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Abstract. Mismorphisms—instances where predicates take on different
truth values across different interpretations of reality (notably, different
actors’ perceptions of reality and the actual reality)—are the source of
weird instructions. These weird instructions are tiny code snippets or
gadgets that present the exploit programmer with unintended computa-
tional capabilities. Collectively, they constitute the weird machine upon
which the exploit program runs. That is, a protocol or parser vulnera-
bility is evidence of a weird machine, which, in turn, is evidence of an
underlying mismorphism. This paper seeks to address vulnerabilities at
the mismorphism layer.

The work presented here connects to our prior work in language-
theoretic security (LangSec). LangSec provides a methodology for elim-
inating weird machines: By limiting the expressiveness of the input lan-
guage, separating and constraining the parser code from the execution
code, and ensuring only valid input makes its way to the execution
code, entire classes of vulnerabilities can be avoided. Here, we go a layer
deeper with our investigation of the mismorphisms responsible for weird
machines.

In this paper, we re-introduce LangSec and mismorphisms, and we
develop a logical representation of mismorphisms that complements our
previous semiotic-triad-based representation. Additionally, we develop
a preliminary set of classes for expressing LangSec mismorphisms, and
we use this mismorphism-based scheme to classify a corpus of LangSec
vulnerabilities.

1 Introduction

Mismatches between the perceptions of the designer, the implementor, and the
user often result in protocol vulnerabilities. The designer has a high-level vision
for how they believe the protocol should function, and this vision guides the
creation of the specification. In practice, the specification may diverge from the
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initial vision due to real-world constraints, e.g., hardware or real-time require-
ments. The implementor then produces code to meet the specification based
on their perceptions of how the protocol should function and, in some cases,
how the user will interact with it. However, incorrect assumptions may produce
vulnerabilities in the form of bugs or unintended operation. A user—informed
by their own assumptions and perceptions—may then interact with a system
or service that relies upon the protocol. A misunderstanding of the protocol
and its operation can drive the user toward a decision that produces an unin-
tended outcome. Ultimately, the security of the protocol rests on the consistency
between the various actors’ mental models of the protocol, the protocol specifi-
cation, and the protocol implementation. A mismorphism refers to a mapping
between different representations of reality (e.g., the distinct mental model of
the protocol designer, the protocol implementor, and the end user) for which
properties that ought to be preserved are not. In the past, we have used this
concept and an accompanying semiotic-triad-based model to succinctly express
the root causes of usable security failures [25]. We now apply this model to pro-
tocol design, development, and use. As mentioned earlier, many vulnerabilities
stem from a mismatch between different actors’ representations of protocols and
the protocol operation in practice, e.g., the HeartBleed [11] vulnerability embod-
ies a mismatch between the protocol specification, which involved validating a
length field, and the implementation, which failed to do so. Therefore, it is nat-
ural to adopt the mismorphism model to examine the root causes of protocol
vulnerabilities. That is precisely what we do in this paper.

In this paper, we examine protocol vulnerabilities and the mismorphisms
upon which they are rooted. We develop a logic to express these mismorphisms,
which enables us to capture the human mismatches that produce in vulnera-
bilities in code. Finally, we use this logical formalism to catalog the underlying
mismorphisms that produce real-world vulnerabilities.

2 Related Work

The notion of mismorphism closely parallels the views expressed by Bratus
et al. [8] in their discussion of exploit programming:

“Successful exploitation is always evidence of someone’s incorrect assump-
tions about the computational nature of the system—in hindsight, which
is 20-20.”

