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Abstract—Tremendous differences in producer productivity levels exist,
even within narrowly defined industries. This paper explores the influence
of product substitutability in an industry on this disparity. When consum-
ers can easily switch between producers, inefficient (high-cost) producers
cannot operate profitably. Thus high-substitutability industries should
exhibit less productivity dispersion and have higher average productivity
levels. I demonstrate this mechanism in a simple industry equilibrium
model and test it empirically using producer-level data from 443 U.S.
manufacturing industries. I find evidence that substitutability—measured
in several ways—is indeed negatively related to within-industry produc-
tivity dispersion and positively related to median productivity.

I. Introduction

EMPIRICAL explorations into the productivity levels of
individual producers have consistently found large het-

erogeneity across plants. Perhaps surprisingly, a great
amount of productivity variation between plants is observed
within what may seem to be narrowly defined (for example,
four-digit SIC) industries. Table 1 shows statistics demon-
strating this dispersion. Using plant-level data from the
1977 Census of Manufactures, I compute productivity dis-
tribution moments for four-digit manufacturing industries
for each of four different productivity measures.1 As can be
seen in the first numerical column, the averagewithin-
industry interquartile range of logged plant-level labor pro-
ductivity values is roughly 0.66. This corresponds to a
nearly 2-to-1 ratio in value added per labor unit (employee
or employee-hour) between the 75th- and 25th-percentile
plants in an industry’s productivity distribution. Bear in
mind that these differences are observed when restricting
attention to the middle half of the distribution; including
more of the tails amplifies intra-industry heterogeneity. The
average 90–10 and 95–5 percentile productivity ratios
within industries are over 4 to 1 and 7 to 1, respectively.
Factor intensity variations are not solely responsible for
these large differences, either. Intra-industry total factor
productivity differences, though smaller, are still sizable.
The values in the bottom half of table 1 indicate average
interquartile total factor productivity (TFP) ratios between
1.34 to 1 and 1.56 to 1, depending on the measure. It is
important to note that the heterogeneity observed here is a
persistent phenomenon. Empirical studies using other (but

perhaps less comprehensive) cross sections have found
similar within-industry productivity differences.

A host of theoretical work has arisen in an attempt to
explain the sources of this dispersion. The great majority of
this research focuses on supply-side–production explana-
tions, such as technology shocks, management skill, R&D,
or investment patterns.2 Although these proposed explana-
tions are undoubtedly important, I contend that demand-side
(output market) conditions can also play an important role
in explaining persistent productivity dispersion. I focus in
this paper on the influence of one demand characteristic—
product substitutability—on the equilibrium plant-level pro-
ductivity distribution within an industry.

An obvious question arising from the above facts regards
how such wide productivity dispersion can exist in equilib-
rium. One might expect a long-run tendency for industry
output to be reallocated to more productive plants. They can
produce output at lower cost than industry rivals and grab
additional market share by undercutting their opponents’
prices without sacrificing profits. If this process were to
continue unabated, industry equilibrium would expectedly
be characterized by a degenerate plant-level productivity
distribution within the industry; all operating plants would
share the same (highest possible) productivity level.

The above evidence suggests something impedes this
reallocation process, at least partially. Imperfect product
substitutability seems a likely candidate. It prevents indus-
try customers from costlessly (in either a budgetary or a
utility sense) shifting purchases between industry produc-
ers. Thus more efficient (lower cost) plants cannot lure away
all demand from their less efficient industry rivals simply
with lower prices, and lower-productivity establishments
are able to stay in business despite their cost disadvantage.
As a result, the equilibrium productivity (cost) dispersion in
an industry should be related to the extent of product
substitutability. Industries with very segmented (in either
geographic or product space) output markets can support
large productivity differences, even in a long-run equilib-
rium. High-substitutability industries should exhibit little
dispersion. Further, because the productivity truncation only
affects the low end of the distribution, greater substitutabil-
ity implies higher central tendency in an industry’s produc-
tivity distribution.3
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2 Bartelsman and Doms (2000) review much of this literature.
3 This raises questions about why even those producers protected from

competition by imperfect substitutability would not seek to maximize
efficiency. An implicit (and I believe reasonable) assumption underlying
the intuitive premise of the paper is that improving productivity is not
costless. The model below, as several models used in other contexts do,
makes this stark by assuming that this cost is infinite; a producer’s
productivity draw is permanent and unchangeable. The assumption is not
likely to be key to the results, however. One could introduce a costly
productivity-improving technology and still obtain the same qualitative
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Product substitution barriers are manifold. Transport
costs prevent costless switching among suppliers even when
industry products are otherwise identical. In the manufac-
tured ice industry (SIC 2079), for example, it is unlikely that
the physical characteristics of output vary much from plant
to plant. However, the obvious transport barriers make
manufactured ice in one locale an imperfect substitute for
the same product in another. High-productivity plants would
be unable to take market share from less efficient industry
competitors given sufficient distance between them, sup-
porting a range of productivity levels in equilibrium.

Physical product differentiation also limits substitutabil-
ity. Idiosyncratic consumer preferences across attributes
allow some producers to remain viable even if they are less
physically efficient than their industry counterparts. Plants
producing niche-market specialty products may often have
higher per-unit costs than industry competitors who focus
on mass production. However, niche producers can survive
(and indeed thrive) if their product characteristics appeal to
certain purchasers.

Branding and advertising can also lead to consumers
perceiving physically identical products as being less than
perfectly interchangeable. The classic example of name-
brand bleach fetching a higher price than chemically iden-
tical generic alternatives is illustrative of this. Sufficient
brand identity will allow a producer to operate even in the
face an efficiency gap between itself and its industry com-
petitors.

Real or perceived differences in services bundled with
products, such as delivery speed, documentation, and prod-
uct support, can also contribute to imperfect output substi-

tutability. Finally, an array of intangible factors such as
specific history-laden relationships between producers and
their customers, interpersonal customer-manager interac-
tion, and other assets of goodwill make costless substitution
of another manufacturer’s output impossible.

Alone or in combination, these factors allow productivity
differences to persist among industry producers. Expect-
edly, as these substitutability factors vary across industries,
certain moments of the productivity distribution should
fluctuate in concert. Table 1 summarizes the substantial
across-industry variance in plant-level productivity distri-
bution moments. The between-industry standard deviation
of within-industry interquartile productivity ranges (that is,
the dispersion of productivity dispersion) is roughly one-
third of the mean within-industry interquartile range. Sim-
ilarly, the standard deviations of the wider intra-industry
productivity ranges are roughly one-fourth of their means.
Across-industry differences in plant productivity distribu-
tions are not restricted to second moments; within-industry
median TFP levels have an across-industry coefficient of
variation of 0.20.

The objective of this paper is to test if product substitut-
ability differences are linked with the observed variation in
these moments. Specifically, I test the notions forwarded
above: that greater product substitutability should be corre-
lated with less productivity dispersion and higher central
tendency in industries’ plant-level productivity distribu-
tions.

This paper is a broadly focused complement to Syverson
(2003). That study explores the effect of exogenous differ-
ences in output substitutability within an industry (ready-
mixed concrete) on the dispersion and central tendency of
productivity distributions in local concrete markets. The
results therein suggest that increased geographic barriers to
substitution (lower demand and plant density in the concrete
industry’s case) lead to greater productivity dispersion and
lower average productivity in the market. By exploiting
substitutability variation within a given industry, that study
holds constant many possible confounding influences on
local productivity distributions. Its limited scope, however,
makes generalizing the link between substitutability and
productivity distribution moments (and thus the utility of
drawing implications for aggregate production behavior)
slightly more tenuous. The goal of the present paper is to
test if this link holds more broadly across the economy.4

Differences in industry plant-level productivity distribu-
tions and their causes are of obvious interest to those
interested in competition and production within industries.
Moreover, as Basu and Fernald (1997) as well as others

implications. In many theoretical frameworks, producers would have
greater incentive to undertake productivity-enhancing investment when
high product substitutability exposes them to intense competition.

4 In a recent paper using data from 2300 firms in East Asia, Hallward-
Driemeier, Iarossi, and Sokoloff (2002) find some evidence of a broad-
based link between productivity dispersion and the level of market
“ integration,” which they define as consisting in part of factors such as
transport costs and product differentiation.

TABLE 1.—DISPERSION ACROSS INDUSTRIES OF WITHIN-INDUSTRY

PRODUCTIVITY DISTRIBUTION MOMENTS

Productivity
Measure

Within-Industry
Productivity Moment Mean

Std.
Dev.

IQ
Range

Labor productivity:
log(value added/
employees)

Median 3.174 0.407 0.449
IQ range 0.662 0.208 0.213
90–10 percentile range 1.417 0.388 0.407
95–5 percentile range 2.014 0.568 0.565

Labor productivity:
log(value added/
hours)

Median 2.521 0.376 0.428
IQ range 0.653 0.216 0.242
90–10 percentile range 1.391 0.389 0.391
95–5 percentile range 1.969 0.553 0.570

Total factor prod. 1
(plant-specific
input elasticities)

Median 1.642 0.370 0.474
IQ range 0.447 0.146 0.153
90–10 percentile range 0.986 0.238 0.276
95–5 percentile range 1.356 0.291 0.329

Total factor prod. 2
(industry average
input elasticities)

Median 1.790 0.342 0.430
IQ range 0.290 0.087 0.102
90–10 percentile range 0.651 0.173 0.196
95–5 percentile range 0.935 0.233 0.296

This table summarizes plant-level productivity distribution moments across 443 (four-digit SIC)
manufacturing industries. Rows correspond to moments of within-industry producer productivity distri-
butions; columns show the across-industry mean and dispersion of these moments. “ IQ range” is the
interquartile range. Due to data disclosure restrictions, calculated medians are actually the average of 49th
and 51st percentile values.
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have pointed out, reallocation of production across indus-
tries with differing technological characteristics can be an
important source of changes in aggregate production data.
Therefore, addressing issues regarding these across-industry
differences could yield insights into aggregate productivity
movements as well.

