
SIAM J. COMPUT.

Vol. 16, No. 4, August 1987 003

THE LEAST WEIGHT SUBSEQUENCE PROBLEM*

D. S. HIRSCHBERG" AND L. L. LARMORE?

Abstract. The least weight subsequence (LWS) problem is introduced, and is shown to be equivalent

to the classic minimum path problem for directed graphs. A special case of the LWS problem is shown to

be solvable in O(n log n) time generally and, for certain weight functions, in linear time. A number of

applications are given, including an optimum paragraph formation problem and the problem of finding a

minimum height B-tree, whose solutions realize improvement in asymptotic time complexity.

Key words, algorithms, dynamic programming

AMS(MOS) subject classifications. 68P05, 68Q25

1. Introduction. We define an instance of the Least Weight Subsequence problem

(hereinafter referred to as the LWS problem) on [a, b] as follows:

We are given a real-valued function weight (i, j), defined for all a <-i<j <-b. If

io, i,..., it is a strictly monotone increasing sequence of integers in the range [a, b l,
we define the weight of the sequence to be _-<s_<_, weight (is_,

The single pair LWS problem (or simply, LWS problem) is to find that monotone

sequence of integers starting with a and ending with b which has minimum weight.
The all pairs LWS problem is to solve the LWS problem for all pairs (ao, bo) such that
a _-< ao -< bo_-< b.

We say that the weight function weight is concave if, for all io -< i <jo--<jl,

weight io,jo) + weight (il ,jl) <- weight io,j) + weight i ,jo).

This concavity condition is exactly the quadrangle inequality introduced by Yao [6].
If weight is concave, we say it defines an instance of the concave LWS problem.

The LWS problem is equivalent to a minimum path problem for a weighted
directed graph. Given an instance of the LWS problem, let G (V, E) be the directed

graph with V={0. n} and E ={(i,j)li<j} and let weight be a weight function on

the edges of G. Then the minimum path problem is to find a minimum weight path
from 0 to n.

Conversely, given any instance P of the min path problem on directed acyclic

graph G (V, E) with a weight function weight, choose a topological order on V. A
solution to the LWS problem, where V has been numbered 0 to n in accord with the

topological ordering, yields a solution to the minimum weight path problem on G.
Aside from theoretical interest, the LWS problem (and its solution) are useful in

bringing to light improved solutions to a number of practical problems. In the ensuing

sections, we discuss three algorithms for the LWS problem and their applications.
In 2, we discuss the Traditional Algorithm, which solves the general LWS problem

in quadratic time. In 3, we introduce our Basic Algorithm, which solves the general
concave LWS problem in O(n log n) time. In 4, we describe an algorithm which we

call the Scale-Assisted Algorithm, which solves the concave LWS problem in linear

time, provided that the weight function is supported by a suitable scale function, and

Received by the editors March 25, 1985; accepted for publication (in revised form) October 7, 1986.

A preliminary version of this paper was presented at the 26th Annual Symposium on Foundations of

Computer Science held in Portland, Oregon, October 21-23, 1985. An extended abstract of the paper appears

in the Proceedings, pp. 137-143. (C) 1985 IEEE.

? Department of Information and Computer Science, University of California, Irvine, California 92717.

628

THE LEAST WEIGHT SUBSEQUENCE PROBLEM 629

that a certain inequality can be solved in constant time. In 5, we give some applications,
including the paragraph breaking problem with quadratic penalties.

2. The Traditional Algorithm. In this section we describe a straightforward

algorithm for solving the LWS problem, using dynamic programming. A variation

of this Traditional Algorithm is used in TEX to solve the paragraph breaking

problem [3].
Suppose we are given an instance of the LWS problem on [0, n], defined by a

weight function weight. Let f(i) be the least weight of any subsequence which begins

with 0 and ends with i. (Thus f(0)- 0, and f(n) is the weight of the solution to the

LWS problem.) The function f exists abstractly. The Traditional Algorithm uses

dynamic programming to construct an array f[.] which contains the values of this

abstract function.