The mindset embodied in this quote forms the foundation for the field of
language-theoretic security (LangSec).! Exploitation is unintended computation

1 We only give a brief primer of LangSec in this paper. For those who are interested in
learning more we recommend consulting the LangSec website [7].
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performed on a weird machine [24] that the target program harbors. 2 Weird
machines comprise the gadgets within a program that offer the adversary unin-
tended computational capabilities to carry out an attack, e.g., NOP sleds,
buffer overflows. Weird machines were never intended by protocol designers or
implementors but organically arose within the protocol design and development
phases. For instance, consider a designer who intends to design a web server
program. The implementor of the software attempts to sanitize the input, but
unwittingly lets malicious input through. This enables the adversary to supply
unexpected input, resulting in unexpected behavior. The adversary repeatedly
observes instances of unspecified program behaviour and uses these observations
to craft an exploit program that they run on the exposed weird machine; this
weird machine may serve as a Turing machine or otherwise expressive machine
for the supplied input, the exploit program. To the designer, it was just a web
server program; to the exploit programmer it provides an avenue of attack.

LangSec advocates taking a principled approach—one that is informed by
language theory, automata theory, and computability theory—to parser design
and development to eliminate the weird machine. LangSec facilitates the con-
struction of safer protocols that behave closer to the way that designers and
implementors envision by identifying best practices for protocol construction,
such as parsing the input in full before program execution and ensuring the
parser obeys known computability boundaries for safer computation. It also
delivers tools such as Hammer and McHammer to achieve these goals [15,20].

Momot et al. [18] created a taxonomy of LangSec anti-patterns and used it to
suggest ways to improve the Common Weakness Enumeration (CWE) database.
Erik Poll [22] takes a different approach, classifying input vulnerabilities into two
broad categories—flaws in processing input and flaws in forwarding input—and
discusses examples from both categories in detail.

Pieczul and Foley studied Apache Struts code over a period of 12 years and
systematically analyzed code changes and the nature of the security vulnera-
bilities reported [21]. They observed interesting phenomena pertaining to vul-
nerabilities and code security—and they developed a phenomena lifecycle that
captures how these phenomena appear alongside developer awareness about the
security problem.

We build upon this prior research, viewing mismorphisms as precursors to
the weird machine. Our work is motivated by the belief that identifying and
categorizing the mismorphisms that produce weird machines is a valuable step in
systematically unpacking the causes of vulnerabilities and ultimately addressing
them.

2 For the reader interested in learning more about weird machines: Dullien [10] pro-
vides a formal definition for understanding weird machines and shows that it is
feasible to build software that is resilient to memory corruption. Bratus and Shu-
bina [9] also present exploit programming as a problem of code reuse, discuss how
the adversary uses code presented by the weird machine to carry out the exploit,
and describe colliding actors’ abstractions of how the code works.
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3 A Logic for Mismorphisms

Here, we provide a very brief primer on mismorphisms and present a logical
model for capturing them. Our work here builds upon our earlier efforts to build
a semiotic-triad-based mismorphism model [25], which was, in turn, inspired by
early semiotics work by pioneers Ogden and Richards [19]. The logical represen-
tation presented here blends temporal logic with the idea of multiple interpreters.
Following this section, we demonstrate how this logical model can be used to
classify underlying causes of LangSec vulnerabilities by providing a preliminary
classification using real-world examples.

In the context of this paper, a mismorphism refers to a difference in interpre-
tations between two or more interpreters. That is, we can think of different inter-
preters (e.g., people) interpreting propositions or predicates about the world. In
general, it is good when the interpretations agree and are in accordance with real-
ity. However, when a predicate takes on a truth value under one interpretation
but not another interpretation, we have a mismorphism, which may be a cause
for concern. In our earlier applications, we found these mismorphisms were useful
in understanding and classifying usable security failures and user circumvention.
Here, we apply them to protocol and parser security. As mismorphisms deal with
interpretations of predicates and how interpretations differ between interpreters,
it’s easy to see why formal logic provides a natural foundation to represent them.