I show in the next section the link between the shape of
the productivity distribution and product substitutability (as
well as some technological parameters) in a simple model of
entry and competition within an industry. I go on to test the
predictions of the model and its extensions by collecting
measures of product substitutability within industries and
comparing variations in these factors to moments of indus-
tries’ plant-level productivity distributions. These produc-
tivity moments are computed from data from roughly
200,000 establishments from the U.S. Census of Manufac-
tures. To preview the results, I find that the within-industry
productivity dispersion (the central tendency) does indeed
tend to decrease (increase) when substitutability is high.
These results hold even after controlling for several other
plausible causes of heterogeneity and appear robust to
empirical modeling specifications. Furthermore, proxies for
characteristics of industry technologies (fixed operating
costs and sunk entry costs specifically) are also related to
industries’ plant-level productivity distribution moments in
directions predicted by theory.

II. Theoretical Motivation

I formalize the above intuition using a theoretical frame-
work where heterogeneous-productivity producers compete
in an industry product market with (possibly imperfect)
substitution across producers’ outputs, which are varieties of
the industry product. The model allows the equilibrium
plant-level cost/productivity distribution to respond endog-
enously to variations in substitutability. Because I am con-
cerned here with differences in productivity distributions
across industries rather than intertemporal fluctuations
within them, industry dynamics are not a primary concern.
The equilibrium is a two-stage entry-production decision
meant to model long-run differences in outcomes. For the
sake of expositional clarity and to permit maximum trans-
parency of the selection-driven mechanism, I assume a
specific demand system. It is important to note, however,
that similar qualitative implications can be obtained from
other demand systems. Though simple, the model shows in
a fairly straightforward manner how differences in product
demand and technology structures can create variation in
industry productivity distribution moments.

A. Model

An industry is composed of a continuum of producers of
measure N. Each producer (indexed by i, where I is the set
of industry producers) makes a distinct variety of the indus-
try product. The representative industry consumer has pref-
erences over these varieties given by

U � y � � �
i�I

qi di �
1

2
���

i�I

qi di� 2

�
1

2
� �

i�I

qi
2 di

(1)
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qi di �
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i�I

qi di� 2

�
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i�I

�qi � q� �2 di,

where y is the quantity of a numeraire good, qi is the
quantity of good i consumed, and

q� �
1

N �
i�I

qi di, � � 0, � � 0, � � 0.

Utility is a quadratic function in the total consumption of the
industry’s output, minus a term that increases in the variance
of consumption levels across varieties. This introduces an
incentive to equate consumption levels of different prod-
ucts. The parameter � embodies substitutability across va-
rieties; an increase in � imposes a greater utility loss from
consuming idiosyncratically large or small quantities of
particular qi, therefore limiting consumer response to price
differences across industry producers. As � 3 0, substitut-
ability becomes perfect: only the total quantity of industry
varieties consumed—not its composition—affects utility.
The parameters � and � shift demand for the industry’s
output relative to the numeraire. This is the utility function
specified by Melitz and Ottaviano (2003) in their theoretical
study of market size effects in trade. It is useful for my
purposes because it embeds imperfect product substitutabil-
ity in a parsimonious and tractable way.

Utility maximization by consumers implies that produc-
ers face the following demand function:

qi �
�

�N � �
�

1

�
pi �

�N

�N � �

1

�
p� , (2)

where pi is the price of good i, and p� the average price
among industry producers. Note that demand falls to 0 at

pmax �
�

�N � �
� �

�N

�N � �
p� , (3)

so no producer will price above this level.
Industry producers operate at a constant marginal cost ci

that varies across producers, and productivity is defined to
be some decreasing function of this cost. Thus productivity
levels are idiosyncratic to industry producers. Producers
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must also pay a common fixed operating cost f if qi � 0.
Profits are therefore given by

�i � � �

�N � �
�

1

�
pi �

�N

�N � �

1

�
p���pi � ci� � f. (4)

Bertrand-Nash profit maximization implies the produc-
er’s optimal price (subject to pi � pmax) is

pi �
1

2

��

�N � �
�

1

2

�N

�N � �
p� �

1

2
ci. (5)

(The individual producer is too small relative to the industry
to have to take into account the effect of its own pricing
decision on the industry average.) Not surprisingly, the
optimal price is increasing in the overall demand level
(indexed by �), the average price charged by industry
competitors, and the producer’s cost level. Combining equa-
tion (5) with (2) gives the producer’s quantity sold at the
optimal price:

qi �
1

2

�

�N � �
�

1

2�

�N

�N � �
p� �

1

2�
ci. (6)

Then, using equations (5) and (6), the maximized profits are

�i �
1

4�
� ��

�N � �
�

�N

�N � �
p� � ci� 2

� f. (7)

These expressions imply a cost draw c* such that oper-
ations are not profitable if ci � c*.5 Setting equation (7)
equal to 0 and solving for c* gives this level explicitly:

c* �
��

�N � �
�

�N

�N � �
p� � 2��f. (8)

Substituting this back into equation (7) yields maximized
operating profits in terms of the cutoff cost level c* and own
costs:

�i �
1

4�
�2��f � c* � ci�

2 � f. (9)

A large pool of ex ante identical potential entrants decide
whether to enter the industry as follows. They first decide
whether to pay a sunk entry cost s in order to receive a
cost/productivity draw ci from a known distribution with
positive support and probability density function g(c). If
they pay s, they observe ci and decide whether to begin
production and earn the corresponding operating profits (9).
Clearly, only those obtaining marginal draws yielding non-
negative operating profits (that is, ci � c*) choose to
produce in equilibrium. Others produce nothing, earn zero

operating profits, and lose their sunk cost. Hence the ex-
pected gain from paying s is the expectation of equation (9)
over g(c), conditional upon drawing ci � c*. This expected
gain is obviously affected by the cutoff cost level c*. Free
entry pins down this value: c* must set the net expected
value of entry into the industry Ve equal to 0. Thus c*
satisfies

Ve � �
0

c* � 1

4�
�2��f � c* � c�2 � f�g�c� dc � s � 0.

(10)

This expression summarizes the industry equilibrium. It
combines the conditions that all producers make nonnega-
tive profits from operations (net of fixed operating costs),
and that entry occurs until the net expected value of taking
a cost draw is 0.6

B. Comparative Statics

The primary comparative static that I seek to test empir-
ically, the effect of within-industry product substitutability
on the cost/productivity distribution, is presented here. I
also derive secondary implications of the model regarding
the effects of the technology parameters f and s. I control
for these technological effects in some of the empirical
specifications below.

When the model’s parameters change, c* adjusts to
maintain equilibrium. Shifts in exogenous variables there-
fore affect the truncation point of the equilibrium cost/
productivity distribution. So though the distribution of pos-
sible draws g(c) is exogenous, the distribution among
equilibrium producers—the truncation g(c)/G(c*), where
G(c*) is the value of the cost cumulative distribution
function at c*—is endogenous and determined by the cutoff
cost level. I test for this truncation using the moments
of industries’ plant-level cost/productivity distributions.
Higher c* results in higher (lower) average cost (produc-
tivity) levels in an industry and greater variation among
producers’ cost/productivity levels.7

Product Substitutability: From the implicit function
theorem,

dc*

d�
�

�	Ve/	�

	Ve/	c*
, (11)

5 Note that due to the quadratic form of the profit function, whereas
equation (7) implies positive profits for some ci � c*, such cost levels
also imply that pi � pmax and therefore qi 
 0, which is impossible.

6 The equilibrium mass of producers N is determined by �, �, �, f, c� ,
and c*, and can be solved for by substituting the p� implied by equation (5)
into equation (8).

7 The implication regarding within-industry productivity dispersion im-
plicitly assumes some regularity conditions on g(c), in that for some
distributions it is possible to construct distributions where further trunca-
tion would actually increase dispersion moments rather than decrease
them. However, for most common distributions, truncation implies a
reduction in dispersion.
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where, from equation (10),

	Ve

	�
� �

0

c* ��
1

4�2 �2��f � c* � c�2

�
1

2�
�2��f � c* � c�� f

�
�g�c� dc.

(12a)

Some algebra shows

	Ve

	�
� �

0

c* ��
1

4�2 �c* � c�2

�
1

2 � f

�3 �c* � c��g�c� dc � 0,

(12b)

which is clearly negative, for the terms in the brackets are
less than 0 throughout the region of integration. Further,

	Ve

	c*
� � 1

4�
�2��f � c* � c*�2 � f�g�c*�

� �
0

c* � 1

2�
�2��f � c* � c��g�c� dc.

(13a)

The first term in this expression is equal to 0. (Intuitively,
the marginal increase in Ve from letting in formally mar-
ginally unprofitable producer is 0.) Simplifying gives

	Ve

	c*
� �

0

c* 1

2�
�2��f � c* � c� g�c� dc � 0. (13b)

Equations (12b) and (13b) imply dc*/d� � 0: a decrease
in substitutability (embodied in an increase in �) leads to a
higher cutoff cost level. This result is in accordance with the
intuition in the introduction. When substitutability is low,
relatively inefficient producers are protected from intense
competition from their lower-cost competitors and can op-
erate profitably in equilibrium. Given the inverse relation-
ship between costs and productivity, this implies we should
expect greater dispersion and lower central tendency in the
productivity distribution in low-substitutability industries.

Fixed Operating Costs: Taking the derivative of equa-
tion (10) with respect to the fixed production cost and
simplifying the result yields

	Ve

	f
� �

0

c* 1

2��f
�c* � c� g�c� dc � 0. (14)

From the above, 	Ve/	c* � 0, so the implicit function
theorem implies dc*/df 
 0. Higher fixed production costs
lower the equilibrium cutoff cost level. High fixed costs,

like high product substitutability, make it more difficult for
inefficient producers to be profitable. Thus, all else equal,
high-f industries should exhibit less dispersion and higher
central tendency in their productivity distribution.

