), where we assign the

age of each group to the mid-point of the corresponding age interval. For example, 22 for

20-24, 27 for 25-29, 32 for 30-34, etc. Then, for every age group, conditional on health status

in the first year (poor, fair, good), we divide the two-year medical expenses into 3 bins: the

bottom 50%, 50-90%, and the top 90%. After computing average of medical expenses in each

bin, we multiply them by 1.60 for people younger than 65 years old and by 1.90 for people

65 or older to make medical spending in our model consistent with the aggregate medical

spending in the National Health Expenditure Accounts (NHEA). We then fit the resulting

17



adjusted medical expenses with a quadratic function of age. Figure D6 shows the medical

costs for each grid separately for each health status.
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Figure D6: Two-year Medical expense grids by health status, xh
t .
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Figure D7: Private health insurance coverages: cvg
(
xh
t , iH

)
, iH ∈ {1, 2}.

To determine the fraction of medical expenses covered by private insurance cvg(xh
t , iH)

where iH ∈ {1, 2}, we do the following. We estimate medical expenses paid by private

insurers as a function of total medical expenses and year dummies using only individuals

who are categorized as individually insured or group-insured. Then, we convert our estimates

into the fraction of expenses covered by insurers. Figure D7 shows the estimated coverage

by medical expense grids.

For the parameters related to private health insurance market, we use Pashchenko and

Porapakkarm (2017)’s estimates and set the proportional load ξ to 1.07, and the fixed loads

ϕh to $100 for the healthy and $2,100 for those in fair or poor health (annually).3

D.2 Tax system

We set the Medicare, Social Security, and consumption tax rates to 2.9 percent, 12.4

percent, and 5.67 percent, respectively. We use the Social Security rules for 2013, hence we

3 Since the loads existing in individual health insurance market are unobservable, we use the indirect
estimates obtained by Pashchenko and Porapakkarm (2017). In their model with rich representation of
the US health insurance market these loads are identified from the observed purchase of individual health
insurance.
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set the maximum (annual) taxable income for Social Security (yss) to $113,700. We set the

capital tax rate to 36%, as Holter et al. (2019).

For the progressive labor income tax function, we follow Holter et al. (2019) whose

estimates of aτ0 and aτ1 depend on family structure. Since the average family size nt in

our model ranges from 1.9 to 3.2, we set aτ0 and aτ1 to 0.940772 and 0.158466, respectively,

which corresponds to their estimates for married families with one child.4

D.3 Stochastic labor productivity

We use the PSID (annual data before 1997 and bi-annual after 1997) to estimate our

labor income shock process. We define workers as described in Section 2.2 and compute

their annual labor income, defined as earnings plus income from business. We have 17,277

individual-wave observations from 1,730 individuals whom we observe working at least in

two waves. We obtain earning residuals (γi + uit) from a fixed effect regression of Eq.(1).5

Next, we construct the empirical autocovariance matrix of the earning residuals and

estimate the parameters of the productivity shock by minimizing the distance between the

empirical autocovariance matrix and the corresponding matrix implied by Eq.(13).6 Our

resulting estimates of annual labor income shock are ρν = 0.947, σ2
ε = 0.02, σ2

ν0
= 0.09, and

σ2
γ = 0.051, and are within the range of values estimated in the literature. We then use

the estimated annual AR(1) process to simulate annual income shock for a large number

of individuals. From this simulated data, we construct age-dependent transition matrix for

two-year labor income shock with 9 grid points, equally-spaced and expanding with age. We

discretize the fixed productivity into three terciles {γL, γM , γH}.

D.4 Summary of the parametrization of the baseline model

Table D10 below summarizes parameters of our life-cycle model.

4 Since income in our model is over two years, we convert it into annual income before applying the tax
function. Then we convert the resulting tax obligations into two-year payments. We use the same approach
for the Social Security benefits.

5Note that the parameters in Eq. (13) are assumed to be independent of health status and age. Since
most workers are healthy and over 90% of healthy people work, we are less concerned about the selection
problem when estimating the parameters of Υt directly from the data. An alternative approach is to use
only the sample of healthy workers younger than 60, but this would reduce our sample size.

