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11.1. Introduction

This is a compact report on desultory researches stretching over more than a decade.
In connection with stock market fluctuations, L. Bachelier [3], a French mathematician,

discovered the mathematical theory of Brownian motion five years before Einstein’s classic
1905 paper, Bachelier gave the same formula for the value of a warrant (or “call” or put)
based upon this “absolute” or “arithmetic” process that Dr. R. Kruizenga [20, 21] developed
years later in a thesis under my direction. Under this formula, the value of a warrant grows
proportionally with the square-root of the time to go before elapsing; this is a good approxi-
mation to actual pricing of short-lived warrants, but it leads to the anomalous result that a
long-lived warrant will increase in price indefinitely, coming even to exceed the price of the
common stock itself—even though ownership of the stock is equivalent to a perpetual warrant
exercisable at zero price!

The anomaly apparently came because Bachelier had forgotten that stocks possess limited
liability and thus cannot become negative, as is implied by the arithmetic Brownian process,
To correct this, I introduced the “geometric” or “economic Brownian motion,” with the
property that every dollar of market value is subject to the same multiplicational or percentage
fluctuations per unit time regardless of the absolute price of the stock. This led to the log-
normal process for which the value of a call or warrant has these two desired properties: for
short times, the

√
t law holds with good approximation; and for t → ∞, the value of the call

approaches the value of the common stock. (All the above assumes that stock-price changes
represent a “fair-game” or martingale—or certain trivial generalizations thereof to allow for
a fair return. In an unpublished paper and lecture, I made explicit the derivation of this
property from the consideration that, if everyone could “know” that a stock would rise in
price, it would already be bid up in price to make that impossible. See my companion paper
appearing in this same issue, entitled “Proof That Properly Anticipated Prices Fluctuate
Randomly.”)

1Massachusetts Institute of Technology, Cambridge, MA, USA.
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198 11. RATIONAL THEORY OF WARRANT PRICING

The above results, which have been presented in lectures since 1953 at M.I.T., Yale,
Carnegie, the American Philosophical Society, and elsewhere have also been presented by
such writers as Osborne [25, 26], Sprenkle [27], Boness [4], Alexander [1, 2, 16, 17] and no
doubt others.

However, the theory is incomplete and unsatisfactory in the following respects:

1. It assumes, explicitly or implicitly, that the mean rate of return on the warrant is
no more than on the common stock itself, despite the fact that the common stock
may be paying a dividend and that the warrant may have a different riskiness from
the common stock.

2. In consequence of the above, the theory implies that warrants (or calls) will never
be converted prior to their elapsing date. Necessarily, therefore, no proper theory is
provided for the conditions under which warrants will cease to be outstanding.

3. The existing theory, in effect, assumes that the privilege of converting the warrant
at any time in the interval (rather than at the end of the period) is worth literally
nothing at all.

4. Finally, the theory leads to the mentioned result, that the price of a perpetual war-
rant should be literally equal to the stock itself—a paradoxical result, and one that
does not agree with the observed facts of life (for example, the fact that perpetual
Tri-Continental Warrants sell for less than their equivalent amount of common stock,
and are in fact being continuously converted into stock in some positive volume).

The present paper publishes, I believe for the first time, the more difficult theory of
rationally evaluating a warrant, taking account of the extra worth of the right to convert at
any time in the interval and deducing the value of the common stock above which it will
pay to exercise the warrant. I am glad to acknowledge the valuable contribution of Professor
Henry P. McKean, Jr. of the M.I.T. Department of Mathematics, in effecting certain exact
solutions and in proving the properties of the general solutions. His analysis appears as a
self-contained mathematical appendix. It will be clear that there still remain many unsolved
problems. (For example, exact explicit solutions are now known in the case of perpetual
warrants only for three cases: the log-normal, the log-Poisson, and the case where the only two
possibilities are those of instantaneous complete loss or of a gain growing exponentially in time.
Only for this last case is an exact explicit solution known for the finite-time warrant. These
exact solutions, which are all due to McKean, correspond to various intuitive conjectures
and empirical patterns and can be approximated by the solutions to the simpler problem of
discrete, albeit small, time periods.)

11.2. The Postulated Model

Let the price of a particular common stock be defined for all time and be denoted byXt. If
we stand at the time t, we know with certainty Xt (and all of its past values Xt−T ). Its future
price Xt+T is knowable only in some probability sense, its probability distribution being in
the most general case a function of the whole past profile of Xt−T . A special simplification
involves postulating a Markov property to the process, so that future Xt+T has a distribution
depending only on present Xt—namely

Prob
{
Xt+T ≤ X | Xt = x

}
= P (X, x;T ).(1)

Obviously, (1) involves the critical assumption of a “stationary time series.”
I further posit that each dollar of present value must be expected to have some mean

gain per unit time, α, where α may perhaps be zero or more likely will be a positive quantity
whose magnitude depends on the dispersion riskiness of X , and the typical investor’s utility
aversion to risk. (A deeper theory would posit concave utility and deduce the value of α for
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each category of stocks.) This expected-returns axiom says

E
[
Xt+T | Xt

]
=

∫ ∞

0

X dP
(
X,Xt;T

)
= Xte

αT , α ≥ 0.(2)

(Since money bears the safe return of zero, α cannot be less than zero for risk averters; indeed,
it cannot be less than the safe return or pure interest on funds, if such exists. If utility were
convex rather than concave, people might be willing to pay for riskiness, and α might be
permitted to be negative—but not here.)

The integral in (2) is the usual Stieltjes integral: if the probability distribution P (X,Xt;T )
has a regular probability density ∂P (X,Xt;T )/∂X = p(X,Xt;T ), we have the usual Rie-
mann integral

∫∞
0 Xp(X,Xt;T )dX ; if only discrete probabilities are involved, at X = X1

with probabilities P1(Xt;T ), the integral of (2) becomes the sum ΣX1P1(Xt;T ), which may
involve a finite or countably-infinite number of terms. The reader can use the modern notation∫∞
0 XP (dX,Xt;T ) rather than that of (2) if he prefers.

In (2) the limit of integration is given as 0 rather than −∞, because of the important
phenomenon of limited liability. A man cannot lose more than his original investment: General
Motors stock can drop to zero, but not below.

If the probability of a future price Xt+T depends solely on knowledge of Xt alone, having
the Markov property of being independent of further knowledge of past prices such as Xt−s,
then

P
(
Xt+T | Xt, Xt−s

) ≡ P
(
Xt+T | Xt

)
(3)

and (1) will satisfy the so-called Chapman-Kolmogorov equation

P
(
Xt+T , Xt;T

) ≡
∫ ∞

0

P
(
Xt+T , x;T − S

)
dP

(
x,Xt;S

)
, 0 ≤ S ≤ T.(4)

11.3. Remarks About Alternative Axioms

To see the meaning of this, suppose t takes on only discrete integral values. Then, without
the Markov property (3), (1) would have the general form

Prob
{
Xt+k ≤ X | Xt, Xt−1, . . .

}
= P

(
X,Xt, Xt−1, . . . ; k

)
(5)

with

E
[
Xt+1 | Xt, Xt−1, . . .

]
=

∫ ∞

0

X dP
(
X,Xt, Xt−1, . . . ; 1

)
= eαXt.(2′)

Instead of (4), we would have

P
(
Xt+2, Xt, Xt−1, . . . ; 2

)

=

∫ ∞

0

P
(
Xt+2, Xt+1, Xt, . . . ; 1

)
dP

(
Xt+1, Xt, Xt−1, . . . ; 1

)(4′)

where the integration is over Xt+1 and where Xt is seen to enter in the first factor of the
integrand. Even without the Markov axiom of (3), from (2′) applied to the next period’s
gains, we could deduce the truth of (2) for two periods’ gains as well and, by induction, for
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all-periods’ gains—namely

E
[
Xt+2 | Xt, Xt−1, . . .

]

=

∫ ∞

0

X dP
(
X,Xt, Xt−1, . . . ; 2

)

=

∫ ∞

0

X d

∫ 2

0

P
(
X, x,Xt, Xt−1, . . . ; 1

)
dP

(
x,Xt, Xt−1, . . . ; 1

)

=

∫ ∞

0

eαx dP
(
x,Xt, Xt−1, . . . ; 1

)
= e2αXt.

(6)

Then, by induction, (2) or

E
[
Xt+k | Xt, Xt−1, . . .

]
= ekαXt

follows from the weak assumption of (5) and (2′) alone even when the Markov property (3)
and Chapman-Kolmogorov property (4) do not necessarily hold.

However, I shall assume (3), and a fortiori (4), in order that the rational price of a warrant
be a function of current common stock price Xt alone and not be (at this level of approxi-
mation) a functional of all past values Xt−T . A more elaborate theory would introduce such
past values, if only to take account of the fact that the numerical value of α will presumably
depend upon the estimate from past data that risk averters make of the riskiness they are
getting into when holding the stock.

I might finally note that Bachelier assumed implicitly or explicitly

P (X, x;T ) ≡ P (X − x;T ), α = 0(7)

so that an absolute Brownian motion or random walk was involved. He thought that he could
deduce from these assumptions alone the familiar Gaussian distribution—or, as we would say
since 1923, a Wiener process—but his lack of rigor prevented him from seeing that his form
of (4):

P (X − x;T ) ≡
∫ ∞

−∞
P (X − x− y;T − S)dP (y;S), 0 ≤ S ≤ T(8)

does have for solutions, along with the Gaussian distribution, all the other members of the
Lévy-Khintchin family of infinitely-divisible distributions [22, 12]. including the stable distri-
bution of Lévy-Pareto, the Poisson distribution, and various combinations of Poisson distri-
butions.

11.4. The “Geometric or Relative Economic Brownian Motion”

As mentioned, Bachelier’s absolute Brownian motion of (7) leads to negative values for
Xt+T with strong probabilities. Hence, a better hypothesis for an economic model than
P (X, x;T ) = P (X − x;T ) is the following

P (X, x;T ) ≡ P

(
X

x
;T

)
, x > 0

P (X, 0;T ) ≡ 1 for all X > 0.

(9)

By working with ratios instead of algebraic differences, we consider logarithmic or percentage
changes to be subject to uniform probabilities. This means that the first differences of the
logarithms of prices are distributed in the usual absolute Brownian way. Since the arithmetic
mean of logs in the geometric mean of actual prices, this modified random walk can be called
the geometric Brownian motion in contrast to the absolute or arithmetic Brownian motion.
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The log-normal distribution bears to the geometric Brownian motion the same relation
that the normal distribution does to the ordinary Brownian motion. As the writings of Man-
delbrot [23, 24] and Fama [9, 10] remind us, there are non-log-normal stable Pareto-Lévy
distributions (of logs) satisfying the following form of (4):

P

(
X

x
;T

)
≡

∫ ∞

0

P

(
X

y
;T − S

)
dP

(
y

x
, S

)
.(10)

Some of our general results require only that (1), (2), and (4) hold. But most of
our explicit solutions are for multiplicative processes, in which (9), (10) and the following
hold:

E
[
Xt+T | Xt

]
=

∫ ∞

0

X dP

(
X

Xt
;T

)
= Xte

αT , α ≥ 0.(11)

Actually, (9) and (10) alone require that the family P (X ;T ) is determined once a single
admissible function P (X ;T1) = P (X) is given, as for T1 = 1. Then if α is defined by

eαT1 = E
[
Xt+T1/Xt

]
=

∫ ∞

0

X dP (X),(12)

(11) is provable as a theorem and need not be posited as an axiom. McKean’s appendix
assumes the truth of (9) and (10) throughout. It is known from the theory of infinitely-
divisible processes that P (X) above cannot be an arbitrary distribution but must have the
characteristic function for its log, Y = logX , of the Lévy-Khintchin form:

E
[
eiλY

]
=

∫ ∞

−∞
etλY dP (eY ) = eg(λ)

g(λ) = μiλ+

∫ (
etλz − 1− iλz

1 + z2

)
1 + z2

z2
dψ(z),

(13)

where ψ(z) is itself a distribution function. In the special cases of the log-normal distribution,
the log-Poisson distribution, and the log-Lévy distribution, we have respectively

g(λ) = μiλ− σ2

2
λ2

g(λ) = etλμ − i

g(λ) = μiλ− γ|λ|α0[
1 + iβ

(
λ/|λ|) tan (α0π/2

)]
, 0 ≤ α0 ≤ 2.

(14)

All of (14) is on the assumption that

lim
X→0

P (X) = P (0) = 0.