We define an abstract function g(i,j) -f(i) + weight (i,j), for <j integer in [0, n].
We may consider g(i,j) to be a candidate value for f(j), i.e., f(j) is the minimum,

over all i<j, of g(i,j). During execution of the Traditional Algorithm, the value

of g(i,j) can be computed in constant time, provided f[i] has already been

evaluated.
Define bestleft (j) to be the second from the last element in a solution to the LWS

problem restricted to [0,j], i.e., bestleft (j)= i, where f(j)=f(i)+ weight (i, j). Since

there need not be a unique least weight subsequence, there may be more than one

equally good choice of bestleft, in which case, we allow one of them to be chosen

arbitrarily. During execution ofthe algorithm, an array bestleft is defined which contains

the values of the abstract function bestleft.

THE TRADITIONAL ALGORITHM

f[O]O
for m from 1 to n do

begin
f[m]-g(O,m)

bestleft [tn - 0

forifrom 1 to m-1 do

if g(i, m)<f[m] then

begin
f[m]g(i,m)

bestleft rn -end

end

// Comment: the array f has now been defined.

// The remainder of the algorithm recovers the LWS using bestleft.
L-(n)
m-n

while m > 0 do

begin
m - bestleft rn]
prepend rn to L

end

return (f[hi, L)

Analysis of the Traditional Algorithm. During each iteration of the main loop of
the Traditional Algorithm, the value off[m] is computed, under the assumption that

630 D. S. HIRSCHBERG AND L. L. LARMORE

the values off[i], for all < m, have already been evaluated. The value of bestleft m

is simultaneously computed.
The computation of each f[m] requires examining f[i] for all i< m.. Thus the

Traditional Algorithm requires quadratic time.

Application of the Traditional Algorithm to the All Pairs LWS Problem. Only a

slight modification is necessary to solve the all pairs problem. If the entire solution

were given in output, it would consist ofthe approximately n2/2 separate subsequences.
Instead, the solution to the LWS problem for a pair (a, b) such that 0 <= a <= b <= n is

implicitly stored in the values of bestlefta. For any fixed a and b, the solution to the
LWS problem for the pair (a, b) can be recovered in linear time using the pointer
array bestlefta. Thus, O(n 3) time and only O(n2) space is required.

3. The Basic Algorithm. In this section, we introduce a new algorithm, which we

call the Basic Algorithm since it forms the basis for the more complicated algorithms
which are developed later.

We shall assume that we are given an instance of the concave LWS problem on

[0, hi, defined by a weight function weight.
The Basic Algorithm makes use of an input-restricted deque D. At all times, D

will be a subsequence of the integers 0,..., n. We refer to the least and greatest
elements of the subsequence D as the front and rear, respectively. Three updating
procedures are permitted on D: Hire (m), which appends a new element m to the rear

of D; Fire, which removes the rear element of D; and Retire, which removes the front

element of D.
In addition, we will need to access the second from the front element of D, which

we call front2, and the second from the rear element of D, which we call rear2. These

will, of course, be defined only when IDI > 1.

The deque D contains all current candidates for bestleft m], for all m which are

yet to be considered. A new element joins D when it might, be the value of bestleft in

the future. The front element is removed (i.e., Retire is executed) when it is no longer
possible for it to be bestleft for any future m, and an element is removed from the rear

(i.e., Fire is executed) when it can be determined that it will never be the correct value

of bestleft for any m. It is the determination of whether Fire should be executed that

takes most of the time of the Basic Algorithm.

