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Marbling creates stone-like or intricate ab-
stract decorations from inks (or paint) 
floating on water or gel. It’s a decorative 

art with several distinct traditions originating in 
Asia, perhaps as many as 1,000 years ago. It spread 
to Europe in the 16th century, where its primary 
application was producing book covers and end

papers. Mechanized bookbinding 
caused the decline of marbling 
in the West, but it has enjoyed 
a revival as a folk art since the 
1970s. Although primarily used 
for decoration, marbling has 
security applications. Marbling 
ledger book edges makes missing 
pages apparent, and documents 
written over pale marbling are 
tamper-resistant.

Digital simulations based on 
complex physical models have 
been commonly used to create 
marbling images.1,2 However, 
these methods produce blurry 
contours because the t ime-

iterative-relaxation nature of the solver makes dis-
sipation inevitable. The more marbling operations 
are applied, the blurrier the result is. So, these meth-
ods have difficulty producing publication-quality 
images because fine features will be lost. (For more 
on digital marbling methods, see the related side-
bar.) This motivates us to find simple closed-form 
mathematical formulas to simulate marbling.

Here, we present deformation formulas for 
simulating marbling, while avoiding the com-

putational cost of full fluid simulation. This 
approximation is rich enough to capture many 
phenomena, and it solves the dissipation problem 
and ensures the resulting images’ sharp contours. 
Besides simplicity, using mathematical formulas 
provides advantages for control, speed, imple-
mentation ease, parallelism, and vector output. It 
enables the generation of beautiful designs with 
real-time visual feedback and progressive fluid-
like illustration of marbling.

Our Method
Our mathematical treatment of marbling starts 
with the assumptions of incompressible and im-
miscible 2D fluid inks. Our tool function formu-
las are based on topological computer graphics,3 
which generates marbling designs with sharp con-
tours and vector marbling output.

Tool Functions
Our method mainly supports five types of pat-
terning tools, which we’ll describe with forward-
transform formulas. These tools are based on those 
frequently used for traditional marbling. (For a 
look at the traditional marbling process, see the 
related sidebar.) Proving that these tool functions 
are incompressible is easy.

A key feature of these marbling transforms is 
that the displacement parallel to a line depends 
only on the perpendicular distance from the line. 
Because of this, the backward transform is sim-
ply the forward transform with its displacement 
negated. So, our tool functions can be applied 
forward and in the inverse. Forward application 

Instead of using fluid dynamics 
to simulate marbling, the 
proposed method takes a 
mathematical approach with 
closed-form expressions. This 
method improves control, 
ease of implementation, 
parallelism, and speed, 
enabling real-time visual 
feedback and creation of vivid 
flowing animations. Users can 
start designs from a blank 
sheet, raster images, or videos.
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generates vector-based output; inverse application 
generates raster output. In both cases, the closed-
form expressions preserve the design’s quality and 
sharpness. Although our method doesn’t directly 
support a free-hand curve interaction tool, we can 
simulate its effect by combining existing tools.

To create patterns, our method uses the tool 
functions to deform the current pattern. As users 
work with the tools, our method implements ras-
ter image warping on the GPU to achieve real-time 
immersive feedback.

Specifically, to determine the color at a point P 
in the current pattern, our method first performs 
backward image-mapping to trace the trajectory 
for P′ in the previous pattern. It then samples the 
color at point P′ to point P.

Ink drops. When an artisan (called a marbler) ap-
plies ink drops to the liquid substrate, those drops 
deform any previous drops. Also, placing a drop 
within a previous drop will force the previous one 
to spread.

Simulating this process faithfully with physics-
based methods is difficult. But a mathematical 
treatment produces a simple, exact solution. The 
first drop forms a circular spot with area a. If a 
second drop with area b is put in the center of the 
first drop, the total covered area increases from a 
to a + b. Points at the center move from radius 0 to 
radius b π , and boundary points move from ra-
dius a π  to a b+( ) π . So, this transformation 
is incompressible in that the area of ink regions 
that didn’t receive the drop doesn’t change.

