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Abstract
We propose a model to describe stock pinning on option expiration dates. We
argue that if the open interest on a particular contract is unusually large,
delta-hedging in aggregate by floor market-makers can impact the stock price
and drive it to the strike price of the option. We derive a stochastic
differential equation for the stock price which has a singular drift that
accounts for the price-impact of delta-hedging. According to this model, the
stock price has a finite probability of pinning at a strike. We calculate
analytically and numerically this probability in terms of the volatility of the
stock, the time-to-maturity, the open interest for the option under
consideration and a ‘price elasticity’ constant that models price impact.

1. Introduction

This paper analyses a phenomenon observed in equity options

markets known as ‘stock pinning’. Only minutes before

options expire, many stock prices are near or at option strike

prices. For some stocks, the subsequent evolution of the price

until expiration is remarkably different from a random walk.

Stock prices will experience a sudden rush to the vicinity of

the strike, coupled with the appearance of an unusually high

availability of stock offered just above the strike price and

similar large size bid just below the strike. Unless important

stock-specific news reaches the market, these stocks become

pinned, i.e. the closing price at expiration will be within a few

cents from the strike price.

Historically and, in particular, during the speculative

bubble of the late 1990s, traders saw frequent pinning in

technology stocks such as Microsoft and Intel. With open

interest being very high in several strikes, and with high stock

prices and high volatility, several strikes would be ‘visited’ in

a single day. Pinning became apparent only at the very end

of the option’s lifetime. Krishnan and Nelken (2001) present

significant statistical evidence of pinning of Microsoft stock

using historical data.

More recently, hedge funds have engaged in trades

consisting of selling thousands of put or call options on the

same strike in stocks that have normally a much smaller open

interest. One example of this activity occurred in the stock

J D Edwards (JDEC, option symbol QJD) in 2001. Typical

front-month open interests in JDEC are on the order of a

few hundred contracts. Nevertheless, over a period of six

expirations in 2001, the same hedge fund sold repeatedly more

than 25 000 contracts on a single strike in the front-month

expiration each time. The stock actually pinned at that strike

four out of the six times (see figure 1).

It is impossible to determine in advance which stocks

may become pinned. Nevertheless, certain conditions can be

associated with pinning. Foremost, the open interest, which

counts the number of outstanding contracts corresponding

to a particular strike, is often unusually large. These huge

open interests can be as high as 20 or 30 thousand contracts

in stocks that average less that 1000 open contracts on any

line. ln these circumstances, floor market-makers may act as
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Figure 1. Price evolution of JDEC to March expiration 2001. The
open interest on March 10 puts increased from 6125 to 56 128
contracts on 27 February (highlighted). The stock pinned at $10 on
17 March 2001.

‘pinning agents’, especially when they are ‘long the strike’ in

aggregate—as in the case of a prior large sale of options by an

institution. In this case, since they become ‘long gamma’, they

must hedge their positions by buying stock below the strike

and selling stock above the strike, causing pressure on the

stock price from above and below. In this paper, we attempt to

quantify this phenomenon and to extract some consequences.

We propose a model in which market conditions consisting of

(a) unusually large open interest and (b) market-makers being

long options in aggregate, result in price dynamics whereby

pinning occurs with positive, but not certain, probability.

The market conditions that we describe also tend to impact

option prices. In particular, they should be accompanied by a

drop in the implied volatility of options. In fact, a sale of

25 000 contracts may be impossible to complete all at once,

due to the large size of the trade. Market-makers, who act as

the buyers, may decide that the risk of owning so many options

leads them to decrease their bid price after the initial purchase,

and to continue to decrease it until the order is completed. A

person observing the market through Black–Scholes glasses

would note that the implied volatility decreases. A related

effect will be that traders attempting to hedge the trade by

selling other strikes will drive down the price of volatility at

neighbouring strikes and neighbouring expirations (by trading

‘vertical’ and/or ‘horizontal’ spreads).