Sunk Entry Costs: The derivative of Ve with respect to
the sunk entry cost s is �1. This, combined with the results
above, implies dc*/ds � 0. Thus high sunk entry costs
make it easier for inefficient producers to survive in equi-
librium. (Note that this is the opposite effect to high fixed
operating costs.) To see this intuitively, suppose the number
of equilibrium producers supported by the market size were
fixed at some number n, and imagine the sunk cost ap-
proaching 0. With very low entry costs, it is extremely
cheap for potential entrants to buy cost draws, so a large
number end up doing so. The n lowest order statistics of
these cost draws (that is, those potential entrants that will
produce in equilibrium) decrease when sunk costs fall. As a
result, c* falls with s—the cutoff cost level and sunk entry
costs move in the same direction.8

C. Extending the Basic Model

Adding Transport Costs: One of the empirical product
substitutability measures I use below is a proxy for average
transport costs in an industry. Its purpose is to capture
spatial differentiation differences across industries. Al-
though transport costs are not explicitly included in the
model above, one could interpret the derivations with re-
spect to the substitutability parameter � as a reduced-form
embodiment of spatial substitutability. This would imply
that higher transport costs (lower spatial substitutability)
increase the level of c*. However, the same implication can
be derived when the model is augmented to include a
transport cost parameter directly. I do so in the appendix for
interested readers.9

International Trade: Melitz (2003) examines theoreti-
cally the influence of international trade on the cutoff and
average industry productivity levels when producers have
heterogeneous productivity levels. He finds that increased
trade exposure—either moving from autarky to trade or
lowering trade barriers within a regime where trade already
exists—drives low-productivity domestic plants out of busi-
ness and increases market shares of high-productivity ones.
These effects combine to raise the industry’s cutoff produc-
tivity level and average productivity.

The present model could be similarly modified to allow
for the possibility of trade by incorporating several markets
and additional costs incurred if a producer chooses to

8 The implication that fixed operating and sunk entry costs move the
cutoff cost/productivity level in opposite directions is a common feature of
setups similar to the present model [see Asplund and Nocke (2003) and
Melitz (2003), for example].

9 It can also be shown that c* responds in the augmented model to
changes in fixed operating and sunk entry costs in the same directions as
above.
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export. Given the common structures of the above model
and the Melitz framework, equivalent effects of an indus-
try’s foreign trade exposure are implied here. I attempt to
control for trade exposure differences in some empirical
specifications.

Entry and Exit: The two-stage game of entry and pro-
duction above abstracts from continuous producer turnover
in a dynamic setting. However, dynamics could be added to
the model using a framework of the sort found in Hopen-
hayn (1992), Asplund and Nocke (2003), and Melitz (2003).
These models share the characteristic of allowing producer-
level uncertainty while preserving deterministic industry
aggregates, including the productivity distribution.

Both Asplund and Nocke (2003) and Melitz (2003) spec-
ify a productivity evolution process that induces a segment
of industry producers to exit each period upon receipt of a
sufficiently bad productivity innovation. Both papers as-
sume that a fraction � of producers retain the same cost/
productivity level from one period to the next.10 Because
industry aggregates are constant, this share of producers
remains in the industry. Melitz supposes the remaining
fraction of producers receive a “killer” shock which forces
exit. In Asplund and Nocke, the share 1 � � of producers
receive new productivity draws from a common ex ante
distribution (the same one from which entrants receive their
draws). Thus, some producers receive new draws poor
enough to require closure and liquidation, while others are
able to remain in the industry—and may even be more
productive than they were previously.

Both papers have the same implication regarding the
effect of idiosyncratic productivity dynamics on the indus-
try productivity distribution. As the persistence of the pro-
ductivity process increases (that is, � gets bigger), the cutoff
productivity level also climbs, decreasing productivity dis-
persion and increasing the average productivity level. Intu-
itively, greater persistence implies a larger stream of dis-
counted expected future profits for successful entrants
because of the lower probability of receiving a negative
productivity shock. Free entry requires that this be balanced
by a lower probability of successful entry, that is, a higher
productivity cutoff value. I include a proxy for productivity
persistence in one of the empirical tests below.

III. Empirical Method and Data

Testing the product-substitutability–productivity distribu-
tion link implies a general empirical specification of the
form

yI � �0 � XsIBs � XcIBc � εI.

Here, the plant-level productivity distribution moment yI (a
dispersion or central tendency measure) for industry I is a

function of a constant, a vector XsI of substitutability mea-
sures, a vector XcI of other influences on the moments, and
an industry-specific error term. I discuss the components of
these vectors below.

The productivity distribution moments in this study are
computed for 443 four-digit industries using plant-level data
from the 1977 Census of Manufactures (CM).11 The CM
contains production data for every manufacturing establish-
ment in the United States, totaling roughly 300,000 plants.
To lighten reporting burdens, particularly small plants (typ-
ically those with less than five employees—approximately
one-third of plants), are classified as administrative record
(AR) cases. Because all input data for these plants except
the number of employees and total payroll are imputed, my
sample includes only the roughly 200,000 non-AR plants, in
order to minimize productivity mismeasurement.

I compute industry productivity moments with four dif-
ferent productivity measures, estimating the model with
moments from each of the corresponding distributions as a
robustness check. Two are labor productivity measures:
value added per employee, and value added per employee-
hour. Value added is calculated as the difference between a
plant’s reported value of shipments and its expenditures on
materials, parts, and energy. I use value added as an output
measure because interplant differences in intermediate input
intensity (primarily in materials expenditures) cause gross-
output productivity measures to be quite noisy for some
industries. Plant employee-hours are computed as reported
production-worker hours plus nonproduction-worker hours
imputed according to the method of Davis and Haltiwanger
(1991).12

In addition to these labor productivity measures, two total
factor productivity (TFP) values are computed for each
establishment. Both follow the typical form

tfpi � yi � �lli � �kki � �mmi � �eei,

where the lowercase letters indicate logarithms of
establishment-level TFP, gross output, labor hours, capital
stock, materials, and energy inputs. The two TFP measures
differ by the manner in which the factor elasticities �j, j 
l, k, m, e, are computed. TFP1 uses input cost shares of the
individual plants, whereas TFP2 uses the average cost
shares across all industry plants for each plant in the
corresponding four-digit industry. The plant-specific elastic-
ities in TFP1 better account for within-industry technology
differences manifested in input intensity differences, but are
potentially vulnerable to measurement error because of the
noisy nature of establishment-level data. Using the average

10 To facilitate discussion, I have changed the notation from the original
papers.

11 I am restricted to the 1977 cross section because the highly detailed
Commodity Transport Survey data used to measure geographic substitut-
ability across industries are not available for later years. The CTS is, in
effect, the binding data constraint in this study.

12 The plant’s number of nonproduction workers is multiplied by the
average annual hours for nonproduction workers in the corresponding
two-digit industry (calculated from Current Population Survey data).
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input elasticities for all industry plants in TFP2 trades
flexibility with regard to intraindustry technology differ-
ences for a reduction in spurious productivity dispersion due
to measurement error. Reported wage bills, materials costs,
and energy expenditures from the CM are used to compute
input cost shares. Capital expenditures are computed by
multiplying reported plant equipment and building stocks
by their respective capital rental rates for each plant’s
corresponding two-digit industry.13

I measure industry productivity dispersion as the inter-
quartile productivity difference divided by the industry’s
median productivity level.14 The dispersion measure is stan-
dardized to prevent pure scale differences between indus-
tries—primarily a factor for labor productivity measures
due to capital intensity variations—from causing productiv-
ity variation that is neither within the confines of the model
nor very relevant to the paper’s hypothesis. Ordinal mo-
ments are used rather than the coefficient of variation
because moments from plant-level data are especially vul-
nerable to the influence of outliers.

For regressions with a central tendency measure as the
dependent variable, I use the median total factor productiv-
ity in the industry (both TFP1 and TFP2). Labor productiv-
ity levels are not included in the central tendency regres-
sions, because wide capital intensity variation yields
average labor productivity differences between industries
that are outside the theoretical framework. (It is obviously
not possible to remove scale effects in central tendency
moments.) TFP is much less susceptible to such scale
problems. Median TFP levels are used rather than the
averages, to counteract outlier effects.

A. Product Substitutability Factors

Ideally, one would regress these productivity moments on
an average substitutability parameter implied by the indus-
try’s demand system. It is unfortunately impossible to esti-
mate each of these values, given the number of industries
and products. My strategy is to instead use a vector XsI of
measurable proxies for substitution elasticities among the
outputs of industry producers. To motivate my choices for
variables included in XsI, I return to the earlier discussion on
sources of substitutability barriers.

Geographic barriers to substitution arise when transport
costs hinder producers from practicably selling their output
beyond certain shipment distances. These distances, of
course, depend on the magnitude of the transport costs. I
compute two measures of transport costs for an industry;
both use data from the 1977 Commodity Transport Survey
(CTS) (U.S. Bureau of the Census, 1980). This CTS con-

tains an enormous amount of information on manufacturers’
shipments at a detailed product level (most by five-digit
product class). Included in this unusually rich survey are,
for each product class, the average dollar value per pound of
shipments and a decomposition of total tons shipped by
distance category. This information is used to construct the
two transport cost measures.

The first metric, VALUELB, is the natural logarithm of the
weighted sum of the dollar-value-to-weight ratios of all
product classes in a given four-digit industry. The weights
are the product classes’ shares of total industry product
tonnage shipped.15 There is an obvious relationship between
the value of shipments per pound and product transport-
ability. Goods valuable in relation to their weight are
more economical to ship. Industries with high values of
VALUELB expectedly have less geographically segmented
output markets and greater product substitutability. (Sum-
mary statistics of the across-industry distribution of
VALUELB and the other variables that will be discussed
below are presented in table 2.)