Given P and an ink drop centered at C with ra-
dius r, if P C− < r , P is within the drop and takes 
its color. Otherwise, P is displaced radially from C:

′ = + −( ) +
−
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According to the transform function we just 
gave, the last drop is rendered last and has a round 
outline. However, that drop distorts the second-
to-last drop. Working backward through the ink 

droppings, each drop will be distorted by all the 
subsequent drops (see Figure 1a).

Sprays of small droplets cause little distortion to 
underlying inks, yet require as much computation 
as if they were larger. So, we provide another func-
tion with no deformation. If a droplet overlaps 
with an existing one, the newer one overwrites the 
overlapped part (see Figure 1b).

Straight tine-line patterns. This function runs tine 
lines through a marbling in any direction. (A tine 
is a tooth of a virtual comb used to create mar-
blings.) Consider the pattern transformation in-
duced by drawing with a single tine straight from 
one side of the marbling tank to the other. Points 
near a tine’s trajectory move in the direction of the 
tine’s motion. The amount of motion in the tine’s 
direction is (roughly) inversely proportional to the 
point’s distance from the tine’s trajectory.

This inversely proportional function provides 
many possibilities. The function we choose pa-
rameterizes both the maximum shift and the 
shift gradient’s sharpness. Because the point’s 
motion is perpendicular to the shortest distance 
between the point and the line, this displacement 
and its inverse are equally easy to calculate. So, 
each cohort of points at a distance from the tine 
line shifts by the same amount. On an infinite 
plane, these parallel shifts neither compress nor 
expand the inks.

(a) (b)

Figure 1. Placing ink drops (a) with deformation and (b) without deformation. With deformation, each drop will be distorted 
by all the subsequent drops. Without deformation, if a droplet overlaps with an existing one, the newer one overwrites the 
overlapped part.
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Figure 2. Tool functions for (a) single and (b) circular tine lines. Figures 
3b through 3d show an example of a single tine-line pattern; Figure 4c 
shows a circular tine-line pattern.
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In Figure 2a, if L is a tine line with arbitrary 
slope, N is a unit vector perpendicular to L, A 
is a point on L, and M is the unit vector in the 
direction of L, the mapping for P is

′ = +
+

P P M
αλ

λd
,� (1)

where d = −( )⋅P A N  is the displacement func-
tion representing the distance from P to L, and 
the scalars a and l control the maximum shift 
and sharpness of the shift gradient.

For the input image in Figure 3a, Figures 3b 
through 3d show the results of the same tine-line 
operation for three values of (a, l). Our method’s 
results are similar to those of Jiayi Xu and her 
colleagues’ method (see Figure 3e).2

Because the composition of homeomorphisms is 

a homeomorphism, we can compose the mapping 
of multiple parallel tine-line strokes into a single 
function. This composite function can comb in 
any direction (see Figure 4a). Users can modify it 
to form many traditional designs.

For evenly spaced multiple tines that move as a 
rigid assembly, we define a function representing 
the displacement from the set of parallel tines:

′ = − ( )−d s d s s2 2fmod , ,

where d is the distance from P to an arbitrary tine 
line and s is the spacing between tines. In this way, 
we compute the mapping function by replacing d 
in Equation 1 with d′. The new function produces 
similar results with less computational cost.

Wavy patterns. Curved tine trajectories contrib-
ute much to marbled images’ beauty and charm. 

Early research on marbling simulation favored numerical 
simulation. Physics-based simulations view marbling as 

a 2D computational fluid dynamics (CFD) problem and 
try to numerically solve complicated Navier-Stokes (NS) 
equations.1 B. Tevfik Akgun developed a computer-aided 
paper-marbling tool for generating traditional Turkish art 
forms.2 To obtain the effect of fluid fluctuations at differ-
ent levels, Rüyam Acar and Pierre Boulanger introduced a 
multiscale fluid model and a sharp fluid boundary method 
to simulate marbling.3 Although their method can model 
highly turbulent marbling effects, it doesn’t deal with 
some traditional marbling patterns such as comb patterns. 
Acar proposed a level-set-driven method that provides 
a flexible environment to model a range of flows and 
artistic effects in 2D, and applied it to marbling.4 All these 
methods were implemented on a CPU. They don’t provide 
real-time feedback because they must solve the time-
consuming physics equations.

