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Abstract. The Pareto and the log-normal distributions are commonly used 
to describe the statistical distribution of success. A detailed comparison of these 
distributions is made with Lotka's extensive observations on success as measured 
by rate of publication. These distributions are found to adequately describe the 
observed distribution only for low and moderate success. Contrariwise, the flat 
factor analysis of performance recently developed by the author in these PRO- 
CEEDINGS (59, 1078 (1968)) is shown to give an excellent agreement over the 
whole range of success. Lotka's data allows a determination of the number of 
environmental factors. 

The Pareto distribution does give an excellent agreement with the tail of the 
success distribution where success is defined as income. An interpretation of 
this distribution is here presented based upon the expected behavior of entre- 
preneurs. 

1. Introduction. Whereas the response of any individual to his environment 
is unpredictable, significant conclusions can conceivably be derived from the 
statistical distribution of responses from a large number of people. It is in this 
spirit that I have recently developed in this journal a theory1 to interpret 
Shockley's data2 on the statistical distribution of rate of publication. In this 
theory, success (e.g., rate of publication) is represented by a product of statis- 
tically independent factors: 

S = fl * f2 fn. (1) 

The probability density pij(fj) for each factor fi is taken as constant from zero 
up to a critical value, and to be zero thereafter. 

(f) 10<fj <fj0(2 
P (fi) 0, otherwise (2) 

This theory, with three factors, gave an excellent agreement with Shockley's 
data. These three factors were interpreted as curiosity, intellectual tools, and 
drive. 

Unfortunately Shockley's samples were too small to decisively differentiate 
our formulation of success from the more usual Pareto3 or log-normal4 formula- 
t'ons. According to Pareto's law the number of people with a success equal to 
or greater than S is given by 

N(S) --' S-'. (3) 
18 
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The Pareto constant p is a characteristic of the group studied. In the log-normal 
distribution, log S has a gaussian distribution. Thus, a plot of log S on proba- 
bility paper gives a straight line. The log-normal distribution is in fact asymp- 
totically approached by our flat factor formulation (1)-(2) as the number of 
factors n becomes large. 

I have recently run across Lotka's study5 of a large sample of 6891 authors, 
everyone, in fact, listed in Chemical Abstracts during 1907-1916 whose names 
started with either A or B. In section 2 we analyze this data in terms of the 
formulation (1)-(2), of Pareto's law, and of the log-normal distribution. This 
data decisively favors our factor formulation. Rice6 has recently shown that 
his data on the publication rate of the 1539 members of the American Association 
of Clinical Chemists is also in agreement with our formulation (1)-(2). In 
section 2 we contrast this agreement with the disagreement of his data with the 
Pareto and the log-normal distribution. A comparison of the three sets of data 
which have now been analyzed-Shockley's, Lotka's, and Rice's-demonstrates 
the expected increase of n with the heterogeneity of the group studied. 

Basic to our theory of success is not only the product function (1) but also the 
existence of an upper limit, given by (2), which any one of the basic factors can 
have. In section 3 we show that such an upper limit is consistent with recent 
psychological research. 

Pareto himself proposed his law only for income distributions, specifically 
for the high income tail. This law, proposed in 1897,7 was believed valid for 
all countries. An exhaustive study by the National Bureau of Economic Re- 
search8 for the year 1918 shows this law to be remarkably accurate within the 
United States over the upper four cycles of ten in income. This high income 
group is populated primarily by entrepreneurs.9 In section 4 we show that the 
expected entrepreneural behavior is such as to lead to the Pareto income dis- 
tribution. 

2. Success as Measured by Publication Rate. Davis3 has used Lotka's data 
on publication rate as a classic example of Pareto's law. Identifying success S 
with the number of papers i published in a given interval of time, Davis used 
Pareto's law in the form 

f(i) i -(P +) 

where f(i) is the number of people who published precisely i papers. Following 
Davis we attempt to test Pareto's law by a plot of f(i) versus i on log paper. 
From Figure 1 we see that the first six points lie with remarkable accuracy upon 
a straight line with a p of 0.89. For values of i above 6, statistical fluctuations 
appear; above 20, these fluctuations are so great as to render useless any attempt 
to test Pareto's law by visual inspection of the data. 

In this type of data statistical fluctuations will always increase as f(i) becomes 
small and, hence, as i becomes large. We can, however, ameliorate these 
fluctuations by working with the cummulative function 

N(i) = f(j). 
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FIG. l.-Lotka's data on publica- 
tion rate. Comparison with Pareto's 
theory. Frequency plot. 
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FIG. 2.-Lotka's data on publication rate. 
Comparison with Pareto's theory. Cumula- 
tive plot. 

