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This report presents research-backed guidelines for 
creating powerful and intuitive visualizations oriented 
toward communicating data to students, coworkers, 
and the general public. We begin by reviewing guide-
lines for helping viewers extract data from visualiza-
tions in precise and unbiased ways, avoiding a set of 
known illusions and distortions. We then describe 
when visual processing of visualizations is powerful 
(processing broad statistics) versus where it slows to 
a crawl (making individual comparisons), and we pro-
vide a tool kit for avoiding that slowdown. We review 
guidelines for ensuring that a viewer properly maps 
visualized values to the right concepts in the world 
(e.g., viewers can extract the size of an error bar on a 
graph, but do they understand what it means?), allow-
ing viewers to use visualizations as effective tools for 
reasoning. We then review guidelines for conveying 
uncertainty and risk (e.g., how could a physician 
express survival odds for a treatment to a patient?). 
Finally, we summarize a set of guidelines for creating 

visualizations that communicate clearly and suggest 
resources for readers interested in learning more.

Data visualizations range from simple graphs in ele-
mentary school classrooms, to depictions of uncertainty 
in election forecasts in news media, to complex data 
displays used by scientists and analysts. When designed 
effectively, these displays leverage the human visual 
system’s massive processing power, allowing rapid for-
aging through patterns in data and intuitive communi-
cation of those patterns to other viewers. But when 
designed ineffectively, these displays leave critical pat-
terns opaque or leave viewers confused about how to 
navigate unfamiliar displays.

We review methods, empirical findings, theories, and 
prescriptions across the fields of visual perception, 
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Abstract
Effectively designed data visualizations allow viewers to use their powerful visual systems to understand patterns in 
data across science, education, health, and public policy. But ineffectively designed visualizations can cause confusion, 
misunderstanding, or even distrust—especially among viewers with low graphical literacy. We review research-
backed guidelines for creating effective and intuitive visualizations oriented toward communicating data to students, 
coworkers, and the general public. We describe how the visual system can quickly extract broad statistics from a 
display, whereas poorly designed displays can lead to misperceptions and illusions. Extracting global statistics is fast, 
but comparing between subsets of values is slow. Effective graphics avoid taxing working memory, guide attention, 
and respect familiar conventions. Data visualizations can play a critical role in teaching and communication, provided 
that designers tailor those visualizations to their audience.
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graph comprehension, information visualization, data-
based reasoning, uncertainty representation, and health 
risk communication. These research communities study 
similar questions and use complementary expertise and 
styles of inquiry, yet they too rarely connect. We ignore 
artificial boundaries among these research fields, and 
instead integrate across them.

The Importance of Visualization 
Design and Literacy

Thinking and communicating with data visualizations is 
critical for an educated public (Börner et al., 2019). Sci-
ence education standards require students to use visu-
alizations to understand relationships, to reason about 
scientific models, and to communicate data to others 
(National Governors Association Center for Best Prac-
tices and Council of Chief State School Officers, 2010; 
National Research Council, 2013). Evidence-based public 
policy prescriptions about climate change, vaccines,  
and policing are argued to be most effectively built 
(Kohlhammer et  al., 2012) and communicated to the 
public (Otten et al., 2015) with visualizations. Journalists 
at The New York Times Upshot, FiveThirtyEight, The Econ-

omist, and The Washington Post use visualizations to 
communicate data and evidence about statistics and 
policy. Data visualizations are ubiquitous in the work-
place—in data-analysis software, in data-overview dash-
boards, and in millions of slide presentations created each 
day (Berinato, 2016; Parker, 2001). Physicians rely on 
them to show data about the risks of medical procedures, 
and meteorologists use them to show the uncertainty in 
a hurricane’s potential path (Ancker et al., 2006; Ruginski 
et al., 2016).

In each of these domains, low graphical literacy and 
ineffective design lead many viewers to struggle to 
understand these otherwise powerful thinking tools. 
Many students can find textbook visualizations too 
challenging to understand or integrate with nearby text 
(Nistal et al., 2009; Shah & Hoeffner, 2002). Public pol-
icy visualizations can be counterintuitively designed, 
leading many viewers to draw a conclusion opposite 
the one suggested by the depicted data (Engel, 2014). 
Dozens of best-selling guides have decried the state of 
visualizations in the workplace and offered prescrip-
tions for more powerful, clear, and persuasive graphs 
(see the Recommended Practitioner Books section at 
the end of this article and Ajani et al., 2021, for a more 
exhaustive list). Medical-risk visualizations can lead 
patients to fundamentally misunderstand the base rates 
or risk factors for diseases or medical procedures 
(Ancker et al., 2006). When a prediction has a high level 
of uncertainty that is not intuitively conveyed, the pub-
lic can lose trust in scientists and analysts. For example, 

when a hurricane’s path deviates somewhat from the 
most likely trajectory, or when a politician with a 20% 
predicted chance to win an election prevails, these 
outcomes may be consistent with the uncertainty inher-
ent to the predictions. But if the forecaster does not 
effectively visually communicate that uncertainty, their 
reputation can suffer when their prediction is “wrong” 
(Padilla et al., 2021).

Who Studies the Design and 
Comprehension of Visualizations?

Research on the design and pedagogy of data visualiza-
tions takes place in several communities. A psychologist 
focusing on perception might study the mapping 
between a color value in a heat map and the abstract 
magnitude that an observer extracts from it (Stevens, 
1957). A cognitive psychologist might explore how work-
ing memory limits the complexity of the statistical rela-
tionships that a viewer might extract (Halford et al., 2007; 
Padilla et al., 2018). An education researcher might try 
to remove roadblocks for students struggling to translate 
visual depictions to their underlying concepts (Börner 
& Polley, 2014; Shah & Hoeffner, 2002) or seek multime-
dia design principles for designing effective graphics and 
integrating them with text (e.g., Mayer & Fiorella, in 
press). Researchers in public policy communication or 
political science might study why viewers find some 
visualizations to be more trustworthy or persuasive than 
others (Nyhan & Reifler, 2019). Health communication 
researchers evaluate how to effectively communicate the 
risk of a medical procedure to patients with low numer-

acy (i.e., ability to work with numbers and mathematics; 
Ancker et al., 2006). Specialists in statistical cognition 
and communication seek ways to communicate uncer-
tainty across election outcomes, bus arrival times, and 
hurricane paths (Hullman, 2019). Finally, a research com-
munity housed in computer and information sciences 
studies data visualization at multiple levels, from data 
types and algorithms to the creation of user task taxono-
mies, to design prescriptions for visually powerful dis-
plays and fluid interaction (Munzner, 2014).

In this article, we also draw advice from communities 
of practitioners who might not engage in empirical 
research but use extensive in-context experience to 
generate prescriptions for powerful and intuitive visu-
alizations. At the end of this review, we include a list 
of recommended visualization-design guidebooks. 
Although many of these guides are oriented toward 
business analysts, their prescriptions extrapolate directly 
to science, education, and public policy visualizations. 
We also discuss design techniques used by a new wave 
of journalists focused on communicating data analysis 
to the general public.
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The Structure of Our Review

This review focuses on how to effectively design visu-
alizations that communicate data to students and the 
general public. We review evidence-based prescriptions 
for designing visualizations that help people under-
stand and reason about the patterns, models, and 
uncertainties carried by a data set. Another important 
topic, which we do not cover systematically here, is 
how to measure visualization literacy and the effective-
ness of teaching techniques that improve it (see Börner 
et al., 2019; Lee et al., 2016). We also restrict our scope 
to quantitative visualizations, omitting discussion of 
qualitative visualizations of text data, diagrams, and 
processes (see Hegarty, 2011; Henderson & Segal, 2013, 
for review). We focus on research and prescriptions 
that are most relevant for communication to nonspecial-
ist audiences, instead of the design of powerful tools 
for data analysis within expert communities.

We first illustrate why visualizations can be such pow-
erful tools for thinking about data. Because the human 
visual system is highly developed for rapid parallel 
extraction of behavior-relevant features and relation-
ships, visualizations allow us to process some types of 
patterns across an entire two-dimensional array of val-
ues at once. We describe the limited set of visual chan-
nels that can effectively depict magnitudes to a viewer, 
such as the position of a value in a dot plot, the size of 
a circle hovering over a map, or the color intensity of 
an activation pattern in a functional MRI (fMRI) image.

We then discuss design guidelines for ensuring that the 
human eye accurately decodes those depicted values. We 
review evidence for a ranking of some visual channels 
(e.g., position) as more precise than others (e.g., color 
intensity) for at least one common task but also discuss 
how new work has begun to dismantle that ranking for 
a broader array of tasks. We list a set of common errors 
and illusions that cause viewers to extract the underlying 
values from visual channels incorrectly—for example, 
y-axis manipulations that exaggerate differences among 
values, confusion about whether circles depict values with 
their size or diameter (which can change the extracted 
value by an order of magnitude), a common illusion pro-
duced by line graphs, and other illusions and categorical 
distortions that can arise when depicting value with color 
intensity. We also include a brief review of accessibility 
considerations for viewers with color blindness. Finally, 
we discuss best practices for distinguishing between 
groups of data (say, two groups of points on a scatterplot) 
by marking them with different shapes or colors.