6This is a standard procedure commonly used in the literature. See for example, Storesletten et al.
(2004) and French (2005).
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Parameter name Notation Value Source

Parameters set outside the model
Risk aversion ρ 3.0
Average family size nt 1.9-3.2 PSID
Tax function parameters aτ0 0.940772 Holter, et al. (2019)

aτ1 0.158466 ”
capital income tax τk 36% ”
consumption tax τc 5% ”
Medicare premium (per year) PMCR $1,055
Labor productivity

- Persistence parameter (annual) ρν 0.9472 PSID
- Variance of innovations (annual) σ2

ε 0.0198 ”
- Initial distribution σ2

ν0
0.093 ”

- Fixed effects σ2
γ 0.051 ”

Proportional load in ind ins ξ 1.07
Fixed load in ind ins (per year) ϕh

- healthy $100 Pashchenko and Porapakkarm (2017)
- unhealthy (poor+fair) $2,100 ”

Parameters used to match some targets
Discount factors (per year) βlow, βhigh 0.877,0.992 wealth profiles

% individual with βlow by η at 20 Pr(βlow|η1) 77.8% ”
Pr(βlow|η2) 79.4% ”

Pr(βlow|η3) 38.0% ”

Bequest parameters
- Strength θBeq 1,905 ”

- Shifter kBeq $182,707 ”

Consumption floor (per year) c $3,505 ”

Per-period utility of being alive b 7.149 VSL of $2M

Table D10: Parameters of the baseline model
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E Additional results

In this section, we provide supplementary discussions and additional results about the

implications of our estimated structural model. More specifically, we discuss our results

about the estimated heterogeneity in discount factors and compare them with estimates

from other studies. We also report the monetary costs of bad health computed using an

alternative interest rate and the welfare costs of bad health when the VSL is higher than in

our baseline estimation.

E.1 Discussion of the estimated heterogeneity in the rate of time

preferences.

Our estimated discount factors are 0.877 and 0.992 for impatient and patient groups, re-

spectively. In this section, we compare the difference in the rates of our time preferences with

those from other studies that allow for patience heterogeneity and structurally estimating

them to match wealth moments.

Among the structural studies that allow for heterogeneity in discount rates, we can

distinguish two groups. The first group, starting from the seminal paper of Krusell and Smith

(1998) and including Hubmer et al. (2019) and Krueger et al. (2016), shows that a small

difference in discount rates is enough to generate “enough” wealth inequality. These studies

use as relevant moments Gini coefficient or wealth holdings among different percentiles of

the wealth distribution and feature households that are infinitely lived (or age stochastically

and thus can also potentially live infinitely).

The second group of studies find that significantly larger difference in patience are needed

to match the data. Crawford and O’Dea (2020) estimate a structural model on linked

survey and administrative data in the UK and find substantial heterogeneity in discount

rates: the bottom/top 10% of the estimated discount rate distribution is equal to 0.98/1.125,

respectively. French and Jones (2011) use a rich model to account for retirement and saving

decision after age 50 (estimated using the HRS data) and estimate discount factors varying

from 0.8 to more than 1 for different groups of people. Hendricks (2007b), which, as the first

group of papers focuses on the impact of discount factor heterogeneity on wealth inequality,

estimates discount factor varying across people from 0.91 to more than 1 in his benchmark

model. Moser and Olea de Souza e Silva (2019) use the HRS and the CPS find discount rates

varying from 0.905 to 0.999 between the 10th and the 90th percentile of their distribution.

These studies target wealth moments conditional on age in their estimation. A common

modeling feature of these studies is a deterministic (non-stochastic) life-cycle framework and

the presence of a bequest motive.
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Because we model a deterministic life-cycle structure and bequest motives, and we target

wealth inequality evolution over the life-cycle, our paper belongs to the second group of

studies.

The intuition why in our kind of framework the estimated heterogeneity in discount rates

tends to be larger is due to the absence of impatient households according to Carroll (1997)’s

definition among certain age groups. Let us elaborate a bit on this point.

