
26	 November/December 2012	 Published by the IEEE Computer Society� 0272-1716/12/$31.00 © 2012 IEEE

Feature Article

Mathematical Marbling
Shufang Lu ■ Zhejiang University

Aubrey Jaffer ■ Adnetik

Xiaogang Jin ■ Zhejiang University

Hanli Zhao ■ Wenzhou University

Xiaoyang Mao ■ University of Yamanashi

Marbling creates stone-like or intricate ab-
stract decorations from inks (or paint)
floating on water or gel. It’s a decorative

art with several distinct traditions originating in
Asia, perhaps as many as 1,000 years ago. It spread
to Europe in the 16th century, where its primary
application was producing book covers and end

papers. Mechanized bookbinding
caused the decline of marbling
in the West, but it has enjoyed
a revival as a folk art since the
1970s. Although primarily used
for decoration, marbling has
security applications. Marbling
ledger book edges makes missing
pages apparent, and documents
written over pale marbling are
tamper-resistant.

Digital simulations based on
complex physical models have
been commonly used to create
marbling images.1,2 However,
these methods produce blurry
contours because the t ime-

iterative-relaxation nature of the solver makes dis-
sipation inevitable. The more marbling operations
are applied, the blurrier the result is. So, these meth-
ods have difficulty producing publication-quality
images because fine features will be lost. (For more
on digital marbling methods, see the related side-
bar.) This motivates us to find simple closed-form
mathematical formulas to simulate marbling.

Here, we present deformation formulas for
simulating marbling, while avoiding the com-

putational cost of full fluid simulation. This
approximation is rich enough to capture many
phenomena, and it solves the dissipation problem
and ensures the resulting images’ sharp contours.
Besides simplicity, using mathematical formulas
provides advantages for control, speed, imple-
mentation ease, parallelism, and vector output. It
enables the generation of beautiful designs with
real-time visual feedback and progressive fluid-
like illustration of marbling.

Our Method
Our mathematical treatment of marbling starts
with the assumptions of incompressible and im-
miscible 2D fluid inks. Our tool function formu-
las are based on topological computer graphics,3
which generates marbling designs with sharp con-
tours and vector marbling output.

Tool Functions
Our method mainly supports five types of pat-
terning tools, which we’ll describe with forward-
transform formulas. These tools are based on those
frequently used for traditional marbling. (For a
look at the traditional marbling process, see the
related sidebar.) Proving that these tool functions
are incompressible is easy.

A key feature of these marbling transforms is
that the displacement parallel to a line depends
only on the perpendicular distance from the line.
Because of this, the backward transform is sim-
ply the forward transform with its displacement
negated. So, our tool functions can be applied
forward and in the inverse. Forward application

Instead of using fluid dynamics
to simulate marbling, the
proposed method takes a
mathematical approach with
closed-form expressions. This
method improves control,
ease of implementation,
parallelism, and speed,
enabling real-time visual
feedback and creation of vivid
flowing animations. Users can
start designs from a blank
sheet, raster images, or videos.

	 IEEE Computer Graphics and Applications� 27

generates vector-based output; inverse application
generates raster output. In both cases, the closed-
form expressions preserve the design’s quality and
sharpness. Although our method doesn’t directly
support a free-hand curve interaction tool, we can
simulate its effect by combining existing tools.

To create patterns, our method uses the tool
functions to deform the current pattern. As users
work with the tools, our method implements ras-
ter image warping on the GPU to achieve real-time
immersive feedback.

Specifically, to determine the color at a point P
in the current pattern, our method first performs
backward image-mapping to trace the trajectory
for P′ in the previous pattern. It then samples the
color at point P′ to point P.

Ink drops. When an artisan (called a marbler) ap-
plies ink drops to the liquid substrate, those drops
deform any previous drops. Also, placing a drop
within a previous drop will force the previous one
to spread.

Simulating this process faithfully with physics-
based methods is difficult. But a mathematical
treatment produces a simple, exact solution. The
first drop forms a circular spot with area a. If a
second drop with area b is put in the center of the
first drop, the total covered area increases from a
to a + b. Points at the center move from radius 0 to
radius b π , and boundary points move from ra-
dius a π to a b+() π . So, this transformation
is incompressible in that the area of ink regions
that didn’t receive the drop doesn’t change.