Next, we discuss an important dissociation in visual 
processing power: Whereas computing statistics across 
an image is broad and instantaneous, making compari-
sons among subsets of values is slow and limited to 
two or three comparisons per second. We review the 

types of grouping cues that loosely control what infor-
mation is compared by a typical viewer and further 
techniques for precisely guiding a viewer to the right 
comparison. We discuss the importance of respecting 
a viewer’s limited working memory, including avoiding 
legends and animated displays that can engage but also 
confuse. Finally, we review evaluations of whether visu-
alizations should have rich and memorable designs, as 
opposed to a minimalist and clean aesthetic.

The next section introduces visualization schemas, or 
knowledge structures that include default expectations, 
rules, and associations that a viewer uses to extract con-
ceptual information from a data visualization. We illus-
trate the importance of schemas by introducing the 
reader to a small set of new visualization designs that 
will likely be unfamiliar. We then provide examples of 
common schema elements that are known to more 
graphically literate audiences (but not always respected 
by designers), such as the assumption that larger values 
are plotted upward. We shift to a brief review of human 
reasoning about visualizations, including formal models 
that draw links from visual depictions, to numeric values, 
to their underlying concepts and the designer’s intended 
message. We then explore two case studies: reasoning 
about graphs illustrating scientific concepts and reason-
ing about graphs of mathematical functions.

The subsequent sections review research on visualizing 
uncertainty or risk. Communication failures can start with 
a lack of understanding of critical statistical concepts, even 
among scientists. We give examples of how viewers tend 
to misread error bars as depicting the edges of a range of 
data instead of correctly understanding them as param-
eters of a distribution. Probability information expressed 
as risk is critical for people such as patients considering 
a medical procedure and potential evacuees who may be 
in the path of a hurricane, but depictions of risk are fre-
quently misunderstood. We review guidelines for showing 
uncertainty or risk more intuitively, including depicting 
samples of discrete outcomes, showing probability density 
functions, and depicting data with arrays of icons.

Finally, we summarize a set of evidence-based  
prescriptions for creating powerful visualizations for 
intuitive communication of data and provide a list of 
recommended practitioner guides (Box 1), websites, 
and data-journalism outlets for further reading and 
inspiration (for a concise review of similar guidelines, 
see also Zacks & Franconeri, 2020).

The Power of Visualization

Visualizations let viewers see beyond 

summary statistics

Visualizations allow powerful processing of an entire 
two-dimensional rectangle of information at once, in 
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stark contrast to the limitation of reading handfuls of 
symbolic numbers per second. As a demonstration, Fig-
ure 1 (top left) contains four sets of 11 pairs of values. 
Take a moment to compare those columns, and notice 
that reading symbolically represented numbers takes 
time. As you seek patterns within each set, or make 
comparisons among the four sets, progressively pro-
cessing more pairs of values becomes increasingly dif-
ficult. Worse, these tasks quickly exhaust memory 
capacity, such that new numbers or patterns tend to 
displace ones that were previously seen. These limita-
tions on symbolic processing of numbers lead viewers 
to rely instead on summary statistics that compress data 
sets into a single group of numbers. For the four sets 
of numbers in Figure 1, those statistics on the bottom 
row—means, standard deviations, and correlation coef-
ficients—are identical, which might lead you to believe 
that the numbers contributing to the statistics are similar 
(Anscombe, 1973). However, because statistics sum-
marize larger sets of numbers by abstracting over them 
and making assumptions about the patterns that they 
might contain, many sets of numbers can generate the 

The following books offer excellent, concise 
guides to designing effective visualizations for 
communication of data and analyses:

Camões, J. (2016). Data at work: Best practices for creat-

ing effective charts and information graphics in 

Microsoft Excel. New Riders.
Evergreen, S. D. H. (2017). Presenting data effectively: 

Communicating your findings for maximum impact 
(2nd ed.). SAGE Publications.

Knaflic, C. N. (2015). Storytelling with data: A data visu-

alization guide for business professionals. Wiley.
Schwabish, J. (2021). Better data visualizations: A guide 

for scholars, researchers, and wonks. Columbia Uni-
versity Press.

For a review of the ethics of persuasion with visu-
alizations, we recommend the following books:

Cairo, A. (2016). The truthful art: Data, charts, and 

maps for communication. New Riders.
Cairo, A. (2019). How charts lie: Getting smarter about 

visual information. W.W. Norton.
For a review of accessibility considerations in data visu-

alization, we recommend the following article:
Kim, N. W., Joyner, S. C., Riegelhuth, A., & Kim, Y. 

(2021). Accessible visualization: Design space, 
opportunities, and challenges. Computer Graphics 

Forum, 40(3), 173–188.

same statistics. For these four sets of numbers, relying 
on statistics turns out to be dangerous.

The differences between the four sets of numbers in 
Figure 1 are immediately visible when translated into 
images in the form of scatterplots (bottom left). These 
images allow you to leverage the two-dimensional pro-
cessing power of your visual system, the largest single 
processing system of the brain (Van Essen et al., 1992). 
If you are familiar with statistics, then the first image 
at the bottom left likely matches what you assumed the 
numbers should look like given the statistics on the bot-
tom rows: an orderly positive relationship. But the other 
sets are clearly different in important ways. The right 
side of Figure 1 depicts frames of an animation that 
provides a more sophisticated example (Matejka & 
Fitzmaurice, 2017), in which visual processing allows 
one to immediately see that, despite identical statistics 
(to the second decimal place) for each scatterplot, the 
nine plots contain saliently different patterns. When 
exploring a new data set, it is good practice to visualize 
every column of data with a histogram, and every 
potentially interesting pairing of columns with scatter-
plots, before turning to statistical summaries (Moore 
et al., 2017; Wongsuphasawat et al., 2015).

Visual channels translate numbers 

into images

Visualizations rely on several visual channels to trans-
form numbers into images that the visual system can 
efficiently process (Bertin, 1983; Mackinlay, 1986; see 
Munzner, 2014, for a more complete list). Knowing 
these channels allows a designer to consider which 
might be best suited for a given data set and context—
particularly given that each is associated with differen-
tial levels of precision and potential illusions, as 
described in the following sections. The first column 
of Figure 2 depicts five of the more frequently used 
channels. Dot plots and scatterplots, such as those in 
Figure 1, represent values as position. Bar graphs  
represent values not only as positions (of the tips of 
the bars) but also as one-dimensional lengths (and, 
some argue, even two-dimensional areas; Yuan et al., 
2019). If two bars do not rest on the same baseline, 
such as segments within the same bar in a stacked bar 
graph, the comparison relies only on length or area. 
Next, two circles code numbers exclusively as two-
dimensional areas (typically circles), a technique often 
used to overlay values across maps. Angle typically 
emerges when points are connected to form a line 
graph, organically allowing an encoding of the differ-
ence between adjacent points (a bigger difference cre-
ates a steeper slope and, typically, a longer line). 
Outside of pie charts, angle is less frequently used to 

Box 1. Recommended Reading
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depict numbers directly—perhaps on local areas of a 
map to represent wind directions. Numerosity is omitted 
from the figure, but it often implicitly shows higher-level 
attributes of data. For example, you can immediately 
estimate the number of points in a scatterplot, segments 
in a stacked bar chart, or icons in an infographic. Inten-

sity is an umbrella term (often also called lightness or 
value) for either luminance contrast or color saturation, 
as used in a heat map or fMRI activation map. Motion 
is also not included in the figure, but animating a scat-
terplot to show values changing over time can encode 
the rate and direction of change in the speed and direc-
tion of the dots’ motion.

How to Design a Perceptually Accurate 
Visualization

Understand how to leverage visual 

channels

Visual channels are ranked by their perceptual 

accuracy. These channels differ in how precisely they 
convey numeric values to a viewer, and knowing the 

ranking of these channels allows a designer to prioritize 
what information to show most precisely. The leftmost 
column of Figure 2 presents five of the channels that can 
depict metric data to the human visual system. This list is 
ordered by the typical precision with which a viewer can 
verbally state the ratios between the two values shown; 
more precise ways of communicating numbers are at the 
top and less precise ways are at the bottom (Cleveland & 
McGill, 1984, 1985; Heer & Bostock, 2010). It should be 
clear from the figure that the 1:7 ratio can be relatively 
precisely extracted for position, but that task is a bit 
tougher for area, and far more difficult for intensity, at 
the bottom of the list.