Recently, Krishnan and Nelken (2001) proposed a model

for stock pinning in which the price dynamics is based on a

Brownian bridge, i.e. a diffusion which is conditioned to have

a specified value at the expiration date. Pinning is modelled by

assuming that the (log-)price process behaves like a Brownian

bridge with probability p (p > 0) and like a standard Brownian

motion with probability 1 − p . The mechanism for pinning

is exogenous, in the sense that it is not determined by agents

through trading, but rather by introducing a random variable

which determines ex ante whether the stock will pin or not,

regardless of market events taking place between now and the

expiration date.

In contrast, the present model links the pinning of the

stock to the demand in deltas by market-makers which are

long options on a particular strike, assuming that the above

conditions hold. This results in a log-price dynamics in

which a force makes the price drift towards the pinning strike.

Using a simple supply/demand argument, we postulate that

the force is proportional to the rate of change in the (Black–

Scholes) deltas associated with the strike/expiration. The

range of this force varies therefore with time, and becomes

increasingly concentrated around the strike price as expiration

approaches. Consequently, pinning becomes ‘endogenous’

and is determined by whether or not the log-price becomes

‘trapped’ in a potential well associated with the force: i.e. on

whether the demand/supply of deltas becomes the dominant

effect determining the stock price. Even if the pre-conditions

stated above (large open interest, market-makers long the

strike) hold, the stock may not pin because the force exerted

on the price may not be strong enough to drive it to the strike.

To make a fair comparison with Krishnan and Nelken,

we note that our model still contains an exogenous parameter,

which we call the ‘price elasticity of demand’ of the stock.

However, one advantage of the present model is that pinning is

determined self-consistently based on the behaviour of agents

in response to stock price changes and the option open-interest.

For this reason, we hope that it may have some predictive value

and be of practical use by traders.

The rest of the paper is organized as follows: in the next

section, we introduce the model as well as the associated

dimensionless equations and parameters.

Section 3 discusses the Monte Carlo simulation of the

log-price equations and introduces a numerical scheme with

adaptive time-mesh that is able to capture pinning events very

accurately. The main point is that the force arising from the

model is singular near the strike price. In order to obtain

numerically accurate simulation results, we must rewrite the

equations in such a way that the singularity is eliminated

through a change of timescale. We then calculate numerically

the pinning probability as a function of the dimensionless

variables. We also calculate the cumulative probability

distribution of the price near expiration. As expected, the

cumulative distribution function exhibits a jump at the strike

price, consistent with a positive but not certain probability of

pinning.

In section 4, we derive a closed-form solution for the

pinning probability, by solving the Fokker–Planck equation

with singular drift. As pointed out earlier, however, the

‘coupling constant’—which depends on the price elasticity

of the stock—is not known in advance, so essentially, the

pinning probability cannot be determined solely from observed

quantities. In particular, we establish that for a given set of

parameter values, there is a finite probability (strictly between

zero and one) that pinning takes place.

In section 5, we investigate the effect of the model in terms

of option pricing. The main idea is to attempt to measure

indirectly the effect of the coupling force on the implied

volatilities of traded options, both in the front-month expiration

as well as in subsequent expirations. The introduction of

an attractive force results in a depletion of implied volatility

which is consistent with observations and which might be

useful for estimating the ‘coupling constant’ indirectly or the

418



QUANTITATIVE F I N A N C E A market-induced mechanism for stock pinning

pinning probability associated with a large sale of options by

an institution.

Conclusions are presented in section 6. The appendix

contains the more technical mathematical considerations,

including rigorous proofs of pinning and estimates for the

pinning probabilities.

2. The model

We assume that the trade size impacts stock prices according

to the price elasticity equation

�S

S
= EQ, (1)

where Q represents the number of shares traded, S is the stock

price, �S is the change in stock price associated with a trade

of size Q and E is a stock-specific proportionality constant

(the price-demand elasticity). Here, Q is a signed quantity,

with positive Q representing excess demand and negative Q

representing excess supply of stock.

We apply this situation to the case in which the

supply/demand for stock is driven by dynamic hedgers having,

in aggregate, a long position in n straddles with the same strike

price and expiration. Let δ(S, τ ) represent the delta of a call

as a function of the current stock price and time to expiration.

The price impact over a small time interval of length �t caused

by the incremental supply/demand for deltas is, from (1),

�S

S
= −En

∂δ(S, τ )

∂t
�t = En

∂δ(S, τ )

∂τ
�t.