If P (0) > 0, there is a finite probability of complete ruin in any time interval, and as the
interval approaches infinity that probability approaches 1. An example (the only one for which
exact formulas for rational warrant pricing of all durations are known) is given by

Prob
{
Xt+T = Xte

aT
}
= e−bT a, b > 0

Prob
{
Xt+T = 0

}
= 1− e−bT

(15)

where α = a− b ≥ 0.
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Letting w(X ;T ) be an infinitely-divisible (multiplicative) function satisfying (13), the
most general pattern would be one where

P (0, T ) = 1− e−bT b > 0

P (X,T ) = e−bTw(X, t) + P (0, T )
(16)

with P (∞, T ) = e−bT 1 + 1− e−bT = 1.
One final remark. Osborne, by an obscure argument that appeals to Weber-Fechner and

to clearing-of-free-markets reasoning, purports to deduce, or make plausible, the axiom that
the geometric mean of the distribution P (X/x;T ) is to be unity or that the expected value
of the logarithmic difference is to be a random walk without mean bias or drift. Actually,
if α = 0 in (2), so that absolute price is an unbiased martingale, the logarithmic difference
must have a negative drift. For α sufficiently positive, and depending on the dispersion of the
log-normal process, the logarithmic difference can have any algebraic sign for its mean bias.
Only if one could be sure that P (X/X ;T ) = P (1;T ) ≡ 1

2 , so that the chance of a rise in price
could be known to be always the same as the chance of a fall in price, would the gratuitous
Osborne condition turn out to be true.

If P (X, x;T ) corresponds to a martingale or “fair game,” with α = 0 as in the Bachelier
case, the arithmetic mean of the ratio X/x in always exactly 1 and the geometric mean, being
less than the arithmetic mean if P has any dispersion at all, is less than 1. Its logarithm, the
mean or expected value of log Xt+T /Xt is then negative, and the whole drift of probability
for P (X, x;T ) shifts leftward or downward through time. In long enough time, the probability
approaches certainty that the investor will be left with less than 1 cent of net worth—i.e.,
P (0+, x;∞) = 1. This virtual certainty of almost-complete ruin bothers many writers. They
forget, or are not consoled by, the fact that the gains of those (increasingly few) people
who are not ruined grow prodigiously large—in order to balance the complete ruin of the
many losers. Therefore, many writers are tempted by Osborne’s condition, which makes the
expected median of price Xt+T neither grow above nor decline below Xt.

However, in terms of present discounted value of future price, Xt+T e
−αT , where the mean

yield α is used as the discount factor, most people’s net worth does go to zero, and this occurs
in every case of α ≥ 0. Relative to the expected growth of Xt+T—i.e., relative to Xte

αT ,
Xt+T does become negligible with great probability. I call this condition “relative ruin,” with
the warning that a man may be comfortably off and still be ruined in this sense. And I now
state the following general theorem:

Theorem 11.4.1. Let P (X, x;T ) have non-zero dispersion, satisfying
∫ ∞

0

X dP (X, x;T ) ≡ eαT ,

P (X, x;T ) =

∫ ∞

0

P (X, y;T − S)dP (y, x;S), α ≥ 0

as in (2) and (4). Then

lim
T→∞

P (Xe−αT , x;T ) = 1 for all (X, x) > 0.

In the multiplicative-process case, P (X, x;T ) = P (X/x;T ) and the theorem follows almost
directly from the fact that the geometric mean is less than the arithmetic mean.

In words, the theorem says that, with the passage of ever longer time, it becomes more
and more certain that the stock will be at a level whose present discounted value (discounted
at the expected yield α of the stock) will be less than 1 cent, or one-trillionth of a cent.
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As is discussed on page 220, we can replace relative ruin by absolute ruin whenever
the dispersion of the log-normal process becomes sufficiently large. Thus, even if α > 0 in
accordance with positive expected yield, whenever the parameter of dispersion σ2 > 2α,
there is virtual certainty of absolute ruin. Indeed, for the log-normal case we can sharpen the
theorem to read

lim
T→∞

P (0+, x;T ) = 1, σ2 > 2α.

11.5. Summary of Probability Model

The Xt+T price of the common stock is assumed to follow a probability distribution
dependent in Markov fashion on its Xt price alone and on the elapsed time:

Prob
{
Xt+T ≤ X | Xt

}
= P

(
X,Xt;T

)
(1)

P
(
Xt+T , Xt;T

) ≡
∫ ∞

0

P
(
Xt+T , x;T − S

)
dP

(
x,Xt;S

)
, 0 ≤ S ≤ T(4)

with the expected value of price assumed to have a constant mean percentage growth per
unit time of α, or

E
[
Xt+T | Xt

]
= Xte

αT =

∫ ∞

0

X dP
(
X,Xt;T

)
, α ≥ 0.(2)

In many cases P (X, x;T ) will be assumed to be a multiplicative process, with the ratio
Xt+T /Xt independent of all Xt−w. Then we can write

P (X, x;T ) ≡ P

(
X

x
;T

)
,

where P (u;T ) belongs to the special family of infinitely-divisible (multiplicative) distributions
of which the log-normal, log-Poisson, and log-Lévy functions are special cases. (If the Lévy
coefficient α0 in (14), which must not be confused with α of (2), were not 2 as in the log-
normal case, we can show that α in (2) will be infinite. Ruling out that case will rule out the
Lévy-Pareto-Mandelbrot distributions.)

11.6. Arbitrage Conditions on Warrant Prices

A warrant is a contract that permits one to buy one share of a given common stock at
some stipulated exercise price X0 (here assumed to be unchangeable through time, unlike
certain real-life changing-terms contracts) at any time during the warrant’s remaining length
of life of T time periods. Thus, a warrant to buy Kelly, Douglas stock at $4.75 per share until
November, 1965, has X0 = $4.75 and (in March, 1965) has T = 7/12 years. A perpetual
warrant to buy Allegheny Corporation at $3.75 per share has X0 = $3.75 and T = ∞.

When a warrant is about to expire and its T = 0, its value is only its actual conversion
value. If the stock now has Xt = X0, with the common selling at the exercise price to anyone
whether or not he has a warrant, the warrant is of no value. If Xt < X0, a fortiori it is worth
nothing to have the privilege of buying the stock at more than current market price, and
the warrant is again worthless. Only if Xt > X0 is the expiring warrant of any value, and—
brokerage charges being always ignored—it is then worth the positive difference Xt −X0.

In short, arbitrage alone gives the rational price of an expiring warrant with T = 0, as
the following function of the common price known to be Xt = X , F (X,T ) = F (X, 0), where
F (X, 0) = Max[0, X −X0].
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A warrant good for T1 > 0 periods is worth at least as much as one good only for T2 < T1,
periods and generally is worth more. Hence, arbitrage will ensure that the rational price for
a warrant with T1 time to go, denoted by F (X,T1), will satisfy

F
(
X,T1

) ≥ F
(
X,T2

)
if T1 ≥ T2.

A perpetual warrant is one for which T = ∞. But recall that outright ownership of the
common stock, aside from giving the owner any dividends the stock declares, is equivalent to
having a perpetual warrant to buy the stock (from himself!) at a zero exercise price. Hence,
a perpetual warrant cannot now sell for more than the current price of the common stock.
Or, in general, arbitrage requires that

X ≥ F (X,∞) ≥ F
(
X,T1

) ≥ F
(
X,T2

) ≥ F (X, 0) = Max
[
0, X −X0

]
(17)

where

∞ ≥ T1 ≥ T2 ≥ 0.

In all that follows we shall, by an admissible choice of conventional units, be able to assume
that the exercise price is X0 = 1. Thus, instead of working with the price of one actual Kelly,
Douglas warrant, which gives the right to buy one share of Kelly, Douglas common stock
at $4.75, we work with the standardized variable X/X0 = X/4.75—the number of shares
purchasable at $1, which is of course 1/4.75 actual shares; correspondingly, the warrant price
Y , we work with is not the actual Yt but the standardized variable Yt/X

0, which represents
the price of a warrant that enables the holder to buy 1/4.75 actual shares at the exercise price
of $1. We are able to do this by the following homogeneity property of competitive arbitrage:

F (X,X0;T )

X0
≡ F

(
X

X0
, 1;T

)
,(18)

a property that says no more than that two shares always cost just twice one share. Wherever
we write F (X ;T ), we shall really be meaning (18). (Note that Tri-Continental perpetual
warrants involve the right to buy 1.27 shares at $17.76 per share. In calculating X/X0 =
X/17.76, we use for X the price of 1.27 shares, not of one share.)

Our conventions with respect to units ought to be adopted by advisory services dealing
with warrants, to spare the reader the need to calculate X/X0 and Y/Y 0. All this being
understood, we can rewrite the fundamental inequalities of arbitrage shown in (17) as follows:

X ≥ F (X,∞) ≥ F
(
X,T1

) ≥ F
(
X,T2

) ≥ F (X, 0)

= Max
(
0, X − 1

)
, ∞ ≥ T1 ≥ T2 ≥ 0.

(19)

In Fig. 11.1a, b, the outer limits are shown in heavy black: OAB is the familiar function
Max(0, X−1). (In McKean’s appendix, this is written in the notation (X−1)+.) The 45◦ line
OZ represents the locus whose warrant price equals X , the price of the common stock itself.

11.7. Axiom of Expected Warrant Gain

Mere arbitrage can take us no further than (19). The rest must be experience—the
recorded facts of life. Figure 11.1a shows one possible pattern of warrant pricing. The ex-
piring warrant, with T = 0, must be on the locus given by OAB. If positive length of life
remains, T > 0, Fig. 11.1a shows the warrant always to be worth more than its exercise price:
thus, OCD lies above OAB for all positive X ; because OEF has four times the length of life
of OCD, its value at X = 1 is about twice as great—in accordance with the rule-of-thumb√
T approximation; because T is assumed small, and P (X/x;T ) approximately symmetri-

cal around X/x = 1, the slope at C is about 1/2—in accordance with the rule-of-thumb
approximation that if two warrants differ only in their exercise price X0, the owner should
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pay $1/2 for each $1 reduction in X0, this being justifiable by the reasoning that there in
only a half-chance that he will end up exercising at all and benefitting by the X0 reduction.
Note that all the curves in the figures are convex (from below) and all but the OAB and OZ
limits are drawn to be strictly convex (as would be the case if P (u; 1) were log-normal or a
distribution with continuous probability density). Our task is to demonstrate rigorously that
the functions shown in the figures are indeed the only possible rational pricing patterns.

The pricing of a warrant becomes definite once we know the probability distribution of
its common stock P (X, x;T ) if we pin down buyers’ reactions to the implied probability
distribution for the warrant’s price Yt(Tt), in the form of the following axiom:

Axiom of mean expectation. Whereas the common stock is priced so that its mean ex-
pected percentage growth rate per unit time is a non-negative constant α, the warrant is
priced so that it, too, will have a constant mean expected percentage growth rate per unit
time for as long as it pays to hold it, the value of the constant being at least as great as that
for the stock—or β ≥ α. Mathematically

E
[
Yt+T

(
Tt − T

) | Yt

(
Tt

)]
= eβtY

(
Tt

)
(20)

for all times T it pays to hold the warrant, where

β ≥ α = loge

∫ ∞

0

X dP (X, x; 1) ≥ 0.(21)

The reader should be warned that the expected value for the warrant in (20) is more
complicated than the expected value of the stock in (2). The latter holds for any prescribed
time period; but in (20), the time period T must be one in which it pays to have the warrant
held rather than converted. (In the appendix, McKean’s corresponding expectation is given
in 2.8 and in 4.8.) It is precisely when the warrant has risen so high in price (above CT in
Fig. 11.1b) that it can no longer earn a stipulated positive excess β−α over the stock that it
has to be converted. Actually if β is stipulated to equal α, we are in Fig. 11.1a rather than
Fig. 11.1b: there is never a need to convert before the end of life, and hence all points like
C1, . . . , CT are at infinity; as we shall see, the conventional linear integral equations enable
us easily to compute the resulting functions in Fig. 11.1a.

Warrants, unlike calls, are not protected against the payment of dividends by the common
stock. Hence, for any stock that pays a positive dividend, say at the instantaneous rate of δ
times its market value, the warrant will have to have a β > α if it is to represent as good
a buy as the stock itself. Taxes and peculiar subjective reactions to the riskiness patterns of
the two securities aside, at the least β = α + δ > α. However, even if δ = 0 and there is no
dividend, buyers may feel that the volatility pattern of warrants is such that owners must be
paid a greater mean return to hold warrants than to hold stocks. I do not pretend to give a
theory from which one can deduce the relative values of β and α. Here, I merely postulate
that they are constants (independent, incidentally, of T , the life span of the warrant).