Because position is the clear winner for precision, 
visualization designers often prioritize the vertical and 
horizontal dimensions of two-dimensional space when 
depicting or organizing quantitative data. Faced with a 
single column of numbers in a spreadsheet, a visualiza-
tion designer might depict those data vertically with 
position (in a bar or line graph) and rely on horizontal 
position to organize the values into categories, as in a 
typical bar chart. If faced with two columns of numbers, 
a designer might simply create two of those same types 

Fig. 1. Examples of how visualizations can let viewers see beyond summary statistics. At left, four sets of 11 numbers have identical statistics 
but dramatically different patterns, as revealed by the scatterplots below each column. At right is a more extreme example of nine dramati-
cally different scatterplots (including one that looks suspiciously like a dinosaur) depicting data with identical statistics, down to the second 
decimal place. The graphs on the right are adapted with permission of the Association for Computing Machinery, from “Same Stats, Different 
Graphs: Generating Datasets With Varied Appearance and Identical Statistics Through Simulated Annealing,” by J. Matejka and G. Fitzmaurice, 
CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (https://doi.org/10.1145/3025453.3025912). Copy-
right 2017 Association for Computing Machinery.
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of graphs or organize each set of numbers along both 
the vertical and horizontal axes of position, as in a 
scatterplot.

The advantage of position over length for precisely 
depicting ratios between numbers is demonstrated in 
the second column of Figure 2, which shows a horizon-
tally oriented stacked bar graph in its second row of 
examples. Because the black segments of the bars are 
aligned on a common axis at their left, their right tips 
provide a precise position code, allowing the viewer to 
see the delicate 0.9:1 ratio between the bars. However, 
the next set of medium-gray segments are tougher to 
distinguish because the positions of their right tips are 
no longer useful, so the viewer must rely on length—a 
lower-precision channel—to extract the same ratio.

Mapping visual ratios back to numbers can cause 

perceptual errors. Using visualizations can unlock 
powerful data-pattern processing. However, a designer 
must be aware of several perceptual illusions that can 
lead viewers to map visual depictions back to their origi-
nal numeric values incorrectly (Huff, 1954; Tufte, 1983). 
If two plotted values have a 1:7 ratio, then the visualiza-
tion should cause a typical viewer to see that 1:7 ratio 
veridically. Even for a precise visual channel such as 
position, this requirement can be tougher than antici-
pated. For example, see the dot plot and bar graph at the 
top of the second column of Figure 2. The dot plot uses 
position as its visual channel, and the bar graph depicts 
the same data with both position and length. The second 
value appears to be roughly double the first value. Look 
more closely at the y-axis: The second value is only about 
1% bigger than the first; the difference appears greater 
because the axis baseline does not start at zero. In theory, 
the data are transparently depicted—but in reality, such 
graphs are frequently misinterpreted.

Figure 3 illustrates some real-world examples of this 
problem. The line graphs in the upper left, adapted 
from Darrell Huff’s classic 1954 book How to Lie With 

Statistics, show how a line graph’s scale can be stretched 
to make a trend appear steeper (Huff, 1954). In March 
2014, a version of the bar graph at the upper right 
appeared on Fox News, a network with an avowedly 
opposite political orientation to Barack Obama, the U.S. 
president at the time. Around 6 million U.S. citizens 
had signed up for a new health-care program spon-
sored by the president, and the government specified 
a goal of 7 million sign-ups by March 31. Although the 
numbers presented are honest (a 6:7 ratio), the visual-
ization’s truncation of the y-axis tells a different story 
(a 1:3 ratio) to the viewer’s visual system, suggesting a 
failure of the president’s plan.

Will people not simply read the y-axis labels and 
easily overcome this initial misperception? Unfortu-
nately, both real-world anecdotes and laboratory studies 

suggest that this practice can be deeply misleading 
(Correll et al., 2020; Hofman et al., 2020; Pandey et al., 
2014). For example, using a visualization similar to the 
Fox News example, researchers asked crowdsourced 
workers to rate the contrast between the two depicted 
values on a 1-to-5 scale. Ratings in a zero-baseline con-
dition averaged around 1.5, whereas ratings in a decep-
tive-baseline condition averaged 2.8 (Pandey et  al., 
2015). In that study, stretching the y-axis also strongly 
affected ratings of the strength of the trend. The crowd-
sourced workers were not simply inattentive: Only par-
ticipants who passed attention-check trials were 
included. Moreover, the deceptive effect persisted when 
participants were asked to type the numeric values rep-
resented by each bar before making their effect-size 
rating and were reminded of the y-axis’s truncation, 
which was indicated by a “broken axis” symbol (such 
as that shown in Fig. 2, top right) at the base of the 
y-axis (Correll et al., 2020).

The prevalence of this deceptive effect has led to 
quantitative prescriptions for how to set y-axis boundar-
ies to produce accurate measures of statistical effect 
sizes by typical viewers (Witt, 2019; B. W. Yang et al., 
2021). For example, if the relevant data are far from 
zero, starting the y-axis at zero can make effect sizes 
illegible. One approach to increase legibility is to center 
the y-axis on the data’s mean, then extend the y-axis 
0.75 SD above and below the mean (Witt, 2019). This 
approach can be appropriate when the overall scale is 
not essential.

Visually conveying an appropriate difference often 
depends on what “appropriate” means. Many visualiza-
tion designers subscribe to the principle that a y-axis 
must always start at zero so that the visually depicted 
ratios match the ratios in the data. By contrast, others 
argue that this guideline must be subject to context (for 
a distillation of arguments by designers, see Correll 
et al., 2020). For example, it seems clear that designers 
should consider the practically relevant range of data 
values when small but essential differences would be 
tough to see on a zero-baseline graph. A now-infamous 
(and now-deleted) story in the National Review used a 
graph similar to one at the bottom left of Figure 3 to 
suggest that the recent global temperature rise is incon-
sequential (Correll et al., 2020). It even went beyond 
using a zero baseline for the axis, intriguingly using 
-10 °F as a lower bound. The graphic to its right shows 
the pattern of data widely agreed by the scientific com-
munity to be more honest: a “hockey stick” pattern 
indicating a recent rapid rise.

The image at the bottom right of Figure 3 is a now-
famous cover of The Economist magazine from Septem-
ber 2019, which similarly mapped a restricted range of 
data to the full range of a blue-to-red color scale. 
Another issue highlighted by these examples of 
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temperature data is that not all variables have a single 
natural zero point. Zero degrees Fahrenheit is not a 
meaningful value for ratio comparisons. Temperature 
in Celsius has a somewhat meaningful zero point (the 
typical freezing point of water on earth), but that base-
line is not relevant to climate change.

These mismappings of visually depicted ratios are 
not isolated to the position and length channels. One 
can imagine similar differences in interpretations arising 
for size or intensity. Imagine a map of a country with 
a circle over each major city. One might depict crime 
rates with the intensity of the circles’ color, but with 
what link to the original data? If zero were mapped to 
gray and 100 violent crimes per capita per year (a very 

high rate) to gray with a small amount of red, the coun-
try might seem safe regardless of the underlying data. 
Another depiction might link 100 violent crimes per 
year to a bright red. Side by side, those two depictions 
would suggest a huge difference in crime rates despite 
showing the same data. One could imagine the same 
trick, but this time mapping crime rates to the circles’ 
size. If 100 violent crimes were linked to a 1 mm circle, 
the country would seem safe, but if the same number 
of crimes were linked to a 10 mm circle, it would seem 
more dangerous.

Which visual channel is linked to the data val-

ues? In other cases, viewers can misunderstand which 

The Difficulty of Mapping Numbers to Visual Channels in Honest Ways

Stretching the y-axis scale of the left graph drastically increases the slope

of the perceived trend at right, which feels dishonest.
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visual property encodes the data. In a classic example at the 
top left of Figure 4, values are encoded by one-dimensional 
length (the height of each person), producing a 1:2 ratio of 
the two numbers. However, you might find that your esti-
mate of the depicted values is determined instead by the 
area taken up by each person, leading to something closer 
to a 1:4 ratio (or even a 1:16 ratio, if the icons suggest 
three-dimensional volume). People do indeed make this 
error, even when the numeric data are printed saliently 
near the visual representation (Pandey et al., 2015).

In the donut plot to the right of the human icons in 
Figure 4, there are two ways that numbers are poten-
tially miscommunicated. First, although the data are 
mapped onto angle, viewer judgments are more strongly 
determined by two-dimensional area (with some poten-
tial contribution from arc length, which is tough to 
dissociate from area). Because the two donuts are dif-
ferent sizes, this means that the larger donut’s value will 
be artificially inflated. Second, the graph is depicted in 3D. 
If the viewer can recover the actual three-dimensional 
geometry from the two-dimensional depiction, then the 
values should be accurately perceived. By contrast, if 
the viewer pulls values from the two-dimensional image 
(the amount of green or purple pixels on the screen), 
the values in the “front” will be inflated because of the 
perspective projection. Unfortunately, this technique is 
indeed substantially misleading because static two-
dimensional projections do not typically lead to effec-
tive recovery of three-dimensional structures (Tittle 
et al., 2001; but see Brath, 2014).