We use the words predicate and interpretation in similar—albeit, not
identical—manners to the common formal-logic meanings, e.g., as presented by
Aho and Ullman [6]. However, instead of a binary logic, we use a ternary logic
similar to Kleene’s ternary logic [13,16].% We refer to a predicate as a function of
zero or more variables whose codomain is {T, F, U} where T is true, F is false,
and U is uncertain/unknown. We refer to an interpretation of a predicate as an
assignment of values (which may include U) to variables, which results in the
predicate being interpreted as T', F', or U. A predicate is interpreted as T if after
substituting all variables for their truth values, the predicate is determined to be
T; it is interpreted as F if after substituting all variables for their truth values,
the predicate is determined to be F'; if we are unable to determine whether the
predicate is T or F, the predicate is interpreted as U.

The interpretation must be done by someone (or perhaps something) and
that someone is the interpreter. In this paper, common interpreters include the
oracle O who interprets the predicate as it is in reality, the designer D, the
implementor I, and the user Y. We note that some interpreters may not have
adequate information to assign precise values to the variables that ensure the
predicate is interpreted as T" or F'. It is in these instances that the predicate may
be interpreted as U. In this paper, we use P|4 to denote the interpretation of
predicate P by interpreter A.

To represent mismorphisms we need a way to express the relationship
between interpretations of a predicate. Thus, we have the following:

3 We do not specify a specific ternary logic system for evaluating predicates in this
paper.
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[Predicate] [Interpretation Relation] [List of interpreters]

The interpretation relations over the set of all predicate-interpreter pairs
are k-ary relations where k >= 2 is the number of interpreters there are in the
interpretation relation—and each k-ary relation is over the interpretations of the
predicate by the k interpreters. The three interpretation relations we are con-

cerned with in this paper are: the interpretation-equivalence relation ( = ), the
interp.
°
interpretation-uncertainty relation ( ti ), and the interpretation-inequivalence
interp.

relation ( # ).? These relations are defined as follows, where each P represents
interp.
a predicate and each A; represents an interpreter:

e P = Ay, A, ... A, if and only if P, as interpreted by each A;, has a truth

interp.
value that’s either T or F (never U)—and all interpretations yield the same
truth) value.
e P = Ay A, ... Ay if and only if P takes on the value U when interpreted

interp.
by at least one A;.
e P # Ay, Ag, ... Ay ifand only if P interpreted by A; is T and P interpreted

interp.

by A; is F' for some i # j.

There are a few important observations to note here. One is that the oracle
O always holds the correct truth value for the predicate by definition. Another is

that if we only know the t; relation applies, we won’t know which interpreter
interp.

is uncertain about the predicate or even how many interpreters are uncertain
unless k£ = 2 and one interpreter is the oracle. Similarly, if we only know that the
# relation applies, we do not know where the mismatch exists unless k = 2.

interp.
Thalz said, knowledge that the oracle O always holds the correct interpretation
combined with other facts can help specify where the uncertainty or inequiv-
alence stems from. Last, the = ) relation will not be applicable if either the

< or the # interpretations are applicable; however, P < Ap, . Ag
interp. interp. interp.
and P # Aj,... A can both be applicable simultaneously.

interp.

The purpose of creating this model was to allow us to capture mismor-
phisms. Mismorphisms correspond to instances where either the interpretation-
uncertainty relation or interpretation-inequivalence relation apply.

It may be valuable to consider some natural extensions to this logical formal-
ism. In select cases, we may consider multiple interpreters of the same role. In
these instances, we assign subscripts to distinguish roles, e.g., D, I, I, O. Also,

4 Note that for k = 2, if we confine ourselves to predicates that take on only T or F
values, the relation = 1is an equivalence relation in the mathematical sense, as

interp.

one might expect, i.e., it obeys reflexivity, commutativity, and transitivity.
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there are temporal aspects that may be relevant. Predicates can be functions of
time and so can the interpretations. While we use the common v(t)-style notation
to represent a variable as a function of time within a predicate, in select cases we
consider the interpreter as a function of time, e.g., I ff means the interpretation
is done by implementor I, at time t = t3.