My whole theory rests on the axiomatic hypotheses:

1. The stock price is a definite probability distribution, P (X, x;T ), with constant mean
expected growth per unit time α ≥ 0.

2. The warrant’s price, derivable from the stock price, must earn a constant mean
expected growth per unit time, β ≥ α ≥ 0.

Once these axioms, the numbers α, β, and the form of P (X, x;T ) are given, it becomes a
determinate mathematical problem to work out the rational warrant price functions Yt(Tt) =
F (Xt, Tt) for all non-negative Tt, including the perpetual warrant F (Xt,∞).
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Figure 11.1. Rational warrant pricing2

11.8. Some Intuitive Demonstrations

Before giving the mathematical solutions, I shall indicate how one can deduce the para-
doxical result that a perpetual warrant must have the same price as the common stock if they
both have to earn the same mean yield. The reader may want to think of the fair-game case
where β = α = 0, a case which has a disproportionate fascination for economists because
they wrongly think that if prices were known to be biased toward rising in the future, that
fact would already be “discounted” and the price would already have risen to the point where
α can be expected to be zero. (What is forgotten here by Bachelier and others—but not by
Keynes, Houthakker, Cootner [18, 13, 14, 6, 5]. See my cited companion paper in this issue and
other exponents of “normal backwardation”—is that time may involve money, opportunity
cost, and risk aversion.)

A warrant is said to involve “leverage” in comparison with the common stock, and in the
real world where brokerage charges and imperfect capital rationing are involved, leverage can
make a difference. The exact meaning of leverage is not always clear, and writers use the term
in two distinct senses. The usual sense is merely one of percentage volatility. Suppose a stock
is equally likely to go from $10 to $11 or to $9. Suppose its warrant is equally likely to go from
$5 to $6 or to $4. Both are subject to a $1 swing in either direction; but $1 on $5 is twice the
percentage swing of $1 on $10, as will be seen if equal dollars were invested in each security.
In this sense, the warrant would be said to have twice the leverage of the stock. Leverage in
the sense of mere enhanced percentage variability is a two-edged sword: as much as it works
for you on the upside, it works against you on the downside. It is perfectly compatible with

2These graphs show the general pattern of warrant pricing as a function of the common stock price (where
units have been standardized to make the exercise price unity). The longer the warrant’s life T , the higher is
F (X, T ). For fixed T , T (X, T ) is a convex function of X. In Fig. 11.1a, the perpetual warrant’s price is equal

to that of the stock, with F (X,∞) falling on OZ; it never pays to exercise such a warrant. In Fig. 11.1b, the
points C1, C4, C25, and C∞ on AB are the points at which it pays to convert a warrant with T = 1, 4, 25 and
∞ years to run. Note that F (X,∞) is much less than X in this case. The pattern of Fig. 11.1b will later be
shown to result from the hypothesis that a warrant must have a mean yield β greater than the stock’s mean
yield α.
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Figure 11.2. Warrant pricing—the perpetual case

α = β = 0. (However, if there were a two-thirds chance of each security’s going up $1 and
a one-third chance of its going down $1, the warrant’s β would be definitely greater than
stock’s α, since a mean expected return of +33 1/3 	 c on $5 is twice that of +33 1/3 	 c on $10;
and this impinges on the second sense of leverage.)

The second sense of the term leverage is merely enhanced expected yield from the warrant
in comparison with the common stock. Here is an example from the R.H.M. Warrant and
Stock Survey of February 25, 1965: Newconex Holdings Warrant, Toronto Exchange, “would
rise about 2.25 times as fast as the common stock on the upside and decline no faster than
the common on the downside.” To one who believes this, the warrant offers very good value
or “leverage” in this second sense of the term. Indeed, by selling one common short and
buying one warrant, one could presumably break even if the stock went down in price and
make money if the stock rises—a sure-thing hedge that cannot lose if one believes the stated
probability judgment.

Figure 11.2 shows for a hypothetical perpetual warrant a convex corner at the existing
price E, with EF steeper for a rise than EG for a fall. Obviously, GEF could not persist if the
warrant’s β gain were to be no bigger than the stock’s α gain. Similarly, the strongly convex
NRM could not persist with β = α. What pattern for a perpetual warrant could persist?
Only a straight-line pattern, since for any convexity at all the mean of points along a curve
must lie above the curve itself.

What straight line can be fitted in between OZ and OAB of Fig. 11.1? Obviously, only
the line OZ itself—proving that the only rational price for a perpetual warrant must be that
of the common stock itself when α = β. (Any straight line not parallel to OZ and AB will
intersect one or both of them; any intermediate line parallel to OZ and AB will hit the zero
axis at positive X and then develop a corner there. So OZ alone remains as the formula for
F (X,∞) ≡ X .)

The curve of F (X,T ) for finite T can and will be convex. But as time passes, one does
not move up and down the curve itself—say from R to M if X rises or from R to N if X falls.
Instead, as time passes T diminishes, and one moves from R to a point below M or N on the
new F (X,T − t) curve; and if the two convex curves have been sketched correctly and placed
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in the proper shift relationship to each other, it will be found that the mean expectation of
gain from the warrant is precisely that from the stock.

The moral of this is not that surveys are wrong when they recommend a bargain. It is
rather that one recognizes correct or rational pricing and the absence of bargains when the
warrants are priced in a certain way relative to the common stock. It is only as people act
to take advantage of transient bargain opportunities that the bargains disappear. When I
speak of rational or correct pricing, I imply no normative approval of any particular pattern
but merely describe that pattern which (if it were to come into existence and were known to
prevail) would continue to reproduce itself while fulfilling the postulated mean expectations
in the form of α in (2) and β in (20). It would be a valuable empirical exercise to measure
the α for different stocks at different times and deduce the value of β that the warrants earn
ex post and that can rationalize the observed scatter of warrant and stock prices.

Intuition can carry us a bit further and throw light on the case where β > α. With the
warrant having to produce a better gain than the common, the curve for a perpetual warrant
becomes strictly convex—as in Fig. 11.1b and in contrast to Fig. 11.1a. Furthermore, when
the common price becomes very high compared to the exercise price—i.e., when X/1 is very
large—the conversion value of the warrant becomes negligibly less than the common—i.e.,
(X − 1)/X = 1. If in the period ahead the warrant can rise at most $1 more in price than the
common rises, the warrant’s gain will approach indefinitely close to the common’s α. But that
contradicts the assumption that β > α. So for X high enough, X > C∞ < ∞, it will never
pay to hold the warrant in the expectation of getting β > α; above this C∞, cut-off point, the
warrant must be converted. What has been demonstrated here for perpetual warrants holds
a fortiori for finite warrants with finite T . Even sooner, at CT < C∞, it will pay to convert
since with the clock running on and running out, there will be even less advantage in holding
the warrant for an additional period when the stock and it have become very large.

11.9. Linear Analysis Where β = α ≥ 0

If the expected yields of common and warrant are to be the same in (2) and (20), there
is never any advantage in converting the warrant before the end of its life. That is

F (X,T ) > F (X, 0) = Max(0, X − 1), T > 0; β = α ≥ 0.(22)

Equation (20), postulating that the warrant have an expected gain per unit time of β,
can therefore be written, for all times S,

E
[
Yt+S(T − S) = F

(
Xt+S , T − S

) | Yt(T ) = F
(
Xt, T

)]

= eβSF
(
Xt, T

)
=

∫ ∞

0

F (X,T − S) dP
(
X,Xt;S

)(23)

or

F (x, T ) ≡ e−βS

∫ ∞

0

F (X,T − S)dP (X, x;S)

= e−βT

∫ ∞

0

F (X, 0)dP (X, x;T )

= e−βT

∫ ∞

1

(X − 1)dP (X, x;T ).

(24)

This last integral equation provides, by a quadrature, the solution of our problem. From the
fact that P (X, x; 0) = 1, X > x and = 0, X < x, it is evident that

lim
T→0

F (x, T ) = F (x, 0) = Max(0, x− 1).
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We can now prove that

lim
T→∞

F (x, T ) = x = F (x,∞), β = α ≥ 0.(25)

Substitute F (x,∞) = F (x) into both sides of (24) to get a self-determining integral equation
for F (x),

F (x) = e−βS

∫ ∞

0

F (X)dP (X, x;S).(26)

The substitution F (x) = x does satisfy (26), since by (2)

x = e−βS

∫ ∞

0

X dP (X, x;S)

= e−βSeαSx = e(α−β)Sx = x, β = α.

(27)

Any kx would also satisfy (26), but only for k = 1 do we satisfy

x ≥ F (x) = kx ≥ Max(0, x− 1).

To prove that the stationary solution of (26) does in fact fulfill the limit of (25), rewrite
(24)

F (x, T ) = e−βT

∫ ∞

1

(X − 1)dP (X, x;T )

= e−βT

∫ ∞

0

(X − 1)dP (X, x;T )

+ e−βT (1−X)dP (X, x;T )
∫ 1

0 dP (X, x;T )

∫ 1

0

dP (X, x;T )

= e−βT eαTx− e−βT + e−βT θ1(x, T )θ2(x, T ), where
∣
∣θ1

∣
∣ ≤ 1.

(28)

Obviously, if β = α > 0, F (x,∞) = x+ 0, as was to be proved. For α = 0

lim
t→∞ θ2(x, T ) =

∫ 1

0

dP (X, x;∞) = 1, since P (0+, x;∞) ≡ 0

lim
t→∞ θ1(x, T ) =

∫ 1

0 (1− x)dP (X, x;∞)
∫ 1

0
dP (X, x;∞)

= 1, since P (0+, x;∞) ≡ 0.

(29)

Hence, for α = 0 = β, F (x,∞) = x− 1 + 1 = x, as required.
Now that (24) gives the explicit solution in the case α = β, we can put in for P (X, x;T )

any specialization, such as

P (X, x;T ) = P (X/x;T ) log-normal with P (x;T ) = N
(
log x;μt, σ

√
t
)

where N(y; 0, 1) = N(y) =
1√
2π

∫ y

−∞
e−u2/2du;

(30)

or

Prob

{
X

x
= eat

}
= e−bt Prob

{
X

x
= 0

}
= 1− e−bt

a− b = α = β; a, b > 0.

(31)
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For this last case, (24) calculates out to

F (x, T ) = Max
(
0, x− e−aT

)
.(32)

Note that the
√
T law does not hold true here for small T , but rather, at x = 1

F (x, T ) = F (1, T ) = 1− e−at = 1− 1 + aT + remainder
(
T 2

)
= aT.(33)

Hence, a warrant for twice the duration of a short-lived warrant should be worth about twice
as much when (31) holds—even though the ratios Xt+T /Xt are strictly independent.

11.10. Valuation of End-of-Period Warrants

The exact solution of (24) holds only for the case β = α ≥ 0. It will be shown that new
formulas must handle the case of β > α. However, the simple integral (24) does give a solution
under all cases to the simpler case of a warrant that can be exercised only at the end of the
period T . We might call this a “European warrant” by analogy with the “European call,”
which, unlike the American call that is exercisable at any time from now to T , is exercisable
only at a specified terminal date.

Obviously, the additional American option of early conversion can do the owner no harm,
and it may help him. Denote the rational price of a European warrant by f(x, T ), in contrast
to F (x, T ) of the American type warrant. Then

f(x, T ) � F (x, T ), 0 ≤ T(34)

and our axiom of expected gain (20) in now applicable in the form that gives the last version
of (24), namely

f(x, T ) = e−βT

∫ ∞

0

Max(0, X − 1)dP (X, x;T )

= e−βT

∫ ∞

1

(X − 1)dP (X, x;T ), β ≥ α ≥ 0.