A first-order approximation for the value of the delta is given

by the Black–Scholes formula

δ(S, τ ) = 2N(d1)

with

d1 =
1

σ
√

τ

(

ln

(

S

K

)

+

(

µ +
1

2
σ 2

)

τ

)

,

where N(x) is the cumulative standard normal distribution

function, σ is the implied volatility, S is the spot price, K

is the strike price and µ is the rate of carry (interest rate minus

dividend rate). Differentiating δ(S, τ ) with respect to τ , we

obtain

∂δ(S, τ )

∂τ
=

1
√

2π
e− d2

1
2

(

−
1

στ 3/2
ln

(

S

K

)

+
µ + 1

2
σ 2

2σ
√

τ

)

.

This expression can be simplified by introducing the variable

y = ln

(

S

K

)

, (2)

and setting

a = µ + 1
2
σ 2,

whereby

∂δ(S, τ )

∂τ
= −

1
√

2π

y − aτ

στ 3/2
e
− (y+aτ)2

2σ2τ .

We now derive a stochastic differential equation for y.

For this purpose, we assume that the changes in stock price

are driven by the price elasticity relation, with an additional

noise representing exogenous price fluctuations. Accordingly,

the instantaneous returns satisfy the stochastic differential

equation
dS

S
= nE

∂δ(S, τ )

∂τ
dt + σ dW

where W is a standard Brownian motion. Applying Ito’s

formula to expression (2) we conclude that

dy = −
nE

√
2π

y − aτ

στ 3/2
e
− (y+aτ)2

2σ2τ dt + σ dW.

Introducing the expiration time T , we obtain

dy = −
nE

√
2π

y − a(T − t)

σ (T − t)3/2
e
− (y+a(T −t))2

2σ2(T −t) dt + σ dW. (3)

Notice that if n = 0, this equation reduces to dy = σ dW ,

which has solution y = ln( S0

K
) + σW(t). This corresponds to

the classical log-normal distribution.

If n > 0, the drift term

−
nE

√
2π

y − a(T − t)

σ (T − t)3/2
e
− (y+a(T −t))2

2σ2(T −t)

becomes singular as t → T . The effect of this singularity is

that the numerator (y −a(T − t))e
− (y+a(T −t))2

2σ2(T −t) must vanish as we

approach the expiration date. In order for this to happen, we

must have either e
− (y+a(T −t))2

2σ2(T −t) ≪ 1, which means that the log-

price process ‘escapes’ the range of the force through diffusion

or, alternatively, that y − a(T − t) ≪ 1, which is consistent

with stock pinning. In the latter case, the price process is

‘trapped’ near the strike due to supply of stock above the strike

price and demand for stock below the strike price.

Before analysing the dynamics of the process further, it is

useful to express equation (3) in dimensionless variables. We

set

z =
y

σ
√

T
, s =

t

T
.

Rewriting the equation in these variables, we obtain

dz = −
β(z − α(1 − s))

(1 − s)3/2
e− (z+α(1−s))2

2(1−s) ds + dW̃ ,

0 < s < 1,

(4)

where W̃ is a standard Brownian motion and α = a
√

T
σ

.

This shows that there are three parameters that determine the

pinning probability and the dynamics:

z0 =
y0

σ
√

T
=

1

σ
√

T
ln

(

S0

K

)

, α =
a
√

T

σ
,

and

β =
nE

√
2πσ 2T

.

The parameter z0 is the dimensionless logarithmic ‘distance’

between the price of the stock and the strike, the second

419



M Avellaneda and M D Lipkin QUANTITATIVE F I N A N C E

���

���

���

���

���

�

���

���

Figure 2. Simulation of the model equations made with a uniform
time step. Observe the numerical instability near expiration, which
is due to the presence of an unbounded drift. A uniform-�t scheme
is inefficient for calculating pinning probabilities with this model.

parameter depends on the drift assumption made in calculating
the theoretical Black–Scholes delta. The parameter β

describes the ‘strength’ of the pinning force. It is proportional
to the open interest n and the price elasticity constant, E. It
is also inversely proportional to the volatility and to σ

√
T ,

consistent with the fact that increasing the volatility (price
impact associated with external information) diminishes the
likelihood of pinning and, also, that the probability of pinning
is smaller for longer expirations.