Avoid common illusions and 

misperceptions

A common optical illusion in line graphs. In the 
line graph in the middle of Figure 4, the two curves are 
identical (y = x3), but the darker line is translated verti-
cally upward by a constant of 1,000. Even if the viewer 
knows that the two shapes are identical, it is difficult to 
see that the vertical distance between the two lines is the 
same across their entire horizontal span. Instead, given 
any point on the dark line, viewers tend to see its distance 
from the closest point on the gray line, which becomes 
progressively smaller as both lines increase. This illusion 
makes it difficult to visually estimate differences between 
lines, especially lines with steep slopes (Cleveland & 
McGill, 1984). A similar example is depicted in the second 
column of Figure 2. This illusion is well known to electro-
physiology researchers: When faced with visualizing the 
difference between two measured waves, they will explic-
itly plot a “difference wave” that shows the difference as 
a single line (Luck & Kappenman, 2012).

Illusory contrast effects for intensity. The bottom of 
the second column of Figure 2 shows a final illusion that 

can warp our perception of visualized data. Both on the 
map and in the rectangle, the two vertically separated 
circles have the same luminance value. However, the 
lower circle is subjectively darker to the eye because it 
has been placed on a lighter background and has a higher 
contrast with its surroundings. In the real world, convert-
ing luminance to contrast is a critically important mecha-
nism for seeing accurate luminance and color despite 
changes in the brightness and color profile of light in the 
environment (Purves et al., 2004). However, this correc-
tion leads to misperceptions of intensity-coded values in 
the artificial world of data visualizations (Szafir, 2018). 
One rule of thumb is never to plot intensities on top of 
other intensities that vary, as in the map in Figure 2.

Misleading illusions that combine separate val-

ues. When plotting two sets of numbers on a map, 
designers typically rely on intensity for one set of values 
and map the other set of values to the area of circles. This 
design solution works because, rather than plotting one 
intensity on top of another intensity, which creates an 
integral representation of contrast, intensity and area are 
relatively separable representations (Garner, 1974). Other 
examples of integral representations include encoding 
two sets of data in rectangles—one set in their widths 
and one set in their heights. Instead of seeing these val-
ues separately, the eye is tempted to translate them into 
the aspect ratio and the area of each rectangle. The eye 
then focuses on the ratios and multiplication of each pair 
of values (Shechter & Hochstein, 1992). As an extreme 
case, it is unwise to attempt to use the red component of 
a single color (imagine using the RGB sliders to change 
the color of an object in presentation software) to depict 
one number and the green component for another. Red 
and green will combine in an integral fashion when both 
are at their highest value, and the viewer will see a single 
integral percept of yellow (Ware, 2019).

A final example is shown in the scatterplot in Figure 
4. Once two sets of numbers are combined into a single 
two-dimensional plot, new integral percepts emerge, 
such as the distance between any two points across 
both their x and y values, points that are outliers on 
both axes, or the global shape of all points that we can 
easily interpret as a correlation (F. Yang et al., 2019). 
However, there is a trade-off. The distribution of values 
of either set in isolation is now tougher to disentangle 
(Mackinlay, 1986). This is why data scientists often pair 
a scatterplot with “marginal histograms” that allow them 
to see those data in a separable way.

The biasing effect of categorical perception. When 
continuous values are encoded through visual channels, 
those values can be warped by categorical perception. A 
classic example is the seven discrete colors that we see in 
a rainbow, which are not present in the rainbow itself. 
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Those color categories are created by an automatic pro-
cess that systematically bins continuous wavelengths into 
one of several perceptual categories, exaggerating metric 
differences among values that straddle those boundaries 
and shifting percepts toward prototypes for the catego-
ries (Goldstone & Hendrickson, 2010; Newcombe et al., 
1999). This same phenomenon occurs when data are 
depicted by hues, as in the bottom left of Figure 4. Across 
the two brain images, the one on the right uses a greater 
variety of hues to depict activation values. These addi-
tional hues create new color-category boundaries that 
can dramatically exaggerate the differences between val-
ues that straddle them (Y. Liu & Heer, 2018; Quinan et al., 
2019). In The Economist cover shown in Figure 3, the 
blue-to-red scale creates a salient categorical color 
boundary at the color transition point, which makes the 
temperature increase in the past few years especially 
salient. Similar category boundaries can affect the per-
ception of values depicted by other channels such as 
position or length. In a pie graph or stacked bar graph, 
values that are near gridlines or the implicit 50% mark in 
the middle of the bar or pie are recalled as being farther 
from that category boundary (Ceja et al., 2021; McColeman 
et  al., 2021; Spence & Krizel, 1994; Xiong, Ceja, et  al., 
2020).

Design for color-vision impairments

Beyond illusions and biases, certain combinations of 
colors in visualizations can be problematic for people 
who are color-blind or have other color-vision impair-
ments. Color-vision impairments are estimated to affect 
4% of the global population (Olson & Brewer, 1997), 
or roughly 300 million people. Further, older adults can 
have less sensitivity to color (Silva et al., 2011). Some 
color blindness results in viewers not being able to 
distinguish between various colors; protanopia, or red–
green color blindness, is the most common, but various 
other versions of color blindness exist. Color-vision 
impairments are highly problematic for visualizations, 
as a portion of the audience may literally not see impor-
tant patterns in data.

Numerous online color-blindness simulators allow 
users to upload an image to learn how someone with 
color blindness would see it (Asada, 2019). For exam-
ple, the first row in Figure 5 shows a scatterplot encoded 
with two colors, green and purple. People with typical 
vision can see that the green dots have a steep positive 
correlation and the purple dots make a flat line. How-
ever, when the scatterplot is processed through a color-
blindness simulator, the colors look the same, and all 
the dots appear to show a positive correlation. The 
simplest way to make visualizations accessible to view-
ers with color blindness is to avoid using hue as the 
only encoding channel or allow viewers to change the 

color palette (Silva et  al., 2011). Designers can also 
double-encode a variable, using hue and another 
encoding channel (Plaisant, 2005), as in the second row 
of Figure 5. The most thorough and inclusive option is 
to use color palettes that are safe for people with color-
blindness, such as those proposed by Harrower and 
Brewer (2003), as seen in the bottom row of Figure 5.

Design for perceptual accuracy across 

a broad array of tasks

The ranking of precision for visual channels depicted 
in the first column of Figure 2 is based on a measure 
of precision in a particular task: the average error in 
verbal reports of the ratio between two depicted values 
(1:7 for each of the examples in the first column; Cleveland 
& McGill, 1984; Heer & Bostock, 2010).

Although this task is surely important when compar-
ing two values, it is not the only task (or perhaps even 
the primary task) that viewers complete when examin-
ing visualizations (Bertini et al., 2020). One proposed 
taxonomy of graph-interpretation tasks separated them 
into three levels: elementary, intermediate, and “over-
all,” roughly corresponding to simple fact retrieval, 
comparison and identification of trends, and gist under-
standing (Bertin, 1981). Additional taxonomies have 
been developed in the context of cognitive models of 
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Fig. 5. Three ways to encode data for two groups in a scatterplot, 
as seen by observers with typical color perception and those with 
protanopia, a form of color blindness.
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graph comprehension. Other taxonomies are based on 
analyses of cognitive processes involved in different 
tasks (Tan & Benbasat, 1990), reliance on local versus 
global features (Carswell, 1992), or other criteria  
(MacDonald-Ross, 1977; Washburne, 1927; Wickens, 
1989). Work in the data-visualization literature has 
begun to catalog such tasks and to test the types of 
displays that best support performance for each. One 
list of tasks is distilled from questions submitted by 
students who were asked to analyze a large data set 
(Amar et al., 2005). This list includes analytic tasks such 
as “retrieve value,” “sort,” “determine range,” “correlate,” 
and “characterize distribution.” Another list of tasks 
focuses on how people generate summary statistics for 
plotted data (Szafir et al., 2016).

The ranking derived from performance on two-value 
ratio judgments does not always extrapolate across these 
alternative tasks. For example, depicting data with a line 
graph, which relies on “precise” position coding, can 
lead to lower efficiency in seeing big-picture statistical 
properties such as means. Intriguingly, the opposite is 
true for intensity coding. Multiple studies have shown 
that for identifying particular values, position is far more 
precise than intensity, but for judging an average across 
many values, intensity is more precise (Albers et  al., 
2014; Correll et al., 2012). The reason for this dissociation 
is not well understood. It is possible that the lower preci-
sion of intensity better allows its values to blend together 
to construct aggregate values, or perhaps intensity is 
simply processed by a different mechanism that affords 
aggregate judgments (Szafir et al., 2016). Some visualiza-
tion designs purposely use the low precision of the 
intensity channel to focus viewers on the big-picture 
trend of the data instead being distracted by precise 
details, as in the visualization from the cover of The 

Economist magazine (Fig. 3), which focused viewers on 
the big picture of climate while de-emphasizing more 
detailed (but less relevant) variability in monthly weather.

Other work has tested whether people can more 
quickly or accurately complete the types of tasks listed 
above (judge mean, correlate, etc.) given different 
graph formats (scatterplots, bar graphs, tables, etc.) and 
data-set sizes (small vs. large; Y. Kim & Heer, 2018) or 
different arrangements of data within a graph ( Jardine 
et al., 2019; Ondov et al., 2019). Although such studies 
have found consistent interactions—better performance 
on Task X with Design Y in Arrangement Z for Data-Set 
Size S—the existing pattern of results is currently too 
complex to generalize to novel combinations. To create 
generalizable guidelines, the research community will 
likely require a more complex model of the underlying 
perceptual operations that produce these complex 
interactions ( Jardine et al., 2019; Ondov et al., 2021).