(35)

Since this is the same formula as held in (24) for F (x, T ) when β = α, we note that in such
a case the American warrant’s early conversion options are actually of no market value; or

f(x, T ) ≡ F (x, T ) if β = α.(36)

When β > α, (35) still holds. But now

f(x, T ) < F (x, T )(37)

for all or some positive (x, T ). In the log-normal case, the strong inequality must always hold.
There seems to be a misapprehension concerning this inequality. Thus some people argue

that the owner of a European call or warrant can in effect exercise it early by selling the
stock short, thereby putting himself in the position of the owner of an American warrant.
If this view were valid there would be no penalty to be subtracted from F (x, T ) to get true
f(x, T ). Such a view is simply wrong—as wrong as the naive view that giving your broker a
stop-loss order gives you the same protection as buying a put. (The fallacy here has naught to
do with the realistic fact that in a bad market break your broker will not be able to execute
your stop-loss order at the stipulated price; waive that point. Suppose I buy a stock at $100
and protect it by buying (say for $10) a six-month put on it at exercise price of $100. You
buy the stock and merely give your broker a stop-loss sell order at just below $100. If the
stock drops below $100 at some intermediate time during the next six months, you are sold
out without loss; but you do as well as I do only if the stock never subsequently rises to
above $100; and the $10 cost of the put is precisely the market value of my opportunity to
make a differential profit over you in case the stock does end up at more than $100, after at
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least once dipping below $100.) By the vector calculus that Kruizenga and I worked out for
various options, after one sells a stock short and still holds a European call or warrant on
it, he is not for the remainder of the time T in the position of a man who has sold out his
American warrant; instead he is in the net position of holding a put on the stock. (If (1, 0) and
(0, 1) represent holding a call and put respectively, the owner of an American warrant goes
through the cycle (+1, 0) and—in midstream—(−1, 0), ending up with (0, 0). The holder of
the European warrant goes through the cycle (+1, 0) and—in midstream—(−1,+1), leaving
him for the remainder of the period with (0,+1).)

To see that (37) does hold when β > α, recall that F (x, T ) cannot decrease with T . But
applying to (35) the version of (24) given in (28), we can see that a long-lived European
warrant does ultimately approach zero in value as T → ∞. Thus, by (28) applied to f(x, T ),

f(x, T ) = e−βT

∫ ∞

1

(X − 1)dP (X, x;T )

= e−βT eαTx− e−βT + e−βT θ1θ2, |θ1| < 1

lim
T→∞

f(x, T ) = f(x,∞) = f(x) = e−(β−α)∞x = 0, β > α ≥ 0.

(38)

11.11. General Formula for β > α ≥ 0

The last section’s demonstration that f(x, T ) < F (x, T ) when β > α provides a rigorous
proof that the linear integral equation of (24) cannot apply to the proper F (x, T ) for this
case. Hence β > α does imply that a warrant cannot possibly be worth holding at very high
prices. I.e., the inequality

F (x, T ) ≥ x− 1, x ≥ 1(39)

must for sufficiently high x become the equality

F (x, T ) = x− 1, x > C∞(T ;β, α) < ∞, β > α(40)

where ∂C∞/∂T ≥ 0, ∂C∞/∂α ≥ 0, ∂C∞/∂β ≤ 0 (McKean’s appendix also proves this fact,
in 2.8 and 4.7.)

In place of the integral equation (24), we have the following basic inequality to define
F (x, T ) where β > α:

x ≥ F (x, T ) ≥ Max

[
0, x− 1, e−βS

∫ ∞

0

F (X,T − S)dP (X, x;S)

]
.(41)

McKean’s appendix terms any solution of this relation an “excessive function,” and he seeks
as the solution to the problem the minimum function that belongs to this class. Rather than
arbitrarily postulate that it is the minimum function which constitutes the desired solution,
I deduce from my axiom of expected gain (20) the only solution which satisfies it and which
satisfies the basic inequality. It follows as a provable theorem that this does indeed give the
minimum of the excessive functions. That is, any excessive function which is not the minimum
will fail to earn β per unit time whenever it is being held.

How shall we find the simultaneous solution to (20) and (41)? I begin from the intuitive
consideration that splitting up continuous time into small enough finite intervals will approach
(from below) the correct solution for the continuous case. If a warrant can be converted only
every hour, its value will be a bit less than one that can be converted at any time—less
because an extra privilege is presumably worth something, only a little less because not much
of a price change is to be expected in a time period so short as an hour. The approximation
will be even better if we split time up into discrete minutes and still better if we use seconds.
In the limit, we get the exact solution.
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Let ΔT = h and define recursively in (41) for fixed h and integral n

Fn+1(x;h) = Max

[
(
0, x− 1, eβh

∫ ∞

0

Fn(X ;h)dP (X, x;h))

]

F0(x;h) = Max(0, x− 1).

(42)

Then

lim
h=T

n →0
Fn(x;h) = F (x, T ),(43)

the desired exact solution to our problem as formulated by (20) and (41). In principle, by
enough integrations, the degree of approximation can be made as close as we like.

The general properties of the solution can also be established by this procedure. Thus, if
P (X, x; 1) = P (X/x; 1) is a multiplicative process—or even if some weaker conditions are put
on the way that P shrinks with an increase in x—we begin with a convex function F0(x;h)
and end at each stage with a convex expectation function. Hence, by induction F (x, T ) and
F (x) = F (x,∞) must be convex. (F (x, T ) will be strictly convex if P (X/x; 1) is log-normal
or similarly smooth.) Where the slope ∂Fn(x;h)/∂x exists it can be shown inductively that
its value must lie in the closed interval [0, 1], a property which must hold for F (x, T ). At the
critical conversion point CT , where CT − 1 = F (CT , T ), one expects the slopes of the two
equal branches to be equal.

It will be instructive to work through an example in which time itself is divided into
small, discrete intervals t = 0, 1, 2, . . . , etc. And suppose that P (X, x; 1) corresponds to a
simple, multiplicative random walk of martingale type, where

Prob

{
Xt+1

Xt
= λ > 1

}
= p > 0,

Prob

{
Xt+1

Xt
= λ−1

}
= 1− p = q > 0.

The gain per unit time is now given by

eα = pλ+ qλ−1 = 1, where λ =
1− p

p
.

It will help to keep some simple numbers in mind: e.g. p = 1/3, q = 2/3, λ = 2, making α = 0
and the [Xt] sequence a “fair game” or martingale, with zero net expected yield.

If β is also set equal to zero, so that it never pays to exercise the warrant, (41) reduces
to the simple form (35), and we are left with the familiar partial-difference equation of the
classical random walk (but in terms of logXt, not Xt itself). Specifically, logXt/X0 will take
on only integral values for t > 0; if later we make λ nearer and nearer to 1, the fineness of the
grid of integral values will increase; and it will cause little loss of generality to suppose that
initially X0 = λk, where k is a positive or negative integer. This being assured, a two-way
F (X,m) = F (λn,m) can always be written as a two-way sequence Fnm, where m denotes
non-negative integers and n integers that can be positive, negative, or zero. Corresponding



11.11. GENERAL FORMULA FOR β > α ≥ 0 213

to (35), we now have:

Fn0 = Max(0, λn − 1)

Fn1 = pFn+1,0 + qFn−1,0, p+ q = 1

. . . . . . . . . . . . . . . . . . . . .

Fn,m+1 = pFn+1,m + qFn−1,m

. . . . . . . . . . . . . . . . . . . . .

Fn∞ = Fn = pFn+1 + qFn−1.

The last of these is an ordinary second-order difference equation with constant coefficients,
whose characteristic polynomial is seen to be

pσ2 − σ + (1− p) = p(σ − 1)(σ − σ2), where σ2 =
1− p

p
= λ > 1.

Write the general solution for Fn as

Fn = e1(1)
n + e2σ

n
2 .

Since Fn → 0 as n → −∞, we must have e1 = 0. Since

Max(0, X − 1) = Max
(
0, λn − 1

) ≤ F (X) = e2λ
n ≤ λn = X,

we must have

e2 = 1, Fn = λn, F (X) = X

verifying the general derivation of (25).
Now drop the assumption that α = 0, but still keep β = α. The above partial-difference

equations are unchanged except that now (p, q) are replaced by (Bp,Bq) where

B−1 = eα = pλ+ qλ−1 > 1.

Again it can be shown that σ2 = λ is a root of the characteristic polynomial, and that only if
(e1, e2) = (0, 1) can the boundary condition be satisfied. Again we confirm (35)’s F (X) = X
solution for α = β.

Now let B−1 = eβ > eα = pλ+ qλ−1 = Φ(λ) ≥ 1.
Form ≤ ∞, there will exist critical integral constants nm, equal (except for the coarseness

of the integral grid) to logCm, above which warrant conversion is mandatory. The partial-
difference equations derivable from (41) now become

Fn,m = λn − 1, n ≥ nm > 0

Fn,m = BpFn−1,m−1 +BqFn−1,m−1 ≤ λn − 1, n < nm, (m = 1, 2, . . .)

Fn,∞ = Fn = BpFn+1 +BqFn−1, n < n1

= λn − 1, n ≥ n1.

These relations define the sequence (nm) recursively—e.g., n1 is the lowest integer for which

λn1 − 1 ≥ Bp
(
λn1λ− 1

)
+Bq

(
λn1λ−1 − 1

)
.

With n1 known, we have initial conditions to the right to determine Fn+1 for n ≤ n1. The
difference equation for Fn,1, which can be written symbolically in terms of the operators E



214 11. RATIONAL THEORY OF WARRANT PRICING

and E−1 defined by EFn,m = Fn+1,m, E−1Fnm = Fn−1,m as Φ(E)Fn,1 = 0 then determines
Fn1. With this known we determine n2 as the smallest integer for which

λn2 − 1 ≥ BΦ(E)Fn,1;

then determine Fn,2 by Φ(E)Fn,2 = 0, etc.
The constant n, can be determined along with Fn,∞ by the following relations

Φ(E)Fn = 0; Fn = e1σ
n
1 + e2σ

n
2 ,

where the characteristic polynomial can be shown to be

σΦ(σ) − σ = Bp
(
σ − σ1

)(
σ − σ2

)
,

where

0 < σ1 < 1 < λ < σ2 = λγ , γ > 1.

If Fn → 0 as n → −∞, e1 = 0; to determine e2, and n2 = a for short, we set

e2λ
γaλγ = λaλ− 1, e2λ

γa = λa − 1,

or
(
λa − 1

)
λγ = λaλ− 1,

(
λγ − λ

)
λa = γ − 1

a = log(γ − 1)− log
(
λγ − λ

)
, e2 = (λa − 1)λ−γa,

where of course γ is a function of α and β through its dependence on the coefficients Bp and
λ. Fn = λγn means in terms of X , the antilog of n, that F (X) = eXγ, γ ≥ 1 as our first
general answer.

We can always convert one-period partial difference equations into N -period equations.
When we do this (p, q) are replaced by (p3, 2pq, q2), . . . and by (px, xC1p

x−1q, . . . , qx) where

xC1 are the familiar binomial coefficients. By the usual central limit theorem, these approach
the normal distribution. But since these coefficients apply to the Fn,m, which refer to the
logarithms of X , we arrive at the log-normal distribution. Hence, if we can prove that the
partial-difference equation, not merely for Φ(E)Fn = (BpE +BqE−1)Fn but for any general
set of probabilities

Φ(E)Fn = B

∞∑

−k

pjE
jFn = Fn,

∞∑

−k

pj = 1,

satisfies the F (X) = cXγ power law, we have strong heuristic evidence that this will he the
exact case for the log-normal case—as McKean has rigorously proved in the Appendix. The
characteristic polynomial of this last becomes

−1 + σkΦ(σ) =
(
σ − σ1

)(
σ − λγ

)
Φ2(σ),

where, as before

0 < σ1 < λ ≤ λγ , γ ≥ 1Φ2(σ),

and Φ2(σ) is a polynomial with no roots greater than 1 in absolute value. Hence, in the general
solution

Fn = Σc1σ
n
1 = c2λ

γ +Remainder,

all the c’s except c2 must vanish if Fn → 0. The value of c2 and the critical conversion point
n2, is determined just as in the simple (p, q) case. If the grid in very fine because λ → 1,
λn2 = c2 = γ/(γ − 1) to an increasingly good approximation.

As a preview to McKean’s exact result for the continuous-time case, I shall sketch
the usual Bachelier-Einstein derivation of the partial differential equations of probability
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diffusion—of so-called Fokker-Planck type—by applying a limit process to the discrete par-
tial difference equations. From now on consider n = log x as if it were a continuous rather
than integral variable. Bachelier wrote in 1900

pn,t =
1

2
pn+t,t−1 +

1

2
pn−t,t−1,

or

pn,t+Δt =
1

2
pn+Δn,t +

1

2
pn+Δn,t

Δt

(Δn)2
pn,t+Δt − pn,t

Δt
=

1

2

(
pn+Δn,t − pn,t

)

(Δn)2
+

1

2

(
pn−Δn,t − pn,t

)

(Δn)2
.

Now if Δt → 0, with Δt/(Δn)2 → 2c2, we get the Fourier parabolic equation

c2
∂p(n, t)

∂t
=

∂2p(n, t)

∂n2
.

