
Empir Software Eng

https://doi.org/10.1007/s10664-018-9625-6

Understanding the behaviour of hackers while

performing attack tasks in a professional setting

and in a public challenge

Mariano Ceccato1
· Paolo Tonella1

· Cataldo Basile2
·

Paolo Falcarin3
· Marco Torchiano2

· Bart Coppens4
·

Bjorn De Sutter4

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract When critical assets or functionalities are included in a piece of software accessible

to the end users, code protections are used to hinder or delay the extraction or manipulation

of such critical assets. The process and strategy followed by hackers to understand and tamper

Communicated by: David Lo and Alexander Sebrenik

Note on order of authors: The last five authors participated to open coding, conceptualization and paper

writing. So did the two first authors, which also designed the qualitative analysis and led the execution

thereof. They also led the professional hacking experiment design and process. The last two authors

also led the design and execution of the Public Challenge experiment.

� Mariano Ceccato

ceccato@fbk.eu

Paolo Tonella

tonella@fbk.eu

Cataldo Basile

cataldo.basile@polito.it

Paolo Falcarin

falcarin@uel.ac.uk

Marco Torchiano

marco.torchiano@polito.it

Bart Coppens

bart.coppens@ugent.be

Bjorn De Sutter

bjorn.desutter@ugent.be

1 Fondazione Bruno Kessler, Trento, Italy

2 Politecnico di Torino, Turin, Italy

3 University of East London, London, UK

4 Universiteit Gent, Gent, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9625-6&domain=pdf
http://orcid.org/0000-0001-7325-0316
mailto: ceccato@fbk.eu
mailto: tonella@fbk.eu
mailto: cataldo.basile@polito.it
mailto: falcarin@uel.ac.uk
mailto: marco.torchiano@polito.it
mailto: bart.coppens@ugent.be
mailto: bjorn.desutter@ugent.be


Empir Software Eng

with protected software might differ from program understanding for benign purposes.

Knowledge of the actual hacker behaviours while performing real attack tasks can inform

better ways to protect the software and can provide more realistic assumptions to the devel-

opers, evaluators, and users of software protections. Within Aspire, a software protection

research project funded by the EU under framework programme FP7, we have conducted

three industrial case studies with the involvement of professional penetration testers and a

public challenge consisting of eight attack tasks with open participation. We have applied a

systematic qualitative analysis methodology to the hackers’ reports relative to the industrial

case studies and the public challenge. The qualitative analysis resulted in 459 and 265 anno-

tations added respectively to the industrial and to the public challenge reports. Based on

these annotations we built a taxonomy consisting of 169 concepts. They address the hacker

activities related to (i) understanding code; (ii) defining the attack strategy; (iii) selecting

and customizing the tools; and (iv) defeating the protections. While there are many com-

monalities between professional hackers and practitioners, we could spot many fundamental

differences. For instance, while industrial professional hackers aim at elaborating automated

and reproducible deterministic attacks, practitioners prefer to minimize the effort and try

many different manual tasks. This analysis allowed us to distill a number of new research

directions and potential improvements for protection techniques. In particular, considering

the critical role of analysis tools, protection techniques should explicitly attack them, by

exploiting analysis problems and complexity aspects that available automated techniques

are bad at addressing.

Keywords Software protection · Software hacking · Attack process · Attack model ·

Attack taxonomy · Empirical study · Hacker model · Reverse engineering · Analysis

tools · Code understanding · Defeat protections

1 Introduction

Software running on the client side is increasingly security-critical. Mobile apps are more

and more used for sensitive functionalities (e.g., bank account management) and a similar

trend can be observed for web apps, due to recent frameworks (e.g., Angular) that move

most of the processing to a single page residing in the browser. Among others, the sensitive

operations that may run on the client side include authentication, license management, and

Intellectual Property Rights (IPR) enforcement.

As a consequence, client apps (and the underlying libraries) contain critical assets that

must be secured. The state of the art approach to secure them is software protection. How-

ever, software protection is intrinsically a difficult task and the techniques available in

practice cannot defeat an attacker with an arbitrarily high amount of time and resources

available (e.g., theoretical results (Barak et al. 2001) show that perfect obfuscation is impos-

sible in the general case). Hence, the assessment of software protections must take into

account an economical trade off between the attack difficulties that protections introduce

and the expected remuneration for a successful attack. Effective protections are protections

that make such a trade-off not convenient for the attacker.

The EC funded Aspire project (https://aspire-fp7.eu) has developed a software protec-

tion tool chain that spans many different categories of techniques, including white box

cryptography, diversified cryptographic libraries, data obfuscation, non-standard virtual

machines, client-server code splitting, anti-callback stack checks, code guards, binary code

https://aspire-fp7.eu


Empir Software Eng

obfuscation, code mobility, anti-debugging, and remote attestation.1 The authors of this

paper are the academic project partners and their task was to investigate, develop, and

validate novel protection techniques.

The empirical investigation consisted of two experiments. In the first experiment, the

three industrial partners of Aspire applied the protection tool chain to their respective indus-

trial case studies and evaluated its effectiveness with the help of professional penetration

testers. The outcome of this experiment consisted of three reports, including detailed narra-

tive information about the tasks conducted in the attempt to defeat the Aspire protections.

The reports describe the activities carried out during the attacks, the encountered obstacles,

the followed strategies, and the difficulty of performing each task. They represent a unique

opportunity to investigate the behaviour of real-world expert hackers while carrying out an

attack.

The second experiment was a Public Challenge. It consisted of eight small applications

that were protected by the Aspire tool chain and were published on-line, offering one prize

per application to the first attacker able to successfully complete a given attack task. Five

applications were successfully broken, as it happened by the same amateur hacker. That

winner was interviewed over email to collect, in several iterations, detailed information

about his attack activities, encountered obstacles, followed strategies, and attack difficulty.