Among these alternative tasks, the perception of cor-
relation is particularly well studied (Harrison et  al., 

2014; Jardine et al., 2019; Rensink & Baldridge, 2010; 
F. Yang et al., 2019; Yuan et al., 2019), leading to initial 
suggestions of its underlying perceptual operations. For 
example, scatterplots allow for more accurate judg-
ments of correlation than pairs of bar charts presenting 
the same data (Harrison et al., 2014).

Effectively distinguish among groups 

in data

Scatterplots present two metric variables in relation to 
each other. Imagine that the horizontal position repre-
sents the longitude of a collection of oil wells and the 
horizontal position represents their latitude. This example 
makes clear that scatterplots and data maps share DNA. 
Suppose the designer now wants to differentiate the set 
of points according to a nominal (categorical) variable, 
such as the company that owns the oil well. Because the 
two dimensions of position (vertical and horizontal) are 
already being used to represent the metric variables, 
designers would typically differentiate points from each 
group with either different colors or shapes.

Plotting the groups as categorically different colors 
is often the first choice because the visual system pro-
cesses color differences more efficiently than shape 
differences across the two-dimensional visual plane, as 
measured by performance in visual-search and texture-
segmentation tasks (Wolfe & Horowitz, 2017). These 
findings, based on simple displays used in laboratory 
studies, extrapolated to a data-visualization context in 
which viewers compared the average heights of mul-
tiple color-coded or shape-coded clouds of points in a 
scatterplot: Color coding produced far better perfor-
mance (Correll et al., 2012).

When color differences distinguish data from two 
separate groups or classes, differentiating those classes 
is easier if the encoded colors are farther apart in a 
perceptual color space. For example, it is easier to dif-
ferentiate red from blue than from orange-red. Research-
ers have constructed effective palettes from perceptually 
informed color spaces (e.g., CIELAB; Y. Liu & Heer, 
2018) to suggest colors to use to differentiate N nominal 
classes; colors become progressively crowded together 
as N increases. One such set that is viewable (and cus-
tomizable) online is ColorBrewer 2.0 (Brewer, 1994a, 
1994b). Another tool, Colorgorical, balances perceptual 
differentiation with aesthetic considerations (Gramazio 
et al., 2016).

Picking a color for a nominal value should also be 
constrained by the semantic congruence of the value 
and the color. If the nominal values are lemons and 
cherries, it is easier for viewers to answer questions 
about a chart that labels those values with yellow and 
red, compared with a standard palette that does not 
consider semantic congruence (Lin et al., 2013; Schloss 
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et al., 2018). An algorithm can automatically generate 
intuitive color choices for a given noun by analyzing 
the color profile of images pulled from Web searches 
for the noun and then optimizing color assignments in 
terms of perceptual spacing and semantic fit. Such algo-
rithms can perform as well as human experts in quickly 
picking color palettes for nominal data (Lin et al., 2013; 
Setlur & Stone, 2015).

Sometimes a visualization designer needs to show a 
second set of nominal values in the same plot. Thinking 
back to our map, imagine that we have used a unique 
color to represent each oil company (A, B, C) but also 
wish to depict each company’s nationality (Canada, Brazil, 
Mexico). Typically, shape would be used to show that 
second nominal variable. Because it is less perceptually 
effective than color, it should be used for the less impor-
tant variable, or the one with fewer values to differenti-
ate. The shape sets used in commercial software (e.g., 
Microsoft Excel) gravitate toward intuitive shapes, such 
as circles, triangles, squares, and diamonds, that are not 
actually well separated in perceptual space.

Researchers have begun to explore perceptual shape 
space, and some have extrapolated from pairwise sub-
jective similarity ratings of combinations of candidate 
shapes (Demiralp et al., 2014). Other work has relied 
on objective performance tasks on actual simulated 
scatterplots (Burlinson et al., 2017; Huang, 2020). This 
work is also new, but so far, human shape space (at 
least for the simple shapes used in visualizations, and 
at least for the types of tasks tested so far) appears  
to prioritize the difference between open (circle, 
square, triangle) and closed (³, +, *) shapes, such that 

differentiating points is easier when they differ in that 
property (Burlinson et al., 2017; Huang, 2020). An initial 
full three-dimensional perceptual shape space (Huang, 
2020) adds the additional properties of intersection and 
spikiness; Figure 6 depicts a clear improvement in 
shape differentiability compared with the typical sets 
used even in professional data-visualization software.

Finally, some software automatically differentiates 
nominal variables with both color and shape, under the 
assumption that more differentiation is better. However, 
work has shown that color is already so dominant in 
its effectiveness that redundant encoding does not sub-
stantially improve visual processing efficiency (Gleicher 
et al., 2013) unless the viewer has color-vision impair-
ments or the viewer’s task is exceptionally difficult 
(Nothelfer et al., 2017). Given anecdotal claims from 
some expert designers that redundant encoding can 
cause confusion in viewers, who typically expect color 
and shape to signal different nominal variables (Tufte, 
1983), the lack of evidence for a perceptual advantage 
suggests that redundant encoding should be avoided 
in most cases, except when used to make visualizations 
accessible for viewers with color-vision impairments.

How to Design a Perceptually Efficient 
Visualization

Use visualizations to allow viewers to 

powerfully compute statistics

One core advantage of visualizations is that they capital-
ize on our visual system’s ability to extract information 

Fig. 6. The standard shape set for Microsoft Excel (left) compared with a perceptually spaced set (right; inspired by Huang, 2020). Try to 
pick out the four instances of each shape in each display—you should find that task easier on the right side.
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efficiently. The encoding properties in the first column 
of Figure 2 are properties that we process in parallel 
across two-dimensional images (Treisman, 1998; Wolfe 
& Horowitz, 2017). Faster than an eyeblink, we can 
pull statistics from data encoded as positions, one-
dimensional lengths, two-dimensional areas, angles, or 
intensities. In the natural world, we typically use these 
statistics to recognize the type of scene we are in (e.g., 
a beach scene containing light brown, blue, and hori-
zontal angles from the sand, sky, and horizon; Oliva, 
2005) and to help provide a summary of an otherwise 
complex world (Brady et al., 2009; M. A. Cohen et al., 
2016). A substantial literature in visual cognition has 
examined the power and limits of this ability to explore 
what types of statistics can be extracted under what 
conditions (e.g., Baek & Chong, 2020; Haberman & 
Whitney, 2012).

Much of this work in visual cognition relies on simpli-
fied laboratory displays of colored squares and circles, 
which are conveniently similar to the structure of the 
artificial worlds of data visualizations (for a review of 
insights from this literature for data-visualization design, 
see Szafir et al., 2016). The third column of Figure 2 sum-
marizes the types of statistics (minimums, means, maxi-
mums, and outliers) that can be pulled from any of the 
five visual properties in the first column. In the dot plot 
(encoding numbers as positions), a viewer can easily 
extract the minimum, mean, or maximum height. In the 
stacked bar chart below, the lighter segments present 
numbers through both their lengths and the positions of 
their tips because their bases are aligned. The darker seg-
ments are offset in arbitrary ways by the lighter segments 
underneath, so only their lengths visually represent val-
ues—yet the observer can still pick out minimum, mean, 
or maximum values quickly. The same is true for the 
bubble chart and the angles of the slope graph (a special-
ized line graph whose lines have only two points). Finally, 
for the heat map at the bottom that represents values as 
luminance contrasts, the lightest (minimum) and darkest 
(maximum) values are easy to pick out, and one can also 
quickly imagine the contrast of the mean value.

Avoid a visual processing limit: 

making comparisons

Within their first glance at a data visualization, viewers 
can immediately pull general statistics from the positions, 
lengths, areas, slopes, and intensities (Szafir et al., 2016). 
This provides viewers with a starting point in under-
standing the distribution of the data and whether there 
might be outliers. However, the second step is to extract 
relations from the data by making a sequence of com-
parisons, a critical mental operation when viewing visu-
alizations (Franconeri, 2021; Gleicher et al., 2011; Tufte, 
1983). Comparisons include local comparisons between 

elements (“this point is higher than that point”; “this line 
segment is shallower than that one”), groups of elements 
(“these two bars have a greater range than those two”; 
“these red circles are on average larger than the green 
ones”), or global trends (“this section of the heat map is 
more saturated than that section”).

Each of those verbal sentences describes a single 
visual comparison that must be extracted serially, as 
part of a sequence (Michal & Franconeri, 2017; Roth & 
Franconeri, 2012). These comparisons can each take 
hundreds of milliseconds to process (Franconeri et al., 
2012; Logan & Compton, 1998; Wolfe, 1998), so that 
viewers tend to process only a handful per second 
(Franconeri et al., 2012). Extracting the necessary mul-
titude of comparisons from a visualization is therefore 
not like instantly recognizing a particular face, place, 
or Pokémon but instead more like the serial and con-
trolled reading of a paragraph (Carpenter & Shah, 1998; 
Shah et al., 2005; see Franconeri, 2013, for a discussion 
of the different types of attention demanded by these 
two scenarios). Each single comparison is limited in its 
complexity as well—by some estimates, encompassing 
interactions among approximately four variables at 
maximum (Halford et al., 2007).