Given P and an ink drop centered at C with ra-
dius r, if P C− < r , P is within the drop and takes
its color. Otherwise, P is displaced radially from C:

′ = + −() +
−

P C P C
P C

1
2

2

r
.

According to the transform function we just
gave, the last drop is rendered last and has a round
outline. However, that drop distorts the second-
to-last drop. Working backward through the ink

droppings, each drop will be distorted by all the
subsequent drops (see Figure 1a).

Sprays of small droplets cause little distortion to
underlying inks, yet require as much computation
as if they were larger. So, we provide another func-
tion with no deformation. If a droplet overlaps
with an existing one, the newer one overwrites the
overlapped part (see Figure 1b).

Straight tine-line patterns. This function runs tine
lines through a marbling in any direction. (A tine
is a tooth of a virtual comb used to create mar-
blings.) Consider the pattern transformation in-
duced by drawing with a single tine straight from
one side of the marbling tank to the other. Points
near a tine’s trajectory move in the direction of the
tine’s motion. The amount of motion in the tine’s
direction is (roughly) inversely proportional to the
point’s distance from the tine’s trajectory.

This inversely proportional function provides
many possibilities. The function we choose pa-
rameterizes both the maximum shift and the
shift gradient’s sharpness. Because the point’s
motion is perpendicular to the shortest distance
between the point and the line, this displacement
and its inverse are equally easy to calculate. So,
each cohort of points at a distance from the tine
line shifts by the same amount. On an infinite
plane, these parallel shifts neither compress nor
expand the inks.

(a) (b)

Figure 1. Placing ink drops (a) with deformation and (b) without deformation. With deformation, each drop will be distorted
by all the subsequent drops. Without deformation, if a droplet overlaps with an existing one, the newer one overwrites the
overlapped part.

N
P-A

d

d

r

l
P

P

C

M

L

A

(a) (b)

θ

Figure 2. Tool functions for (a) single and (b) circular tine lines. Figures
3b through 3d show an example of a single tine-line pattern; Figure 4c
shows a circular tine-line pattern.

28	 November/December 2012

Feature Article

In Figure 2a, if L is a tine line with arbitrary
slope, N is a unit vector perpendicular to L, A
is a point on L, and M is the unit vector in the
direction of L, the mapping for P is

′ = +
+

P P M
αλ

λd
,� (1)

where d = −()⋅P A N is the displacement func-
tion representing the distance from P to L, and
the scalars a and l control the maximum shift
and sharpness of the shift gradient.

For the input image in Figure 3a, Figures 3b
through 3d show the results of the same tine-line
operation for three values of (a, l). Our method’s
results are similar to those of Jiayi Xu and her
colleagues’ method (see Figure 3e).2

Because the composition of homeomorphisms is

a homeomorphism, we can compose the mapping
of multiple parallel tine-line strokes into a single
function. This composite function can comb in
any direction (see Figure 4a). Users can modify it
to form many traditional designs.

For evenly spaced multiple tines that move as a
rigid assembly, we define a function representing
the displacement from the set of parallel tines:

′ = − ()−d s d s s2 2fmod , ,

where d is the distance from P to an arbitrary tine
line and s is the spacing between tines. In this way,
we compute the mapping function by replacing d
in Equation 1 with d′. The new function produces
similar results with less computational cost.

Wavy patterns. Curved tine trajectories contrib-
ute much to marbled images’ beauty and charm.

Early research on marbling simulation favored numerical
simulation. Physics-based simulations view marbling as

a 2D computational fluid dynamics (CFD) problem and
try to numerically solve complicated Navier-Stokes (NS)
equations.1 B. Tevfik Akgun developed a computer-aided
paper-marbling tool for generating traditional Turkish art
forms.2 To obtain the effect of fluid fluctuations at differ-
ent levels, Rüyam Acar and Pierre Boulanger introduced a
multiscale fluid model and a sharp fluid boundary method
to simulate marbling.3 Although their method can model
highly turbulent marbling effects, it doesn’t deal with
some traditional marbling patterns such as comb patterns.
Acar proposed a level-set-driven method that provides
a flexible environment to model a range of flows and
artistic effects in 2D, and applied it to marbling.4 All these
methods were implemented on a CPU. They don’t provide
real-time feedback because they must solve the time-
consuming physics equations.