3. Simulation of the equations of motion

and partial pinning

Simulation of the equations of motion can be done easily using
a forward-Euler method in which time is discretized. For
simplicity, we will assume that

µ + 1
2
σ 2 = 0,

i.e. that a = α = 0. This simplifies the analysis while retaining
the character of the solution.

Since the drift is singular, a uniform mesh may give rise
to roundoff errors in the price near the strike and close to
expiration (see figure 2 for an illustration of this effect). For
this reason, it is convenient to make a change of timescale that
eliminates the singularity. We set

ds

(1 − s)3/2
= dθ(s),

where θ is the new timescale. Solving for θ(s), we obtain

θ(s) =
2

(1 − s)1/2
− 2,

or

s = 1 −
1

(1 + θ
2
)2

.

Substituting these expressions into the dimensionless
equations of motion (4), we obtain

dz = −βz exp

{

−
1

2

(

1 +
θ

2

)2

z2

}

dθ

+
1

(

1 + θ
2

)3/2
dW̃ , 0 < θ < ∞.
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Figure 3. Simulation with uniform-�θ discretization. The
instability is eliminated by refining the timescale as the option
expiration approaches. Numbers on the x-axis represent the
time-to-maturity measured in days.

The latter equation can be simulated efficiently using a

uniform time-step �θ on a finite but large interval 0 � θ �

θmax. In practice, θmax is chosen so that if we convert to real

time units the simulation stops one or two minutes before

expiration. The assessment of pinning is made by defining

a small parameter ε and declaring that pinning occurs if3

|zθmax
| < ε. The introduction of this time change improves

greatly the simulation of paths near expiration, particularly

when the stock is near the strike and the drift is strong. In

particular, it allows us to estimate the pinning probability

accurately. This improvement is displayed in figures 2 and 3

which show ensembles of trajectories generated by uniform-

�t and uniform-�θ methods.

Simulations were carried out for different values of

the dimensionless parameters z0 and β. In the first set

of experiments, we estimated the pinning probabilities for

different parameter values, by counting the number of paths

that led to z = 0 at s = 1. We found that, within

the range of parameters of interest (which would produce

pinning probabilities on the order of 10–30%), convergence

to three significant digits was achieved with 4000 paths. The

simulations showed that a finite fraction of the paths gives rise

to pinning of the stock, this property holding for any positive

value of β and all z0 (see figures 4 and 5). As expected, the

fraction of paths for which the stock pins increases with β.

For example, at z0 = 0, we find that approximately 18% of

the paths will pin for β ≈ 0.1. A set of market parameters

consistent with this value would be nE = 2.85%, σ = 40%,

T = 30/365 (30 days until expiration).

We observed also that the fraction of pinned paths

decreases as z0 > 0 increases, i.e. as the distance to the strike

increases.

Finally, figure 6 shows a graph of the (empirical)

cumulative distribution function of the random variable z(1) =
1

σ
√

T
ln( S(T )

K
) for the case z0 = 0, β = 0.1. The step-like shape

3 Clearing firms will automatically exercise options that expire in-the-money

by 25 cents or more. Therefore, pinning (identifying the final price with the

strike) corresponds essentially to a price which is within 25 cents of the strike.

This suggests a guideline to define ε for a given stock. In the simulations

carried out in this paper, we took a very small value of ε, typically much smaller

than the one corresponding to a 25 cent window, in order to approximate the

‘true’ pinning probability for the continuous-time equation.
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Figure 4. Pinning probability as a function of the parameter β, with
α = 0. We display results corresponding to two different starting
points (z0 = 0.0, z0 = 0.5).
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Figure 5. Pinning probability as a function of z0 computed by
Monte Carlo simulation with the adaptive time-step. We use
β = 0.1.

of the graph is consistent with the fact that the distribution has

a discrete mass at z(1) = 0, i.e. to pinning. The size of the

jump corresponds to the pinning probability.

4. A closed-form solution for the pinning

probability

In this section, we show that the pinning probability can be

computed exactly if a = µ + 1
2
σ 2 = 0. In the appendix,

we give an approximate expression for the pinning probability

which is valid for all values of a.