Bachelier assumed a fair game with probabilities of unit steps in either direction equal to
1/2. If we replace (1/2, 1/2) by (p, q) so that the random walk has a biassed drift of α as its
expected instantaneous rate of growth, we find p(n−αt, t) satisfying the above equation and
hence the requisite distribution r(n, t) ≡ p(n− αt, t) satisfies

∂2r(n, t)

∂n2
= c2

∂r(n, t)

∂t
+ c2α

∂r(n, t)

∂n
.

Bachelier and Einstein were talking about the diffusion of probabilities. But we have
seen that the warrant prices Fn,t, now written as F (en, t) = ψ(n, t), satisfy similar partial-
difference equations, the only difference being (i) that the coefficients add up to less than 1
when β > α; and (ii) the boundary conditions for c1 become rather complicated. Just as we
had a simple second-order (partial) difference equation EΦ(E)Fn,t = EFn,t, we derive in the
limit—as McKean shows in 3, and 5, drawing on the work of E. B. Dynkin—a simple (partial)
second-order differential equation for ψ(n, t), which in terms of log x = n becomes,

σ2

2

∂2Ψ(n, t)

∂n2
+ δ

∂ψ(n, t)

∂n
− ∂Ψ(n, t)

∂t
− βΨ(n, t) ≡ 0, δ = α− σ2

2

Ψ(n, 0) = Max
(
0, en − 1

)

Ψ(ent , t) = ent − 1.

It is understood that the equation holds for (n, t) to the left of n = ent and that ψ(−∞, t) ≡ 0.
However, it is a difficult task to compute the et, function, even using the high contact property
∂F (ct, t)/∂x = 1.

The perpetual warrant is much simpler, since then ψ(n,∞) = ψ(n) with ∂ψ(n,∞)/∂t = 0,
giving the ordinary differential equation

σ2

2
ψ′′(n) + δψ′(n)− βψ(n) = 0, n < c,

ψ(−∞) = 0, ψ(c2) = c2 − 1, ψ′(c2) = en2 .

The general solution can be written as a sum of two exponentials, in terms of the roots of the
characteristic polynomial

σ2

2
ρ2 + δρ− β =

σ2

2

(
ρ− ρ1

)(
ρ− ρ2

)
, ρ1 = γ > 1 > ρ2.
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If the boundary conditions are to be realized, the ρ2 root must be suppressed and we are left
with

ψ(n) =
(
c2 − 1

)enγ

c2
, or

F (x) = (c2 − 1)

(
x

c2

)γ

γ =
c∞

c2 − 1
.

11.12. Intuitive Proofs from Arbitrage

Equation (18), which related the rational price of a warrant with any exercise price X◦ to
the formula for a warrant with X◦ ≷ 1, can be used directly to deduce restrictions on the way
F (x, T ;X◦) varies with X◦. Because F (x, T ) has been shown to be convex with numerical
slope on the closed interval [0, 1], (18) can deduce that the numerical slope of F (x, T ;X◦)
with respect to X◦ must be on the closed interval [−1, 0]—i.e.,

−1 ≤ F
(
x, T ;X◦ +ΔX◦)− F

(
x, T ;X◦)

ΔX◦ ≤ 0,

or

−1 ≤ ∂F
(
x, T ;X◦)

∂X◦ ≤ 0,(44)

where the last partial derivatives, if they do not exist at certain corners, can be interpreted
as either left-hand or right-hand derivatives.

One proves (44) directly by differentiating (18) with respect to X◦, to get

∂F
(
x, T ;X◦)

∂X◦ =
∂

∂X◦

{
X◦F

(
x

X◦ , T
)}

= F

(
x

X◦ , T
)
− x

X◦
∂F

(
x
X◦ , T

)

∂
(
x/X◦) .

(45)

That the right-hand expression in (45) is non-positive follows directly from the definition
of convexity of F (x, T ) when F (0, T ) ≡ 0. That it is not algebraically less than −1 follows
from the fact that F (x, T ) ≥ Max(0, x− 1).

Intuitive economic arguments provide an alternative demonstration that

−1 ≤ ∂F
(
x, T ;X◦)

∂X◦ ≤ 0.(46)

An increase in the exercise price X◦ must, if anything, lower the value of the warrant
since it then entails a higher future payment. But a fall of $1 in X◦ can never be worth more
than $1, since stapling a $1 bill to a warrant with X◦ exercise price is a possible way of
making it the full equivalent of a warrant exercisable at X◦ − $1. Hence, we have established
(46).

The condition for high contact at a conversion point CT , namely ∂F (x, T )/∂x → 1 as
x → CT , seems intuitively related to realization of left-hand equality in (46) as x → CT /X

◦,
which in turn seems intuitively related to the probability that, when x is already near CT , x
will be reaching Ct in a sufficiently short future time. For the log-normal Brownian motion of
(30) and the special case of (31), these conditions for high contact will be realized. But for any
solution of the Chapman-Kolmogorov equation (4) of log-Poisson type, like that discussed by
McKean and involving jumps, high contact will definitely fail. If we rule out combinations of
Poisson jumps, only (30) and (31) and combinations of them like that shown in (16) would
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seem to be relevant. For them high contact is indeed ensured. And for both of these types an
exact power-of-x solution for the perpetual warrant has been shown by McKean to hold.

11.13. Final Exact Formula for Perpetual Warrant in Log-Normal Case

McKean has proved in (30) the following exact smooth formula for F (x,∞) = F (x), for
the log-normal case

F (x) =
(γ − 1)γ−1

γγ
xγ = (c− 1)

(
x

c

)γ

,

x ≤ c =
γ

γ − 1
> 1 = x− 1, x ≥ c, γ =

c

c− 1
> 1.

(47)

This has the nice property of high contact, with F ′(c) = 1 from either direction. Examples of
(47) for different values of γ would be

F (x) = 3

(
x

4

)4/3

, γ = 4/3, c = 4

F (x) = 2

(
x

3

)3/2

, γ = 3/2, c = 3

F (x) =
1

4
x2, γ = 2, c = 2.

The last of these formulas has been proposed, in different notation, on a purely ad hoc
empirical basis by Guigère [11]. The notation there, of course, needs to be related to my
notation involving X

X◦ and Y
Y ◦ , as in Fig. 11.3.

I append a brief table of values (Fig. 11.3) of F (x) for what would seem to be empirically
relevant values of γ.3 Figure 11.4 plots as straight lines on double-log paper F (x) for various
values of γ.

Figure 11.3. Rational price for perpetual warrant in log-normal model

3Acknowledgment is made to F. Skilmore for these computations.
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Figure 11.4. Rational price for perpetual warrant in log-normal model

To relate γ to α, β, and the dispersion parameter σ2 in the log-normal distribution, I
rewrite McKean’s formula for γ (in the Appendix) as

γ =

(
1

2
− α

σ2

)
+

√[
1

2
+

α

σ2

]2
+ 2

[
β

σ2
− α

σ2

]
.(48)

That γ is a function of (α/σ2, β/σ2) follows from the invariance of the problem under transfor-
mations of the unit used to measure time. Similar ratios of parameters occur in the log-Poisson
process and the multiplicative-translation-with-absorbtion process of (15).

It is instructive to hold (α, β) fixed in (48), and examine how γ varies with the dispersion
parameter σ2 of the log-normal process for the stock. When σ2 → ∞, the difference (β −
α)/σ2 → 0 and γ → 1, the case where the warrant never gets prematurely converted. Such a
large value for the dispersion parameter σ2 would create a very large α if the drift of logXt

were not strongly negative. Any such negative drift implies that it is “almost certain” that
the holder of the stock will be “eventually” (“almost completely”) ruined—even though the
stock does have a positive mean capital gain. Note the tricky statement involving a triple
limit, as in the earlier theorem on (virtually) certain (relative) ruin.

We will see in (50) that γ =
√
β/α when σ2 = 2α and there is no drift at all to logXt and

hence to Xt. In this knife-edge case of Osborne, where the geometric mean of future Xt+T

just equals Xt, the probability of a future capital loss (or gain) is exactly one half. At the
other limit, where the dispersion σ2 → 0, we put (α/σ2, β/σ2) = (∞,∞) in (48) and find
γ → β/α. This can be verified by substituting into y = (c − 1)(X/c)γ the now-certain path
X(t) = X0e

αT and deducing Y (t) = Y0e
βt = Y0e

γαT , with γ = β/α.
To estimate γ empirically, one might regress log warrant price against log common price,

γ being the regression coefficient. Then α might be estimated statistically by calculating the
mean percentage gain per unit time of the common, or by computing E[Xt+1]/Xt = eα. Then
β will be determined by the formula (48) for γ once one has an estimate of σ2. Since σ is the
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standard deviation of log(Xt+1/Xt), it can be estimated from the sample variance of this last
variate. The consistency of the model with the facts could then be checked by calculating β
separately as the mean value of the warrant’s gain, or by

E
[
Yt+T

]
/YT = eβT

where T is always less than the time after t when it pays to convert the warrant. A further
check on the log-normality model comes from the fact that, when the “instantaneous variance
per unit of time” of Xt is σ

2, the instantaneous variance for unit time of Yt should work out
to be γ2σ2, greater than σ2 by the factor γ2 > 1.

I am not presenting any empirical results here. But I shall draw upon some findings of
others by way of illustrating the theory. (Incidentally, they suggest remarkably high β/α,
giving the warrants a suspiciously favorable return.)

Osborne [25, p. 108] finds some empirical warrant for his theoretically dubious axiom
that logXt takes an unbiased random walk, with neither upward nor downward drift. If μt
represents the net drift of logXt, we have

μ = α− σ2

2
= 0,

α

σ2
=

1

2
.(49)

Substituting these values into (48) gives

γ =

√
β

α
, when

α

σ2
=

1

2
.(50)

Osborne and many investigators report average capital gains on a stock of three to five per
cent per year. So set α = .04. Finally Giguère in the cited paper [11] infers γ = 2 from
empirical scatters of perpetual warrant prices against their common stock prices. (My casual
econometric measurements suggest γ = 2 is much too high: these days one can rarely buy
a long-lived warrant for only one-fourth of the common when the common is selling near
its exercise price. But accept γ = 4 for the sake of the demonstration.) Combining μ = 0,
α = .04, γ = 2, we get for the mean return per year for holding the warrant no less than 16
per cent!—i.e., β = γ2α = 4(.04) = .16.

This does seem to be a handsome return, and one would expect it to be whittled away
over time—unless people are exceptionally averse to extra risk. The high β return would be
whittled away as people bid up the prices of perpetual warrants until they approached the
value of the common stock itself—at which point β, α, γ = 1, and e = ∞. There is no other
way. Yet this does not seem to happen. Why not? One obvious explanation is that whenever
a stock pays a regular dividend of δ per period, β will, taxes aside, naturally come to exceed
α by at least that much. But there are stocks that pay no dividend which still sell much
above their perpetual warrants. Perhaps a departure from our assumption of a stationary
time series, in the form of a supposition that there will later be a regular dividend, can help
explain away the paradox. Coming events do cast their shadow before them.

I should like now to sketch a theory to explain why β − α cannot become too large.
If β > α so that γ > 1, hedging will stand to yield a sure-thing positive net capital gain
(commission and interest charges on capital aside!). This follows from the concept of leverage
as curvature in Fig. 11.2. Let the stock be initially at X0 with the warrant at F (X0) = Y0.
Then buying $1 long of the warrant and selling $1 short of the common gives the new hedged
variate Z = Y/Yn −X/Xn. Whether X goes up or down, Z is sure to end up greater than
1, with a positive gain. Indeed, its expected gain per unit time is β − α. But there will be a
variance per unit time around this mean value that works out to (γ − 1)2σ2. This variance
will be quite small when γ is near to 1, but with γ = 1 it is likely that the difference β − α
will also be small.
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In the example worked out earlier from the data of Osborne and Giguère, a hedger would
have the same variance as would a buyer of the common stock; but instead of earning 4 per
cent a year, he would earn 12 per cent a year. And, commissions aside, he would have no
risk of a positive loss. This would seem like almost too much of a good thing. Under the
stock exchange rules, I believe he would have to put up about the same amount of money as
margin to engage in the hedged transaction as to buy a dollar’s worth of the warrant or stock
outright; he would not need margin money for each side of the hedged transaction. So he
would have to reckon in the opportunity cost of the safe interest rate per unit time of money
itself, ρ. Presumably though, the buyer of the common stock has already felt that its α = .04
return was adjusted to compensate for that ρ. (If the stock pays a percentage dividend, δ, the
excess β − α includes compensation for δ, ρ and for extra riskiness. Actually, if the excess of
β over α comes only from the fact of the dividend δ, there is no advantage to be gained from
the hedge; this is because the man who sells the common short must make good the dividend,
and that will reduce the apparent profit of the hedge to zero. Hence in what follows, I deal
only with the excess of β over α that in unrelated to dividends, and I ignore all dividends.)