Xiaogang Jin and his colleagues presented a novel
digital marbling framework by solving NS equations on
the GPU.5 But it suffered from blurry ink interfaces due to
energy dissipation. To combat the dissipation, Jiayi Xu and
her colleagues employed complex high-order advection
techniques.6 However, this method might cause instability.
To reduce dissipation while retaining stability, Hanli Zhao
and his colleagues employed an accurate yet fast third-
order unsplit semi-Lagragian constrained interpolation
profile method.7

Marbling images generated using CFD models have
three limitations. The first is the dissipation we just men-
tioned. Researchers often apply complicated computa-
tional mechanisms to combat this effect.8 Dissipation can
lead to blurring or mixing of colors, which doesn’t con-

form to the sharp features of real-world marbling. Dissipa-
tion is inevitable in physics-based methods. Even higher-
order advection techniques such as fifth-order B-splines
can’t eliminate it.3

The second limitation is speed. Although physics-
based simulations have motivated many papers pro-
posing fast solvers for various scenarios, generating
megapixel-sized images with real-time feedback is still a
challenge.

The third limitation is control. Prior methods usually
have many physical parameters (for example, viscosity of
liquids and force of manipulation) whose effects on mar-
bling aren’t obvious.

Corel Painter supports a powerful image-editing func-
tion that lets users interactively create several traditional
marbling effects.9 The program considers marbling as a
distortion in which the user drags colors with a virtual
comb and mixes them. These marbling effects are limited.
Corel Painter supports only wavy path combing in hori-
zontal and vertical directions; it can’t reproduce swirling
patterns. Moreover, the process is static, and users receive
no progressive feedback.

Although you can simulate fluid-like turbulent motions
by numerically solving the fluid equations, a closed-form
solution would be desirable. Ken Perlin introduced a
procedural turbulence noise function (called Perlin noise)
to generate various 2D and 3D textures.10 Owing to Per-
lin noise’s efficiency and simplicity, it’s frequently used
instead of physics-based methods to simulate fluid-like
animations. However, because Perlin noise functions have
nonzero divergence, they can’t simulate incompressible
fluids. Karl Sims used linear superposition of flow primi-
tives to modulate velocity vector fields and warp 2D

Related Work in Marbling Simulation

	 IEEE Computer Graphics and Applications� 29

images to create the visual effect of flow.11 But neither
of these methods is tailored for progressive, interactive
marbling.

Vector graphics, which defines primitives geometri-
cally, is an alternative representation of images. It can
produce high-quality images because the vector graphics
representation is resolution-independent.12 Vector images
are used for rendering high-quality surface details on 3D
objects even at high zoom levels.13,14 Lvdi Wang and his
colleagues introduced an effective vector representation
for solid textures and mapped them onto mesh surfaces
in real time.15 Ryoichi Ando and Reiji Tsuruno presented
a framework for generating marbled images that can be
exported into a vector graphics format.16 This framework
allows arbitrary mouse-controlled movement of a virtual
tine. However, the underlying fluid motion requires solv-
ing complicated, time-consuming physics equations. In
the main article, we focus on the more intuitive math-
ematical marbling while supporting the output of vector
geometries and high-quality surface details for rendering
on 3D objects.

References
	 1.	 J. Stam, “Stable Fluids,” Proc. Siggraph, ACM, 1999, pp.

121–128.

	 2.	 B. Akgun, “The Digital Art of Marbled Paper,” Leonardo, vol.

37, no. 1, 2004, pp. 49–52.

	 3.	 R. Acar and P. Boulanger, “Digital Marbling: A Multiscale

Fluid Model,” IEEE Trans. Visualization and Computer Graphics,

vol. 12, no. 4, 2006, pp. 600–614.