The second measure of geographic substitutability uti-
lizes CTS product-class data on the tonnage shipped within
each of seven distance-from-production-site categories. The
measure, LOCAL, is a metric of the typical geographic size
of industry producers’ output markets. It is a weighted sum
of the fraction of output (by ton) shipped within each
distance category.16 Industries with plants that ship a large

13 Capital rental rates are from unpublished data constructed and used by
the Bureau of Labor Statistics to compute their multifactor productivity
series. Formulas, related methodology, and data sources are described in
U.S. Bureau of Labor Statistics (1983) and Harper, Berndt, and Wood
(1989).

14 I check the results for robustness to other interquantile differences
below.

15 Although there is close correlation between the CTS product catego-
ries and the corresponding four-digit SIC industries that contain them,
they do not match perfectly. Using published descriptions of industry
product types (from U.S. Office of Management and Budget), I was able
to aggregate products into their corresponding industry for nearly every
four-digit SIC. Shipment data for the ordnance industries (SICs 3282–
3284, 3289) were not available; these industries are not included in my
sample. A concordance is available from the author upon request.

16 The categories are less than 100, 100–199, 200–299, 300–499, 500–
999, 1,000–1,499, and over 1,500 miles. The weights are constructed as
follows. The average shipment distance within each distance category is
computed assuming uniformly distributed shipments within the category.
(I use 1,750 miles for shipments reported as over 1,500 miles.) The sum
of these seven distances is divided by each category’s average distance,
and these ratios are normalized so the weight of the under-100-miles

TABLE 2.—SUMMARY STATISTICS OF REGRESSION VARIABLES

Variable Mean
Std.
Dev.

Value added per employee dispersion 0.209 0.058
Value added per employee-hour dispersion 0.259 0.073
TFP1 dispersion 0.293 0.145
TFP2 dispersion 0.165 0.047
VALUELB (dollar value per pound of shipments) 0.352 1.641
LOCAL (index of average shipment distance) 0.412 0.163
DIVINDX (physical product differentiation index) 0.151 0.096
PPSR (primary product specialization ratio) 0.896 0.068
ADV (advertising expenditures per dollar of revenue) 0.010 0.019
FIXEDCOST (fixed operating costs measure) 0.232 0.093
SUNKCOST (sunk entry costs measure) 2.66E � 3 0.012
IMPPEN (import penetration rate) 0.076 0.104
EXPINT (export intensity) 0.059 0.069

This table presents summary statistics of variables used in the empirical tests. See the text for detailed
descriptions of the variables. Reported moments are across 443 (four-digit SIC) manufacturing industries.
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fraction of their output to nearby areas have high values of
LOCAL and expectedly have less spatial product substitut-
ability.17

Differences in the physical configuration of industry
goods also create product substitutability barriers. Produc-
ers within textiles industries, for example, can have consid-
erable variation in their product attributes. I measure this
variation using the product differentiation index of Gollop
and Monahan (1991). Their generalized Herfindahl-type
product diversification index, DIVINDX, takes into account
not only the number of industry products (as defined by the
SIC product classification system), but also how (un)equal
the production shares of product lines are within the indus-
try, as well as the dissimilarity of products as measured by
the input shares of various intermediate products used to
make them.

As a robustness check, I estimate specifications using a
less sophisticated but more interpretable physical differen-
tiation measure: the average primary product specialization
ratio (PPSR) across industry establishments. PPSR is the
fraction of plant revenue accounted for by products within
the industry’s primary product class (as assigned by the SIC
product-level taxonomy). Industries with a lot of physical
product variety are likely to be composed of plants that
produce a number of product types and therefore have low
PPSR values. Conversely, a completely specialized industry
will have an average PPSR equal to 1.18

Product substitutability can also be shaped by advertising
and branding effects. I account for such influences by using
industry advertising expenditure data from the 1977 Bench-
mark Input-Output Tables. A measure of industry advertis-
ing intensity, ADV, is constructed as the ratio of advertising
expenditures to total shipments.19

The industrial organization literature is divided on the
question of the nature of the relationship between ADV and
output substitutability.20 One strand of research argues that
advertising serves to create artificial product differentiation,
largely along the lines of the branding motive discussed in
the introduction. This view holds that industries with higher
advertising intensities should exhibit more product differ-
entiation. An opposing strand contends that advertising is
informative and serves to educate consumers about superior
products. Advertising expenditures under this view allow
more productive firms to take market share away from less
efficient competitors (by reducing search costs, say), in-
creasing substitutability across industry producers. Of
course, it is also possible that both effects act simulta-
neously; if they have roughly equal magnitudes, estimates
will show no overall influence of ADV on moments of
industry productivity distributions.

The model above indicates that higher substitutability
will be correlated with greater truncation of the plant-level
productivity distribution, and therefore less dispersion and
higher average productivity levels. Expressed in terms of
the product substitutability measures used here, lower geo-
graphic segmentation (higher VALUELB or lower LOCAL)
and less physical product differentiation (lower DIVINDX
or higher PPSR) correspond to greater product substitutabil-
ity. The effect of higher advertising intensity (higher ADV)
on substitutability is theoretically ambiguous.

B. Other Influences on the Productivity Distribution

The model and its extensions indicate that factors besides
product substitutability can shape industry productivity dis-
tributions. I include in XcI controls for these other influ-
ences, using variables constructed from several sources. It is
not apparent beforehand whether excluding these other
factors from the regressions would bias the substitutability
coefficients, as the other factors may not be correlated with
product substitutability. However, adding proxies for these
other effects also allows further testing of the model’s
implications independently of any product substitutability
effects, which is interesting in its own right.

As shown above, both sunk entry costs and fixed oper-
ating costs affect the critical productivity cutoff level,
and therefore the moments of an industry productivity

category equals 1. The resulting weights are: under 100 miles, 1; 100–199,
0.333; 200–299, 0.2; 300–499, 0.133; 500–999, 0.067; 1,000–1,499, 0.04;
and over 1500, 0.029.

17 Use of LOCAL as a transport cost measure requires a caveat. If an
industry’s customers are geographically concentrated and industry plants
choose to operate near their customers, it is possible that an industry could
have high output substitutability despite a small average shipment radius.
This is not a major issue for consumer goods industries, whose buyers are
distributed throughout the country, but it may be for some industries
which serve as suppliers of intermediate goods to specialized downstream
buyers. I attempted to control for this possibility in specifications using
LOCAL by including the measure of industry geographic concentration
created by Ellison and Glaeser (1997). (Thanks to Glenn Ellison for
providing the data at the four-digit SIC level.) Inclusion of this control did
not noticeably change the coefficient on LOCAL.

18 The across-industry correlation between DIVINDX and PPSR is
�0.813, indicating a close (but naturally negative) correspondence. Both
measures of physical product differentiation are limited by the SIC
product classification system, of course. This leads to two vulnerabilities
of DIVINDX and PPSR as accurate gauges of product substitutability.
Even the highly detailed seven-digit SIC product classification is a blunt
instrument for characterizing the enormous variety of manufactured prod-
ucts. A single SIC “product” may in truth encompass dozens, or even
hundreds, of physically distinct products. The coarseness of the taxonomy
will not cause empirical problems as long as product variety is under-
counted at the same rate across industries, but this condition is unfortu-
nately not testable. Second, product codes are somewhat inflexible over
time, so new products that do not obviously fit into any of the categories
in the existing system may be misclassified. As more new products are
introduced, the original classification system matches the existing product
space less completely. This drift should be minimized in this paper,
because the SIC classification system underwent a major overhaul in
1972, not too long before my sample was taken. Although neither
vulnerability is a fatal flaw, one should keep them in mind when inter-
preting the results.

19 Although the detailed BEA industry categorization used in the input-
output tables roughly corresponds to the SIC four-digit system, data had
to be pooled across some SIC industries to match more broadly defined
BEA groups. Thus some four-digit industries have a common measured
advertising-to-sales ratio.

20 See, for example, the discussion in Tirole (1988) for a partial review
of this literature.
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distribution. Controlling for these influences can be empir-
ically difficult. It is not clear which fixed costs producers
face are tied to entry and which are tied to operations. In the
model, plants incur the sunk entry cost s before they learn
their productivity level. If in reality plants must actually
produce some output to learn their productivity levels, then
any production-related overhead could be classified as ei-
ther a fixed operating cost ( f in the model) or an entry cost,
at least in the first year of production. This scenario implies
difficulties in separately measuring the influences of the two
cost types, as they move the truncation point of the produc-
tivity distribution in opposite directions. Using observables
that could be linked to either cost structure could yield
inconclusive results. If, on the other hand, producers learn
their productivity levels before starting operations, it is not
immediately clear how to measure entry costs, given that
most data are collected after production is underway. I
attempt to reconcile these confounding factors by assuming
that sunk entry costs are related to postproduction observ-
ables while using a fixed operating production cost measure
that conceivably moves independently of entry costs.

I follow the method employed by Sutton (1991) to obtain
a measure of sunk entry costs. This measure, SUNKCOST, is
the market share of an industry’s median-size plant multi-
plied by the capital-output ratio for the industry. The former
factor in this product is sometimes used as a measure of
minimum efficient plant scale. Thus SUNKCOST is a proxy
for the amount of capital (relative to the industry’s total
market size) required to build such a plant.21

Fixed operating costs are measured by the average ratio
across industry establishments of nonproduction workers to
total employment. This measure, FIXEDCOST, proxies for
the amount of overhead labor required by the industry
technology. Because overhead labor is a fixed cost explicitly
tied to production rather than entry, comovement between
FIXEDCOST and entry costs should be produced only
through any inherent correlation between f and s in industry
technologies, and not through erroneous measurement of
entry costs. Both FIXEDCOST and SUNKCOST are con-
structed as proportions to remove scale effects across indus-
tries.

