
JOURNAL OF ALGORITHMS 9,418-425 (1988)

The Concave Least-Weight Subsequence
Problem Revisited

ROBERT WILBER

AT& T Bell Laboratories, Murray Hill, New Jersey 07974

Received August 21,1987; accepted November 3,1987

We are given an integer n and a real-valued function w(i, j) defined for integers
0 5 i <j 5 n and with the property that w(i,-,, j,,) + w(il, jl) I w(iO, jl) +
w(il, J,-J for 0 5 i, < il < j,, < j, I n. The concave least-weight subsequence problem
istofindanintegerkrlandasequenceofintegersO=I,<I,~ ... <I,-,<
1, = n such that Zf:iw(/,, li+l) is minim&d. One application of this problem is
determining optimal line breaks in a text formatting system. D. S. Hirschberg and
L. L. Larmore (SIAM J. Comput. 16 (1987), 628-638) showed that the concave
least-weight subsequence problem can be solved in 0(n log n) time and that if a
certain extra condition is imposed it can be solved iu O(n) time. Here we show that
the concave least weight subsequence problem can always be solved in 0(n) time,
without any extra conditions. Q 1988 .ademi~ press, Inc.

1. INTRODUCTION

Hirschberg and Larmore [2] define the lea+weight subsequence problem
(henceforth called the LWS problem) as follows. Given an integer n, and a
real-valued weight function w(i, j) defined for integers 0 -< i < j 5 n, find
anintegerk~landasequenceofintegersO=I,<Z,< **. <I,-,<Zk
= n such that Cf:tw(lj, Zi+i) is minimized. The weight function is concaue
if

w(i,, jo) + w(i,, jl) I w(i,, jl> + w(i,, j,),

forOIi,<i,<j,<j,In. (1)

If the weight function is concave then we have an instance of the concaoe
L WS problem.

An important instance of the concave LWS problem is the problem of
optimally breaking up the text of a paragraph into lines in a text formatting
system [2, 31. The text to be formatted is given as a sequence of syllables

418
0196-6774/88 $3.00
Copyright 0 1988 by Academic Press, Inc.
AI1 rights of qmduction in any fom reserved.

THE LEAST-WEIGHT SUBSEQUENCE PROBLEM 419

Sl, - - * , s,, with the space or punctuation following a word being considered
to be part of the last syllable of the word. We wish to break up the syllables
into one or more lines so that each line other than the last one is filled with
“one line’s worth” of text-neither too little nor too much. In this case
w(i, j) is the penalty associated with a line that starts at syllable ++I and
ends at syllable fj. Typically w(i, j) would be defined as something like
(len(i, j) - parwrdth)2, where len(i, j) is the “natural length” of a line
starting at syllable si + 1 and ending at syllable sj and pat-width is the width
of the paragraph being formatted. (There are additional complications, such
as handling the last line and adding in penalties for hyphenation.) The
weight function can be computed in constant time because len(i, j) can be
computed as length(j) - length(i), where length(i) is the natural length of
a line with syllables s1 through si. The values for length can be computed at
the start in O(n) time. Reasonable weight functions for this problem are
concave.

Other applications described by Hirschberg and Larmore where the
concave LWS problem arises are an airplane refueling problem and mini-
mixing the height of B-trees [2].

The LWS problem can be solved by dynamic programming in 0(n2) time
(with or without the concavity constraint). Hirschberg and Larmore [2] give
an O(n log n) time algorithm for the concave LWS problem. They also
show that the concave LWS problem can be solved in O(n) time if the
weight function meets an additional dif,f erence-of-weight constraint. The
weight function satisfies the difference-of-weight constraint if w(i, k) =
diff(i, j, scale(k)) + w(j, k), for 0 I i -z j < k I n, where:

(i) Scale(i) is a real-valued strictly monotone increasing function de-
fined for integers i E [0, n].

(ii) Diff(i, j, x) is a real-valued function defined for integers 0 I i < j
< n and real x > scale(j), and is monotone increasing in x for fixed i and

J
(iii) For fixed i and j the equation diff(i, j, x) = 0 can be solved for

x in constant time.

The first two conditions can always be met by, for example, defining
w(i, i) = W, where W is a very large value, scale(i) = i, diff(i, j, x) =
w(i, x) - w(j, x) when x is an integer, and linearly interpolating between
diff(i, j, lx]) and diff(i, j, [xl) w h en x is not an integer. However, with
this definition for diff there might not be any more efficient way of finding
roots than using an O(log n) time binary search. Hirschberg and Larmore
show that for the line breaking problem and the other problems they
describe a reasonable choice can be made for the weight function so that it

420 ROBERT WILBER

satisfies the difference-of-weight constraint, and thus their linear time
algorithm can be used.