	 4.	 R. Acar, “Level Set Driven Flows,” ACM Trans. Graphics, vol.

26, no. 4, 2007, article 15.

	 5.	 X. Jin, S. Chen, and X. Mao, “Computer-Generated Marbling

Textures: A GPU-Based Design System,” IEEE Computer

Graphics and Applications, vol. 27, no. 2, 2007, pp.

78–84.

	 6.	 J. Xu, X. Mao, and X. Jin, “Nondissipative Marbling,” IEEE

Computer Graphics and Applications, vol. 28, no. 2, 2008, pp.

35–43.

	 7.	 H. Zhao et al., “AtelierM++: A Fast and Accurate Marbling

System,” Multimedia Tools and Applications, vol. 44, no. 2,

2009, pp. 187–203.

	 8.	 B. Kim et al., “Advections with Significantly Reduced Dis

sipation of Diffusion,” IEEE Trans. Visualization and Computer

Graphics, vol. 13, no. 1, 2007, pp. 135–144.

	 9.	 R. Grossman, Digital Painting Fundamentals with Corel Painter

11, Course Technology PTR, 2009.

	10.	 K. Perlin, “An Image Synthesizer,” Computer Graphics, vol.

19, no. 3, 1985, pp. 287–296.

	11.	 K. Sims, “Choreographed Image Flow,” J. Visualization and

Computer Animation, vol. 3, no. 1, 1992, pp. 31–43.

	12.	 A. Orzan et al., “Diffusion Curves: A Vector Representation

for Smooth-Shaded Images,” ACM Trans. Graphics, vol. 27,

no. 3, 2008, article 92.

	13.	 D. Nehab and H. Hoppe, “Random-Access Rendering of

General Vector Graphics,” ACM Trans. Graphics, vol. 27, no.

5, 2008, article 135.

	14.	 S. Jeschke, D. Cline, and P. Wonka, “Rendering Surface Details

with Diffusion Curves,” ACM Trans. Graphics, vol. 28, no. 5,

2009, article 117.

	15.	 L. Wang et al., “Vector Solid Textures,” ACM Trans. Graphics,

vol. 29, no. 4, 2010, article 86.

	16.	 R. Ando and R. Tsuruno, “Vector Graphics Depicting Mar

bling Flow,” Computers and Graphics, vol. 35, no. 1, 2011,

pp. 148–159.

(a) (b) (c) (d) (e)

Figure 3. Tine-line pattern examples. (a) The original input. (b) The results of our method for (a, l) = (80, 8), where a and l are
scalars controlling the maximum shift and the shift gradient’s sharpness. (c) Our results for (80, 32). (d) Our results for (240, 8).
(e) The tine-line geometry motion made by Jiayi Xu and her colleagues’ physics-based method.2 Our tine-line pattern function
provides simulation effects similar to that method.

30	 November/December 2012

Feature Article

This function generates wavy patterns in any di-
rection. In our model, the wavy path is a sinusoi-
dal displacement (versus distance) applied after a
(straight) comb operation. The results look like the
deformation from a comb stroked along a wavy
path (see Figure 4b).

Let f(v) = A ⋅ sin(wv + y) be the displacement
function. By interactively specifying the amplitude

A, the wavelength w, and the phase y, users can
move a comb in various wavy paths. This operation
maps P to P’ in the direction at angle t:

′ = + ⋅ −[]()[]P P Pf t t t tsin , cos cos ,sin .

Circular patterns. This function moves tines in
circular trajectories controlled by the radius r
and center C of the swirl. Our method treats a
circular motion similarly to a straight one. A
circle is perpendicular to every radius ray at their
intersection. For a given C, motion along the
arc containing P is inversely proportional to the
minimum radial distance from P to the tine circle.
The concentric circles, which are each rotated by
different amounts, neither compress nor expand
the inks. The scalars a and l play the same role
they do in the linear transformation.