We consider the backward Fokker–Planck equation

associated with the stochastic differential equation (4). We

�

���

���

���

���

���

���

"�#$%��&��&��

'
(
%
(
��
��
�
&�
)
��
�
��
��
��
�

��� ��� ��� ��� � ��� ��� ���

Figure 6. Cumulative probability distribution function computed
by Monte Carlo simulation. The step corresponds to the fact that a
finite fraction of the paths is pinned at the strike.

Table 1. Pinning probability as a function of z0 for β = 0.1.

z0 p (%) z0 p (%)

0.1 17.6 1.1 10.0
0.2 17.4 1.2 9.2
0.3 17.0 1.3 8.0
0.4 16.7 1.4 7.0
0.5 16.5 1.5 6.1
0.6 15.2 1.6 5.2
0.7 14.7 1.7 4.5
0.8 13.6 1.8 3.7
0.9 12.5 1.9 3.3
1.0 11.1 2.0 2.6

assume that a = µ + 1
2
σ 2 = 0. In this case, the equation is

∂F

∂t
+

1

2

∂2F

∂z2
−

βz

τ 3/2
e− z2

2τ
∂F

∂z
= 0, τ = 1 − t. (5)

We seek solutions of the form

F(z, t) = e
φ( z√

τ
)/

√
τ
,

where φ(ς) is an as yet unknown function. Substitution in

equation (5) gives rise to the following equation for φ(ς):

φ + ςφ′ + φ′′

2τ 3/2
+

(φ′)2 − 2βςφ′e− ς2

2

2τ 2
= 0.

The equation corresponding to the term of order τ−2 is the

eikonal equation

(φ′)2 − 2βςφ′e− ς2

2 = 0,

which admits the general solution

φ(ς) = −2βe− ς2

2 + c,

where c is an arbitrary constant. Substituting this expression

into the term of order τ−3/2 in the Fokker–Planck equation, we

find that

φ + ςφ′ + φ′′ = c.
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Figure 7. Pinning probability as a function of z0: Monte Carlo
simulations versus exact formula (β = 0.1).

Therefore, we conclude, setting c = 0, that

F(z, t) = exp

[

−
2β
√

τ
e− z2

2τ

]

= exp

[

−
2β

√
1 − t

e− z2

2(1−t)

]

(6)

is a solution of the Fokker–Planck equation. Set

G(z, t) = 1 − F(z, t) = 1 − exp

[

−
2β

√
1 − t

e− z2

2(1−t)

]

. (7)

This function satisfies the Fokker–Planck equation with final

condition

lim
t→1

G(z, t) =
{

1 if |z| = 0

0 if |z| �= 0.
(8)

From basic principles we know that the probability of pinning

for a particle starting at position z at time t ,

Pr{z(1) = 0|z(t) = z},

satisfies the Fokker–Planck equation in the variables (z, t).

Moreover, it satisfies the limiting conditions (8) as t → 1.

Therefore, we have

Pr{z(1) = 0|z(t) = z} = G(z, t).

We have established the following proposition (see the

appendix for details).

Proposition 1. If µ + 1
2
σ 2 = 0, we have

Pr{z(1) = 0|z(0) = z0} = 1 − exp
[

−2βe− z2
0
2

]

. (9)

In figure 7 we plot the result of a Monte Carlo simulation of

4000 paths in which the probability of pinning is estimated for

different values of z0 and compare the results with the exact

formula. As expected, we obtain nearly perfect agreement

between the simulated and exact results.

5. The pricing of options

On the floor of an option exchange such as the AMEX, the

response to a very large sell order is immediate. Market-

makers reduce the prices of ‘nearby’ options, i.e. those within

the same month on adjacent strikes and those of adjacent

months. This occurs in two ways: in the same exchange, as

a way of avoiding the purchase of further premium, and also

by selling options at reduced prices to market-makers on other

exchanges. From the Black–Scholes perspective, the net effect

is that implied volatilities decline.

We note also that the appearance of a single, large, sell

order is not essential for this effect to occur. As suggested by

recent work (Daniels et al 2003, Lillo et al 2003), breaking

a large order into smaller increments is unlikely to produce a

gain for the hedge funds. In fact, the price-response to many

small orders is likely to be greater than for one large order.