Xiaogang Jin and his colleagues presented a novel 
digital marbling framework by solving NS equations on 
the GPU.5 But it suffered from blurry ink interfaces due to 
energy dissipation. To combat the dissipation, Jiayi Xu and 
her colleagues employed complex high-order advection 
techniques.6 However, this method might cause instability. 
To reduce dissipation while retaining stability, Hanli Zhao 
and his colleagues employed an accurate yet fast third-
order unsplit semi-Lagragian constrained interpolation 
profile method.7

Marbling images generated using CFD models have 
three limitations. The first is the dissipation we just men-
tioned. Researchers often apply complicated computa-
tional mechanisms to combat this effect.8 Dissipation can 
lead to blurring or mixing of colors, which doesn’t con-

form to the sharp features of real-world marbling. Dissipa-
tion is inevitable in physics-based methods. Even higher-
order advection techniques such as fifth-order B-splines 
can’t eliminate it.3

The second limitation is speed. Although physics-
based simulations have motivated many papers pro-
posing fast solvers for various scenarios, generating 
megapixel-sized images with real-time feedback is still a 
challenge.

The third limitation is control. Prior methods usually 
have many physical parameters (for example, viscosity of 
liquids and force of manipulation) whose effects on mar-
bling aren’t obvious.

Corel Painter supports a powerful image-editing func-
tion that lets users interactively create several traditional 
marbling effects.9 The program considers marbling as a 
distortion in which the user drags colors with a virtual 
comb and mixes them. These marbling effects are limited. 
Corel Painter supports only wavy path combing in hori-
zontal and vertical directions; it can’t reproduce swirling 
patterns. Moreover, the process is static, and users receive 
no progressive feedback.

Although you can simulate fluid-like turbulent motions 
by numerically solving the fluid equations, a closed-form 
solution would be desirable. Ken Perlin introduced a 
procedural turbulence noise function (called Perlin noise) 
to generate various 2D and 3D textures.10 Owing to Per-
lin noise’s efficiency and simplicity, it’s frequently used 
instead of physics-based methods to simulate fluid-like 
animations. However, because Perlin noise functions have 
nonzero divergence, they can’t simulate incompressible 
fluids. Karl Sims used linear superposition of flow primi-
tives to modulate velocity vector fields and warp 2D 

Related Work in Marbling Simulation
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images to create the visual effect of flow.11 But neither 
of these methods is tailored for progressive, interactive 
marbling.

Vector graphics, which defines primitives geometri-
cally, is an alternative representation of images. It can 
produce high-quality images because the vector graphics 
representation is resolution-independent.12 Vector images 
are used for rendering high-quality surface details on 3D 
objects even at high zoom levels.13,14 Lvdi Wang and his 
colleagues introduced an effective vector representation 
for solid textures and mapped them onto mesh surfaces 
in real time.15 Ryoichi Ando and Reiji Tsuruno presented 
a framework for generating marbled images that can be 
exported into a vector graphics format.16 This framework 
allows arbitrary mouse-controlled movement of a virtual 
tine. However, the underlying fluid motion requires solv-
ing complicated, time-consuming physics equations. In 
the main article, we focus on the more intuitive math-
ematical marbling while supporting the output of vector 
geometries and high-quality surface details for rendering 
on 3D objects.
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(a) (b) (c) (d) (e)

Figure 3. Tine-line pattern examples. (a) The original input. (b) The results of our method for (a, l) = (80, 8), where a and l are 
scalars controlling the maximum shift and the shift gradient’s sharpness. (c) Our results for (80, 32). (d) Our results for (240, 8). 
(e) The tine-line geometry motion made by Jiayi Xu and her colleagues’ physics-based method.2 Our tine-line pattern function 
provides simulation effects similar to that method.
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This function generates wavy patterns in any di-
rection. In our model, the wavy path is a sinusoi-
dal displacement (versus distance) applied after a 
(straight) comb operation. The results look like the 
deformation from a comb stroked along a wavy 
path (see Figure 4b).

Let f(v) = A ⋅ sin(wv + y) be the displacement 
function. By interactively specifying the amplitude 

A, the wavelength w, and the phase y, users can 
move a comb in various wavy paths. This operation 
maps P to P’ in the direction at angle t:

′ = + ⋅ −[ ]( )[ ]P P Pf t t t tsin , cos cos ,sin .