THE BASIC ALGORITHM

f[0]0
D - (0)
for m from 1 to n- 1 do

begin

f[m g(front, m)

bestleft [m front
while IDI > 1 and g(front2, m + 1) <- g(front, m + 1) do

Retire

while IDI > 1 and Bridge (rear2, rear, m) do

Fire

if g(m, n) < g(rear, n) then

Hire m

end

f[n g(front, n)

bestleft n -front

THE LEAST WEIGHT SUBSEQUENCE PROBLEM 631

// Comment: the array f has now been defined.

// The remainder of the algorithm recovers the LWS using bestleft.
L-(n)
m-.-n

while m > 0 do

begin
m - bestleft m]
prepend m to L

end

return (f[n], L)

The key to the Basic Algorithm is the Boolean function Bridge. Intuitively,
Bridge (io, il, i2) if and only if il can be ignored in the future because either io or i2 is

always at least as good a choice for bestleft. Formally, for any io<i<i2,
Bridge (io, i, i2) is false ifand only ifthere exists some k > i2 such that g(i, k) < g(io, k)
and g(il, k)< g(i2, k). Since weight is concave, Bridge can be evaluated by a binary
search algorithm. We give an example of one such algorithm below.

BRIDGE (a, b, c)

if c n then

return (true)
else if g(a, n) <= g(b, n) then

return (true)
else

begin
low - c

high n

while high low => 2 do

begin
mid [(low + high /2
if g(a, mid) <= g(b, mid) then

low mid

else

high mid

end

if g(c, high) <- g(b, high) then

return (true)
else

return (false)
end

The above Bridge Algorithm works as follows. Let Right be the set of k in c + 1, n

for which g(b, k) < g(a, k) and, similarly, let Left be the set of k in [c+ 1, n] for which

g(b, k)< g(c, k). By definition, Bridge (a, b, c) is true iff Right and Left are disjoint.
By the concavity condition, Left is a left subinterval of c + 1, n and Right is a right

subinterval. Thus, their intersection is nonempty iff Right is nonempty and its minimum

element is also in Left.
The first two steps of Bridge determine whether Right is empty. If so, true is

returned. The next step uses binary search to find the minimum value of Right (stored
in high), as it is known that this is a right subinterval. Finally, the correct value of the

function is determined by checking whether high is in Left.

632 D. S. HIRSCHBERG AND L. L. LARMORE

Analysis of the Basic Algorithm.

The Boolean Function Bridge. The value of Bridge (a, b, c) is false if and only if

there exists c < k -< n such that g(b, k) is smaller than is either g(a, k) or g(c, k), i.e.,
if there exists some k where b is a strictly better candidate for bestleft [k] than either

a or c. We are interested in evaluating Bridge because if Bridge (rear2, rear, m) then

rear must be removed from D (i.e., Fire must be executed) since it will not be the

correct choice of bestleft [k] for any future k.

Time Analysis of the Basic Algorithm. Each integer from 0 to n is entered onto

the deque D exactly once. Since each execution of Retire or Fire decreases IDI by

one, the total number of executions of these two procedures cannot exceed n + 1. The

function Bridge must be evaluated once during each iteration of the main loop of the

algorithm, plus one additional time after each execution of Fire, a total of not more

than 2n times altogether. Each execution of Bridge requires O(log n) time. (We assume

the reader is familiar with the technique of binary search.) All other parts of the basic

algorithm require at most linear time, so the time requirement of the Basic Algorithm

is O(n log n).
All Pairs Version. The all pairs LWS problem can be solved by iterating the basic

algorithm n times.

Correctness of the Basic Algorithm. The proof of correctness is given in the

Appendix.

4. The Scale-Assisted Algorithm. We now consider a method for speeding up the

basic algorithm, that makes use of a scale function and a difference-of-weight function.

We give an algorithm, called the Scale-Assisted Algorithm, a modification of the Basic

Algorithm, which runs in linear time, provided a zero of the difference-of-weight

function can be found in constant time.

More generally, the Scale-Assisted Algorithm runs in time O(n. difftime), where

difftime is the time required for finding a zero of the difference-of-weight function.