Some specifications include controls for international
trade exposure. I use both import- and export-based metrics
computed from the trade data discussed in Feenstra (1997).
The industry import penetration, IMPPEN, is the ratio of
industry product imports to the sum of these imports and the
value of domestic production in the industry. The export
intensity EXPINT is the share of exports in total domestic
output for the sector. Larger values of either variable should
coincide with greater trade exposure. As mentioned above,
Melitz (2003) shows that if these variables proxy for the
extent of trade barriers in an industry (and therefore the
extent of trade-driven truncation of the productivity distri-

bution), they should expectedly have negative correlation
with industry productivity dispersion and positive correla-
tion with the central tendency of industry productivity.

Differences in the ex ante cost/productivity distribution
g(c) may also induce variation in industries’ productivity
distributions. To the extent that these are reflected in scale
differences, normalizing dispersion moments to the median
productivity level in the industry accounts for this influence.
I also test for robustness of the dispersion results to the use
of other interquantile differences, which allow determina-
tion of the effects across different subsets of the productivity
distribution. Although clearly not a flawless solution, these
steps should remove a substantial amount of the influence of
different ex ante distributions across industries.

IV. Results

A. Benchmark Results

I first regress industry productivity distribution moments
on each of the product substitutability measures. The results
are presented in table 3. Panel A shows the coefficients

21 See Sutton (1991) for a thorough discussion of the advantages and
limitations of this measure.

TABLE 3.—REGRESSION RESULTS—BIVARIATES ON PRODUCT

SUBSTITUTABILITY FACTORS

A. Dispersion Regressions
(Interquartile Range � Median Productivity as Dependent Variable)

Substitutability
Factor

Productivity Measure

Labor
(Output/

Employee)

Labor
(Output/

Hour) TFP1 TFP2

VALUELB �6.29E�3* �7.21E�3* �0.022* �6.01E�3*
(1.69E�3) (2.12E�3) (0.004) (1.52E�3)

LOCAL 0.048* 0.045* 0.082* 0.023
(0.170) (0.021) (0.041) (0.014)

DIVINDX 0.062* 0.076 0.293* 0.089*
(0.301) (0.039) (0.088) (0.030)

PPSR �0.064 �0.084 �0.553* �0.126*
(0.041) (0.055) (0.127) (0.043)

ADV 0.703* 0.784* 0.238 0.543*
(0.151) (0.170) (0.244) (0.098)

B. Central Tendency Regressions
(Median Productivity as Dependent Variable)

Substitutability Factor

Productivity Measure

TFP1 TFP2

VALUELB 0.079* 0.079*
(0.012) (0.011)

LOCAL �0.286* �0.126
(0.115) (0.103)

DIVINDX �0.151 �0.239
(0.240) (0.226)

PPSR 0.695* 0.848*
(0.345) (0.321)

ADV 0.031 �0.250
(0.727) (0.714)

The table reports the coefficients obtained when within-industry productivity moments are regressed
on substitutability measures. The upper panel shows results for productivity dispersion moments, the
bottom for median productivity levels. Note that the reported coefficients are from bivariate regres-
sions—the productivity moment is regressed on each substitutability measure separately (all regressions
include a constant). TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average
elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates signifi-
cance at the 5% level.
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obtained by regressing each of the four productivity disper-
sion measures on the respective measures separately.22

The results are consistent with the discussion above and
the predictions of the model. Factors that plausibly increase
industry product substitutability are negatively correlated
with within-industry productivity dispersion. Regarding
spatial substitutability, increases in VALUELB (the average
value per pound of an industry’s output) and decreases in
LOCAL (an inverse measure of average shipment dis-
tance)—both of which correspond to greater substitutabi-
lity—coincide with declines in productivity dispersion.
Physical differentiation factors play a similar role. De-
creases in DIVINDX (the Gollop-Monahan index) and in-
creases in PPSR (the average fraction of plant revenue from
the industry’s primary product class), which indicate higher
substitutability, are also negatively correlated with produc-
tivity dispersion. The coefficient on ADV (the industry ratio
of advertising to sales) is positive in all regressions; indus-
tries with higher advertising intensities exhibit more mea-
sured productivity dispersion.

These findings are consistent across dispersion moments
of all four productivity measures. For those substitutability
measures with predicted directions of correlation with pro-
ductivity dispersion, all of the estimates’ signs are consistent
the implications of the model. Further, twelve of these
sixteen are significant at the 5% level, and another one
nearly so. These single-factor regressions indicate that
productivity dispersion and product substitutability are
undoubtedly correlated, and in directions consistent with
theory.

Bivariate regressions with median industry TFP as the
dependent variable are also largely consistent with expec-
tations. As seen in panel B of table 3, industries with higher
value-to-weight ratios and longer average shipment dis-
tances have higher median productivity levels on average.
Greater physical product differentiation—a higher value of
DIVINDX or a lower PPSR—corresponds to a lower indus-
try median TFP level. The corresponding coefficient esti-
mates are consistently signed with the productions of the
model and are significant at the 5% level in five of eight
cases. The results from the bivariate regressions using ADV
are more ambiguous: the coefficients are virtually zero,
statistically speaking, and are oppositely signed.

I have two measures of both spatial substitutability
(VALUELB and LOCAL) and physical product differentia-
tion (DIVINDX and PPSR). For the sake of brevity, and
because the results in table 3 suggest that all of these
measures yield qualitatively similar results, from this point
on I only report results for specifications using the measure
of each that is less susceptible to measurement problems:
VALUELB and DIVINDX.23 Estimates from regressions us-
ing the alternative measures, available from the author,
largely match the findings presented below.

I next regress the moments on all output substitutability
measures simultaneously. The outcomes are presented in
table 4. Again the consistency of the results is notable. In the
productivity dispersion regressions (the first four columns),
all estimates for VALUELB and DIVINDX have the expected
sign, and most are statistically significant at the 5% level (all
are at 10%). As with the single-variable regressions, there is
a positive and usually statistically significant correlation
between advertising intensity and productivity dispersion.
The estimated magnitudes of the responses to differences in
the substitutability measures are nontrivial. A quadrupling
of value density (which ranges from $0.01 to $150 per
pound in my sample) corresponds to a decline in the labor
productivity dispersion measures of roughly one-sixth of
their standard deviation, and one-fifth of the standard devi-
ation of the TFP dispersion measures. A one-standard-
deviation increase in DIVINDX coincides with a quarter-
standard-deviation drop in labor productivity variability and
a one-eighth-standard-deviation decrease in TFP dispersion.
An increase of one percentage point in advertising-to-sales
ratio corresponds with labor productivity and TFP disper-
sion increases of roughly one-ninth to one-tenth of their
respective standard deviations.

The product substitutability measures jointly explain
7% to 12% of across-industry differences in productivity
dispersion. Thus substantial productivity heterogeneity

22 Although the coefficients are listed in columns under the dispersion
measures, the factor coefficients in this table are for single-variable (and
a constant term) regressions.

23 Recall that LOCAL may confuse geographic clustering of an indus-
try’s customer base with low spatial differentiation. PPSR may indicate
spuriously low product differentiation if industries spread many product
types across a number of highly specialized plants.

TABLE 4.—REGRESSION RESULTS—ALL SUBSTITUTABILITY FACTORS

Subst. Factor

Productivity Dispersion Regressions
Central Tendency

Regressions

Labor (Emp.) Labor (Hours) TFP1 TFP2 TFP1 TFP2

VALUELB �6.23E�3* �7.15E�3* �0.023* �6.07E�3* 0.079* 0.079*
(1.66E�3) (2.09E�3) (0.004) (1.49E�3) (0.012) (0.011)

DIVINDX 0.052 0.065 0.308* 0.083* �0.212 �0.295
(0.029) (0.038) (0.084) (0.028) (0.217) (0.201)

ADV 0.663* 0.735* 0.028 0.487* 0.303 0.067
(0.143) (0.163) (0.256) (0.088) (0.597) (0.611)

R2 0.094 0.074 0.106 0.118 0.125 0.149

The table reports the coefficients obtained when within-industry productivity moments are regressed on the substitutability measures simultaneously. TFP1 is computed using plant-specific input elasticities; TFP2
uses industry-average elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 5% level.
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remains to be explained. This is not surprising, given all of
the across-industry variation in technological–supply-side
influences that shape productivity distributions. Product
substitutability is surely an economically relevant part of the
story, however.24 Furthermore, as argued in the introduction,
there are also nonmeasurable product differentiation influ-
ences that obviously cannot be captured here. The present
results do hint that these nonmeasurable factors affect in-
dustries’ plant-level productivity distributions in the same
manner as their measurable counterparts. It is possible that
the combined effect of measurable and nonmeasurable sub-
stitutability differences is considerable.

The rightmost two columns of table 4 show estimates
from the median TFP regressions. Jointly estimating coef-
ficients for all substitutability factors largely preserves the
findings of the bivariate regressions. VALUELB is positive
and highly significant in both TFP regressions. A quadru-
pling of value density across industries corresponds with an
increase of approximately 10% in the median productivity
level. DIVINDX is negatively related to median productivity
levels. The (insignificantly) estimated coefficients imply
each standard deviation increase in the index corresponds to
a drop in the median productivity level of 2% to 3%. Given
the negative partial correlation seen between advertising
intensity and productivity dispersion, the estimates of ADV
from the central-tendency regressions are slightly puzzling.
Although the direction of the linkage between advertising
intensity and substitutability cannot be pinned down theo-
retically, we should expect empirically that ADV has oppo-
sitely signed correlations with industry productivity disper-
sion and median productivity levels. These ADV estimates
are much less precisely estimated than those in the disper-
sion regressions, however, so the positive coefficients here
may be spurious. The product substitutability measures

jointly explain roughly 13–14% of the variance in median
productivity levels.