As Figure 2b shows, this operation displaces
points along arcs around C. It maps P to

′ = + −()
−











P C P C cos sin
sin cos

q q
q q

,� (2)

where its angle subtended at C is q = −()l P C , the
displacement arc’s length is l d= +()αλ λ , and
d r= − −P C .

The circular pattern’s direction depends on
whether q is positive or negative. Positive q gener-
ates a clockwise pattern, and vice versa. Figure 4c
shows a circular tine-line pattern.

Vortex patterns. Vortices, which wind more as they
near the center, are popular in marbling. We can
obtain vortex patterns using the same mapping

The traditional marbling process consists of three steps.1 First,
the artisan (called a marbler) places background liquid in a

tray and sprinkles or drops the inks onto the liquid surface with
eyedroppers or brushes to create an initial design. The liquid layer
must be thick enough to keep the inks floating on its surface.

Then, the marbler uses styluses, combs (also called rakes), and
other tools to change the initial pattern. Arranging the comb’s
tines with different spacings creates different effects. As the mar-
bler runs the tools back and forth across the tray, a complex de-
sign emerges. An intricate pattern usually requires several strokes.

After completing the pattern, the marbler gently applies a
sheet of paper, fabric, or some other material onto the tray. The
pattern created on the surface transfers to the contact material.

The patterning tools and how they’re manipulated are crucial
to producing impressive features. Many modern marblers search
for new effects or techniques to heighten their expressivity. Unfor-
tunately, this task isn’t easy because marbling consists of several
steps, and the marbler must start from scratch if he or she makes
a mistake.

Reference
	 1.	 D. Maurer-Mathison, The Ultimate Marbling Handbook: A Guide to

Basic and Advanced Techniques for Marbling Paper and Fabric, Watson-

Guptill, 1999.

Traditional Marbling

(a) (b) (c)

Figure 4. Images made with our method. (a) A pattern made by a single virtual comb tine. (b) A wavy pattern. (c) A circular tine-
line pattern. These computer-generated patterns are similar to traditional manually generated ones.

	 IEEE Computer Graphics and Applications� 31

function as Equation 2, with one change. Here,
we set d = −P C , where C denotes the vortex’s
center (see Figure 5).

Preserving Sharp Contours in Raster Images
Sharp contours between the inks are crucial
characteristics of real-world marbling images. We
employ two techniques to preserve sharp contours
for marbling raster images.

Because our method is based on image defor-
mation, it usually generates aliasing artifacts (see
Figure 5a). Generally, antialiasing computes im-
ages at a higher resolution and then downsamples
them. We employ 2 × 2 rotated-grid supersam-
pling (RGSS) antialiasing because of its low cost
and high quality. Our method also provides other
common supersampling patterns such as 4 × 4
grid, Quincunx, 4 × 4 checker, and 8-rooks.4

If we update the image for each operation and
use it as input for the next operation, contrast
fading occurs, and the resulting image is blurred
after some operations. For n operations, the color
at Pn is

C(Pn) ← C(Pn–1) ← … ← C(P1) ← C(P0),

where Pi(i = 0, 1, …, n – 1) is the back-traced point
of Pi+1, i is the number of image deformation op-
erations, and ← represents that C(Pi) is obtained
by sampling the color at point Pi–1. Signal diffusion
is inevitable unless we apply an ideal sinc filter. As
n increases, the results will get increasingly blurry
(see Figure 5b).

To solve this problem, we employ an alternative
image-updating technique similar to that of Karl

Sims.5 For each point in the current image, we
trace its mapping point in the ink-drop pattern
directly and sample the color at that point to the
current position:

C(Pn) ← C(Pn → Pn–1 → … → P1 → P0).

Consequently, we can compute the composition
operation in one shader; Figure 5c shows the
improved results. This technique can also show
an animation (evolution) of the marbling process.
However, unlike the first technique, this one’s
performance decreases gradually as the number
of operations increases. So, our method provides
both techniques.

Vector Image Output
Our method supports compact resolution-
independent vector output when users create the
initial pattern from ink drops. We approximate
each initial circular drop by an inscribed regu-
lar n-gon filled with the drop’s color. We choose
the value of n according to the drop’s radius. We
transform the initial drop’s polygon points to new
positions according to the composite formula de-
rived from the marbling operations. Each point’s
displacement depends on the marbling operations.
Two adjacent points in an initial drop might be far
apart after the marbling, so undersampling arti-
facts might occur.