Thus, the scale-assisted algorithm is asymptotically faster than the basic algorithm, if

difftime o(log n).
Let us consider an instance of the concave LWS problem on the sequence 0, , n,

where weight is the weight function. Let us suppose that we are given two real-valued

functions

Scale i)

diff i, j, x)
strictly monotone increasing, defined for all integers 0_-< i-_< n,
defined for integers 0 <_- <j < n and real x > Scale (j), monotone

increasing in x for fixed and j,

such that the following condition holds:

diff (i, j, Scale (k)) + weight (j, k) weight (i, k) for all integers 0 -_< <j < k _<- n.

We then say that the weight function weight is supported by the scale function Scale

and the difference-of-weight function diff.
The reader may easily verify that, in any instance of the concave LWS problem,

the weight function is supported by some choice of scale and difference-of-weight

functions. However, we do not start with a weight function and then find choices of

Scale and diff which support it. Rather, we only apply the Scale-Assisted Algorithm

in problems where Scale is given prior to weight, and weight depends on Scale in some

simple way.

One such problem is the paragraph breaking problem, with quadratic penalty

function, where hyphenation is allowed. We outline this application in 5.

THE LEAST WEIGHT SUBSEQUENCE PROBLEM 633

The only difference between the Basic Algorithm and the Scale-Assisted Algorithm
is the meaning (and hence implementation) of the Boolean function Bridge. If a < b < c

are integers in [0, n], Bridge (a, b, c) will be defined to be true if and only if, for all

x > Scale (c), at least one of the following two conditions holds:

(1) f(a)-f(b)/diff(a, b,x)<-O,
(2) f(b)-f(c)/diff(b, c,x)>-_O.
In the Basic Algorithm, Bridge (a, b, c) is said to be true if there is no integer

d > c such that b is a strictly better candidate for bestleft [d] than is either a or c. In
the Scale-Assisted Algorithm, Bridge (a, b, c) is said to be true if there is no real number

x which could be the value of Scale (d) for any possible d c for which b could be

a better choice of bestleft than could either a or c.

Thus, it is not necessary to look at the various d, which is what the binary search

implementation of Bridge does. Rather, it is only necessary to look at various choices

of real x. In principal, there need be no time saving. But in practice (such as the

paragraph breaking example in 5), the function diff is frequently simple enough to

allow evaluation of Bridge in constant time.

The Scale-Assisted Algorithm is identical to the basic algorithm. Only the Bridge

function is implemented differently.

FUNCTION BRIDGE (a, b,)mSCALE-ASSISTED ALGORITHM

if f(a -f(b / diff a, b, Scale n)) <- 0 then
return (true)

else if f(b) f c / diff b, c, Scale n)) < 0 then

return (false)
else

begin

Xo- lub {x diff a, b, x) <-_ O}

Xl - glb {x diff b, c, x) >- O}
if Xo<x then

return (false)
else if Xo> x then

return (true)
else if diff (a, b, Xo) > 0 and diff (b, c, Xo) < 0 then

return (true)
else

return (false)
end

5. Some applications.

Example 1. Airplane refueling. Suppose that an airplane needs to fly between two

given airports, which are distance R apart. Suppose there are n- 1 optional refueling

stops, at distances x,..., x,_ from the departure point. For simplicity, assume that

all these stops lie on the interval connecting the departure point and the destination.

We can let 0 Xo<x <. < Xn_ < X R.
We suppose that the fuel consumption of the airplane is proportional to the weight

of the plane, including unused fuel, and also that there is a fixed fuel cost of landing,
a cost of taking off, and a landing fee which varies at the different stops. The problem

of minimizing cost of the flight is then an instance of the concave LWS problem, where

weight (i, j) e+t%-’,)+ Lj, where Lj is the landing fee at the jth stop, and a and/3
are constants which absorb the other parameters of the problem.