Based on Carroll (1997), in a standard model without uncertainty and with no income

growth (income is the same and equal to y in the current and future periods), households

are impatient if the following is true:

u′(y) ≥ β(1 + r)u′(y),

which corresponds to the Euler equation of an individual who chooses to set his savings to 0.

This leads to the impatience condition β(1 + r) ≤ 1. In our framework with bequest motive

and survival uncertainty, this impatience condition can be represented as follows:

u′(y) ≥ β(1 + r)(ζu′(y) + (1− ζ)v′(0)),

where v′(0) is the marginal utility of leaving no bequests and ζ is survival probability. Using

our parametrization of bequest and utility functions, the expression above can be written as

follows

1 ≥ β(1 + r)


ζ + (1− ζ) η

(
φ

y

)−σ

 .

Consider, for example, a relatively young individual with survival probability ζ equal

to 0.99. In the absence of a bequest motive, an individual would be considered impatient

in our model if his discount factor is below 0.99 (since our interest rate is 2%). Using our

estimates of the bequest motive, the threshold β that makes such an individual impatient

becomes 0.83, assuming that he has average income. As one’s survival probability decreases

and income increases with age, the cutoff that defines impatience goes down. This means

that after a certain age, all individuals become patient.

When all individuals in a certain group are at the same side of the impatience cutoff, it is

harder to generate wealth inequality compared to the situation in which some individuals are

patient and some are impatient. We are facing this situation since we are targeting wealth

inequality by age. Thus, we need a larger heterogeneity in discount factors to generate

difference in saving behavior among individuals of a certain age since they are all patient

under the modified definition of patience, that is the one that accounts for bequest motives.
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In terms of interpretation, in our framework β represents certain characteristics that are

fixed ex-ante and affect saving behavior. They can be interpreted as people’s non-cognitive

abilities and, more precisely, as the ability to delay gratification. Research in personality

psychology starting from the seminal work of Mischel et al. (1989) show that the patience or

ability to delay gratification measured in childhood is significantly correlated with outcomes

later in life.

While the economic mechanism linking patience or ability to delay gratification and sav-

ing behavior is well-understood, it is less clear how exactly this type of non-cognitive abilities

affects health and labor market outcomes, once controlling for education. However, there

is evidence that such a relationship does exist. For example, Golsteyn et al. (2014) using

a survey data in Sweden linked to administrative records show that there exists substantial

adverse relationship between high rate of time preferences measured at age 13 and health

and labor outcomes later in life.

E.2 Monetary losses of bad health when the interest rate is zero

To compute the monetary costs of bad health we use the following formula:

lossi =
1

T̂

T̂∑

t=1

yHit − yBS
it

(1 + r)t
.

where yBS
it and yHit are income net of total medical spending of an individual i at time t in the

baseline and counterfactual case with no bad health realizations, respectively. In the main

text, we use the interest rate of 2% to compute the losses. In this section, we recompute the

losses using the interest rate of 0%. The results of this exercise are reported in Tables E11

and E12. The overall losses are larger when lower interest rate is used, but the decomposition

exercise reveals the same pattern regarding the importance of income and medical spending

losses. The corresponding concentration of monetary losses and its variation due to health

type are reported in the upper part of Table E15. The overall patterns are similar to the

case when using 2% interest rate.
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All η1 η2 η3

Over life cycle (21-death) using 0% interest rate

% of time in bad health 15% 58% 23% 4%

Income losses + total medical costs $3,303 $16,800 $4,613 $627
(% of average earnings) a (8.5%) (43%) (12%) (1.6%)

Over working age (21-64) using 0% interest rate

% of time in bad health 10% 55% 14% 1%

Income losses + total medical costs $2,026 $13,267 $2,569 $130
(% of average earnings) a (5.2%) (34%) (6.6%) (0.3%)

a Average earnings in our baseline model is $38,648 per year.

Table E11: Annual monetary loss due to bad health (poor+fair) using 0% interest rate. The top panel is
over life cycle till death while the bottom panel is between 21 and 64 (working ages).