For the sake of both generality and aesthetics it is desirable to avoid the
need for the difference-of-weight constraint, and use only the concavity
property. Here we show that the concave LWS problem can always be
solved in O(n) time.

2. ‘IkE CONVENTIONAL ih3ORITHM

We first review the standard O(n2) algorithm for the LWS problem. Let
f(0) = 0 and for 1 I j 5 n let f(j) = the weight of the lowest weight
subsequence between 0 and j. For 0 < i < j I, n define g(i, j) as the
weight of the lowest weight subsequence between 0 and j whose next to the
last index is i. (That is, the lowest weight subsequence of the form
O=I,-zl,< ... <I,-,=i<I,=j.)Thenwehave

f(i) = o$ydiT j), for1 ljln, (24

g(i, j) =f(i) + w(i, j), forOli<jln. (2b)

We may represent g by an upper triangular matrix indexed by row from 0
to n - 1 and by column from 1 to n. Equations (2a) and (2b) tell us that we
can compute g one column at a time-once the values of g are known for
column j we can compute f(j) and then we can compute the values of g
for column j + 1. In practice when the value of f(j) is determined we also
store the value of i for which g(i, j) is minim&A; with this information we
can recover the optimal sequence in O(n) time after f has been computed.
This programmin g detail will be ignored. The standard algorithm requires

entries of g so it takes O(n’) time.

3. THE NEW ALGORITHM

The linear time algorithm for the concave LWS problem also computes
all values of f but does this while computing only O(n) values of g.

Let M be an n X m real-valued matrix, and let i(j) be the smallest row
index such that M(i(j), j) equals the minimum value in the jth column of
M. Matrix M is man&me if for all 1 < j, < j, I m we have i(jo) I i(j,).

THE LEAST-WEIGHT SUBSBQUENCE PROBLEM 421

M is tofu& monofone if every submatrix of M is monotone. It is easy to
see that this is equivalent to the condition that every 2 x 2 submatrix of
M is monotone. Aggarwal et al. [l] describe an algorithm that, given an
n X m totally monotone matrix, computes i(j) for each j E [l, m] in only

O(m + n) time.’ We will use this algorithm as a subroutine (and will call it
the SMAWK algorithm). In applications the n X m matrix is not repre-
sented explicitly; instead there is a subroutine that given i and j computes
the value of M(i, j). The proof of the linear time bound assumes that this
subroutine works in O(1) time.

If we add f(i,) + f(il) to both sides of (1) and apply (2b) we get

tdi0, AJ + dk A) 22 gGo, A) + gh j,),

for05i,<i,<j,<j15n. (3)

Let W be some large value (1 + n * maxi, jw(i, j) will do). We may extend
the definition of g by setting

gk j> = w, forl5jsi<n-1. (4)

Now g can be regarded as an n X n matrix and (3) and (4) imply that it is
totally monotone. The goal is to determine the row index of the minimum
value in each column of g, so we would like to simply apply the SMAWK
algorithm. But we cannot, because for i < j the value of g(i, j) depends
upon f(i) which depends upon all values of g(l, i) for 0 s 1 < i. So we
cannot compute the value of an arbitrary cell of g in O(1) time.

The trick is to start in the upper left comer of g and work rightwards and
downwards, at each iteration learning enough new values for f to be able to
compute enough new values of g to continue with the next iteration.
Actually, during one step of each iteration the algorithm operates on the
basis of wishful thinking-it “pretends” to know values of f that it really
does not have. At the end of that step the assumed values of f are checked
for validity. If the assumed values are correct we win by learning some new
values of f. If one of the assumed values is wrong we win anyway by
eliminating from further consideration some of the rows of g.

In discussing the algorithm we revert to regarding g as an upper
triangular matrix; the values of g defined by (4) are used when needed by
the SMAWK algorithm and are otherwise ignored. We use f(j) and g(i, j)
to refer to the correct values of f and g, as defined by (2a) and (2b). The
currently computed value for f(j) is denoted by F[j], and will sometimes

‘Aggarwal et af. defined monotonicity in terms of the position of the maximum in each row
rather than the minimum in each column; we simply exchange the roles of rows and columns
and reverse the direction of some of the comparisons in their algorithm.

422 ROBERT WILBER

F[O] + c + r + 0.

while (c < n)

begin

Step 1: p + min(2c - f + l,n)

Step 9: Apply the SMAWK algorithm to find the minimum in each column of submatrix

G[r,c;c+ l,p]. For j E [c + l,p] let Fb] = the minimum value found in G[r,c; j].

Step 3: Apply the SMAWK algorithm to find the minimum in each column of submatrix

G[c+l,p-l;c+2,p].Forj~[c+2,pJletH~]=theminimumvaluefoundin

G[c + Lp - 1; j].