4 Preliminary Classification

Here, we describe various classes of mismorphisms using the mathematical nota-
tion we just developed. All the vulnerabilities we catalog fall into one of the
categories of mismorphisms we describe below.

4.1 Failed Assumption of Language Decidability

Any input language format needs to be decidable for the implementor to be
able to parse and make sure that there are no corner cases when the program
can enter unexpected states or fail to terminate. When the designer assumes a
language L is decidable (in the absence of proof, that it is), the program may
harbor the potential for unexpected computation.

For one example, the Ethereum platform uses a Turing-complete input lan-
guage to enable its smart contracts. It is demonstrably more difficult to build a
parser for such an input language. Such added complexity led to the Ethereum
DAO disaster [27], in which all ethers were stolen, forcing the developers to
perform a highly controversial hard fork. As a result, some developers built a
decidable version of Solidity called vyper [12].

We define such a language mismorphism by the form:

L is decidable = O, D (1)

interp.

A diagrammatic representation of the above formalism can be found in Fig. 1.

4.2 Shotgun Parsers

Shotgun parsers perform input data checking and handling interspersed with
processing logic. Shotgun parsers do not perform full recognition before the data
is processed. Hence, implementors may assume that a field x has the same value
at time ¢ and time ¢ 4+ , but the processing logic may change the value of the
field x in an input buffer B.

This mismorphism relation is seen below:

B(t)=B(t+9d) # O,I (2)

interp.
Implementors may expect the buffer to be intact across time, but that is
not observed to be the case. Shotgun parsing can cause mismorphisms in two
distinct ways. First, a partially validated input may be wrongly treated as though
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d(SPEC)Ip =T |—

d(x): x is decidable

Designer D Designer believes
specification is decidable;
in reality it is not.

(oo i 20
interp.

Oracle O P

) S
interp.

Implementor believes

implementation is decidable;
Implementor /

in reality it is not.

diMpPL)|j =T  |—

Fig. 1. One class of mismorphism where implementors and designers both disagree
with the reality that the language is actually undecidable.

it is fully validated. Suppose Implementor 1 performs the shotgun parsing and
knoww the input to be only partially validated. Then, Implementor 2 works on
execution and assumes the input is fully validated by the time the code segment
is executed. This type of a shotgun parser mismorphism can be represented as
follows:

B is accepted # I, I (3)
interp.

Second, the same implementor may perform shotgun parsing and be responsi-
ble for working on the execution code. But they may interpret the same protocol
differently during those different times. This type of a mismorphism can be rep-
resented as follows:

B is accepted # I' 1" (4)

interp.

4.3 Parser Inequivalence for the Same Protocol

Designers of protocols intend for two endpoints to have the exact same function-
ality, and build identical parse trees. The Android Master Key bug [14] is an apt
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example for this type of a mismorphism. The parsers for the unzipping function
in Java and C++ were not equivalent, leading to a parsing differential.
We describe this relation as:

Parsers Pp, P are equivalent # O, D, T (5)

interp.

4.4 Implementor Is Unaware that Some Fields Must Be Validated

Designers of protocols introduce new features in the specification of the protocol
without describing them fully or accurately. The designer introduces a field = in
the protocol, but the interpreter does not entirely understand how to interpret it.
The Heartbleed vulnerability [11] was an example of this. The designers included
the heartbeat message, but the implementors did not completely understand it
and missed an additional check to make sure the length fields matched.

sanity check C' is performed # O,D,I (6)

interp.

4.5 Types of Fields in Buffer Are Not Fixed During Buffer Life
Cyle

The types of values that have already been parsed must remain constant. Some-
times, implementors assume field x is treated as type ¢(x) throughout execution.
In reality, the field may be treated as a different type at certain points during
execution.

type(x) is fixed # O,D,T (7)

interp.

5 A Catalog of Vulnerabilities and Their Mismorphisms

Below, we provide a small catalog of some vulnerabilities and the mismorphisms
that we believe produced them.