If hedging arbitrage alone is counted on to keep β − α small, under present margin
requirements we should expect β − α = ρ if riskiness were not a consideration. Since there is
some aversion to dispersion around the mean gain from the hedge, we should not expect from
hedging arbitrage alone that β − α < ρ. On the other hand, if people are risk averters and
γ < 2, as seems realistic, it is hard to see how one could get β − α > α, since people would
shift from holding X outright to holding a hedged position Z if the latter had the greater
return, less variance, and no chance of loss. One could, in principle, learn from stock exchange
records how much hedging is in fact being done, since a rational hedger will minimize margins
by dealing with one firm on both sides of his hedge. It is my impression that not much warrant
hedging is in fact done, although in convertible bonds there does seem to be a greater volume
of hedging. Still if γ and β − α threatened to become too large, potential hedgers would
become actual hedgers. Hence, the limits derived above do have some relevance, particularly

β − α < α.(51)

11.14. Conclusion

The methods outlined here can be extended by the reader to cases of calls and puts,
where the dividend receives special treatment different from the case of warrants, and to the
case of convertible bonds.
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Appendix. A free boundary problem for the heat equation arising from a Problem of Math-
ematical Economics.

Henry P. McKean, Jr., M.I.T. 4

11.15. Introduction

Paul Samuelson has developed a model of warrant pricing from the economic standpoint;
the purpose of the present article is to add some mathematical complements.

Samuelson supposes that the motion of the price x(t) ≥ 0 of the common stock is a
(multiplicative) differential process; this means that for each s ≥ 0, the (scaled) future motion
x(t + s)/x(s) : t ≥ 0 is independent of the past x(t) : t ≤ s and has the same statistics as
x(t)/x(0) : t ≥ 0. Define P1(B)[E1(f)] to be the chance of the event B [expectation of the
function f ] for prices starting at x(0) = 1 and impose the condition E1(x) < ∞. E1(x) = eαt

follows; it is assumed that α ≥ 0.
Define h = h(t, ξ)5 to be the “correct” price of a warrant to purchase the common stock

at unit price, as a function of the time of purchase t ≥ 0 and of the current price ξ ≥ 0,
subject to the additional condition that the warrant appreciate at the rate β ≥ α up to such
time as it becomes unprofitable still to hold it. The problem of computing h has the following
mathematical expression: find the smallest solution f = h of

f(t, ξ) ≥ e−βsE1

[
f
(
t− s, ξx(s)

)]
(s ≤ t, ξ ≥ 0)

that lies above (ξ − 1)+ ≡ the greater of ξ − 1 and 0; the simpler problem of finding the
“correct” price h(∞, ·) of the perpetual warrant can be expressed in the same language as
follows: find the smallest solution f = h of

f(ξ) ≥ e−βtE1

[
f
(
ξx(t)

)]
(t ≥ 0, ξ ≥ 0)

that lies above (ξ − 1)+.
The existence of h is proved and its simplest properties discussed in Sects. 11.16 and 11.18

below: if β > α, h turns out to be an increasing convex function of ξ up to a point ξ = c(t) > 1
[the corner], to the right of which it coincides with ξ − 1; c and h increase with time to
c(∞) < ∞ and h(∞, ξ) < ξ. The latter is computed in Sect. 11.17 for a (multiplicative)
Brownian motion of prices [h = (c− 1)(ξ/c)γ , c = γ/(γ − 1)] and also for a (multiplicative)
Poisson process of prices [h = a broken line], and, in Sect. 11.19, h is computed for t ≤ ∞
and a (multiplicative) translation of prices with possible absorbtion at 0. A partial solution
of the problem for t < ∞ and a (multiplicative) Brownian motion of prices is described in
Sect. 11.20: it leads to a free boundary problem for the heat equation, the free boundary being
a solution of an unfortunately intractable integral equation due to I. I. Kolodner [19].

An unsolved problem is to find a nice condition on the prices that will make h−(c) = the
left slope at the corner be 1, as in the Brownian case of Sect. 11.20. h−(c) ≤ 1 is automatic.
Samuelson has conjectured that this will be the case if Q = P1[x(t) ≤ 1, t ↓ 0] = 0 [the
alternative is Q = 1], but I could not prove it in general. Another inviting unsolved problem
is presented by the integral equation for the free boundary of Sect. 11.20.

I must not end without thanking Professor Samuelson for posing me this problem and
for several helpful conversations about it.

4The partial support of the Office of Naval Research and of the National Science Foundation, NSF G-19684,

is gratefully acknowledged.
5Samuelson’s notation for this is F (X, T ).
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11.16. Perpetual Warrants

Consider a (multiplicative) differential process with sample paths t → x(t) = x(t+) ≥ 0,
probabilities P1(B), and expectations E1(f) for paths starting at x(0) = 1, i.e., let P1[x(0) =
1] = 1 and, conditional on x(t1) > 0, let x(t2)/x(t1) be independent of x(s) : s ≤ t1 and
identical in law to x(t2 − t1) for each choice of t2 ≥ t1 ≥ 0. Pa(B) and Ea(f) denote proba-
bilities and expectations for the motion starting at x(0) = a ≥ 0; this motion is identical in
law to [ax, P1]; esp., P0[x(t) = 0, t ≥ 0] = 1 and Pa[x(t) < b] = P1[x(t) < b/a] for b, a > 0.
[x, P ] begins afresh at stopping times. A stopping time is a non-negative function T ≤ ∞ of
the sample path, such as T = 1 or the exit time T = inf(t : x(t) > 1), such that for each t ≥ 0
the event (T < t) depends upon x(s) : s ≤ t alone. Beginning afresh means that if BT is the
field of events B such that B ∩ (T < t) is measurable over x(s) : s ≤ t, then conditional on
the present a = x(T ) and on the event T < ∞, the future x(t + T ) : t ≥ 0 is independent of
the past BT = the field of x(t) : t ≤ T , and identical in law to [x, Pa]:

P•
[
x(t+ T )ε db | BT

]
= Pa

[
x(t)ε db

]
if T < ∞;

see G. Hunt [15] for a complete explanation of stopping times for (additive) differential pro-
cesses.

E1[x(t)] = f(t) is a solution of f(t−s)f(s) = f(t) (s ≤ t) and 0 < f ≤ ∞, so E1(x) = eαt

for some −∞ < α ≤ ∞. P1[x = 1, t ≥ 0] = 0 or 1 because P1[x(s) = 1, s ≤ t] = f(t) is a
solution of f(t− s)f(s) = f(t) (s ≤ t) and 0 ≤ f ≤ 1, so that f = e−γt for some 0 ≤ γ ≤ ∞
and f(∞) = 0 or 1 according as γ > 0 or not. P1[x = 1, t ≥ 0] = 0 is assumed below.

A non-negative function f(x) 	≡ ∞ defined on [0,∞) is (β) excessive if e−βtE•[f(x)] ↑ f
as t ↓ 0; in this language the problem of the perpetual warrant is to find the smallest excessive
function h ≥ (ξ − 1)+ in case ∞ ≥ β ≥ α ≥ 0. h is constructed and its simplest properties
derived in a series of brief articles.

1. Define h0 = (ξ − 1)+ and hn = supt≥0 e
−βt Eξ[h

n−1(x)] for n ≥ 1; then (ξ − 1)+ ≤
hn ↑ h ≤ ξ as n ↑ ∞.

Proof. hn−1(ξ) ≤ hn(ξ) = supt≥0 e
−βtEξ[h

n−1(x)] ≤ supt≥0 e
−βtEξ(x) =

supt≥0 e
−βteαtξ = ξ if hn−1 ≤ ξ, and the obvious induction completes the proof. �

2. h is increasing, convex (and so continuous), and its slope is ≤ 1.

Proof. hn(ξ) = supt≥0 e
−βtEt[h

n−1(ξx)] inherits all the desired properties from hn−1;
now use induction and let n ↑ ∞. �

3. h is the smallest excessive function ≥ (ξ − 1)+.

Proof. e−βtE•[h(x)] ≤ h is obvious from 1. Then the differential character of x(t) shows
that the left side decreases as t increases, and since h ∈ C[0,∞) (2), an application of Fatou’s
lemma implies limt↓0 e−βtE•[h(x)] ≥ E•[lim inf h(x)] = h, completing the proof that h is
excessive. Also, h ≥ (ξ − 1)+, and if j is another such excessive function, then the obvious
induction supplies us with the underestimate j ≥ hn ↑ h(n ↑ ∞). �

4. h = (ξ − 1)+ to the right of some point 1 < c ≤ ∞. h > (ξ − 1)+ to the left.

Proof. Given s ≤ t and a, b > 0,

P1

[
x(t) ≥ ab

] ≥ P1

[
x(s) ≥ a, x(t)/x(s) ≥ b

]
= P1

[
x(s) ≥ a

]
P1

[
x(t− s) ≥ b

]

so that P1[x(nt) ≥ dn] ≥ P1[x(t) ≥ d]n, and either P1[x ≤ 1] ≡ 1 (t ≥ 0) violating P1[x =
1, t ≥ 0] = 0 (use E1(x) ≥ 1) or P1[x(nt) ≥ dn] > 0 for some t > 0, d > 1, and each n ≥ 1.
But in the second case, h(ξ) ≥ e−βnt · Eξ[(x(nt) − 1)+] � e−βnt(ξdn − 1)+P1[x(nt) > dn] is
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positive for large n and either h(ξ) > (ξ − 1)t always c = d or else h(ξ) > (ξ − 1)+ for ξ � 1,
h(ξ) > ξ − 1 has a first root 1 < c < ∞, and agrees with ξ − 1 to the right, by 2. �

5. h ≡ ξ if β = α ≥ 0.

Proof. ξ ≥ h ≥ e−βtEξ[x−1] = ξ(1−e−βt) ↑ ξ as t ↑ ∞ if β = α > 0, while if β = α = 0,
then Eξ[(x − 1)+] ≥ (ξ − 1)+ from which it is easy to see that h = limt↑∞ E•[(x − 1)+] =
E•[h(x)]. Because h is convex (2), its 1-sided slope h+ is an increasing function,

h(ξ) = h(1) + (ξ − 1)h+(1) +

∫ ξ

1

[
h+(η) − h∗(1)

]
dη,

and putting ξ = x and taking expectations (E1) on both sides, it follows that h+(ξ) = h+(1)
between 0 < a < 1 and b > 1 if 0 < P1[x ≤ a]P1[x ≥ b] for some t > 0. But P1[x(nt) ≥ dn] > 0
for some t > 0, d > 1, and each n ≥ 1 as in 4, and using the same method, it is also possible to
make P1[x(nt) ≤ d−n] > 0 for the same t > 0, some (perhaps smaller) d > 1, and each n ≥ 1
(use E1(x) = 1). h+ ≡ h+(1) is immediate and h ≡ ξ follows from the bounds ξ − 1 ≤ h ≤ ξ
and the fact that h(0+) = 0. �

Warning: β > α ≥ 0 until the end of the next section.

6. Given a closed interval 0 < a ≤ ξ ≤ b < ∞ with exit time T = Tab ≡ inf(t : x <
a or x > b) and exit place X = x(T ), P•[T < ∞] ≡ 1 and j = jab ≡ E•[e−βTh(X)]
lies under h.

Proof. Adapted from E. B. Dynkin [8]; P•[T < ∞] ≡ 1 since in the opposite case,
0 < p(ξ) = Pξ[a ≤ x ≤ b, t ≥ 0] for some a ≤ ξ ≤ b, and putting pab = supab p(ξ), the
bound p(ξ) ≤ pabPξ[a ≤ x ≤ b, t ≤ n] decreases to pabp(ξ) as n ↑ ∞, proving pab = 1. But
pab = supab P1[a/ξ ≤ x ≤ b/ξ, t ≥ 0] ≤ P1[a/b ≤ x ≤ b/a, t ≥ 0], and this cannot be 1
without violating the estimate P1[x(nt) ≥ dn] > 0 of 4. Define Gγf = E•[

∫∞
0

e−γtf(x)dt] for
non-negative f and γ ≥ 0. Gγh ≡ u < ∞ if γ ≥ β and Gγ = Gβ [1 + (β − γ)Gγ ], so that if
v = h+ (β − γ)u, then u = Gβv = E•[

∫∞
0 e−βtv(x)dt].