Step 4: If there is an integer j E [c + 2,p] such that Hlj] < F/j] then set j, to the

smallest such integer. Otherwise j,, + p + 1.

Step 5: if (j0 = p + 1)

then c + p.

end

else Flj,] +- Hlj,]; r + c + 1; c + jO.

FIG. 1. The linear time algorithm for the concave LWS problem.

be incorrect. The currently computed value of g(i, j) is denoted by G[i, j],
and for i -zj is always computed as P[i] + w(i, j) (there is no need to
explicitly store the G matrix). So G[i, j] = g(i, j) iff F[i] = f(i). We use
G[i,, i,; jr, j,] to denote the submatrix of G consisting of the intersection
of rows i, through i, and columns j, through jz. G[i,, i,; j] denotes the
intersection of rows i, through i, with column j.

The algorithm is shown in Fig. 1. (Remember that rows are indexed from
0 and columns are indexed from 1.) Each time we are at the beginning of
the loop the following invariants hold:

(1) r 2 0 and c r r.

(2) For each j E [0, c], F[j] = f(j).

(3)Allminimaincol~sc+1throughnofgareinrows 2r.

These invariants are clearly satisfied at the start when r = c = 0.
Let S denote the submatrix G[r, c; c + 1, p] (used in Step 2) and let T

denote the upper triangular submatrix G[c + 1, p - 1; c + 2, p] (used in
Step 3). Figure 2 shows matrix G and submatrices S and T during a typical
iteration of the algorithm.

Invariant (2) implies that G[i, j] = g(i, j) for all j and all i E [0, c] so
the entries of submatrix S are the same as the corresponding entries of g.

THE LEAST-WEIGHT SUBSEQUENCE PROBLEM 423

FIG. 2. Matrix G during a typical iteration of the algorithm, with r = 3 and c = 7.

Therefore S is totally monotone and for j E [c + 1, p], Step 2 sets F[j] to
the minimum value of subcolumn g(r, c; j). Also, since submatrix S
contains ah cells in column c + 1 of g that are in rows 2 r we have
F[c + l] = f(c + 1) at the end of Step 2. On the other hand, we do not
necessarily have F[j] = f(j) for any j E [c + 2, p], since g has cells in
those columns that are in rows 2 r and not in submatrix S.

In Step 3 we proceed as if F[j] = f(j) for ah j E [c + 1, p - 11. Since
this may be false, some of the values in T may be bogus. However, T is
always totally monotone, for if we add F[i,] + F[i,] to both sides of (1)
we get G[i,, j,] + G[i,, jr] I G[i,, j,] + G[i,, &]-it does not matter
whether or not F[i,] = f(i,) and F[iJ = f(iJ. Thus the SMAWK algo-
rithm works correctly and H[j] is set to the minimum value of subcolumn
G[c + 1, p - 1; j] (which is not necessarily the same as the minimum
value of subcolumn g(c + 1, p - 1; j)). (If r = c then T has 0 rows and 0
columns. In that case Step 3 does nothing and Step 4 sets j,, to p + 1.)

In Step 4 we verify that F[j] = f(j) for j E [c + 2, p], or else find the
smallest j where this condition fails. The first column of T has just one
cell, G[c + 1, c + 21. Since F[c + l] = f(c + 1) we have G[c + 1, j] =
g(c + 1, j) for alI j and, in particular, for j = c + 2. So H[c + 21 is the
minimum value in subcohunn g(c + 1, p - 1; c + 2). Thus if H[c + 21 2
F[c + 21 then F[c + 21 = f(c + 2). If that is the case then G[c + 2, j] =
g(c + 2, j) for ah j so both cells in the second column of T are correct,
and H[c + 31 is the minimum value in subcolumn g(c + 1, p - 1; c + 3).
Continuing in the same way we see that if H[c + 31 2 F[c + 31 then
F[c+ 3]=f(c+ 3)andalIcelIsinthethirdcolumnof Tarecorrect,and
so on. So if for ah j E [c + 2, p] we have H[j] 2 F[j] then for all
j E [0, p] we have F[j] = f(j). In that case the then clause of the if
statement in Step 5 is executed. Since c is set to p invariant (2) is satisfied

424 ROBERT WILBER

at the start of the next iteration. Since r is not changed in this case
invariant (3) and the first part of invariant (1) are still satisfied. Also since
p > r we have c > r and the second part of invariant (1) is satisfied.