The empirical model is further enriched by adding
SUNKCOST and FIXEDCOST as controls. The results are
presented in table 5. Apparently the correlations found
above do not arise spuriously from comovement between
the substitutability factors and features of the cost structure
of industry technologies. In the productivity dispersion
regressions, VALUELB and DIVINDX retain their expected
signs and are significantly estimated in every case. ADV still
has a significant positive coefficient in the dispersion re-
gressions, excepting a negative and insignificant coefficient
in the model using the TFP measure computed with plant-
specific input elasticities. The magnitudes of the substitut-
ability coefficients are similar to those obtained without
controlling for these cost measures.

Furthermore, the across-industry comovement between
the sunk entry cost measure and productivity dispersion is
as predicted by the model. The coefficient on SUNKCOST is
positive and statistically distinguishable from 0 in every
specification. The implications of the FIXEDCOST coeffi-
cients are more ambiguous. With regard to labor productiv-
ity dispersion, fixed production costs are found to have their
expected negative correspondence. However, the TFP dis-
persion results are not in tune with the model’s predictions:
both FIXEDCOST coefficients are positively signed, and
one of these is precisely estimated. Adding these two con-
trols for sunk entry and fixed production costs improve the
model’s explanatory power slightly, with a typical increase
in R2 of approximately 0.03.

The results of the median industry productivity-level
regressions with SUNKCOST and FIXEDCOST echo the
findings of the dispersion regressions. Value-to-weight ra-
tios and the product diversity index have nonzero coeffi-
cients with the expected signs. Unlike in the productivity-
level regressions without fixed-cost controls, the ADV
coefficients in this specification are negatively signed (albeit
insignificantly estimated). This is consistent with the esti-
mated positive correlation between ADV and productivity

24 Measurement error in plant productivity levels, doubtless present in
establishment-level data sets, will create spurious productivity dispersion.
Thus, the variation in true productivity dispersion moments explained by
measurable product substitutability factors may be greater than the amount
measured here.

TABLE 5.—REGRESSION RESULTS—MODEL WITH SUNK AND FIXED COSTS

Productivity Dispersion Regressions
Central Tendency

Regressions

Labor (Emp.) Labor (Hours) TFP1 TFP2 TFP1 TFP2

VALUELB �5.56E�3* �5.94E�3* �0.022* �5.41E�3* 0.077* 0.076*
(1.70E�3) (2.13E�3) (0.004) (1.50E�3) (0.012) (0.011)

DIVINDX 0.067* 0.081* 0.254* 0.068* �0.416 �0.482*
(0.031) (0.039) (0.089) (0.030) (0.216) (0.200)

ADV 0.705* 0.796* �0.017 0.483* �0.098 �0.330
(0.156) (0.178) (0.259) (0.088) (0.641) (0.621)

SUNKCOST 0.418* 0.850* 1.726* 0.679* �0.008 �0.849
(0.143) (0.182) (0.578) (0.123) (0.624) (0.502)

FIXEDCOST �0.059 �0.075* 0.156* 0.038 0.726* 0.683*
(0.031) (0.037) (0.072) (0.027) (0.163) (0.167)

R2 0.110 0.104 0.136 0.153 0.155 0.181

The table reports the results obtained when industry-level sunk entry cost and fixed operating cost measures are added. TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average
elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 5% level.
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dispersion. All SUNKCOST and FIXEDCOST estimated
coefficients have the expected signs. In a turnabout from the
dispersion regressions, here it is the FIXEDCOST estimates
that are statistically significant while the SUNKCOST coef-
ficients are less precise. The explanatory power of the model
for across-industry differences in median productivity levels
ranges from 15% to 18%.25

These findings largely agree both with intuitive priors and
the model presented above. Measurable product substitut-
ability factors have expected correlations with moments of
industries’ plant-level productivity distributions. More spa-
tially localized industries have plant-level productivity dis-
tributions with greater dispersion and lower central tenden-
cies. Industries with greater physical product differentiation
have higher dispersion and lower median productivity lev-
els. Advertising intensity is positively correlated with pro-
ductivity dispersion and, at least when technology controls
are added, is weakly associated with declines in median
productivity levels. Moreover, these results are found in a
number of empirical specifications. Substitutability factors
are correctly signed and significantly estimated in models
ranging from simple bivariate correlations to those includ-
ing other substitutability measures and controls for sunk
entry and fixed operating costs. The results also hold across

several productivity measures. The estimated effects of sunk
and fixed costs, though somewhat weaker than those for the
product substitutability measures because of the difficulty in
finding measurable proxies, are also on balance consistent
with the theory.

B. Robustness Checks

To see if the results discussed above hold in more gen-
eralized frameworks, I have conducted several robustness
checks. These are described here.

Foreign Trade: I estimate a specification that includes
in XcI industry-level measures of import penetration and
export intensity (IMPPEN and EXPINT) to see if interna-
tional trade affects the measured relationship between prod-
uct substitutability and productivity distribution moments.
The results are presented in table 6. Importantly, the qual-
itative and quantitative features of the substitutability factor
and sunk and fixed costs estimates are unaffected when the
extra controls are included. It does not appear that the
results obtained above arise from omitted variable bias
regarding this other influence.

As for the coefficients on the additional controls, the
weight of the evidence suggests (although a greater propor-
tion of their coefficients are statistically insignificant) that
industries with greater exposure to international trade
(higher IMPPEN and EXPINT) have more productivity
variability. This correspondence is counter to the implica-
tions of Melitz (2003). The benefits of exposure to foreign
markets enjoyed by the more productive domestic firms
should drive the least efficient domestic producers out of
business, thereby decreasing productivity dispersion. Per-
haps the positive comovement seen here is explained in part
by reverse causation, if foreign producers deliberately target
industries with wide productivity distributions to better their
relative competitive position. It could also be that foreign

25 SUNKCOST combines measures of the median establishment-level
market share and the capital-to-output ratio in an industry. Arguably, either
of these could be related to industries’ cost structures separately through
other channels. Though its interpretation is not critical to the key results
here on product substitutability, the results indicate that the measure
may be related to the shape of within-industry productivity distributions
in directions predicted by theory. To see if the two components of
SUNKCOST have separable effects, I ran a specification where the
components entered separately. Median market share was significantly
and positively correlated with productivity dispersion and negatively
correlated with the median productivity level in the industry. These
correlations are the same as those implied for SUNKCOST. On the other
hand, increases in the industry capital-to-output ratio were associated
(statistically significantly) with less productivity dispersion and higher
median productivity levels. Entering the components separately had no
substantive effect on the product substitutability measure coefficients.

TABLE 6.—REGRESSION RESULTS—MODEL WITH TRADE EXPOSURE MEASURES

Productivity Dispersion Regressions
Central Tendency

Regressions

Labor (Emp.) Labor (Hours) TFP1 TFP2 TFP1 TFP2

VALUELB �6.60E�3* �7.93E�3* �0.023* �7.20E�3* 0.080* 0.080*
(1.87E�3) (2.44E�3) 0.004 (1.70E�3) (0.012) (0.011)

DIVINDX 0.071* 0.087* 0.249* 0.068* �0.422* �0.481*
(0.031) (0.040) (0.089) (0.029) (0.215) (0.199)

ADV 0.689* 0.780* 0.025 0.496* �0.088 �0.365
(0.158) (0.179) (0.262) (0.086) (0.645) (0.625)

SUNKCOST 0.284 0.625* 1.668* 0.538* 0.341 �0.596
(0.162) (0.212) (0.591) (0.141) (0.707) (0.578)

FIXEDCOST �0.044 �0.056 0.139 0.038 0.703* 0.687*
(0.031) (0.037) (0.081) (0.028) (0.190) (0.192)

IMPPEN 0.074* 0.122* 0.024 0.072 �0.187 �0.129
(0.027) (0.033) (0.080) (0.024) (0.170) (0.134)

EXPINT �0.002 0.025 0.122 0.075 �0.077 �0.159
(0.055) (0.072) (0.135) (0.056) (0.288) (0.245)

R2 0.126 0.131 0.139 0.188 0.158 0.183

The table reports the results obtained when industry-level trade exposure measures are added. TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. Heteroskedasticity-
robust standard errors are in parentheses. An asterisk indicates significance at the 5% level.
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trade serves to increase product differentiation in an indus-
try, counteracting the competitive effect of trade productiv-
ity dispersion.

The regressions using median industry productivity as the
dependent variable are also largely unaffected by the inclu-
sion of the additional controls. Product substitutability fac-
tors are still correlated with productivity distributions’ cen-
tral tendencies in the predicted manner. Advertising
intensity again has a negative but weak comovement with
the median. Three of the four sunk- and fixed-cost coeffi-
cients have the expected sign, but only the FIXEDCOST
coefficients are statistically significant. The coefficients for
the trade exposure controls yield results that, because they
have oppositely signed correlations with the median pro-
ductivity, are consistent with their measured correlations
with productivity dispersion. All are insignificant, however.