This severe capacity limit has been confirmed for 
realistic comparison tasks in data visualizations. When 
viewers are asked to perform the types of tasks shown 
in the fourth column of Figure 2—for example, to locate 
pairs of graphed values in which the second value is 
bigger among pairs in which the second value is 
smaller—the time need to make each of those compari-
sons cumulates in painfully slow overall performance 
(Nothelfer & Franconeri, 2019). Likewise, the bar graph 
in Figure 7 (left) shows two test scores for each student, 
one before and one after an intervention. You can feel 
the sluggishness of those comparisons by answering 
the question: Who is the only student who got worse?

As a second example, when viewers are challenged 
to complete a tough comparison task with the blue dots 
of the scatterplot shown in Figure 7 (right), they can 
fail to process the positions of the green dots, such that 
93% fail to notice the presence of a dinosaur shape 
among them (Boger et al., 2021).

A few hundreds of milliseconds of processing time 
for a single comparison is not noticed. However, across 
many comparisons, that time quickly adds up. Imagine 
a bar graph showing the performance of two groups, 
A and B, in both treatment and control conditions, for 
a total of four bars. Even in this small set, there are six 
possible pairwise comparisons, plus two main effects, 
plus multiple ways to look at interactions. In a graph 
with 12 bars, there are 66 pairwise comparisons alone!

When visualization designers create data-heavy dis-
plays that require fast processing, such as a business-
metric-monitoring dashboard, many implicitly realize 
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that comparisons are a sluggish visual operation. One 
common solution is to remove the need for the viewer 
to explicitly compare values by providing a second 
view of the data plotting the differences between values 
(Fig. 2, upper right; Few, 2009). Known as directly 

depicting deltas, these dashboards commonly show dif-
ferences between current financial values, such as rev-
enue, and baseline financial values, such as revenue 
from the same month in the previous year, or between 
financial and budget values.

Control comparison with visual 

grouping cues

A visualization that is designed to guide viewers to 
make the “right” visual comparisons can lead those 
viewers to make meaningful insights than they would 
gain on their own. One major cue for this guidance is 
to visually group the data values that should be com-
pared with each other or should be compared as a 
group to other groups. The same classic grouping cues 
studied in the perception literature can control which 
values are selected and compared. Figure 8 depicts four 
of the primary cues roughly in order of strength: con-
necting lines, position proximity, and similarity in either 
color or shape (Brooks, 2015; Palmer, 1995). The two 
rightmost columns of Figure 2 also show examples of 
grouping-defined comparisons.

Many of these grouping cues may stem from meta-
phors about real-world scenarios (Tversky, 2001). 
Objects that are spatially nearby are likely to stem from 
the same source, such as tomatoes from the same plant 
or birds nesting in the same nest. When three objects 
fall close to a common line, their spatial arrangement 
naturally conveys conceptual ordering because of how 

processes produce spatial ordering: If an animal leaves 
a trail, the order of the prints naturally reflects the tim-
ing of how they were laid down. Lines imply connec-
tions because connected things in the world tend to 
belong to the same objects, such as grapes connected 
by vines. Closed contours such as circles or blobs 
define objects because objects in the world tend to have 
closed, discernible borders or boundaries.

In line graphs, the choice of which variable is 
grouped by connecting lines (e.g., Fig. 8) has a pro-
found impact on the interpretation of data. For exam-
ple, one study presented viewers with graphs that 
showed the effects of two independent variables on a 
third variable. The data were depicted in line graphs; 
one variable was plotted as separate lines and the other 
was plotted as connected lines. Viewers could answer 
more sophisticated questions about the quantitative 
relationships depicted by the connected lines but only 
relatively simple questions about relationships between 
the separate lines (Shah & Carpenter, 1995). In many 
cases, viewers were unable to recognize the same data 
plotted with a different choice of how points were con-
nected by lines. Relationships between values that strad-
dle different lines or different panes need to be 
integrated with multiple comparisons, which requires 
controlled processing, taxes working memory, and 
introduces a risk of error.

The graphs at the top of Figure 9 show how these 
grouping cues can control which comparisons are pri-
oritized. In the example to the left, both proximity and 
color facilitate comparisons among categories (Social 
Security is highest) and overall between years (the yel-
low bars have a larger range than the green bars). 
However, you are less likely to compare a single cat-
egory across the same year, which requires a jump of 
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your eye to find the companion bar. The opposite is 
true of the example to the right (Shah & Freedman, 
2011; Shah et al., 1999). The word clouds at the bottom 
of Figure 9 show an example of controlling compari-
sons with proximity grouping. In the word cloud on 
the left, the relatively weak color grouping makes it 
tougher to identify the common theme in each of five 
groups of words. On the right, identifying the common 
themes (restaurant, baseball, hands, etc.) is easier 
because the more powerful cue of proximity grouping 
has been added (Hearst et al., 2020).

Guide the viewer to the most important 

comparison

A good visualization relies on the grouping techniques 
described in the previous section, including connectivity 
and proximity, to help guide a viewer to compare one 
set of values or another. However, even within that one 
set, there are still many possible comparisons to make.

When multiple groups compete for comparison, that 
competition tends to be won by groups that are differ-
ent or brighter in color, largest in size, or presented at 

the top or left of a display. Such visual salience can be 
modeled by showing viewers pictures or visualizations, 
recording their eye movements, and then feeding the 
images and responses into computational models that 
predict human attention (Bylinskii et al., 2017). Many 
of these models exist for salience in natural scenes, 
ranging in complexity from simpler weighted linear 
combinations of relative differences in features (unique-
ness in color, or orientation, at various locations and 
spatial scales) to more complex models that extract 
object contours or predict salience in movies (Borji 
et al., 2013). But many of these models fail to predict 
salience in the novel context of visualizations because 
the statistical profiles of those images differ substan-
tially, containing large areas of blank space, text, axes, 
and titles (Haass et al., 2016). New models of salience 
for artificial information displays, trained on eye move-
ments or on mouse-tracking data that are closely cor-
related with eye movements (N. W. Kim et al., 2017), 
can reach higher levels of predictive power (Bylinskii 
et al., 2017; Matzen et al., 2018).

Visualization designers will often deliberately control 
visual salience to bring the viewer’s eye straight to the 
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critical comparison. One technique is to add salient 
color highlighting a single group of items (Fig. 10) to 
ensure that viewers process that comparison first (Ajani 
et al., 2021; Grant & Spivey, 2003; Hullman & Diakopoulos, 
2011; Mayer & Moreno, 2003). Some practitioner 
guides also recommend using color-coded accompany-
ing text, as in the graph at the top of Figure 10, to 
ensure that the viewer will match the pattern in the 
data to the relevant reference in the visualization 
designer’s argument (e.g., Knaflic, 2015). More gener-
ally, a good visualization should place verbal informa-
tion near relevant visual information so that viewers do not 
need to glance back and forth in a time-consuming search 
to see what text matches what visual pattern (Moreno & 
Mayer, 1999). These methods of guiding viewers to the 
most relevant comparisons are particularly important 

for low-knowledge readers, who benefit from visualiza-
tions that present or highlight only the relevant com-
parisons (Canham & Hegarty, 2010). These techniques 
are less important for experts, who rely on prior experi-
ence to guide their attention.

Some research has studied the techniques of data 
journalists, who are tasked with clearly communicating 
data-based arguments to nonexperts. This work has 
cataloged techniques used by news outlets such as The 

New York Times Upshot, The Washington Post, The Econ-

omist, and FiveThirtyEight (Hullman & Diakopoulos, 
2011; Hullman, Diakopoulos, & Adar, 2013; Segel & 
Heer, 2010) and has used computation to automatically 
generate visualizations that use particular strategies 
(Gao et al., 2014; Hullman, Drucker, et al., 2013; N. W. 
Kim et al., 2017). These outlets employ specially trained 

Fig. 9. How visual grouping cues can control visual comparison. At top, a combination of color and proximity grouping lead the viewer to 
different visual comparisons across the two bar graphs. At the bottom, comparisons in a word cloud are weakly controlled by color grouping, 
and more strongly controlled with proximity grouping.
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reporters who convey data-based political, economic, 
health, and science stories to the lay public. They will 
often show a single pattern in the data at a time, relying 
on the viewer to step or scroll (Amabili, 2019) through 
a sequence of patterns. In each step, a pattern of data 
is highlighted to ensure that the viewer’s limited pro-
cessing capacity is directed to the values simultaneously 
described in a verbal annotation. The bottom row of 
Figure 10 illustrates how data journalists might redesign 
the example on the left, which requires viewers to 
navigate text that is placed far from the patterns that it 
describes and to use their imagination to fill in the pat-
terns referred to by the text. The example on the right 
addresses both of these issues, leading to more effective 
communication of a key data pattern (Ajani et al., 2021). 
The two rightmost columns of Figure 2 summarize these 
techniques, showing that grouping, highlighting, and 
annotating can help viewers quickly make the right 
comparisons.