We accordingly plot this function in Figure 2. Whereas according to Pareto's 
law N(i) should approach the straight line 

N(i) r- P89 

for large i's, it is seen that the data rapidly diverge away from this straight line. 
Simon1'O 11 has recently developed a stochastic theory of success which asymp- 
totically approaches Pareto's law for large i's. He applied his theory to rate of 
publication, and evaluated those constants in his theory that are appropriate for 
the Lotka data. His theory, also reproduced in Figure 2, is seen to inadequately 
represent the observed data. 

We now compare Lotka's data with a lognormal distribution. Toward this 
end we first observe that the authors in Lotka's data have been selected by the 
criterion of having published at least one paper. The appropriate measure of 
success must therefore be the number of additional papers. In the log-normal 
plot of Figure 3 we have accordingly taken the ordinate i as this number of addi- 
tional papers. The abscissa represents the percentile coordinate x. Thus, the 
first 58% produced no papers other than that which admitted them into the 
group. The steps in the lower part of Figure 3 are due to the integer character 
of our measure of success, namely, numbers of papers. The steps in the upper 
part of the curve arise from the discrete values of x. Thus the last man, that is, 
the most successful man, is represented by the top plateau which extends in- 
definitely to the right. 
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FIG. 3.-Lotka's data on publication 
rate. Comparison with flat factor analy- 
sis. Solid curve: n = 8. Dashed curve: 
n = 7.8. 
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FIG. 4.-;Rice's data on publication 
rate. Comparison with flat factor 
analysis: solid curve, n = 7. Compari- 
son with Pareto's theory: dashed curve. 

Under ideal conditions of a continuous measure of success and of an infinitely 
large sample, a log-normal distribution would give a straight line on log-normal 
paper. In our case of a discrete measure of success, and of a finite sample, a 
log-normal distribution would give a stepped curve. We could, however, pass a 
straight line through all the steps except perhaps some of the upper steps dis- 
placed by fluctuations. In contrast, Lotka's data in Figure 3 show a distinct 
negative curvature. 

We next compare Lotka's data with the flat factor analysis formulated in (1)- 
(2). Toward this end we must first infer from the data the appropriate number 
of factors. Now the theoretical maximum S, which we denote by SO, and the 
mean S are related by 

S _('/2n) SO (4 

The observed maximum Smax is certainly less than So. If the group is large 
enough, however, the observed maximum will be greater than So/2. The ap- 
propriate value of n will then be the smallest n which satisfies 

2n > Smax/S. (5) 
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As before, we identify S with i. Since imax has the value 345, and i the value 
2.32, we infer that n is the smallest integer which satisfies 

2 n > 149. (6) 
This integer is 8. 

We next introduce the percentile coordinate x defined as that fraction of the 
group whose success is less than or equal to S. In my original paper' I showed 
that the flat factor analysis of performance formulated by (1) and (2) gives 

x (S) = Q J r, (z) dz (7) 

where r, is the incomplete gamma function, and 

Q = ln (So/S). (8) 

In Figure 3 the continuous curve gives the theoretical curve (7) with the em- 
pirical values for n of 8, and for 

So = 2n S (9) 

of 600. This theoretical curve is seen to fit Lotka's data extremely well. 
Our parametric equations for success, (7)-(9), contain the two parameters n 

and S. Whereas in our derivation of these equations we considered n as an 
integer, we could obtain a better agreement if n was allowed nonintegral values. 
Thus, by allowing n to decrease from 8 to 7.8, we remove most of the discrepancies 
between the empirical data and the parameter solution (7)-(9), as is demon- 
strated by the dashed curve of Figure 3. 

A relaxation of the constraint that n be an integer must reflect a relaxation of 
some of our basic assumptions. The most suspect of our assumptions is that 
all the factors have complete statistical independence. The major effects of 
relaxing this assumption is to lower n. This effect may be readily demonstrated 
by considering only two factors. Whereas with complete independence n = 

2, the solution for complete correlation is given approximately by (7)-(9) with 
n= 1.59. 

In Figure 4 we contrast the agreement demonstrated by Rice6 for his data with 
our distribution based upon (1)-(2), with the marked disagreement of his data 
with Pareto's law and with the log-normal distribution. Here the constants in 
Pareto's law have been changed to give agreement with the central part of Rice's 
data. The log-normal law would of course give a straight line. 