634 D. S. HIRSCHBERG AND L. L. LARMORE

The airplane refueling problem can be solved in linear time, using the Scale-

Assisted Algorithm, by choosing the scale function to be simply the distance from the

departure point, i.e., Scale (i)=xi. For any i<j, we then have diff(i,j,x)=

Ci,j eX+ Li- Lj, where C, does not depend on x. For fixed and j, the solution to

the equation diff (i, j, x) 0 can thus be found in the amount of time it takes to compute

a logarithm (which we take to be constant). Thus Bridge takes constant time, and the

problem can be solved in linear time.

Example 2. Optimum paragraph formation. We are given a scroll of words, and

each word consists of one or more syllables. Let n be the number of syllables, and let

wi be the length of the ith syllable. The space between two words will be considered

to be attached to the last syllable in the earlier word. We wish to form this scroll into

a paragraph, minimizing the total penalty. A paragraph may be defined by a break-

sequence, consisting of a subsequence of 0,. ., n, where each element of the break-

sequence is the index of the last syllable on a line. (0 shall always be the first element

of the breaksequence, being the last syllable on the fictitious 0th line.)
We assume that penalties are assigned as follows. There is an optimum length for

a line, namely lineopt. There are also minimum and maximum lengths for a line, i.e.,
linemin and linemax. We assume that the penalty for a line being too short or too long
is proportional to the square of the difference between the length of that line and the

optimal length, except that the last line cannot be penalized for being too short. We
also assume that there is fixed penalty for breaking any word.

A weight function weight, along with supporting scale function Scale and

difference-of-weight function diff, can be assigned as follows:

Let w be the length of the ith syllable.
Let spacelen be the length of a space (between words).
Let hyphenlen be the length of a hyphen, assumed never to exceed the length of

the rest of the word.

Let Scale (i)= Wl +’" + w- spacelen, if the ith syllable is the last syllable of its

word. Remember that w includes the length of a space.
Let Scale i) Wl +" + wi + hyphenlen, if the ith syllable is not the last syllable

of its word.

For real x, let penalty (x)= A. (x- lineopt)2 if linemin <-x <-linemax, where A is

some positive constant; otherwise, let penalty (x)-.
For 0 _-< <j -< n, define weight (i, j) 0, ifj n and Scale (n) Scale (i) <-_ lineopt,

otherwise let weight (i,j)=penalty (Scale (j)-Scale (i))+ 3. B, where =0 if the jth

syllable is at the end of its word, and 1 if the jth syllable is not at the end of its

word. B is the hyphen penalty, a positive constant.

There is a problem in defining the function d/ff (i, j, x) in some cases, since

is an indeterminate form. There are two ways to resolve this problem. One way is to

force the definition of diff in those cases in the unique way which causes the algorithm
to work. Another, more elegant way, is to eliminate infinite penalties entirely, replacing
them with very large penalties which maintain the concavity condition on weight.

Accordingly, we define, in the following, a weight function which agrees with the

previous definition in all finite cases, which is very large in cases where the previous

definition requires oo, and which is concave.

First, a value M is calculated which is larger than the total penalty of any
actual paragraph. For example, we could let M B. n+ A. n (linemax-linemin)2. Let
e >0 be less than the difference of the scale values of any two syllables, i.e.,

THE LEAST WEIGHT SUBSEQUENCE PROBLEM 635

e < Scale (i) Scale (i 1) for all i. Now, redefine

penalty (x) A (x lineopt)2 if linemin <- x <= linemax,

M. 2 Ix-lineptl/ otherwise.

Finally, define weight(i, j) as before, but with the new formula for

penalty (Scale (j)-Scale (i)). Then, for any O<=i<j < n, and any real Scale (j) <x=<

Scale (n), diff (i,j, x)= weight (Scale (i), x)- weight (j, x), and we observe that

diff (i, j, x) > 0 if x Scale (i) > linemax,

< 0 if x- Scale (j) < linemin and x < Scale (n),

> 0 if x Scale (n) and x Scale (i) > lineopt,

0 if x Scale (n) and x Scale (i) <- lineopt,

A. [Scale (i)2_ Scale (j)2-(Scale (i)-Scale (j)). (lineopt + 2x)]

otherwise.