To reduce the artifacts, we employ adaptive re-
finement to keep the boundary smooth. As long
as the distance between two transformed adja-
cent polygon points is larger than a user-specified
threshold T, we insert a new sampling point in the

(a) (b) (c)

Figure 5. Vortex patterns’ image quality. (a) Our method usually produces aliasing artifacts. (b) Updating an
image and using the update for the next operation can cause blurring. (c) Our alternative updating technique
produces sharp contours. The bottom images show details.

32	 November/December 2012

Feature Article

middle of the arc subtended by the two points in
the initial drop. Empirically, we can achieve pleas-
ing results if we set T at 1 pixel. We can use a
smaller threshold for higher quality or when mag-
nifying the marbling image.

Rendering Surface Details on 3D Objects
Given a parameterized 3D object (such as the vase

in Figure 6a), simply mapping the marbling image
onto the 3D surface as a texture doesn’t retain
sharp texture features. Figure 6b demonstrates this
effect with a texture resolution of 800 × 800. Even
a high-resolution texture (8,000 × 8,000 pixels)
can’t faithfully reproduce the crisp boundaries for
close-ups (see Figure 6c).

Our closed-form solution makes it possible to
render high-quality surface details on 3D objects.6,7
As the user designs a texture, our method records
its creation history (including parameters for
ink drops and operations). Then, it computes the
texture for 3D objects on the fly using two steps.

First, it renders the 3D object using deferred
shading to store per-pixel attributes (positions,
normals, and texture coordinates) into local video
memory (a G-buffer).

Second, it renders screen-aligned quadrilaterals by
retrieving the per-pixel attributes stored in the G-
buffer. To calculate the color of a pixel at position x,
the pixel shader must access these data structures:

■■ the buffer T used to store texture coordinates
(tc) in the first step,

■■ the patterning operations f,
■■ the ink drops (col, r, c) (these parameters repre-
sent the color, radius, and center),

■■ the background color bc, and
■■ the marbling image’s width w and height h.

Figure 7 shows the pseudocode; p is the point
whose position is obtained by multiplying tc by
(w, h).

We implement the rendering on the GPU to ob-
tain high performance. Such a method keeps con-
tours sharp at high zoom levels at interactive frame
rates and overcomes the limited resolution while re-
ducing texture memory usage.

For the antialias pass, we use a technique similar
to that in the section “Preserving Sharp Contours
in Raster Images.” Figure 6d shows the results.

Using Our Method
Figure 8 shows an example of generating a digital
marbling starting with a blank sheet. After mak-
ing the ink-drop pattern (see Figure 8a), the user
guided a comb along a straight line from right to
left (see Figure 8b). The user then guided the comb
back in the opposite direction, with the teeth pass-
ing in between where they passed before (see Fig-
ure 8c). The previous two steps were repeated ver-
tically (see Figure 8d). Then, the user performed
two horizontal combings in opposite directions
(see Figure 8e). Finally, the user applied a wavy
pattern function (see Figure 8f).

(a) (b)

(c) (d)

Figure 6. Rendering high-quality surface details on 3D objects. (a) We
rendered this vase with a marbling pattern. (b) Traditional texture
mapping with an 800 × 800 texture shows blurry edges in a close-up.
(c) Even an 8,000 × 8,000 texture doesn’t provide sharp edges for
extreme close-ups. (d) Our surface-detail rendering guarantees crisp
edges even for extreme close-ups.

tc ← T(x)
p ← tc * (w, h)
for all operations(f) do
 p ← f(p)
end for
for all inkdrops(col, r, c) do
 if ||p − c|| ≤ r then
 return col
 end if
end for
return bc

Figure 7. Vector marbling texture fetch. This
algorithm lets our method render high-quality
surface details on 3D objects. For an explanation of
the symbols, see the main article.