Our model, in which the price dynamics have a singular

drift, reflects the volatility contraction by way of a ‘lensing

effect’. The consequence of having a strike with large open

interest is to concentrate a fraction of the paths in a small

neighbourhood of the strike (see figure 3). If we calculate

option prices as the expected values of cash-flows along such

paths, we obtain prices that differ from standard Black–Scholes

with volatility σ .

For concreteness, imagine that the stock price is 50 early

in month 1, that a large open interest exists on the 50 strike in

month 1, and that we are interested in the pricing of options in

months 1 and 2. The presence of the ‘sticky’ strike 50 in month

1 creates the lensing effect; an increased number of paths flow

through the vicinity of 50 at the end of the first month. This

means that the value of the 50 straddle for month 1 is depressed

relative to standard Black–Scholes.

For month 2 there is an equally interesting consequence.

Recall that the value of an option is monotone increasing in the

volatility parameter, which represents the standard deviation of

the logarithmic price movement. In ‘path integral’ space, this

expresses itself by the degree to which paths ‘spread out’. Low

volatility means a narrower spread of paths out from the source

starting point and high volatility the converse. The presence of

a ‘sticky’ strike funnels price paths through the vicinity of the

strike. This can also be seen as foreshortening the time axis.

Anyone naively inverting the BS pricing formula for options

in month 2 would see a reduced implied volatility at all strikes.

6. Conclusions

We proposed a model to explain stock price pinning on option

expiration dates. We argue that, under certain circumstances,

pinning can be caused by floor traders faced with delta-hedging

long-gamma position on a single strike with an unusually high

open interest. In such cases, the demand and supply of deltas

around the strike can have a significant price impact and may

drive the price of the stock to the strike price.

The model consists of an equation for the price dynamics

which has a singular drift concentrating near the strike at the

expiration date. We show that this model, which depends

on a coupling parameter β proportional to the open interest,

422



QUANTITATIVE F I N A N C E A market-induced mechanism for stock pinning

�

*���+&�)��,&

-
��
(
&

���

���

���

���

���

���

���

���

���

���

���� ���� ���� ���� ���� ���� ���� �	�� �	��

�������

�����

��$.���,����)��,&�

Figure 8. The upper curve represents the Black–Scholes values for
call options expiring in 30 days. The lower curve corresponds to the
prices of the same options using the model with β = 0.5. The
pinning strike is K = $15.
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Figure 9. ‘Compression’ of implied volatilities for front-month
options. The parameter values are as in figure 7.

leads to stock pinning with finite probability. Stock pinning is

determined by a subtle interaction between the singular drift

(associated with price-impact effects), which drives the price

to the strike, and independent diffusive shocks which affect the

price.

We derived a closed-form formula for the pinning

probability in a special case (α = 0) and showed rigorously

that the pinning effect also holds for all values of α (see

appendix). The model predicts quantitatively the impact on

option prices due to a trade in which hedge-funds sell large

amounts of options to floor market-makers.
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Figure 10. Compression of option prices for options expiring 30
days after the expected pinning event. The parameter values are as
in figure 7.
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Figure 11. ‘Compression’ of implied volatilities for options
expiring 30 days after the expected pinning event.

Appendix

This appendix provides a rigorous proof of partial pinning (i.e.

pinning with positive, but not 100% probability) for all values

of the parameter α. First, we establish rigorously proposition 1

of section 4, in which the existence of an exact solution of

the Fokker–Planck equation was used to derive a closed-form

solution for the probability of pinning for the special case

α = 0. Secondly, we extend the proof for α �= 0 and derive

estimates for the pinning probabilities.

Proof of proposition 1. Let 0 < t∗ < 1, and let ε > 0. We

consider the function G(z, t) = 1 − exp[− 2β√
1−t

e− z2

2(1−t) ] and
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the indicator function of the interval [−ε, +ε], defined as

χε(z) = 1 if |z| � ε, χε(z) = 0 if |z| > ε.