For fixed and j, diff(i,j, x) is a monotone increasing function of x, and is linear

in the interval where it may be zero. Thus, it takes only constant time to compute the
values of the least upper bound and greatest lower bound needed in the evaluation of

Bridge. It follows that the optimum paragraph may be found in linear time.

There are additional recent discussions of the paragraph problem [2], [5].
Example 3. Minimal Height B-Trees. Diehr and Faaland [1] give an algorithm

for finding a minimum height B-tree structure on a scroll (i.e., list) of words, in

O(n log n) time. We show how to use the all pairs version of the Basic Algorithm to

solve the problem in O(n2 log2 n) time, and also how to use the all pairs version of

the Scale-Assisted Algorithm to solve the problem in O(n 2
log n) time.

Given a scroll of n words, where the ith word has length w, we give a recursive

definition of a B-tree structure of height h on the scroll.

A B-tree structure of height 0 is defined to be the empty subsequence of the scroll.

A B-tree structure of height h > 0 consists of:

(1) A subsequence of the scroll, called the boundary sequence.
(2) A B-tree structure of height h- 1 on the boundary sequence (itself a scroll).
We define a page of the B-tree structure to be either the substring consisting of

all words between consecutive elements of the breaksequence (such a page is called

a leaf), or a page of the B-tree structure on the boundary sequence. The length of a

page is defined to be the sum of the lengths of all the words which constitute that page.
The height of each page can be recursively defined. A leaf has height 0. A page

of height h is a page of height h- 1 of the B-tree structure on the boundary sequence.
Each word of the scroll lies in just one page; we define the height of a word to be the

height of the page which contains that word.

The pages of a B-tree of height structure form a tree. A leaf consists of a substring
of the scroll. If the leaf is the entire scroll, that leaf is the root, and is the unique page.

Otherwise, the leaf is bounded on at least one end by a word of height 1. We then

define the parent of the leaf to be the page of height 1 which contains that word. (Note
that if both ends are bounded by words of height 1, they belong to the same page.)
Parents of pages of height greater than 0 are defined recursively.

It is important to note that a page of a B-tree can be empty, and that an empty

page can have either zero or one child.

In applications, B-trees normally have a restriction on the total length of any page.

636 D. S. HIRSCHBERG AND L. L. LARMORE

Suppose that no page can have length exceeding some positive constant pagemax. We
can then ask two questions about a given scroll consisting of n words:

(1) Does there exist a B-tree structure on that scroll?
(2) What is the minimum height B-tree structure on the scroll?

The answer to the first question is yes, if and only if w, <-pagemax for all i. If so,
there certainly exists a B-tree structure of height O(log n). The Basic Algorithm can

be usedto solve an instance of the all pairs LWS problem for each h from 0 to the

actual minimum height, constructing the minimum height B-tree structure in time

O(n 2
log

2 n). We outline the method below.
The Diehr-Faaland Graph. It is convenient to enlarge the scroll by introducing

fictitious words in positions 0 and n / 1, where Wo Wn+l 0. For any integer h -> 0 we

define the hth Diehr-Faaland graph Gh of the scroll to be an acyclic directed graph
where

(1) the vertices of Gh are the integers [0, n + 2], and
(2) the edges of Gh consist of all ordered pairs (i, j) such that i<j and there

exists a B-tree structure of height h on the scroll consisting of all words strictly between

the ith and the jth words.

We note:

(1) (i, + 1) is an edge of Gh.
(2) If (i, k) is an edge of Gh, then (i, j) is also an edge of Gh for all ij < k.