Shellshock: Bash unintentionally executes commands that are concatenated to
function definitions that are inside environment variables [17].

sanity check C is performed # O,D,I

interp.

The sanity check C' here makes sure that once functions are terminated, the
variable shouldn’t be reading commands that follow it.
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Rosetta Flash: SWF files that are requested using JSONP are incorrectly
parsed once they are compressed using zlib. Compressed SWF files can contain
only alphanumeric characters [26].

sanity check C is performed # O,D,I

interp.

The specification of the SWF file format is not exhaustively validated using a
grammar. The fix uses conditions such as checking for the first and last bytes
for special, non-alphanumeric characters.

Heartbleed: The protocol involves two length fields, one that specifies the total
length of the heartbeat message; the other specifies the size of the payload of
the heartbeat message [11].

sanity check C' is performed # O,D,I

interp.

Sanity check C involves verifying the length fields {; and I match.

Android Master Key: The Java and C++ implementations of the crypto-
graphic library performing unzipping were not equivalent [14].

Parsers Pp, Py are equivalent # O, D,

interp.

Ruby on Rails - Omakase. The Rails YAML loader doesn’t validate the input
string and check that it is valid JSON. And it doesn’t load the entire JSON;
instead, it just starts replacing characters to convert JSON to YAML [23].

sanity check C is performed # O,D,I

interp.

Sanity check C' should first recognize and make sure the JSON is well-formed,
before replacing the characters in YAML.

Nginx HTTP Chunked Encoding: Large chunk size for the Transfer-
Encoding chunk size trigger integer signedness error and a stack-based buffer
overflow [2].

B is accepted # I,

interp.



122 P. Anantharaman et al.

The shotgun parser works on execution without validating the value of the length
field, which could be much larger than allowed, thereby causing buffer overflows.
All implementors must work with the same knowledge, and the input must first
be recognized fully.

Elasticsearch Crafted Script Bug: Elasticsearch runs Groovy scripts directly
in a sandbox. Attackers were able to craft a script that would bypass the sandbox
check and execute shell commands [4].
L is decidable = O,D
interp.
Developers of Elasticsearch had to explore the option of abandoning Groovy in
favor of a safe and less dynamic alternative.

Mozilla NSS Null Character Bug: When domain names included a null
character, there was a discrepancy between the way certificate authorities issued
certificates and the way SSL clients handled them. Certificate authorities issued
certificates for the domain after the null character, whereas the SSL clients used
the domain name ahead of the null character [1].
Parsers Py, P, are equivalent # O, D,
interp.

Although having a null character in a certificate is not accepted behavior, cer-
tificate authorities and clients do not want to ignore requests that contain them.
So they follow their own interpretations, resulting in a parser differential.

Adobe Reader CVE-2013-2729: In running length encoded bitmaps, Adobe
Reader wrote pixel values to arbitrary memory locations since there was a bounds
check that was skipped [3].
B is accepted # Iy,
interp.
The code used a shotgun parser where the implementor of the processing logic
assumed all fields were validated. The bounds check was never performed.

OpenBSD - Fragmented ICMPv6 Packet Remote Execution: Frag-
mented ICMP6 packets cause an overflow in the mbuf data structure in the
kernel may cause a kernel panic or remote code execution depending on packet

contents [5].
sanity check C' is performed # O,D,I

interp.
Implementors of the ICMP6 packet structures in OpenBSD did not understand
how to map it to the existing mbuf structure, and then validate it.
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6 Conclusion

In this paper, we proposed a novel approach to categorizing the root causes
of protocol vulnerabilities. We created a new logical model to express mismor-
phisms, grounded in the semiotic-triad based representation of mismorphisms
explored in our earlier work. We then used this logical model to develop a prelim-
inary set of mismorphism classes for capturing LangSec vulnerabilities. Finally,
we created a small catalog of vulnerabilities and demonstrated how our classifi-
cation scheme could be used to classify the mismorphisms those vulnerabilities
embody.
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