Because h is excessive and β − γ ≤ 0, v ≥ h+ (β − γ)
∫∞
0

e−γtdteβth = 0; it follows that

u ≥ E•

[ ∫ ∞

T

e−βtv(x)dt

]
= E•

[
e−βT

∫ ∞

0

e−βtv
[
x(t+ T )

]
dt

]
,

and since x begins afresh at the stopping time T while T itself is measurable over BT ,

u ≥ E•
[
e−βTGβv(X)

]
= E•

[
e−βTu(X)

]

with X = x(T ). Now use the fact that (γ − β)u ↑ h as γ ↑ ∞. �

7. j is excessive.

Proof. Because x begins afresh at time t ≥ 0,

e−βtE•
[
j(x)

]
= E•

[
e−βT◦

h
(
X◦)] ≡ j◦

with T ◦ defined as the next exit time from a ≤ ξ ≤ b after time t and X◦ = x(T ◦). Using the
notation and method of proof of 6,

E•
[
e−βT◦

u
(
X◦)] = E•

[ ∫ ∞

T◦
e−βtv(x)dt

]

≤ E•

[ ∫ ∞

T

e−βtv(x)dt

]
= E•

[
e−βTu(X)

]
,
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and since (γ − β)u ↑ h as γ ↑ ∞, it follows that j◦ ≤ j. But also T ◦ ↓ T as t ↓ 0 and
x(t+) = x(t), so Fatou’s lemma implies

lim
t↓0

j◦ ≥ E•
[
lim inf e−βT◦

h
(
X◦)] = j,

completing the proof. �

8. c < ∞ and E•[e−βTh(X)] ≡ h with T = min(t : x ≥ c), X = x(T ), and e−βTh(X) ≡
0 if T = ∞, in case P1[tab ↓ 0 as a ↑ 1 and b ↓ 1] = 1.

Proof. Define for the moment T = Tab and X = x(Tab). Because x is differential and
h > (ξ − 1)+ near ξ = 1, it is possible to choose a < 1 < b so as to make jab ≥ (ξ − 1)+. But
jab ≤ h is excessive while h is the smallest excessive function ≥ (ξ − 1)+, so jab ≡ h for this
choice of a < 1 < b. Given 2 overlapping closed intervals a1 ≤ ξ ≤ b1 and a2 ≤ ξ ≤ b2 with
0 < a = a1 < a2 < b1 < b2 ≡ b < ∞ and corresponding functions j ≡ h, it is to be proved
that jab ≡ h also. Consider for the proof paths starting at a1 ≤ x(0) = ξ ≤ b1 and define
stopping times

T1 = the exit time from a1b1,

T2 = T1 or the next exit time from a2b2 according as T1 = Tab or not,

T3 = T2 or the next exit time from a1b1 according as T2 = Tab or not,

etc.

T1 ≤ T2 ≤ etc. ≤ Tn is constant (= T = Tab) from some smallest n = m on, and putting
Xn = x(Tn) for n ≤ m and X = x(T ), a simple induction justifies

h(ξ)=Eξ

[
e−βTnh

(
Xn

)]
=Eξ

[
e−βTnh(Xn), n ≥ m

]
+ Eξ

[
e−βTnh

(
Xn

)
, n < m

]
.

As n ↑ ∞, this tends to jab since Pξ[m < ∞] = 1 while h(Xn) ≤ b < ∞ on (n < m). jab ≡ h
follows at once. Now choose 0 < a < 1 < b < c so that jab = h. Repeating the first part of
the proof, it is clear that the function j associated with a small neighborhood of b is identical
to h, and using the second part, it follows that jab ≡ h for a little bigger b. Because a can be
diminished for the same reason, it is clear that if 0 < b < c (or if b = c in ease c < ∞), then
it is possible to find closed intervals 0 < an ≤ ξ ≤ bn ≤ b increasing to 0 < ξ < b with jn ≡ h.
But for paths starting at 0 ≤ x(0) = ξ ≤ b and n ↑ ∞, the exit times Tn from an ≤ ξ ≤ bn
increase to the exit time T = min(t : x = 0 or x ≥ b) while Xn = x(Tn) tends to X = x(T )
(see G. Hunt [15]), so

h(ξ) = lim
n↑∞

jn(ξ) = lim
n↑∞

Eξ

[
e−βTnh

(
Xn

)]
= Eξ

[
e−βTh(X)

]

because of the bound

e−βTnh
(
Xn

)
= e−βTh(X) if Xn ≥ b

< b if Xn < b,

and to complete the proof, it suffices to replace T by T = min(t : x ≥ b) and to prove c < ∞.
As to T , the replacement is obvious since h(0) = 0. As to the proof that c < ∞, if c = ∞,
then h = E•[e−βTnh(Xn)] with Tn = inf(t : x > n) and Xn = x(Tn). Because

ξ − 1 ≤ h(ξ) ≤ Eξ

[
eβTnx

(
Tn

)]
= E1

[
e−βTn/ξξx

(
Tn/ξ

)]

for n > ξ, 1 ≤ E1[e
−βT2x(T2)] as follows on putting n/ξ = 2 and letting n ↑ ∞. Because β > α,

E1[e
−βT2x(T2)] < E1[e

−αT2x(T2)], and adapting the proof of 6 to the (α) excessive function
f ≡ ξ, one finds Eξ[e

−αT2x(T2)] ≤ ξ. But this leads to a contradiction: 1 < E1[e
−αT2x(T2)] ≤

1. �
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9. c < ∞ and E•[e−βTh(X)] ≡ h with T = min(t : x ≥ c) and X = x(T ) in general.

Proof. 8 covers the case P1[tab ↓ 0 as a ↑ 1 and b ↓ 1] = 1; otherwise,

P1

⎡

⎣lim
a↑1
b↓1

tab > 0

⎤

⎦ = 1

according to Kolmogorov’s 01 law, so the particle moves by jumps with exponential holding
times between. Consider the modified motion x◦ = eεtx with so small a positive ε that
β > α◦ ≡ α + ε and let h◦ and c◦ be the analogues of h and c. Because e−βtE•[h◦(x)] ≤
e−βtE•[h◦(x◦)] ≤ h◦, it is clear that h◦ ≥ h and c◦ ≥ c. As ε ↓ 0, h◦ ↓ j ≥ h and c◦ decreases

to some number b ≥ c. Because x◦ satisfies the conditions of 8, h◦ = E•[e−βT◦
h◦(X◦)] with

T ◦ = min(t : x◦ ≥ b) and X◦ = x◦(T ◦). Now an unmodified path starting at x(0) = ξ < b
jumps out of [0, b) landing at X ≥ b; this means that T ◦ = T and X◦ = eεTX for some

ε < β, so e−βT◦
h◦(X◦) ↓ e−βT j(X) as ε ↓ 0 for a class of paths with as large a probability

as desired, while on the complement of this class (T ◦ < T ), e−βT◦
h◦(X◦) ≤ e−βT◦

eεT
◦
b ≤ b.

Because h = j = ξ − 1 (ξ ≥ b) and x ≥ b, it follows that

j(ξ) = lim
ε↓0

Eξ

[
e−βT◦

h◦(X◦)] = Eξ

[
e−βT j(x)

]
= Eξ

[
e−βTh(X)

] ≤ h

for ξ < b, i.e., j ≡ h, and since b ≥ c, the result follows after a moment’s reflection. �

Summing up: if β = α ≥ 0, then h ≡ ξ, while if β > α ≥ 0, then h is convex with slope
0 ≤ h+ ≤ 1, h > (ξ − 1)+ to the left of some point 1 < c < ∞, h ≡ ξ − 1 to the right of c,
and h = E•[e−βTh(X)] with T = min(t : x ≥ c), X = x(T ), and the usual e−βTh(X) ≡ 0 if
T = ∞.

11.17. Two Examples

Consider the multiplicative Brownian motion with drift x(t) = exp[σb + δt] with σ > 0,
b = b(t) a standard (additive) Brownian motion, and −∞ < δ < ∞·E1(x) = exp[σ2/2+δt] so
α = σ2/2 + δ. Because h = E•[e−βTh(X)] with T = min(t : x = c), it follows from a formula
of E. B. Dynkin [7] that if G is the generator of [x, P·]:

Gf(ξ) =
(
σ2/2

)
ξ2f ′′(ξ) +

(
σ2/2 + δ

)
ξf ′(ξ),

then Gh = βh to the left of c. Now solve for h = (c− 1)(ξ/c)γ with an adjustable γ and find
(σ2/2)γ2 + δγ − β = 0, or, what is the same,

γ = −δ/σ2 +
√
2β/σ2 + δ2/σt > 1

(the negative radical is excluded). Besides the above formula for h, the solution requires
us to locate the corner c. Consider for this purpose G expressed in terms of the new scale

ds = ξ−1−2δ/σ2

dξ and the so-called speed measure m(dξ) = 2σ−2ξ−1+2δ/σ2

dξ: Gf = df+/dm
with f+ computed relative to the new scale.

In this language, the fact that h is excessive is expressed by dh+ − βh dm ≤ 0 and
computing the mass that this distribution attributes to the corner c, you find the old left
slope h−(c) = (c− 1)γ/c matches the old right slope h+(c) = 1, which is to say c = γ/(γ− 1).
The reader can easily compute all desired probabilities for this Brownian model with the help
of the formulas:

Pξ

[
x(t) ∈ dη

]
=

(
2πσ2t

)−1/2
e−(lg η/ξ−δt)2/2σ2t dη/η,

Pξ[T ∈ dt] =
(
2πσ6t3

)−1/2
(ξ/c)−δ/σ2

e−δ2t/2σ2

lg(ξ/c)e−(lg ξ/c)2/2σ2tσ2dt,
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and

Pξ

[
x(t)ε dη, t < T

]
= Pξ

[
x(t)ε dη

]

− (η/ξ)δ/σ
2

e−δ2t/2σ2(
2πσ2t

)−1/2
e−(lg ξη/c2)2/2σ2t dη/η;

in the first formula t, ξ, η > 0, while in the second and third, t > 0, 0 < ξ, η < c.
Consider as a second example, the (multiplicative) Poisson process x(t) = exp[p(σt)]

in which p is a standard (additive) Poisson process with jump size 1 and unit rate, i.e.,
P [p(t) − p(0) = n] = tne−t/n!. E1(x) = exp[σ(e − 1)t] so α = σ(e − 1). Given c/e ≤ ξ < c
with exit time T = inf(t : x 	= ξ) and exit place X = x(T ) = eξ ≥ c,

h(ξ) = Eξ

[
e−βTh(X)

]
=

∫ ∞

0

σe−σtdte−βth(eξ) =
h(eξ)

1 + β/σ
,

esp., h(ξ) = (eξ − 1)(1 + β/σ)−1 for c/e ≤ ξ < c, and letting ξ ↑ c and solving for c,
one finds c = (1 − α/β)−1. h itself is a broken line with corners at e−nc (n ≥ 0), esp.
h+(c) = 1 > h−(c) = (σ + α)(σ + β)−1.

11.18. General Warrants

Now the problem is to find the smallest excessive function h ≥ (ξ − 1)+ for the stopped
space-time motion

z(s) =
[
t− s, x(s)

]
(s ≤ t)

=
[
0, x(t)

]
(s > t),

i.e., the smallest function h(t, ξ) ≥ (ξ − 1)+ such that e−βtEξ[h(t− s, x(s))] ↑ h(t, ξ) as s ↓ 0
for each (t, ξ)ε[0,∞)× [0,∞).

1. Define h0 = (ξ − 1)+ and hn = sups≤t e
−βsE•[hn−1(t − s, x(s))] for n ≥ 1; then

(ξ − 1)+ ≤ hn ↑ h ≤ ξ as n ↑ ∞.

Proof. As before. �

2. h is a convex function of ξ ≥ 0 with slope 0 ≤ h+ ≤ 1.

Proof. As before. �

3. h is an increasing function of t ≥ 0,

Proof. h0 is independent of t ≥ 0, and

hn
(
t2, ξ

)
= sup

s≤t2

e−βsEξ

[
hn−1

(
t2 − s, x(s)

)]

≥ sup
s≤t1

e−βsEξ

[
hn−1

(
t1 − s, x(s)

)]
= hn

(
t1, ξ

)

if hn−1 is an increasing function of t ≥ 0; now use induction and let n ↑ ∞. �

4. h is the smallest (space-time) excessive function ≥ (ξ − 1)+; it is continuous from
below as function of t > 0.