Clearly, for all z, we have

χε(z) � G(z, t∗) − G(ε, t∗). (10)

Also, since F(z, t) satisfies the Fokker–Planck equation (5),

we have

E(G(z(t∗), t∗)|z(t) = z) = G(z, t).

Therefore, taking conditional expectations on both sides of (10)

P(|z(t∗)| � ε|z(t) = z)

� E(G(z(t∗), t∗)|z(t) = z) − G(ε, t∗)

= G(z, t) − G(ε, t∗).

Letting t∗ → 1, we conclude that4

P(|z(1)| � ε|z(t) = z) � G(z, t),

whence

P(z(1) = 0|z(t) = z) � G(z, t). (11)

This establishes a lower bound on the pinning probability.

To prove the opposite inequality, we use the function

F(z, t) = exp

[

−
2β

√
1 − t

e− z2

2(1−t)

]

= 1 − G(z, t).

Comparing the graphs of 1 − χε(z) and F(z, t∗), we note

that

1 − χε(z) � F(z, t∗) − F(ε, t∗).

Just as before, taking conditional expectations, we obtain

P(|z(t∗)| > ε|z(t) = z) � E(F(z(t∗), t∗)|z(t) = z)

− F(ε, t∗) = F(z, t) − F(ε, t∗).

Taking the limit ε → 0 in the latter inequality, we find

P(|z(t∗)| > 0|z(t) = z) � F(z, t) = 1 − G(z, t),

and letting t∗ → 1,

P(|z(1)| > 0|z(t) = z) � F(z, t) = 1 − G(z, t). (12)

This is an upper bound on the pinning probability.

Combining (11) and (12), we conclude that

P(z(1) = 0|z(t) = z) = G(z, t),

as desired.

The following proposition establishes a quantitative

estimate on the pinning probability which implies that partial

pinning takes place for all values of µ + σ 2

2
�= 0.

4 The limit of z(t∗) as t∗ → 1 is understood in the sense of weak convergence

of probabilities (Billingsley 1999).

Proposition 2. Let α = 2µ+σ 2

2σ
√

T
and let z(t) be the solution of

the stochastic differential equation (4). For each δ,

0 < δ < 112, there exists a constant C independent of α, β

and z such that

|P(z(1) = 0|z(t) = z) − G(z, t)|

< Cβ2δ

(

|α| +
α2

2

)

exp

(

α2(1 − δ)

2δ

)

(1 − t)1/2−δ.

Proof. We consider the Fokker–Planck equation associated

with the process (4),

∂f

∂t
+

1

2

∂2f

∂z2
−

β(z − ατ)

τ 3/2
e− (z+ατ)2

2τ
∂f

∂z
= 0, τ = 1 − t.

Notice that the singular drift depends on the parameter α.

Lemma. Set

Lαf ≡
∂f

∂t
+

1

2

∂2f

∂z2
−

β(z − ατ)

τ 3/2
e− (z+ατ)2

2τ
∂f

∂z
,

and consider the function F(z, t) = exp[− 2β√
1−t

e− z2

2(1−t) ].

Then, for every δ ∈ (0, 1), the following estimate holds:

|LαF(z, t)| �
C(δ, α)β2δ|α|
(1 − t)1/2+δ

. (13)

Here, C(δ, α) = C(δ)(1 + |α|
2

) exp( α2(1−δ)

2δ
), and C(δ) is a

numerical constant which depends on δ but not on z, α, β or τ .

Accepting this lemma, which will be proved later, and

applying Ito’s lemma to G(z(t), t), we find that

E(G(z(t∗), t∗)|z(t) = z)

= E

(∫ t∗

t

LαG(z(s), s) ds|z(t) = z

)

+ G(z, t)

= E

(∫ t∗

t

LαF(z(s), s) ds|z(t) = z

)

+ G(z, t)

� G(z, t) −
∫ t∗

t

C(δ, α)β2δ|α|
(1 − s)1/2+δ

ds.

Taking conditional expectations in inequality (10), we

conclude that

P(|z(t∗)| � ε|z(t) = z)

� E(G(z(t∗), t∗)|z(t) = z) − G(ε, t∗)

� G(z, t) −
∫ t∗

t

C(δ, α)β2δ|α|
(1 − s)1/2+δ

ds − G(ε, t∗)

� G(z, t) − 4Cβ2δ|α|((1 − t)1/2−δ − (1 − t∗)1/2−δ)

− G(ε, t∗).