Circular patterns. This function moves tines in 
circular trajectories controlled by the radius r 
and center C of the swirl. Our method treats a 
circular motion similarly to a straight one. A 
circle is perpendicular to every radius ray at their 
intersection. For a given C, motion along the 
arc containing P is inversely proportional to the 
minimum radial distance from P to the tine circle. 
The concentric circles, which are each rotated by 
different amounts, neither compress nor expand 
the inks. The scalars a and l play the same role 
they do in the linear transformation.

As Figure 2b shows, this operation displaces 
points along arcs around C. It maps P to

′ = + −( )
−











P C P C cos sin
sin cos

q q
q q

,� (2)

where its angle subtended at C is q = −( )l P C , the 
displacement arc’s length is l d= +( )αλ λ , and 
d r= − −P C .

The circular pattern’s direction depends on 
whether q is positive or negative. Positive q gener-
ates a clockwise pattern, and vice versa. Figure 4c 
shows a circular tine-line pattern.

Vortex patterns. Vortices, which wind more as they 
near the center, are popular in marbling. We can 
obtain vortex patterns using the same mapping 

The traditional marbling process consists of three steps.1 First, 
the artisan (called a marbler) places background liquid in a 

tray and sprinkles or drops the inks onto the liquid surface with 
eyedroppers or brushes to create an initial design. The liquid layer 
must be thick enough to keep the inks floating on its surface.

Then, the marbler uses styluses, combs (also called rakes), and 
other tools to change the initial pattern. Arranging the comb’s 
tines with different spacings creates different effects. As the mar-
bler runs the tools back and forth across the tray, a complex de-
sign emerges. An intricate pattern usually requires several strokes.

After completing the pattern, the marbler gently applies a 
sheet of paper, fabric, or some other material onto the tray. The 
pattern created on the surface transfers to the contact material.

The patterning tools and how they’re manipulated are crucial 
to producing impressive features. Many modern marblers search 
for new effects or techniques to heighten their expressivity. Unfor-
tunately, this task isn’t easy because marbling consists of several 
steps, and the marbler must start from scratch if he or she makes 
a mistake.
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Traditional Marbling

(a) (b) (c)

Figure 4. Images made with our method. (a) A pattern made by a single virtual comb tine. (b) A wavy pattern. (c) A circular tine-
line pattern. These computer-generated patterns are similar to traditional manually generated ones.
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function as Equation 2, with one change. Here, 
we set d = −P C , where C denotes the vortex’s 
center (see Figure 5).

Preserving Sharp Contours in Raster Images
Sharp contours between the inks are crucial 
characteristics of real-world marbling images. We 
employ two techniques to preserve sharp contours 
for marbling raster images.

Because our method is based on image defor-
mation, it usually generates aliasing artifacts (see 
Figure 5a). Generally, antialiasing computes im-
ages at a higher resolution and then downsamples 
them. We employ 2 × 2 rotated-grid supersam-
pling (RGSS) antialiasing because of its low cost 
and high quality. Our method also provides other 
common supersampling patterns such as 4 × 4 
grid, Quincunx, 4 × 4 checker, and 8-rooks.4

If we update the image for each operation and 
use it as input for the next operation, contrast 
fading occurs, and the resulting image is blurred 
after some operations. For n operations, the color 
at Pn is

C(Pn) ← C(Pn–1) ← … ← C(P1) ← C(P0),

where Pi(i = 0, 1, …, n – 1) is the back-traced point 
of Pi+1, i is the number of image deformation op-
erations, and ← represents that C(Pi) is obtained 
by sampling the color at point Pi–1. Signal diffusion 
is inevitable unless we apply an ideal sinc filter. As 
n increases, the results will get increasingly blurry 
(see Figure 5b).

To solve this problem, we employ an alternative 
image-updating technique similar to that of Karl 

Sims.5 For each point in the current image, we 
trace its mapping point in the ink-drop pattern 
directly and sample the color at that point to the 
current position:

C(Pn) ← C(Pn → Pn–1 → … → P1 → P0).