(3) If (i,j) is an edge of Gh, then (i,j) is also an edge of Gh+l.
(4) The smallest h such that (0, n + 1) is an edge of Gh is the height ofthe minimum

height B-tree structure on the scroll.

In passing, we note that condition 2 allows the directed graph Gh to be represented
using only linear storage. For each 0_-< < n + 1, let farthest_jh[i] be the largest j such

that (i,j) is an edge of Gh. Any pair (i,j) is an edge of Gh ifand only ifj -farthest_A[i],
thus only the array farthest_jh need be stored to represent Gh.

Our method is to first construct the graph Go, then use the all pairs version of

the Scale-Assisted Algorithm to construct Gh+l from Gh for all h. We stop when

(0, n + 1) is an edge.
It is convenient to refer to Sum (i)= Wl+" "+ w,. All values of Sum can be

precomputed in linear time.

Construction ofGo. For any i, farthest_jo[i] is the largest j such that Sum (j- 1)-
Sum (i)<-pagemax. It takes linear time to evaluate farthest_jo.

We now show how to construct Gh+ from Gh. Pick e > 0, smaller than the smallest

w. Let M be a sufficiently large number. For 0 _-< j _-< n + 1, let

weight i, j)

wj if (i,j) is an edge in Gh,

M 2su" j)-su,,) otherwise.

The value of weight (i, j) when (i, j) is not an edge of Gh is a substitute for oo. M
must be chosen large enough that the edge (i, j) is never used in the LWS.

We now use the Basic Algorithm to compute the weight of the LWS between all

pairs (i,j). Since the Basic Algorithm requires O(n log n) time, the all pairs version

requires O(n 2
log n) time. Let Let Lh(i,j) be the weight of this LWS. Finally, Gh+

may be defined as follows: (i, j) is an edge of Gh+l if and only if Lh (i, j)
The method outlined above requires O(n 2 log2 n) time to find the minimum height

B-tree structure, and requires O(n2
log n) storage. In fact, however, because of the

special nature ofthe B-tree problem, the all pairs version ofthe Scale-Assisted Algorithm

THE LEAST WEIGHT SUBSEQUENCE PROBLEM 637

may be used instead. Thus, the algorithm may always be sped up to require only

O(n 2 log n) time. The reason is that it is unnecessary to use binary search to evaluate

Bridge. In fact, because of the simple formula for weight (i,j), Bridge (a, b, c) is true

if and only f[b] >=f[c l, and thus takes constant time to evaluate.

We note that Diehr and Faaland 1] also give a heuristic for finding a minimum

height B-tree structure by optimizing the pagination of a scroll for each level of the
tree. Their algorithm uses time O(n log n) per level. This has been improved to O(n)
per level [2], [4].

Appendix: Correctness of the Basic Algorithm. We assume the correctness of the

Traditional Algorithm. The Basic Algorithm differs from the Traditional Algorithm
only in the contents, but not the purpose, of the main loop. The purpose of the mth

iteration of the main loop (for both algorithms) is to assign the correct values off[m]
and bestleft [rn].

The Forward Property. Concavity of the weight function weight guarantees that,
for 0<= a < b < c < d <= n, g(b, c) < g(a, c) g(b, d) < g(a, d). We call this the forward
property of g. Intuitively, the forward property is that if b is superior to a as a candidate

for bestleft [c], it is also a superior candidate for bestleft [d] for all d > c.

The Best-Candidates Condition. We say that the deque D satisfies the Best-Candi-

dates cOndition up to m, which we denote by BC (m), if:

BC1 (m). For anyj> m, there exists some iD such that g(i, j) <= g(k, j) for all
0_-< k <= m. That is, there is some element of D which is at least as good a choice for

bestleft as any other element in the range [0, m].
BC2 (m). For any D, there exists some j > rn such that g(i, j) < g(k, j) for all

k D, k i. That is, there exists some element beyond m for which is not only the

best choice of bestleft [j], but also the strictly best choice among the elements of D.