Productivity Dispersion Measure: I check if the results
are sensitive to the productivity dispersion measure (the
interquartile range divided by the median) by performing
the industry productivity dispersion regressions using the
difference between the 90th and 10th productivity percen-
tiles divided by the median as the dispersion measure. These
results are shown in table 7. The results are qualitatively
consistent with those presented earlier. The FIXEDCOST
coefficients gain statistical significance in the labor produc-
tivity regressions, whereas DIVINDX and SUNKCOST lose
significance in the TFP dispersion regressions. Excepting
these differences, the choice of the range over which to
measure productivity dispersion does not seem to greatly
influence the results.26

Dynamics: The theoretical framework abstracts from
dynamic evolution of producers’ productivity levels. As-
plund and Nocke (2003) and Melitz (2003) show that
changes in the persistence of the (exogenous) productivity
process affect the cutoff productivity level; more persistence
implies a higher cutoff. To control for the possible influence
of across-industry differences in producer-level productivity
persistence, I estimate a specification that includes in XcI the
fraction of industry plants in the 1972 Census of Manu-
factures—the census that most immediately precedes my
data—that still operate (in the same industry) in the 1977
CM.27 This measure, SURVRT, is meant to proxy for the
persistence of the industry’s plant-level productivity evolu-
tion. A higher SURVRT value, all else being equal, implies
a higher probability that operating plants receive updated
productivity draws above the threshold (that is, a higher �).
Increases in SURVRT should expectedly be correlated with
lower productivity dispersion and higher median TFP
levels.28

The results of this exercise are shown in table 8. The
results for both the productivity dispersion and the central
tendency regressions closely match those in table 6. Fur-
thermore, the coefficients on SURVRT that are significantly
estimated have the predicted signs. Although the sensitivity
of survival rates to changes in industry equilibria means that
SURVRT may capture more than exogenous influences on
the evolution of plant productivity levels, it does suggest
that any mismeasurement in this regard is not correlated
with the other regressors in a way that would affect the
benchmark results.

Capital Measurement: As discussed above, I have ex-
cluded AR plants from my sample because many of their
production data are imputed. The remaining establishments
report virtually all production data directly. The exceptions
to this are establishments not in the current Annual Survey
of Manufactures (ASM) panel. (Roughly 35% of the
198,000 establishments in my sample are in the ASM
panel.) These plants have imputed capital stocks, and these
imputations can then in turn lead to TFP mismeasurement.
To ensure that productivity mismeasurement arising from
capital stock imputation is not driving the results, I reesti-
mate the TFP specifications using only ASM plants to
compute within-industry productivity moments.

Another form of capital mismeasurement arises when
plants vary their capital services inputs by changing the

26 The magnitudes of the coefficients are changed because the dependent
variable is now scaled differently. I also estimated the model using the
95th–5th percentile range and obtained similar results.

27 I do include AR plants when computing survival rates, because there
I only need to know of their existence, not their production specifics.

28 Controlling for differences in industries’ productivity evolution pro-
cesses with survival rates is at best an imperfect solution. Measured
survival rates are likely to confound any underlying dynamics in the
producer-level productivity process with the industry equilibrium effects
of changes in product market and technological parameters that also affect
exit rates. (Indeed, exploring these effects is an interesting avenue for
future research.) Hence I only report results including SURVRT as a
robustness check rather than incorporating this control into the main
specification.

TABLE 7.—REGRESSION RESULTS—ALTERNATIVE DISPERSION MEASURE

Variable

Productivity Dispersion Regressions

Labor (Emp.) Labor (Hours) TFP1 TFP2

VALUELB �9.37E�3* �0.011* �0.050* �0.013*
(3.68E�3) (0.005) 0.010 (0.003)

DIVINDX 0.063* 0.089* 0.424 0.087
(0.061) (0.080) (0.217) (0.066)

ADV 0.963* 1.037* 0.075 0.897*
(0.243) (0.302) (0.472) (0.319)

SUNKCOST 0.746 0.948* 0.420 0.267
(0.755) (0.949) (1.136) (0.334)

FIXEDCOST �0.127* �0.194* 0.169 �0.027
(0.061) (0.075) (0.145) (0.059)

IMPPEN 0.177* 0.249* �0.005 0.107
(0.059) (0.073) (0.149) (0.061)

EXPINT �0.030 �0.003 0.335 0.122
(0.107) (0.129) (0.238) (0.103)

R2 0.098 0.099 0.104 0.081

The table reports the results obtained when using an alternative productivity dispersion measure (based
on the range between the 10th and 90th percentile plants in the industry productivity distribution rather
than the interquartile range). TFP1 is computed using plant-specific input elasticities; TFP2 uses industry
average elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates
significance at the 5% level.
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intensity with which they utilize their capital stock. When
this is the case, the value of a plant’s capital stock does not
accurately reflect capital’s contribution to production. Sys-
tematic differences in capital utilization patterns across
industries could potentially affect the above findings for
those specifications using TFP measures.

To check for the influence of variable capital utilization,
I estimate a specification where I compute plant TFP levels
according to the suggestion of Basu and Kimball (1997).
They show that, under the assumptions of cost minimization
by plants and a production function that is Leontief in
capital services and materials (that is, one cannot substitute
extra materials for capital in production), TFP can be de-
fined as

tfpi � y � �lli � ��k � �m�mi � �eei � ��lhi,

where variables are defined as in the standard TFP measure
above, hi is the log of hours per employee, and � is a
parameter which Basu and Kimball estimate as having a
value of 1.06. Intuitively, adding capital’s cost share to
material’s cost share in the TFP measure controls for in-
creases in capital utilization intensity, because materials use
is proportional to capital services flows. Including hours per
worker captures variations in the intensity of labor utiliza-
tion.

The results of these exercises can be found in table 9.29 It
does not appear that capital—and therefore TFP—mismea-
surement due to either capital stock imputation or variable
utilization is driving the results obtained above. Though
some precision is lost in the ASM-plant-only results, the
product substitutability estimates, in both the productivity
dispersion and the central tendency regressions, are quali-

tatively (and to a lesser extent quantitatively) comparable to
those discussed above. The notable difference is that the
(still imprecisely estimated) coefficients on ADV in the
central tendency regressions are now positive.

V. Caveats

The key results linking output substitutability and the
moments of the industry productivity distribution seem to
be robust across a number of empirical specifications, with
the possible exception of a weak connection between indus-
try advertising intensity and the central tendency of the
productivity distribution. As with nearly any study, how-
ever, the findings come with some caveats. Several potential
concerns are discussed below, along with mitigating factors
that may minimize their influence on the key results.

It is important to note that the empirical tests above were
performed using moments of measured productivity distri-
butions. The introductory discussion and the model use the
common conceptualization that productivity is the effi-
ciency of input use with respect to production of output, and
as such is related to production costs. Empirical productivity
measures, however, are not so cleanly obtained. One par-
ticular difficulty is that producer output is measured in terms
of revenue rather than more appropriate units, due to a lack
of comprehensive physical output data or plant-specific
deflators. Plant-level price variation enters into output mea-
sures and can create measured productivity variation inde-
pendent of efficiency differences.

Melitz (2000) points out one effect of this is an under-
measurement bias in between-plant productivity differ-
ences—a bias whose size is larger when the elasticity of
output substitution is low. Notice, however, that this effect
works against my empirical results. Intra-industry produc-
tivity dispersion should be most underestimated when

29 For the specification adjusting for variable utilization, I again use the
full sample of plants, including those not in the ASM.

TABLE 8.—REGRESSION RESULTS—MODEL CONTROLLING FOR SURVIVAL RATE

Productivity Dispersion Regressions
Central Tendency

Regressions

Labor (Emp.) Labor (Hours) TFP1 TFP2 TFP1 TFP2

VALUELB �7.96E�E* �9.26E�3* �0.022* �7.60E�3* 0.084* 0.079*
(1.80E�3) (2.39E�3) 0.004 (1.71E�3) (0.013) (0.012)

DIVINDX 0.097* 0.112* 0.235* 0.076* �0.486* �0.477*
(0.033) (0.042) (0.090) (0.031) (0.221) (0.205)

ADV 0.650* 0.743* 0.046 0.485* 0.007 �0.370
(0.154) (0.176) (0.261) (0.085) (0.635) (0.633)

SUNKCOST 0.345* 0.684* 1.635* 0.555* 0.189 �0.587
(0.133) (0.173) (0.580) (0.134) (0.712) (0.564)

FIXEDCOST �0.046 �0.057 0.139 0.038 0.706* 0.687*
(0.030) (0.036) (0.080) (0.028) (0.191) (0.192)

IMPPEN 0.062* 0.110* 0.030 0.069* �0.156 �0.131
(0.027) (0.034) (0.080) (0.024) (0.170) (0.136)

EXPINT 0.011 0.037 0.115 0.078 �0.108 �0.157
(0.055) (0.072) (0.134) (0.056) (0.289) (0.244)

SURVRT �0.094* �0.093* 0.051 �0.027 0.232 �0.014
(0.026) (0.034) (0.058) (0.021) (0.167) (0.156)

R2 0.154 0.147 0.140 0.192 0.162 0.183

The table reports the results obtained when the industry’s plant survival rate (the fraction of industry plants surviving a five-year span) is included in the regression. TFP1 is computed using plant-specific input
elasticities; TFP2 uses industry average elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 5% level.
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substitutability is lowest. The results above, despite this
possible influence, show that productivity dispersion in an
industry falls with the amount of product substitution. The
true dispersion might be even greater than measured in
low-substitutability industries, and the actual negative cor-
relation with substitutability of even greater magnitude.

A similar byproduct of revenue-based output measures is
that any across-industry differences markups would create
variation in median revenue-based TFP through price ef-
fects. If high fixed operating costs in an industry support
higher average markups, for instance, this would appear as
a higher median TFP. It is possible that this is in part driving
the related results in the central tendency regressions. How-
ever, the influence of markups on median TFP differences
may also tend to work against some of the results above
rather than spuriously create them. If higher markups are
sustainable in low-substitutability industries, this would
induce a negative correlation between measured TFP and
substitutability: revenue-based TFP would tend to overstate
(understate) true productivity in low- (high-)substitutability
industries. The empirical results indicate that despite this
possibility, average TFP levels tend to instead be positively
correlated with substitutability.

The measurement problems inherent to quantifying sunk
and fixed costs are additional empirical hurdles. Although I
took care in finding proxies for these influences on produc-
tivity distributions, the resulting controls are at best approx-
imate. However, this concern is balanced by the facts that
the product substitutability results are qualitatively invariant
to inclusion of technological controls, and that the sunk
entry and fixed operating cost proxies are usually observed
to be correlated with productivity moments in the expected
directions. Additionally, even if these proxies were not able
to separately identify the influence of sunk and fixed costs,
their inclusion still can remove their joint influence on
industry productivity distributions.