Proof. h ≥ e−βsE•[h(t− s, x(s))] (s ≤ t) is obvious. Now

lim
s↓0

e−βsEξ

[
h
(
t− s, x(s)

)] ≥ h(t−, ξ) ≥ (ξ − 1)+ for t > 0,
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and since

j = (ξ − 1)+ (t = 0)

= h(t−, ξ) (t > 0)

is a (space-time) excessive function ≥ (ξ − 1)+, it is enough to prove that h is the smallest
solution ≥ (ξ − 1)+ of j ≥ e−βsE•[j(t− s, x(s))]. But this is obvious. �

5.

h(0+, ξ) = lim
t↓0

h(t, ξ) = (ξ − 1)+.

Proof. k(t, ξ) = Eξ[(x(t)−1)+] ≥ (ξ−1)+, and since k = E•[k(t−s, x(s))], e−βsE•[k(t−
s, x(s))] increases to k as s ↓ 0, proving k ≥ h. Now as t ↓ 0,

k(t, ξ) = eαtξ − 1 + Eξ

[
1− x(t), x(t) < 1

]

tends to ξ − 1 if ξ > 1. But 0 ≤ k(0+, ξ) = limt↓0 E1[(ξx − 1)+] is increasing, so the proof is
complete. �

6. h(∞, ξ) = limt↑∞ h(t, ξ) coincides with the perpetual warrant.

Proof. h(∞, ξ) is continuous (its slope falls between 0 and 1), so e−βsEξ[h(∞, x(s))] ≤
h(∞, ξ) increases to h(∞, ξ) as s ↓ 0 i.e., h(∞, ξ) is excessive; that it is the smallest excessive
function ≥ (ξ − 1)+ is obvious. �

7. h ≡ ξ − 1 to the right of some point 1 < c = c(t) < ∞ for 0 ≤ t ≤ ∞. c is
increasing, c(t−) = c(t), and c(∞) < ∞. h > (ξ − 1)+ between c and d = d(t) < 1.
d is decreasing, d(t−) = d(t), and d(∞) = 0. h ≡ 0 to the left of d. d = e−t > 0 if
x(t) = et. d ≡ 0 if x(t) is a multiplicative Brownian motion.

Proof. Use the information above and c(∞) < ∞ (2.9). �

8. h(t, ξ) = Eξ[e
−βTh(t− T,X)] if T is the (space-time) exit time from the region

R : 0 < s ≤ t, 0 < ξ < c(s)

and X = x(T ) is the exit place; see Fig. 11.5 for R and t.

Proof. As before with some (mild) technical complications. �

t

R
z

c = c(t)
ξ = x(0)

ξ

Figure 11.5
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11.19. General Warrant for a Multiplicative Translation with Absorbtion

Consider the motion of translation x(t) = ξ exp[(α+ δ)t] with absorbtion at a rate δ ≥ 0,
i.e., let

P1

[
x = ξe(α+δ)t

]
= e−δt = 1− P1[x = 0],

and let us prove that

h(t, ξ) = e−(β+δ)t
[
ξe(α+δ)t − 1

]+
when ξ ≤ ce−(α+δ)t

= (ξ/c)γ(c− 1) when ce−(α+δ)t ≤ ξ ≤ c

with γ = (β + δ)(α+ δ)−1 and c ≡ c(∞) = γ(γ − 1)−1.
Point 9 in Sect. 11.16 implies that the perpetual warrant is a solution of

e−(β+δ)th
[
ξe(α+δ)t

]
= e−βtEξ

[
h(x)

]
= h(ξ)

for t ≥ 0 and ξ exp[(α + δ)t] ≤ c, or, and this is the same, a solution of

Gh(ξ) = ξ(α+ δ)h′(ξ)− δh(ξ) = βh(ξ) (ξ < c).

Now solve and find h(ξ) = (ξ/c)γ(c − 1) with γ = (β + δ)(α + δ)−1 and an unknown corner
c ≥ 1. Because h−(c) ≤ 1, (γ/c)(c− 1) ≤ 1, while from the fact that h is excessive, it follows
that

e−(β+δ)t
[
ξe(α+δ)t − 1

]
= e−βtEξ

[
h(x)

] ≤ h(ξ) = ξ − 1 (ξ ≥ c),

and this cannot hold for ξ = c and t ↓ 0 unless (γ/c)(c− 1) ≥ 1, i.e., unless c = γ(γ − 1)−1 =
(β + δ)(β − α)−1.

As to the general warrant, if ξ ≥ c(t), then

e−(β+δ)s
[
ξe(α+δ)s − 1

]
= e−βsEξ

[
h
(
t− s, x(s)

)] ≤ h(t, ξ) = ξ − 1,

and solving for ξ = c(t), one finds c(t) ≥ γ(γ − 1)−1 = c = c(∞), i.e., c(t) ≡ c(∞). Now if
c exp[−(α+ δ)t] ≤ ξ ≤ c and if s ≤ t is chosen so that ξ exp[(α+ δ)s] = c, then

h(∞, ξ) ≥ h(t, ξ) ≥ e−βsEξ

[
h
(
t− s, x(s)

)]

= e−(β+δ)sh
[
t− s, e(α+δ)s

]
= e−(β+δ)s(c− 1) = (ξ/c)γ(c− 1),

so that h(t, ξ) = (ξ/c)γ(c− 1), while if ξ ≤ c exp[−(α+ δ)t], then in view of 4.8,

h(t, ξ) = e−βsEξ

[
h
(
t− s, x(s)

)]
= e−(β+δ)sh

(
t− s, ξe(α+δ)s

)

= e−(β+δ)th(0+, ξe(α+δ)t) (s = t−)

= e−(β+δ)t
[
ξe(α+δ)t − 1

]+
,

as stated. Note that h+(t, ξ) jumps at ξ = exp[−(α+ δ)t] but not at ξ = c.

11.20. General Warrant for a Multiplicative Brownian Motion with Drift

Now let us compute as far as possible the general warrant for the multiplicative Brownian
motion x(t) = exp[σb + δt] of Sect. 11.17, granting that c and the left slope h−(t, c) are
continuous, that c(0+) = 1, and that c has a continuous slope c• for t > 0, consider

Gf(ξ) =
(
σ2/2

)
ξ2f ′′(ξ) +

(
σ2/2 + δ

)
ξf ′(ξ) = fφ(dξ)/c(dξ)
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as in 3 and let us prove that h is a solution of the free boundary problem:

(G− ∂/∂t)h = βh on the region R : t > 0, 0 < ξ < c(t)

h(t, 0+) = 0 (t > 0)

h(0+, ξ) = 0 (ξ ≤ 1)

h(t, c−) = c− 1 (t > 0)

h−(t, c) = 1 (t > 0).

R (or, what is the same, the free boundary c) is unknown, and it is the extra (flux) condition
h− = 1 that makes it possible to solve for both R and h. Point 8 in Sect. 11.18 implies
the partial differential equation, and the evaluations of h on the three sides of ∂R follow
from points 1, 5, and 7 in Sect. 11.17. As to the flux condition h−(t, c) = 1, recall how G
was expressed in Sect. 11.17: Gf = df+/dm with slope f+ taken relative to the new scale
ds = ξ−γ dξ (γ = 1+2δ/σ2) and dm = ξγ−2dξ. In this language dht/dm− βh ≤ ∂h/∂t is the
(formal) expression of the fact that h is (space-time) excessive. Note that h is still increasing
and even convex in the new scale since h+ (new) = ξγh+ (old) and γ > 1. Now integrate as
follows:

∫ k
n

k−1
n

[
h+

(
t, c(t)

)− h−(t, c(t)
)]

dt

≤
∫ k

n

k−1
n

[
h+

(
t, c

(
k

n

))
− h−

(
t, c

(
k − 1

n

))]
dt

=

∫ k
n

k−1
n

dt

∫ c( k
n )+

c( k−1
n )−

dh+

≤
∫ k

n

k−1
n

dt

∫ c( k
n )+

c( k−1
n )−

[
∂h

∂t
+ βh

]
dm

=

∫ c( k
n )

c( k−1
n )

dm

[

h

(
k

n
, ξ

)
− h

(
k − 1

n
, ξ

)
+ β

∫ k
n

k−1
n

h(t, ξ) dt

]

≤
∫ c( k

n )

c( k−1
n )

dm

[

h

(
k

n
, c

(
k

n

))
− h

(
k − 1

n
, c

(
k

n

))
+ β

∫ k
n

k−1
n

h(t, ξ) dt

]

=

∫ c( k
n )

c( k−1
n )

[
c

(
k

n

)
− c

(
k − 1

n

)
+O

(
1

n

)]
dm

= O

(
1

n

)

under the assumptions on c(t). But in the old scale (ξ), the first integral is just

∫ k
n

k−1
n

cγ
[
1− h−(t, c)

]

and the flux condition h−(t, c) = 1 follows.
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Now transform the free boundary problem by the substitution h = e−βtw(t, σ−1[lg ξ+δt]):

∂w

∂t
=

1

2

∂2w

∂ξ2
on the region: t > 0, −∞ < ξ < b(t) ≡ σ−1[lg c+ δt]

w(t,−∞) = 0 (t > 0)

w(0+, ξ) = 0 (ξ ≤ 0)

w(t, b) = eβt(c− 1) (t > 0)

w−(t, b) = eβtδc (t > 0).

Because

w(t, ξ) ≤ eβth
(∞, cσξ−δt

)
= eβt

[
c(∞)− 1

]
c(∞)−γeγ[σξ−δt]

to the left of ξ = b, it is legitimate to take a Fourier transform ŵ(t, η) =
∫ b

−∞ eiξηw(t, ξ)dξ.

c(0+) = 1 implies ŵ(0+, ·) ≡ 0; this leads at once to

ŵ(t, η) =

∫ t

0

e−η(t−s)/2eβseiηb(s)
[
c(s)

2
+

(•
b(s)− iη

2

)
(
c(s)− 1

)
]
ds,

or, what is the same,

∫ t

0

e−[ξ+b(t)−b(s)]2/2(t−s)

√
2π(t− s)

eβs
[
c

2
+

[•
b(s)− ξ + b(t)− b(s)

2(t− s)

]
(c(s)− 1)

]
ds

= w
(
t, ξ + b(t)

)
(ξ < 0)

= 0 (ξ > 0),

and from this it is possible to deduce an infinite series of integral equations for the free
boundary c by (a) evaluation at ξ = 0+, (b) evaluation of the slope at ξ = 0+, etc.:

(a)
c− 1

2
=

∫ t

0

e−[b(t)−b(s)]2/2(t−s)

√
2π(t− s)

e−β(t−s)

[
c

2
+

[•
b(s)− b(t)−b(s)

2(t−s)

]
(c−1)

]
ds,

(b)
c

2
=

∫ t

0

e−[b(t)−b(s)]2/2(t−s)
√
2π(t− s)

e−β(t−s)

[•
b(s) + β(c(s) − 1)− b(t)− b(s)

2(t− s)
c(s)

]
ds,

etc.
I. I. Kolodner [19] treated such free boundary problems and derived (a) and (b) by

a more complicated method. Unfortunately, it is not possible to obtain explicit solutions,
though machine computation should be feasible; as a matter of fact, even the existence and
uniqueness of solutions is still unproved.

Henry P. McKean, Jr., Ph.D., Professor of Mathematics, Massachusetts Institute of Tech-
nology. Author of “Diffusion Processes and Their Sample Paths” (with K. Itô), Grundlehren
der Math. Wiss. 125, Berlin, 1965; and other papers.
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[22] P. Lévy. Calcul des probabilitès. Librarie du Bureau des Longitudes de l’Ecole Polytech-
nique, Paris, 1925.



232 11. RATIONAL THEORY OF WARRANT PRICING

[23] B. Mandelbrot. The variation of certain speculative prices. Journal of Business, 36:394–
419, 1963.

[24] B. Mandelbrot. The variation of certain speculative prices. In P. Cootner, editor, The
Random Character of Stock Market Prices, pages 307–332. MIT Press, Cambridge, 1964.

[25] M. F. M. Osborne. Brownian motion in the stock market. Operations Res., 7:145–173,
1959.

[26] M. F. M. Osborne. Brownian motion in the stock market. In P. Cootner, editor, The
Random Character of Stock Market Prices, pages 100–128. MIT Press, Cambridge, 1964.

[27] C. M. Sprenkle. Warrant prices as indicators of expectations and preferences. Yale
Economic Essays, 1:178–231, 1961.