We show that the Best-Candidates Condition is a loop invariant, i.e., D satisfies

BC (m) after rn iterations of the main loop of the Basic Algorithm, for any m < n.

After 0 iterations of the main loop, D (0), and thus D satisfies BC (0).
Suppose that D satisfies BC (m-1) before the mth iteration of the main loop.

We need to show that the updating of D within that iteration causes D to satisfy
BC (m). (We only consider rn < n, since if rn n, no updating of D is done because

it is no longer needed.)
It is helpful to realize that BC1 (m) is a positive condition, i.e., is fulfilled if D

has "enough" elements, while BC2 (m) is a negative condition, i.e., is fulfilled if D
has "not too many" elements. Precisely stated, BC1 (m) cannot be made false by

adding elements to D, while BC2 (m) cannot be made false by removing elements

from D.
When m is appended to D, D will satisfy BC1 (m), provided nothing is removed.

We need to show that those items removed do not contribute to BC1 (rn). When Retire

is executed, front is removed from D. But this only occurs iffront2 is at least as good
a choice for bestleft m + 1 (and hence, by the forward property of g, for all k> m)
as front. Thus execution of Retire does not harm BC1 (m). When Fire is executed,
rear is removed from D. But this only occurs if either rear2 or rn (both of which will

still be on D) is at least as good a choice for bestleft [k] as rear for all k> m. Thus,
execution of Fire does not harm BC1 (m).

In order to show that after the mth iteration of the main loop BC2 (rn) is satisfied,
we need to show that iteration removes every item which would cause BC2 (rn) to fail.

For each D before the iteration, let ji > rn- 1 be the element required by the

condition BC2 (m- 1). Without loss of generality, ji is the smallest such element. By

638 D. S. HIRSCHBERG AND L. L. LARMORE

the forward condition on g, io < il =:>j <ji. Suppose D before the iteration, but

BC2 (m) D. There are two possible reasons for this. Either j:rro,t2 m + 1, in which

case =front and is deleted when Retire is executed, or m is as least as good a choice

for bestleft [ji] as itself. In the latter situation, by the forward condition, and by the

condition BC2 (m 1), m will be the best choice for bestleft [j] for all j _-<j _-< n. Thus,
Fire will be iterated, removing all elements of D from rear down to and including i.

By the forward condition, when Bridge (rear2, rear, rn) is false, BC2 (m) is satisfied.

Finally, we show that, since D satisfies BC (m- 1) before the mth iteration,

front bestleft (rn). Suppose not. Then bestleft (m) < m, for some s D, by
BC1 (m-1). By BC2 (m-1), there exists some j >_-m such that g(front, j) <- g(i,j). By
the concavity condition on weight, g(front, m)<-g(i, m), since m-<_j, a contradiction.

Acknowledgments. The authors wish to thank Alan Friese and an anonymous

referee for pointing out errors in an early draft of this paper.

REFERENCES

[1] G. DIEHR AND B. FAALAND, Optimal pagination of B-trees with variable-length items, Comm. ACM,
27 (1984), pp. 241-247.

[2] D. S. HIRSCHBERG AND L. L. LARMORE, New applications offailure functions, J. Assoc. Comput.

Mach., to appear.

[3] D. E. KNUTH AND M. F. PLASS, Breaking paragraphs into lines, Software--Practice & Experience

(1981), pp. 1119-1184.

[4] L. L. LARMORE AND O. S. HIRSCHBERG, Efficient optimal pagination of scrolls, Comm. ACM, 28

(1985), pp. 854-856.

[5], Breaking a paragraph into lines in linear time, Proc. 22nd Annual Allerton Conference on Comm.,

Control, and Computing, Monticello, IL, October 1984.

[6] F. FRANCES YAO, Efficient dynamicprogramming using quadrangle inequalities, Proc. 12th Annual ACM

Symposium on the Theory of Computing, April 1980, pp. 429-435.