The model also assumes that product substitutability
varies exogenously across industries. This is not necessarily
true in reality. Although across-industry differences in spa-
tial substitutability (caused by the inherent physical charac-
teristics of products) might be presumed to be out of the
hands of producers, advertising intensity certainly is not,
and perhaps a great deal of physical differentiation is en-
dogenous as well. Productivity dispersion itself may cause
producers to increase differentiation by physically altering
their product or through their advertising behavior. Less
efficient plants might have the incentive to put greater
distance in product space between themselves and their
more efficient competitors. This would reverse the direction
of causation implied by the present theory. Though an
exploration of such producer efforts is a worthy research
topic, it is beyond the scope of this paper. My focus here is
determining whether there is indeed a systematic relation-
ship between product substitutability and moments of the
productivity distribution, not characterizing the causal con-
nection. Because endogenous substitutability would pre-
serve the direction of the correlations implied by the model,
the correspondences found here are consistent with the
presence of both exogenous and endogenous substitutability
differences.

Finally, exploiting across-industry differences to empiri-
cally test the implications of the model raises issues of
interindustry heterogeneity affecting the results. Unfortu-
nately, data limitations prevent within-industry substitut-
ability changes from being measured at a disaggregate level.
However, I reference the aforementioned within-industry
case study of similar concept in Syverson (2003). The
results there within an industry are consistent with those
found here across industries, suggesting that the links be-
tween substitutability and productivity moments found
above are legitimate.

TABLE 9.—REGRESSION RESULTS—CAPITAL MEASUREMENT ROBUSTNESS CHECKS

Productivity Dispersion Regressions Central Tendency Regressions

ASM Plants Only Variable Utilization ASM Plants Only Variable Utilization

TFP1 TFP2 TFP1 TFP2 TFP1 TFP2 TFP1 TFP2

VALUELB �0.021* �7.87E�3* �0.020* �4.63E�3* 0.084* 0.088* 0.047* 0.049*
0.005 (2.05E�3) (0.004) (2.13E�3) (0.012) (0.012) (0.011) (0.010)

DIVINDX 0.140 0.059 0.188* 0.047 �0.490* �0.527* �0.297 �0.354*
(0.098) (0.037) (0.090) (0.037) (0.216) (0.209) (0.191) (0.179)

ADV 0.143 0.595* 0.063 0.486* �0.038 �0.639 0.251 0.003
(0.244) (0.142) (0.235) (0.120) (0.650) (0.625) (0.522) (0.524)

SUNKCOST 1.133 0.291 1.628* 0.338 0.540 �0.257 0.662 0.058
(0.663) (0.201) (0.610) (0.205) (0.709) (0.620) (0.704) (0.649)

FIXEDCOST 0.112 0.008 0.109 0.013 0.798* 0.749* 0.718* 0.701*
(0.081) (0.035) (0.079) (0.036) (0.194) (0.199) (0.163) (0.172)

IMPPEN 0.059 0.104* 0.034 0.086* �0.269 �0.134 �0.108 �0.043
(0.090) (0.030) (0.075) (0.026) (0.177) (0.147) (0.132) (0.108)

EXPINT 0.201 0.065 0.115 0.057 �0.043 �0.076 0.011 �0.094
(0.163) (0.066) (0.151) (0.066) (0.286) (0.272) (0.244) (0.207)

R2 0.081 0.127 0.107 0.089 0.176 0.199 0.113 0.128

The table reports the results obtained when plant-level TFP measures are adjusted to allow for possible capital measurement error. One set of results computes productivity moments using only plants in the Annual
Survey of Manufactures panel (for which capital stocks are not imputed). The other implements a correction for variable capital utilization rates across plants within the industry. TFP1 is computed using plant-specific
input elasticities; TFP2 uses industry average elasticities. Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 5% level.
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VI. Conclusion

The evidence presented suggests that product substitut-
ability—a characteristic of industry demand—is systemati-
cally related to the shape of the industry’s equilibrium
plant-level productivity distribution. Measurable factors
likely correlated with high substitutability, such as low
transport costs and less physical product differentiation, are
shown to be negatively related with productivity dispersion
and positively with median productivity in an industry.
These findings are robust; they are found both in simple
bivariate correlations and when controls for other influences
on industries’ productivity distributions are included in
empirical specifications. Additionally, the empirical results
suggest that across-industry differences in these other influ-
ences on the productivity distribution, such as the size of
sunk entry and fixed operating costs, are correlated with
variability in productivity distribution moments in the ex-
pected direction. The exception to this is an industry’s trade
exposure, which seems to correspond with productivity
moments in directions opposite to that predicted in Melitz
(2003).

These results suggest that, although the technological
supply-side factors that have been the focus of the related
literature doubtlessly play a role in creating productivity
dispersion, demand-side influences are also important. Mea-
surable substitutability factors explain a nontrivial fraction
of the total interindustry variation in productivity moments.
Further, additional unmeasured (or unmeasurable) types of
substitutability barriers may explain some of the remaining
variation. Exploring the specific output market mechanisms
driving these results may be a fruitful path for further
research.

The findings offer help in understanding why productiv-
ity differences exist within industries and what factors affect
their magnitude, a puzzle discussed in the introduction. On
a broader scale, they also lend insight into how aggregate
productivity dynamics might be affected, either by shifts in
output shares across industries with different shapes of their
productivity distribution, or by shifts over time of the
product substitutability factors within industries.
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Appendix

Incorporating Transport Costs into the Model

Assume industries operate in two markets, each identical to the one in
the base model. I assume, as in Melitz and Ottaviano (2003), that
producers can produce not only for their home market (as above), but for
the outside market if they so choose. Selling to the outside market,
however, involves paying transport costs to ship output. I assume these are
of the standard “ iceberg” variety, where � � 1 units must be shipped for
1 unit to arrive. Thus the marginal cost of producing for the outside market
is �ci, while still only ci for the home market. A large set of potential
entrants in each market considers the entry decision specified above.

Producers can charge different prices in each market. Therefore the
optimal price in the home market is still that given by equation (5) above,
but now the optimal price and resulting demand in the outside market are
given by

pi,outside �
1

2

��

�N � �
�

1

2

�N

�N � �
p� �

�

2
ci (A-1)

and

qi,outside �
1

2

�

�N � �
�

1
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�N

�N � �
p� �
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2�
ci. (A-2)

Variable profits from the outside market are then

�i,outside �
1

4� � ��

�N � �
�

�N

�N � �
p� � �ci�2

.
(A-3)

Note that because of the symmetric markets assumption, the average price
p� (which includes prices of both home and exporting outside-market
producers) is the same in both markets.
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From inspection of equations (6) and (A-2), it is clear that there will be
a range of productivity levels for which home-market sales are positive
but will be zero for the outside market. Define c*h and c*o as the cost levels
where qi,home  0 and qi,outside  0, respectively. From equations (6) and
(A-2), these levels are

c*h �
��

�N � �
�

�N

�N � �
p� and

c*o �
1

� � ��

�N � �
�

�N

�N � �
p��.

(A-4)

Clearly, any potential entrants drawing ci � c*h will choose not to operate,
for they would have zero sales in both markets. However, because of the
fixed operating costs, there will also be a set of producers with ci 
 c*h
that will find production unprofitable. If fixed costs are not too large, there
will be a cost level c* � [c*o, c*h] where a producer with ci  c* will not
sell to the outside market and will be just indifferent to operating in the
home market, because the variable profits from doing so are just enough
to cover the fixed operating costs.30 This level is given by equation (8), and
the relationship between c*o and c* is

c*o �
1

�
�c* � 2��f�. (A-5)

The expression (A-4) can be substituted into equation (A-3) to obtain

�i,outside �
�2

4�
�c*o � ci�

2, (A-6)

and the value of entry is now

Ve � �
0

c* � 1

4�
�2��f � c* � c�2 � f�g�c� dc

� �
0

c*o �c*� � �2

4�
�c*o � c�2�g�c� dc � s � 0.

(A-7)

I have explicitly noted in the above expression that c*o is a function of c*,
with 	c*o /	c* � 0. The comparative static of interest is dc*/d�. The
relevant components of the implicit function theorem are as follows (note
that c*o is also a function of �):

	Ve

	�
� �

c* � 2��f

4�
�c*o � c*o�

2g�c*o�

� �
0

c*o �c*� �

2�
�c*o � c�� �c*o � c� � �

	c*o
	� �g�c� dc.

(A-8a)

Using the fact that 	c*o /	�  �c*o /�, this simplifies to

	Ve

	�
� �

0

c*o �c*�

�
�

2�
c�c*o � c� g�c� dc � 0, (A-8b)

which is negative because the integral is over c � c*o. Further using the
fact that 	c*o /	c*  1/�,

	Ve

	c*
� �

0

c* 1

2�
�2��f � c* � c� g�c� dc

� �
0

c*o �c*� � �

2�
�c*o � c��g�c� dc � 0.

(A-9)

Therefore dc*/d� � 0; higher transport costs are akin to lower product
substitutability. They support efficiency gaps between industry competi-
tors because they act as a barrier keeping certain consumers from shifting
purchases to more productive producers.

30 The fixed cost must satisfy c* � c*o in equilibrium; that is,

f �
1

4� �� � 1

� � ��

�N � �
�

�N

�N � �
p��� 2

.

If fixed operating costs are larger than this, but not so large as to make any
entry unprofitable, only those producers who can sell in both markets will
choose to operate, because the extra sales are necessary to recoup the high
fixed costs. Here, I consider the case where there are both home-only and
home-and-outside-market producers. Melitz and Ottaviano (2003) obtain
similar qualitative implications in the exporters-only case with no fixed
operating costs.
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