Consequently, we can compute the composition 
operation in one shader; Figure 5c shows the 
improved results. This technique can also show 
an animation (evolution) of the marbling process. 
However, unlike the first technique, this one’s 
performance decreases gradually as the number 
of operations increases. So, our method provides 
both techniques.

Vector Image Output
Our method supports compact resolution-
independent vector output when users create the 
initial pattern from ink drops. We approximate 
each initial circular drop by an inscribed regu-
lar n-gon filled with the drop’s color. We choose 
the value of n according to the drop’s radius. We 
transform the initial drop’s polygon points to new 
positions according to the composite formula de-
rived from the marbling operations. Each point’s 
displacement depends on the marbling operations. 
Two adjacent points in an initial drop might be far 
apart after the marbling, so undersampling arti-
facts might occur.

To reduce the artifacts, we employ adaptive re-
finement to keep the boundary smooth. As long 
as the distance between two transformed adja-
cent polygon points is larger than a user-specified 
threshold T, we insert a new sampling point in the 

(a) (b) (c)

Figure 5. Vortex patterns’ image quality. (a) Our method usually produces aliasing artifacts. (b) Updating an 
image and using the update for the next operation can cause blurring. (c) Our alternative updating technique 
produces sharp contours. The bottom images show details.
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middle of the arc subtended by the two points in 
the initial drop. Empirically, we can achieve pleas-
ing results if we set T at 1 pixel. We can use a 
smaller threshold for higher quality or when mag-
nifying the marbling image.

Rendering Surface Details on 3D Objects
Given a parameterized 3D object (such as the vase 

in Figure 6a), simply mapping the marbling image 
onto the 3D surface as a texture doesn’t retain 
sharp texture features. Figure 6b demonstrates this 
effect with a texture resolution of 800 × 800. Even 
a high-resolution texture (8,000 × 8,000 pixels) 
can’t faithfully reproduce the crisp boundaries for 
close-ups (see Figure 6c).

Our closed-form solution makes it possible to 
render high-quality surface details on 3D objects.6,7 
As the user designs a texture, our method records 
its creation history (including parameters for 
ink drops and operations). Then, it computes the 
texture for 3D objects on the fly using two steps.

First, it renders the 3D object using deferred 
shading to store per-pixel attributes (positions, 
normals, and texture coordinates) into local video 
memory (a G-buffer).

Second, it renders screen-aligned quadrilaterals by 
retrieving the per-pixel attributes stored in the G-
buffer. To calculate the color of a pixel at position x, 
the pixel shader must access these data structures:

■■ the buffer T used to store texture coordinates 
(tc) in the first step,

■■ the patterning operations f,
■■ the ink drops (col, r, c) (these parameters repre-
sent the color, radius, and center),

■■ the background color bc, and
■■ the marbling image’s width w and height h.

Figure 7 shows the pseudocode; p is the point 
whose position is obtained by multiplying tc by 
(w, h).

We implement the rendering on the GPU to ob-
tain high performance. Such a method keeps con-
tours sharp at high zoom levels at interactive frame 
rates and overcomes the limited resolution while re-
ducing texture memory usage.

For the antialias pass, we use a technique similar 
to that in the section “Preserving Sharp Contours 
in Raster Images.” Figure 6d shows the results.

Using Our Method
Figure 8 shows an example of generating a digital 
marbling starting with a blank sheet. After mak-
ing the ink-drop pattern (see Figure 8a), the user 
guided a comb along a straight line from right to 
left (see Figure 8b). The user then guided the comb 
back in the opposite direction, with the teeth pass-
ing in between where they passed before (see Fig-
ure 8c). The previous two steps were repeated ver-
tically (see Figure 8d). Then, the user performed 
two horizontal combings in opposite directions 
(see Figure 8e). Finally, the user applied a wavy 
pattern function (see Figure 8f).