	 IEEE Computer Graphics and Applications� 33

Throughout this process, users can choose either
technique we described in the section “Preserving
Sharp Contours in Raster Images.” They can create
the resolution-independent vector images at an in-
termediate stage, with some delay. They can then
zoom in on regions to see the fine detail at any scale.

Performance and Comparison
We implemented our method using High Level

Shading Language shaders on the GPU. To inves-
tigate our method’s performance, we ran it on a
1.83-GHz Intel Core 2 Duo E6320 CPU and an
Nvidia GeForce 8800 GTS GPU.

Table 1 compares our method’s performance with
that of Xu and her colleagues’ method. With a 2 ×
2 RGSS filter, our method outperformed the other
one by an order of magnitude. The other method’s
interactivity is limited to low resolutions owing to the

(a)

(b)

(d)

(c)

(e) (f)

Figure 8. Generating digital marbling. (a) Making the initial ink-drop pattern. (b) Guiding the comb along a
straight line from right to left. (c) Guiding the comb back in the opposite direction. (d) Repeating the previous
two steps orthogonally. (e) Making two horizontal combings in opposite directions. (f) Applying a wavy
pattern function.

Table 1. The performance (in fps) of our method and Jiayi Xu and her colleagues’ method2 in the same environment.

Resolution (pixels)
Xu and her

colleagues’ method

Our method

No antialiasing 2 × 2 rotated-grid supersampling 4 × 4 checker 4 × 4 grid

512 × 512 30 1,560 732 250 239

1,024 × 512 15 1,265 375 125 120

1,024 × 768 10 850 246 83 80

1,024 × 1,024 12 660 189 64 61

1,280 × 1,024 7 548 156 55 53

34	 November/December 2012

Feature Article

time-consuming physics simulation. Physics-based
methods, including Rüyam Acar’s CPU-implemented
level-set method,1 can’t achieve real-time perfor-
mance for high-resolution marbling images.

We also tested our method on a ThinkPad X61
laptop with an integrated Intel GMA X3100 graph-
ics card. The method still achieved 13 fps when
creating 1-Mpixel images using the 2 × 2 RGSS
filter. So, our method not only lets users design
images with real-time visual feedback, it also lets
them experience the marbling process immersively
because of its vivid fluid-like animations. Besides
of our mathematical model’s faster execution, it
can produce vector images (see Figure 3b), whereas
Xu and her colleagues’ method (see Figure 3e) cre-
ates raster patterns.

Figure 9 compares a real marbling pattern with
our results and those of Acar’s physics-based
method. The two computer-based methods gener-
ate visually similar patterns under the same ma-
nipulation steps.

Applications
We’ve applied our method to image editing and
video-stream processing. Thanks to the high pro-
cessing speed, we can process video streams in real
time. Actually, every video frame is a marbling
pattern, and the interesting transformation of the
related video images could be used in filmmaking
and advertising. For an example, see the supple-
mentary video at http://youtu.be/ZgVblaKhC_4.

We’ve also applied our method to scene decora-
tion (see Figure 10).

Our real-time design process running on stock
hardware is engaging and easy to learn and

use. Amateurs can produce beautiful designs in a

few minutes. Artists can use our method to try
different designs before they create works with
real marbling materials.

We’ll explore more mathematical functions
such as free-hand tools to achieve a wider vari-
ety of effects. For the vector graphics output, the
number of vertices grows quickly with the num-
ber of operations. We could address this issue by
taking shape simplification into account. Alter-
natively, the current polygonal approximation to
a deformed ink-drop boundary curve could be
subdivided at the instant a tine crosses it. We also
plan to investigate marbling solid textures by ex-
tending our focus to three dimensions, inspired
by Lvdi Wang and his colleagues’ research.9�

Acknowledgments
We thank Diane Maurer-Mathison (www.dianemaurer.
com) for permission to use the marbling texture in Fig-
ure 9a. Xiaogang Jin received support from the China
973 program (grant 2009CB320801), the National
Natural Science Foundation of China—Microsoft Re-
search Asia Joint Funding (grant 60970159), Zhejiang
Provincial Natural Science Foundation of China (grant
Z1110154), and the National Natural Science Foun-
dation of China (grants 60933007 and 60833007).
Hanli Zhao received support from the National Natu-
ral Science Foundation of China (grant 61100146)
and Zhejiang Provincial Natural Science Foundation
of China (grant Y1110004).