Over life-cycle (21-death) Over working periods (21-64)
All η1 η2 η3 All η1 η2 η3

Annual monetary losses $3,303 $16,800 $4,613 $627 $2,026 $13,267 $2,569 $130

Composition (%)

- Medical costs paid by insurance 35% 32% 36% 43% 28% 30% 26% 19%
- Out-of-pocket medical costs 28% 21% 32% 41% 18% 18% 19% 10%
- Income losses 37% 47% 32% 15% 54% 51% 55% 70%

Table E12: Composition of annual monetary loss due to bad health (poor+fair) using 0% interest rate
when computing the present value.
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E.3 Welfare losses by type

all
βL βH

η1 η2 η3 η1 η2 η3

γL $2,113 $5,702 $2,083 $202 $6,903 $3,881 $946
(13.2%) (35.0%) (12.5%) (1.2%) (47.6%) (25.2%) (6.0%)

γM $2,003 $6,314 $2,320 $248 $8,295 $4,614 $1,202
(10.7%) (33.5%) (12.3%) (1.3%) (47.8%) (24.9%) (6.3%)

γH $1,684 $6,232 $2,341 $246 9,774 $5,370 $1,433
(8.0%) (29.6%) (11.4%) (1.2%) (48.7%) (25.1%) (6.6%)

Table E13: Welfare losses due to bad health (poor+fair). The dollar value is calculated from λcc
∗∗ where

λc and c∗∗ are the percentage of consumption reduction and average life time consumption of each individual
when always healthy. The percentage of consumption compensation (λc) is reported in parentheses.

Table E13 displays the welfare losses by patience, health, and productivity type.

E.4 Alternative calibration with VSL of $6 millions

In our baseline parameterization, we adjust the scaling parameter b so that the value

of statistical life (VSL) among working age population implied by our model is $2 million

dollars. In this section, we report the results from an alternative parameterization when b

is set to match a VSL of $6 millions. Note that all other parameters in the model are the

same as in the baseline. The welfare losses when the targeted VSL is set to a higher value

are reported in Table E14. Not surprisingly, the importance of non-pecuniary consequence

of bad health increases, compared with the baseline case. This is because with higher VSL,

life is more valuable and there are larger welfare costs of bad health coming from a shorter

lifespan.

The lower part of Table E15 reports the concentration of welfare losses and its variation

due to health types. A comparison with Table 17 in the main text reveals that the increase in

VSL does not affect the concentration of welfare losses. In contrast, a larger VSL noticeably

lowers the contribution of health types toward the variance of welfare losses because the

survival channel becomes a larger fraction of welfare losses and health types contribute

relatively less to variation in life expectancy.
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all η1 η2 η3 βL βH

Compensated consumption equivalence $2,320 $6,416 $3,025 $1,321 $1,860 $2,896
(% consumption equivalence, λc) (12.6%) (37.2%) (16.6%) (6.8%) (10.3%) (15.5%)

Contribution (%)

- Only medical expenses losses 22% 40% 20% 12% 24% 20%
- Only income losses 32% 58% 38% 6% 56% 13%
- Only non-monetary losses 60% 47% 47% 86% 20% 92%

Table E14: Welfare loss due to bad health (poor+fair) using VSL=$6M. The dollar value is calculated
from λcc

∗∗ where λc and c∗∗ are the percentage of consumption reduction and average life time consumption
of each individual when always being healthy.

Over life cycle (21-death) variation due to η

top 5% top 10% top 20%

Monetary losses (21-death) using 0% interest rate

- Income losses + total medical costs 32% 49 % 71% 69%

Welfare losses using VSL=$6M

- Compensated consumption equivalence 23% 43% 74% 17%

Table E15: Concentration of losses due to bad health (poor+fair) and variation due to health types.
The reported numbers in column 2 to 4 are in percentage of aggregate loss at top 5%, 10%, and 20%. For
monetary loss, we use 0% interest rate when computing the present value and include the costs paid by
insurance. (The results when excluding insurance are similar.) The welfare loss is based on the case when
the VSL is calibrated to $6M.
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