(a) (b)

(c) (d)

Figure 6. Rendering high-quality surface details on 3D objects. (a) We 
rendered this vase with a marbling pattern. (b) Traditional texture 
mapping with an 800 × 800 texture shows blurry edges in a close-up.  
(c) Even an 8,000 × 8,000 texture doesn’t provide sharp edges for 
extreme close-ups. (d) Our surface-detail rendering guarantees crisp 
edges even for extreme close-ups.

tc ← T(x)
p ← tc * (w, h)
for all operations(f) do
  p ← f(p)
end for
for all inkdrops(col, r, c) do
  if ||p − c|| ≤ r then
    return col
  end if
end for
return bc

Figure 7. Vector marbling texture fetch. This 
algorithm lets our method render high-quality 
surface details on 3D objects. For an explanation of 
the symbols, see the main article.
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Throughout this process, users can choose either 
technique we described in the section “Preserving 
Sharp Contours in Raster Images.” They can create 
the resolution-independent vector images at an in-
termediate stage, with some delay. They can then 
zoom in on regions to see the fine detail at any scale.

Performance and Comparison
We implemented our method using High Level 

Shading Language shaders on the GPU. To inves-
tigate our method’s performance, we ran it on a 
1.83-GHz Intel Core 2 Duo E6320 CPU and an 
Nvidia GeForce 8800 GTS GPU.

Table 1 compares our method’s performance with 
that of Xu and her colleagues’ method. With a 2 × 
2 RGSS filter, our method outperformed the other 
one by an order of magnitude. The other method’s 
interactivity is limited to low resolutions owing to the 

(a)

(b)

(d)

(c)

(e) (f)

Figure 8. Generating digital marbling. (a) Making the initial ink-drop pattern. (b) Guiding the comb along a 
straight line from right to left. (c) Guiding the comb back in the opposite direction. (d) Repeating the previous 
two steps orthogonally. (e) Making two horizontal combings in opposite directions. (f) Applying a wavy 
pattern function.

Table 1. The performance (in fps) of our method and Jiayi Xu and her colleagues’ method2 in the same environment.

Resolution (pixels)
Xu and her 

colleagues’ method

Our method

No antialiasing 2 × 2 rotated-grid supersampling 4 × 4 checker 4 × 4 grid

512 × 512 30 1,560 732 250 239

1,024 × 512 15 1,265 375 125 120

1,024 × 768 10 850 246 83 80

1,024 × 1,024 12 660 189 64 61

1,280 × 1,024 7 548 156 55 53
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time-consuming physics simulation. Physics-based 
methods, including Rüyam Acar’s CPU-implemented 
level-set method,1 can’t achieve real-time perfor-
mance for high-resolution marbling images.

We also tested our method on a ThinkPad X61 
laptop with an integrated Intel GMA X3100 graph-
ics card. The method still achieved 13 fps when 
creating 1-Mpixel images using the 2 × 2 RGSS 
filter. So, our method not only lets users design 
images with real-time visual feedback, it also lets 
them experience the marbling process immersively 
because of its vivid fluid-like animations. Besides 
of our mathematical model’s faster execution, it 
can produce vector images (see Figure 3b), whereas 
Xu and her colleagues’ method (see Figure 3e) cre-
ates raster patterns.

Figure 9 compares a real marbling pattern with 
our results and those of Acar’s physics-based 
method. The two computer-based methods gener-
ate visually similar patterns under the same ma-
nipulation steps.

Applications
We’ve applied our method to image editing and 
video-stream processing. Thanks to the high pro-
cessing speed, we can process video streams in real 
time. Actually, every video frame is a marbling 
pattern, and the interesting transformation of the 
related video images could be used in filmmaking 
and advertising. For an example, see the supple-
mentary video at http://youtu.be/ZgVblaKhC_4.

We’ve also applied our method to scene decora-
tion (see Figure 10).

Our real-time design process running on stock 
hardware is engaging and easy to learn and 

use. Amateurs can produce beautiful designs in a 

few minutes. Artists can use our method to try 
different designs before they create works with 
real marbling materials.

We’ll explore more mathematical functions 
such as free-hand tools to achieve a wider vari-
ety of effects. For the vector graphics output, the 
number of vertices grows quickly with the num-
ber of operations. We could address this issue by 
taking shape simplification into account. Alter-
natively, the current polygonal approximation to 
a deformed ink-drop boundary curve could be 
subdivided at the instant a tine crosses it. We also 
plan to investigate marbling solid textures by ex-
tending our focus to three dimensions, inspired 
by Lvdi Wang and his colleagues’ research.9�
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