The other case is that we find j, E [c + 2, p] such that H[j,] < F[j,]
and H[j] 2 F[j] for j E [c + 2, j,, - 11. Then by the reasoning above at
the end of Step 4 we have F[j] = f(j) for all j < j, and H[j,] = the
minimum value in subcolumn g(c + 1, p - 1; j,,). In Step 5 the else clause
is executed and after F[j,,] is set to H[j,] we have F[j] = f(j) for all
j I j,, so invariant (2) still holds after c is set to j,. The minimum value in
column j,, of g was found in a row 2 c + 1, so since g is totally monotone
we know that all minimaincolumns >j, areinrows kc+l.Thus
invariant (3) holds after r is set to c + 1 and c is set to j,,. The value of r is
increased so r > 0 and the first part of invariant (1) is satisfied. Since
j, 2 c + 2 (using the old value of c) we have the new value of c > r, so the
second part of invariant (1) is satisfied.

The then clause of Step 5 leaves c = p I n and the else clause leaves
c = j, I n so when the while loop terminates we must have c = n. Then
invariant (2) implies that F[j] = f(j) for all j E [0, n] and we are done.

4. THE TIME BOUND

We show that the algorithm terminates within O(n) time. On any given
iteration submatrix S has c - r + 1 rows and at most c - r + 1 columns.
Submatrix T has at most c - r rows and c - r columns. The SMAWK
algorithm runs in linear time so the time taken by a single iteration can be
bounded by b . (c - r + l), for some constant b. Say that an iteration is
ubnormul if p z 2c - r + 1 and the then clause of Step 5 is executed, and
is normal otherwise. In an abnormal iteration we have p = n and at the end
c is set to p, so that c = n. Thus the algorithm terminates after the first
abnormal iteration (if any) and the total time used by abnormal iterations is
O(n). To bound the cost of normal iterations let +(i) = the value of r + c
at the end of the i th iteration (+(O) = 0). Since at the end of each iteration
r I c I n we always have e(i) zz 2n. We claim that if the ith iteration is
normal +(i) 2 $(i - 1) + c - r + 1, where the values of c and r are from
the start of the ith iteration. This claim implies that for all i the total time
used by the first i normal iterations is at most b . +(i), so the time taken by
all normal iterations is at most 26~2. To prove the claim, consider first the
case where the then clause of Step 5 is executed. Since the iteration is
normal p = 2c - r + 1 so c is replaced by 2c - r + 1, an increase of
c - r + 1, and r is unchanged. Thus +(i) = +(i - 1) + c - r + 1. If in-
stead the else clause is executed c is increased by at least 2 (since
j,, 1 c + 2) and r is increased by c - r + 1, so G(i) 2 $(i - 1) + c - r +

3. So the total time taken by all iterations is O(n).

TIiE LEAST-WEIGHT SUBSEQUENCE PROBLEM 425

5. PRACTICAL EFFICIENCY CONSIDERATIONS

If one has an instance of the concave LWS problem for which the
difference-of-weight constraint can be satisfied (and the constant bounding
the time to solve diff(i, j, x) = 0 is reasonably small) then Hirschberg and
Larmore’s [2] O(n) time algorithm is the method of choice. Otherwise the
best method depends on the value of n. Hirschberg and Larmore’s general
O(n log n) time algorithm is simple and has a small constant factor buried
in the “0,” whereas the theoretically superior linear time algorithm given
here uses the SMAWK algorithm, which has a fairly large constant factor.

For each j E [l, n] let prev(j) be the value of i E [0, j - l] that
minim&s g(i, j), and let w = mai.j..(j - prev(j)). For the line-
breaking problem n is the number of syllables in the paragraph to be
formatted and w is roughly the maximum number of consecutive syllables
that fit on a single line without crowding. Hirschberg and Larmore’s
algorithm [2} can easily be modified to run in O(n log w) time. There is a
simple divide-and-conquer procedure for finding the minima of an I x m
totally monotone matrix iu time O(1 log m), with a small constant factor
inside the “0.” For values of w that are not very large the algorithm
described here will run faster if the calls to the SMAWK procedure are
replaced by calls to the divide and conquer procedure. This version of the
algorithm runs in O(n log w) time, because c - r I w at each iteration. It
is quite different from Hirschberg and Larmore’s algorithm, and like their
algorithm it has a moderate sized constant factor.

ACKNOWLEDGMENT

Peter Shor suggested looking at Hirschberg and Larmore’s paper [2] and seeing if their
O(n log n) time algorithm could be improved upon.

REFERENCES

1. A. AGGARWAL, M. M. KLAWE, S. MORAN, P. SHOR, AND R. WILBER, Geometric applica-
tions of a matrix searching algorithm, Algor~thmicu 2 (1987), 195-208.

2. D. S. HIRSCHBERG AND L. L. LAXMORE, The least weight subsequence problem, SIAM J.

Compu?. 16 (1987), 628-638.
3. D. E. KNUTH AND M. F. PLAss, Breaking paragraphs into lines, Sofnoare Practice

Experience 11 (1981), 1119-1184.