All members of Shockley's group worked within the same laboratory. His 
data for this group required an n of 3. Presumably all three factors referred to 
the necessary human factors for success in publication, such as curiosity, intel- 
lectual tools, and drive. All members of Rice's group belonged to the same 
professional society. As Rice has suggested, presumably the extra four factors 
required to represent his data refer to factors in the environment which are 
necessary for clinical biochemists to be successful as measured by publications. 
These factors might be, for example, time for research, facilities for research, 
technical help, and the presence of stimulating colleagues. All members of 
Lotka's group had published at least one paper which had been listed in Chemical 
Abstracts. Success as measured by reference in Chemical Abstracts must involve 
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not only the three personal factors involved in Shockley's group, and the four 
environmental factors involved in Rice's group, but also an additional factor 
which measures the overlap of one's field of interest to the fields covered by 
Chemical Abstracts. One thereby arrives in a rational way at the eight factors 
required by Lotka's data. 

3. Psychological Implications. An assumption basic to our theory is the 
existence of an upper limit to each of the basic factors. There is obviously an 
upper limit to the degree of overlap of one's research with the field covered by 
Chemical Abstracts. There is also obviously a limit to each of the environmental 
factors. It comes as a shock to one, like the author, unfamiliar with the working 
of the human mind, that the human factors also have a limit. The existence of 
such a limit is, however, in accord with the recent results of experimental psychol- 
ogy. The ability to perform basic mental tasks appears to have a definite upper 
limit, and this upper limit is not much above the average ability."2 13 Great 
variability is shown only in mental performances which require the consecutive 
successful performance of many basic mental tasks. As an example, suppose a 
difficult task requires 20 of the 120 basic mental characteristics postulated by 
Guilford.14 An individual whose abilities in these 20 characteristics were uni- 
formly distributed in the upper 50 percentile would be 2800 times as successful 
as the average individual. There would, however, be only one such individual 
in 2,000,000. 

4. Entrepreneurial Income Distribution. We can readily show that the be- 
havior which we commonly associate with the high income entrepreneurial class 
automatically gives rise to a Pareto income distribution. Crucial to our theory 
is that our typical entrepreneur intuitively thinks of money on a logarithmic 
scale, and will therefore enter a venture which has a 50% chance of increasing his 
capital by a given factor and a 50% change of decreasing his capital by the same 
factor. Thus, if this factor is 2, his venture gives a 50% chance of winning 
100%, or of losing 50%, of his original capital. This intuitive logarithmic 
monetary scale will also determine how much he spends on living expenses. 
He will, in fact, spend a certain fraction of his capital, each year irrespective 
of its size. 

In Appendix A we find that an entrepreneurial class behaving as described 
above will have a Pareto-type capital distribution with 

p = 2a/(A In C)2. (10) 

Here a is that fraction of one's capital which is annually absorbed in living 
expenses and in taxes, our A In C is the root mean square of the annual change in 
the logarithm of the capital due to entrepreneurial enterprise. Only the Pareto 
constant is known empirically. Neither a nor A ln S is known individually. 
The best we can do to check our theory is to see if reasonable values of a and 
A In C satisfy (10). Upon taking the observed value of 5/3 for p, and assuming 
a to be 0.1, we obtain forA in S the value of 0.35. This value ofA inS corresponds 
to a 50% chance of a 0.42% gain in capital, a 50% chance of a 0.29% loss in 
capital. Such chances appear to be sufficiently favorable to entice entrepreneu- 
rial behavior. 
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The concept of income is, of course, inappropriate to our entrepreneur. He 
has only gains, and losses, of capital. We can take the income as defined by the 
National Bureau of Economic Research as proportional to the capital. A Pareto 
distribution of capital would then imply a Pareto distribution of this income. 

In developing our theory we have assumed that the entrepreneurial activity 
does not change the in C of a group, but only the spread of ln C. Our theory is, 
however, not sensitive to this assumption. A time rate of change of ln C could 
be absorbed into our constant. We have demonstrated, however, that such a 
time rate of change is not necessary to encourage entrepreneurial activity. It 
is essentially this demonstration which distinguishes our analysis of the Pareto 
tail from prior stochastic analyses. 15 

Appendix A. Let n(c) d In c be the number of entrepreneuers whose capital lies 
within the range of d ln c. Now n(c) will change with time because of two causes. 
The first is a diffusion due to entrepreneurial enterprise: 

-d = Dd2n(c)/dlnc2. 
dtD 

The second is the change due to living expenses and taxes: 

-= I,-n(c) + n(c + a c5TJ /1T = dn/d lnc. 
dt L&T 

Equating to zero the sum of these two changes, we obtain the equation 
(D d2/d In C2 + a did In c) n = 0. 

This equation has the solution 
n(c) -eP Icn c cv, p = a/D. 

Upon expressing the diffusion coefficient D in terms of the root mean square annual 
change in capital, A In c 

D = (1/2) (A In c)2 
we obtain (10). 

The author is indebted to Dr. Rice for being shown his manuscript prior to publication. 
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