If helping viewers prioritize critical comparisons in 
a visualization is so important, then why do so few 
presenters do it? One likely reason is that presenter 
have a curse of knowledge—an inability to simulate the 
perspective of the naive viewer because they cannot 
ignore what they know and see (Birch & Bloom, 2007; 
Camerer et al., 1989). Figure 11 presents an empirical 
demonstration of this curse from a lab study (Xiong, 
Van Weelden, & Franconeri, 2020). Participants heard 
an intriguing story about a dip and rise of a political 
candidate’s popularity in the polls (the top line in the 
top left graph); the story made those patterns stick out 
to the participants. They were then told to forget the 
story and predict what patterns another person, naive 
to the story, would find interesting or salient in the 
graph. The graph at the upper right presents their col-
lective predictions—and makes it clear that people 
think that others will see what they see, even when 
they know that others do not have the same expertise. 
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The graphs in the bottom row show how, when the 
original story concerned a different candidate, the pat-
tern of results changed accordingly. It is impossible to 
“turn off” your own expertise, which makes it difficult 
to see through the eyes of nonexperts.

Persuade with visualizations

If grouping, highlighting, and annotation can guide 
viewers toward a certain comparison or pattern, then 
for better or worse, a visualization designer has some 
control over what their viewers see in a data set. Figure 
12 shows an example, adapted from The New York 

Times, in which the same unemployment data might be 
seen—or designed to be seen—in different ways. Dur-
ing Barack Obama’s presidency, a member of his party 
(the blue glasses) might see a drop in unemployment 
rates and highlight that downward-sloping pattern in 
the orientation channel. But a member of the rival party 
(the red glasses) might see a failure to meet a goal of 
8% unemployment and emphasize the information in 
the area channel by highlighting the area under the 
curve (Bostock et al., 2012). These visual manipulations 
are similar in spirit to choosing which of those features 
to highlight in a verbal argument.

An analysis of distortions and biased annotations in 
news media visualizations showed that rhetorical biases 
are pervasive in data graphics and that labels and fram-
ing may be skewed toward progressive or conservative 

positions, depending on the news outlet (Mehta & 
Guzmán, 2018). A taxonomy of “visualization rhetoric” 
likens visualization design to an editorial process in 
which decisions about what data to include, how to 
encode them, how to use titles and labels, how to 
describe the data’s provenance, and what interactions 
to allow represent rhetorical choices aimed at guiding 
viewers toward preferred interpretations (Hullman & 
Diakopoulos, 2011). People’s perceptions of a visualiza-
tion’s message, and their ability to recall it, are particu-
larly influenced by the visualization’s title (Kong et al., 
2018, 2019). For an engaging tour of the complexities 
of truth and deception in visualization with an emphasis 
on a journalism perspective, we point the curious 
reader to the books of Alberto Cairo (2016, 2019).

Viewers can also be influenced by expectations or 
social pressures, even for relatively low-level visual 
judgments. For example, when participants made judg-
ments about correlations in scatterplots, their estimates 
were higher when the data were labeled as personality 
variables, which one would expect to be correlated, 
than when the data were unlabeled (Freedman & Smith, 
1996). In another study, participants were asked to 
make judgments about visualizations (e.g., rating the 
linear association in a scatterplot) presented either 
alone or with a histogram plotting other people’s rat-
ings. The other ratings were either true ratings or a 
distribution of the true ratings shifted by 1 SD. When 
participants were provided with the manipulated 
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Fig. 11. A demonstration of the curse of knowledge in data visualizations. Participants were told a story involving the data patterns highlighted 
in the top two lines (top left) or the bottom two lines (bottom left) of a line graph. They were then told to forget the story and to circle the 
patterns that a naive viewer would notice first on an unannotated version of the graph. Their predictions (bottom right) mirrored the story 
they had been told, showing a “curse of knowledge,” or an inability to inhibit relevant expertise. Adapted with permission from C. Xiong, L. 
Van Weelden, and S. Franconeri (2020), “The Curse of Knowledge in Visual Data Communication,” IEEE Transactions on Visualization and 

Computer Graphics, 26(10), p. 3051–3062, https://doi.org/10.1109/TVCG.2019.2917689. Copyright 2020 by IEEE.
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histograms, their judgments were biased in the direction 
of the social influence (Hullman et al., 2011).

Finally, the format of a visualization can also guide 
the types of conclusions that viewers draw from the 
underlying data. Imagine data showing that students 
who eat breakfast more often tend to have higher GPAs. 
A viewer might see this correlation and assume a causal 
relationship whereby a good breakfast causes better 
grades. Although plausible, this conclusion cannot be 
drawn from these data. When shown visualizations like 
these, viewers made unwarranted claims about similar 
correlational data, and they did so more often when 
the visualizations aggregated the data into fewer groups 
(e.g., a two-bar graph), compared with more groups 
(e.g., a scatterplot showing all of the individual data 
values; Xiong, Shapiro, et al., 2020), perhaps because 

seeing the data in fewer groups is implicitly associated 
with those data being gathered by an experimental 
manipulation.

Avoid taxing limited working memory

Given that comparisons are already highly capacity lim-
ited, any extraneous demands on working memory due 
to the design of visualizations should be avoided. Inter-
preting the graphs in the middle and right sides of 
Figure 13 requires individuals to map the symbols and 
colors in the graphs to their referents in the legends 
below. This task is highly demanding of limited working 
memory resources. If information is lost in interpreting 
a graph, viewers might make interpretation errors or 
require extra time to reinspect the legend. Indeed, one 
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Fig. 12. An example of emphasizing different perspectives in a single data set (inspired by Bostock et al., 2012). One data 
set can be seen with dramatically different perspectives, depending on which patterns an observer does and does not extract.
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Fig. 13. A demonstration of the advantage of direct labels over legends. Take a moment to state the 
names of the four groups shown in the line graph at left in top-to-bottom order. (Answer: b, d, a, c.) 
Now do the same for the graphs at center and right, which require coordination with color and shape 
legends. You should notice a substantial slowdown because of the need to frequently look back and 
forth between the graph and the legend. If you attempt to memorize the legend first, you will experi-
ence the capacity limit of your working memory.
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study found that people answered questions about data 
both faster and more accurately when the data were 
directly labeled in graphs compared with when there 
was a legend (Lohse, 1993). Therefore, instead of leg-
ends, use direct labels whenever possible (e.g., Wong, 
2010). Note that there may be exceptions to this recom-
mendation, if legends provide a way to index data 
values that labels cannot. For example, a map of an 
amusement park might list locations under the map to 
allow the viewer to browse the locations alphabetically 
or clustered by type (rides, food, etc.), which is not 
possible for map locations that are already organized 
in space.

When visualizations are well designed, they can help 
viewers overcome working memory limits by offloading 
information storage and some types of processing to a 
page or screen (Kirsh, 2005; Tversky, Heiser, et  al., 
2002). Compared with the slow difficulty of reading 
and comparing symbolic numbers, a visualization can 
allow these steps to unfold far more quickly and effi-
ciently. For example, older adults with normal cognitive 
decline were asked to compare multiple health-care 
plans. They were given plan information (e.g., about 
monthly premiums, deductibles, and gap coverage 
[supplementary insurance to cover medical costs 
incurred before reaching the deductible]) either in a 
table full of text and numbers or in a table with visual 
categorical encodings of the information (e.g., green 
circles for the best gap coverage and red circles for no 
coverage). The adults using the visually encoded table 
made better and, in some cases, faster decisions about 
which health-care plan to select because they found it 
easier to make comparisons (Price et al., 2016).

Beware the working memory load of animation.  
Limits on working memory can also be strained by ani-
mation. Some kinds of visual motion, such as patterns of 
translation or expansion that accompany moving the 
head or walking, can be tracked efficiently and automati-
cally (Gibson, 1979). However, our capacity for tracking 
the motion of objects that move in arbitrary directions is 
highly limited, to as few as one or two objects at a time 
(Alvarez & Thompson, 2009; Scimeca & Franconeri, 2014; 
Xu & Franconeri, 2015), including in moving scatterplots 
(Chevalier et  al., 2014). If a viewer’s capacity is over-
whelmed during an animation, they may not retain the 
motion information before the animation is over. Education 
researchers have termed this the transient informa-

tion effect, a “loss of learning due to information disap-
pearing before the learner has time to adequately process 
it or link it with new information” (Sweller et al., 2011,  
p. 220).