Letting first t∗ → 1 and then ε → 0, we find that

P(|z(1)| = 0|z(t) = z)

� G(z, t) − 4C(δ, α)β2δ|α|(1 − t)1/2−δ.

An upper bound for the pinning probability is obtained

similarly. This concludes the proof of proposition 2. ⊓⊔
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Notice that proposition 2 implies that partial pinning

occurs for all values of α, z0 if β > 0. In fact, since the drift

is non-singular for t < 1, there is a positive probability that

z(t) be in a given small interval around z = 0, (−q2, +q2).

The time variable t can be chosen sufficiently close to 1 so

that G(z, t) − 4C(δ, α)β2δ|α|(1 − t)1/2−δ > 0 for all z in

this neighbourhood of zero. It follows that the probability of

pinning is finite.

Finally, we establish the lemma.

Proof of the lemma. A straightforward calculation (with

F(z, t) = exp[− 2β√
1−t

e− z2

2(1−t) ] = exp[− 2β√
τ

e− z2

2τ ]) yields

LαF(z, t) =
2β2

τ 2
exp

[

−
2β
√

τ
e− z2

2τ

]

(A1 + A2), (14)

with

A1 =
z2

τ
e− z2

τ

(

1 − exp

(

−zα −
α2τ

2

))

and

A2 = zαe− z2

τ exp

(

−zα −
α2τ

2

)

.

We observe that, for all δ such that 0 < δ < 1, we have

exp

(

−zα −
α2τ

2

)

� exp

(

δz2

2τ
+

α2τ

2δ
−

α2τ

2

)

and
∣

∣

∣

∣

1 − exp

(

−zα −
α2τ

2

)∣

∣

∣

∣

�

(

|z||α| +
α2τ

2

)

exp

(

|z||α| −
α2τ

2

)

�

(

|z||α| +
α2τ

2

)

exp

(

δz2

2τ
+

α2τ

2δ
−

α2τ

2

)

.

It follows that

|A1| �
z2

τ
e− z2

τ

(

|z||α| +
α2τ

2

)

exp

(

δz2

2τ
+

α2τ

2δ
−

α2τ

2

)

� C1(δ)

(

|α|
√

τ +
α2τ

2

)

exp

(

−(1 − δ)
z2

τ

)

× exp

(

α2τ

2δ
−

α2τ

2

)

� C1(δ)

(

|α|
√

τ +
α2τ

2

)

exp

(

−(1 − δ)
z2

τ

)

× exp

(

α2τ(1 − δ)

2δ

)

,

where C1 = C1(δ) is a constant which is independent of z, α, β

and5 τ . In a similar vein, we have

|A2| � C2(δ)|α|
√

τ exp

(

−(1 − δ)
z2

τ

)

.

Substituting these estimates in (14), we find that

|LαF(z, t)| � C(δ)
2β2

τ 2
exp

[

−
2β
√

τ
e− z2

2τ

]

×
(

|α|
√

τ +
α2τ

2

)

exp

(

−(1 − δ)
z2

τ

)

× exp

(

α2(1 − δ)

2δ

)

, (15)

where C(δ) is a constant that depends only on δ, but not on

z, α, β or τ . Let us find the maximum of the right-hand side

of this inequality as a function of z. For this purpose, we

introduce the variable X = e− z2

2τ and look for the critical point

of the expression

X2(1−δ) exp

[

−
2β
√

τ
X

]

,

which is X∗ = (1−δ)
√

τ

β
. Substituting this value into the right-

hand side of (15), we obtain

|LαF(z, t)| � C(δ)
2β2

τ 2
e−(2−2δ)

(

1 − δ

β

)(2−2δ)

× exp

(

α2(1 − δ)

2δ

)

τ 1−δ

(

|α|
√

τ +
α2τ

2

)

= C3(δ) exp

(

α2(1 − δ)

2δ

)

β2δ

(

|α| +
α2

2

)

1

τ 1/2+δ
,

which is the desired estimate. The claim is proved, completing

the proof of proposition 2. ⊓⊔
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