References
	 1.	 R. Acar, “Level Set Driven Flows,” ACM Trans.

Graphics, vol. 26, no. 4, 2007, article 15.
	 2.	 J. Xu, X. Mao, and X. Jin, “Nondissipative Marbling,”

IEEE Computer Graphics and Applications, vol. 28, no.

(a) (b) (c)

Figure 9. A comparison of marbling images. (a) A real marbling pattern.8 (b) The results with our method. (c) The results with
Rüyam Acar’s level-set method.1 Our method can produce marbling effects comparable to real artwork. (Sources: Figure 9a, Diane
Maurer-Mathison; Figure 9c, Rüyam Acar; used with permission.)

	 IEEE Computer Graphics and Applications� 35

2, 2008, pp. 35–43.
	 3.	 A. Jaffer, “Ink Marbling,” 2011; http://people.csail.

mit.edu/jaffer/Marbling.
	 4.	 T. Akenine-Möller, E. Haines, and N. Hoffman,

Real-Time Rendering, 3rd ed., AK Peters, 2008.
	 5.	 K. Sims, “Choreographed Image Flow,” J. Visualization

and Computer Animation, vol. 3, no. 1, 1992, pp.
31–43.

	 6.	 D. Nehab and H. Hoppe, “Random-Access Rendering
of General Vector Graphics,” ACM Trans. Graphics,
vol. 27, no. 5, 2008, article 135.

	 7.	 S. Jeschke, D. Cline, and P. Wonka, “Rendering
Surface Details with Diffusion Curves,” ACM Trans.
Graphics, vol. 28, no. 5, 2009, article 117.

	 8.	 D. Maurer-Mathison, The Ultimate Marbling Handbook:
A Guide to Basic and Advanced Techniques for Marbling
Paper and Fabric, Watson-Guptill, 1999.

	 9.	 L. Wang et al., “Vector Solid Textures,” ACM Trans.
Graphics, vol. 29, no. 4, 2010, article 86.

Shufang Lu is a PhD candidate at the State Key Laboratory
of CAD & CG at Zhejiang University. Her research interests
include marbling simulation, nonphotorealistic rendering,
and image processing. Lu received her BSc in software engi-
neering from Wuhan University. Contact her at lushufang@
cad.zju.edu.cn.

Aubrey Jaffer is a mathematician creating analyses and
visualizations at Adnetik. His research interests include
convection, radiative transfer, numerical analysis, algebraic
geometry, symbolic algebra, and space-filling curves. Jaffer
has a BS in mathematics from MIT. Contact him at agj@
alum.mit.edu.

Xiaogang Jin is a professor at the State Key Laboratory of
CAD & CG at Zhejiang University. His research interests

include implicit-surface computing, cloth animation, crowd
and group animation, texture synthesis, and digital geom-
etry processing. Jin has a PhD in applied mathematics from
Zhejiang University. Contact him at jin@cad.zju.edu.cn.

Hanli Zhao is an associate professor at Wenzhou Univer-
sity’s Intelligent Information Systems Institute. His research
interests include nonphotorealistic rendering and general-
purpose GPU computing. Zhao has a PhD in computer sci-
ence from Zhejiang University. Contact him at hanlizhao@
gmail.com.

Xiaoyang Mao is a professor at the University of Ya-
manashi. Her research interests include nonphotorealistic
rendering, texture synthesis, perception, and affect-based
rendering and visualization. Mao has a PhD in computer
science from the University of Tokyo. Contact her at mao@
yamanashi.ac.jp.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

(a) (b) (c)

Figure 10. Applying our marbling to scene decorations. (a) A vase, book, and tablecloth. (b) A window design. (c) Wallpaper,
upholstery, and carpeting. We rendered these 3D scenes with ray tracing in 3D Studio Max.

www.computer.org/itpro