Examples of both of these problems can be seen in 
studies of mechanical diagrams. In a review of roughly 

100 studies on the use of animated diagrams for teach-
ing complex mechanical, biological, or computational 
systems, researchers found that students’ descriptions 
of processes were no more accurate with animations 
than with labeled static diagrams (Tversky, Morrison, 
& Betrancourt, 2002). In one experiment, students saw 
static or animated diagrams of the mechanical processes 
involved in flushing toilet tanks. Both groups could 
identify the number of sequential stages. However, stu-
dents who saw the animated diagram made more errors 
(20% for animated vs. 5% for static) about individual 
stages, such as whether air or water ends the flushing 
process (Kriz & Hegarty, 2007). Even when viewers can 
extract global patterns from an animated diagram, the 
capacity limitation in processing animations can gener-
ate a cost for other information in the scene.

The mere presence of animation can also induce an 
illusion of understanding, such that it erroneously 
inflates observers’ confidence in their percept. For 
example, observers who saw animated diagrams of a 
toilet’s flushing mechanism were not only less accurate 
at recalling the names and functional roles of parts 
relative to observers who saw static diagrams; they also 
reported less perceived difficulty and higher engage-
ment than did the more successful static-diagram learn-
ers (Paik & Schraw, 2013).

There is little evidence that animation facilitates 
understanding of information displays, but there is one 
important exception: animation used to convey proba-
bilistic processes and uncertainty, in which draws from 
a distribution provide a metaphor for random sampling 
(Hofman et al., 2020; Hullman et al., 2015; Kale et al., 
2019). Such animations are effective in conveying sam-
pling uncertainty. One reason appears to be automatic 
(i.e., not requiring conscious attention) processing of 
frequency information (Hasher & Zacks, 1984). Using 
animation to convey uncertainty does not tax working 
memory because neither the sequence of samples nor 
the specific properties of individual samples are impor-
tant for understanding that variability.

Allowing a viewer to control an animation manually 
may prepare them to focus their limited capacity on the 
right subsets of information at the right time and  
to replay critical portions of an animation. Viewer- 
controlled animation has shown some success (ChanLin, 
1998; Faraday & Sutcliffe, 1997; Mayer & Moreno, 2003; 
Schwan & Riempp, 2004; Tversky, Morrison, & Betran-
court, 2002). However, empirical evaluation shows that 
interactivity does not always improve performance. One 
famous example of an animated data visualization is 
Gapminder’s Trendalyzer (Gapminder Foundation, 
2007), a scatterplot containing circles for countries and 
plotting, for example, the countries’ gross domestic 
product (GDP) on the y-axis, life expectancy on the 
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x-axis, and population as the size of their circle. The 
Trendalyzer uses animation to show trends over time, 
moving the dots to show how each of these factors 
changes. When participants were shown a similar dis-
play with interactive controls for the animation, they 
were better able to answer precise questions about each 
country than participants without interactive controls, 
but they also became worse at extracting global trends 
across countries compared with participants shown 
static alternatives (Abukhodair et al., 2013; Robertson 
et al., 2008). Furthermore, user-controlled interactivity 
is not always possible for some systems or audiences.

Nevertheless, viewers frequently report that ani-
mated diagrams and data visualizations are more engag-
ing and enjoyable than static versions, which may 
explain animation’s continued use (Abukhodair et al., 
2013; Robertson et  al., 2008; Tversky, Morrison, & 
Betrancourt, 2002). In a communication context, anec-
dotal evidence suggests that an engaging animation can 
still communicate patterns in data when carefully 
deployed. The example in Figure 14 depicts a TED talk 
by Hans Rosling (2006), in which Rosling used the 
moving display to depict changing world health statis-
tics over time. Rosling made his dynamic data story 
easy to understand by carefully using language to guide 
his audience (“look at this cluster, it’s moving up . . .”), 
paired with exaggerated gestural cues to help the audi-
ence focus on the relevant data values. Such cues have 
been shown to help students integrate verbal informa-
tion when interpreting diagrams (Mautone & Mayer, 
2007), graphs (Michal et al., 2018), animations (de Koning 
& Tabbers, 2011), and other educational materials 
(Goldin-Meadow, 1999). Future research inspired by 

Rosling’s case study might help outline concrete rules 
for using animation in ways that would allow his suc-
cess to be replicated.

Should your visualizations be rich  

or minimalistic?

Given the limited working memory resources of visu-
alization viewers, designers often recommend a mini-
malist aesthetic that strips away any design elements 
that are not critically needed (Few, 2004; Knaflic, 2015; 
Tufte, 1983). One popular mantra is to keep a maximal 
“data–ink ratio” (Tufte, 1983), though the definition of 
“ink” can be frustratingly vague (Correll & Gleicher, 
2014a). Figure 15 depicts variants of a visualization 
based on this prescription. The visualization at the top 
is filled with “clutter”: grid lines, a background pattern, 
and varied colors across the bars. The middle image is 
a “decluttered” visualization that omits these elements. 
Although newer editions of Microsoft Excel have elimi-
nated some forms of clutter shown in the top image, 
critics of the 2007 edition argued that the software 
encouraged users to create graphs containing dense 
grid lines, unnecessary labels, unneeded color varia-
tion, and even three-dimensional effects that trans-
formed simple bars into cylinders or pyramids (Kirk, 
2012; Kosslyn, 2010; Su, 2008; Ware, 2010, 2019).

Despite strong calls to declutter visualizations (e.g., 
Tufte, 1983), there is only mixed evidence that this 
practice improves aesthetic ratings and little evidence 
that the prescription affects objective performance. Sev-
eral studies have measured aesthetic ratings for clut-
tered versus decluttered charts, and some have shown 
clear preferences for decluttered versions (Ajani et al., 
2021) and others, surprisingly, showing the opposite 
(Hill et al., 2017; Inbar et al., 2007). Researchers who 
have found the opposite have typically argued either 
that viewers’ higher level of familiarity with cluttered 
charts make those charts more attractive or that declut-
tered charts that are too minimalistic become boring. 
Another possibility is that users may prefer particular 
depiction styles for particular purposes, mindful of their 
audience and goals (Levy et al., 1996). Objective per-
formance measures, such as the speed with which view-
ers can compute means across values in a bar graph, 
also present mixed evidence. For example, that speed 
can be slightly faster when some forms of “clutter,” such 
as axis tick marks, are removed but slower when other 
elements are removed (Gillan & Richman, 1994). Given 
the large number of design elements that could count 
as clutter, combined with the large number of tasks that 
one could complete on a visualization, some have 
argued that a simple rule for whether to declutter is 
unlikely to arise and have discouraged further empirical 

Fig. 14. A screenshot from Hans Rosling’s (2006) TED talk on the 
power of visualized data. Hans Rosling helped viewers see relevant 
patterns in a complex animated visualization with exaggerated ges-
tures and clear linguistic guidance toward the critical visual compari-
sons that supported his arguments.
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testing given the small and mixed effects found so far 
(Ajani et al., 2021).

The bottom of Figure 15 shows the same bar graph 
embedded within a cartoonish monster. The addition 
of such pictorial elements that embellish data with 
anthropomorphic or metaphorical elements—intended 
to enhance engagement or memory—has been demon-
ized as “chartjunk” (e.g., Tufte, 1983). Various studies 
have shown that adding these elements leads to no 
improvement in memory for the data (Helgeson & Moriarty, 
1993; Kelly, 1989), mixed results depending on the 
details of the task and context (Gillan & Richman, 1994; 
Li & Moacdieh, 2014), or better memory for the data 
content or message (Bateman et al., 2010; Borkin et al., 
2016; Haroz et al., 2015b). Like animation, these visual 
embellishments can increase ratings of engagement and 
aesthetic value (Li & Moacdieh, 2014). And despite 
mixed evidence as to whether their presence improves 
memory for the data, pictorial elements do improve 
memory for the fact that a visualization was previously 
seen, both in the short and the longer term (Borkin 
et al., 2013).

How to Design an Understandable 
Visualization

Use familiar designs to show data 

intuitively

Visualizations can be powerful, but a poorly designed 
visualization can easily confuse or even mislead (Burns 
et al., 2020; Cairo, 2019; Szafir, 2018). Because the inter-
pretation of visualized data is in the eye and mind of 
the human beholder, we must consider the psychology 
of the observer as the translator of images into an 
understanding of the original data and the patterns that 
they hold. Below, we outline a set of common transla-
tion errors that can confuse and mislead.

Understanding a visualization can depend on a graph 

schema: a knowledge structure that includes default 
expectations, rules, and associations that a viewer uses 
to extract conceptual information from a data visualiza-
tion. Figure 16 serves as an example of why a graph 
schema is often needed to interpret a data visualization. 
It depicts the GDP (on a log scale) and population of 
the 10 most populous countries. Take a moment to 
interpret the data.

If you are having trouble extracting the data from 
this visualization, it is not your fault—you do not have 
the needed schema. First, if you have never seen this 
type of visualization, you cannot know which aspects 
of its variation are meaningful. The bubbles differ in 

Fig. 15. A “cluttered” visualization (top), a minimalist “decluttered” 
version (middle), and a version that incorporates pictorial embellish-
ment (bottom). The graph at the bottom was created by Nigel Holmes 
for TIME Magazine and was reprinted in his 1984 book, Designer’s 

Guide to Creating Charts & Diagrams. Used with permission.