The responses in the emails were bundled into a single report concerning general informa-

tion about the hacker, his general impressions about the challenges, and accounts on the five

broken applications, which was then further analysed.

The reports collected in the two experiments include invaluable knowledge on the way

hackers understand protected software. We applied a systematic qualitative analysis proce-

dure to the reports. In particular, data from the first experiment with industrial hackers were

analysed using open coding, conceptualization, and model inference. Instead, data from the

second experiment (i.e. the Public Challenge) were analysed with closed coding, concep-

tualization, and model inference, to extend the taxonomy of concepts related to hackers

activities, available after the first experiment.

The overall results of these experiments are a taxonomy of concepts and models of the

hacker behaviour that can be used by protection developers as a qualitative support to val-

idate the assumptions under which breakage of a protected asset is deemed economically

disadvantageous. In fact, relevant factors that determine the attack strategies might be over-

looked if an idealized hacker model that departs substantially from the reality is assumed.

Our model of the hacker behaviour, which is grounded on observations obtained from real

attack tasks and supported by evidence collected in the field, provides a solid basis on the

expected attacker behaviour to protection developers. Moreover, our work identified a num-

ber of research directions and guidelines that could substantially improve the practice of

software protection. We have consolidated such lessons learned in the form of a research

agenda for software protection.

Despite the execution of multiple experiments in diversified contexts, we acknowledge

that we did not achieve theoretical saturation. However, this does not undermine the validity

of the presented approach, of our implementation, and of the current results. It is anyway

the case that theoretical saturation of attacker tasks has a limited temporal validity, because

this subject, being an arms race, is a moving target. New stronger attacks are elaborated at

a constant pace, and this motivates to conceive brand new protections, that are later subject

1The Glossary presents brief descriptions of these techniques and of concepts and terms introduced later in

the paper.



Empir Software Eng

to even more powerful attacks. Additional experiments are needed to achieve a wider com-

prehension of this phenomenon and reach saturation regarding the current state of the art,

and will be needed in the future to keep up with this evolving topic. The proposed method-

ology supports the inclusion of data from additional experiments, as this paper already

demonstrates with the inclusion of the second experiment.

It is worth noting that a study of this size (three and five attacked software, three indus-

trial teams and one practitioner) has quite limited general validity, as acknowledged in

Section 4 with our threat to validity analysis. Nonetheless, data collected in these experi-

ments are interesting and worth sharing with other researchers. Moreover, the preliminary

results obtained in our qualitative study are expected to trigger future quantitative studies,

with stronger external validity, which may confirm or refute our claims. One contribution

of this paper is to set the key research questions, the key concepts and the reference models

for such future studies.

This paper extends a conference paper that presented the first experiment with industrial

case studies and its results (Ceccato et al. 2017). This paper adds the second experiment,

i.e., the public challenge. This extension is important for several reasons. First, it allows us

to broaden the coverage of the resulting taxonomy and models to more attack scenarios: to a

wider range of attackers, with different levels of expertise and different preferences in terms

of attack approaches, to a wider range of assets and protected applications, and to more

combinations of deployed protections. These extensions are important because defenders

of software assets need to defend against all possible attack paths by all possible attack-

ers at once. Secondly, it allows us studying the differences in behavior observed in the two

experiments, and the extent to which the resulting taxonomy and models are impacted by

including additional experiments. In addition to the extension towards more attack scenar-

ios, we also extended the original taxonomy with the software elements that the hackers

in both experiments considered in their activities. This extension is useful to let defenders

focus on the concrete features their protections need to impact.

The paper is organized as follows. The qualitative analysis methodology used to anno-

tate the hacker reports is described in Section 2. The extracted taxonomy and models are

presented in Section 3. We discuss the research directions for the improvement of existing

protections and for the development of new ones that emerged from our studies in Section 4.

Section 5 is devoted to related work, while Section 6 concludes the paper and sketches our

plans for future work.

2 Qualitative Analysis Method

We have collected qualitative data from two sources: (1) Professional Hackers; (2) Public

Challenge Winner. Professional hackers were involved in the attempt to break the protec-

tions of three industrial applications, provided by the three industrial partners of Aspire.

The Public Challenge consists of eight small programs protected by some combinations

of Aspire protections. Those programs were made available on the challenge website to

registered users. For each program, the first hacker able to break it was granted a prize.

We used two distinct annotation methods with the two experiments, because an initial

taxonomy of concepts, produced from the first experiment with professional hackers, was

available at the time when the public challenge experiment was conducted. In particular, we

have applied different coding approaches to the professional hacker reports and to the public

challenge report: the qualitative reports collected from Professional Hackers were subjected

to open coding and conceptualization, with the aim of extracting a taxonomy of attack tasks



Empir Software Eng

and a set of models of the hackers’ behaviour. The qualitative report collected from the

Public Challenge winner has been annotated with concepts taken from the taxonomy built

in the first experiment (closed coding) and when these were not sufficient, the taxonomy

has been extended with new concepts that emerged in the second experiment (open coding).

The second experiment served to confirm the taxonomy by adopting it in a new context, as

well as an extension of the initial taxonomy with concepts associated to the behaviours of a

different category of hackers: those participating in the public challenge, who are typically

non-professional hackers.

2.1 Data Collection from Professional Hackers

The three industrial project partners, Nagravision, SafeNet and Gemalto, are world market

leaders in their digital security fields. They developed the case study software, and in partic-

ular the client-side Android apps of which the security-sensitive parts were implemented in

native dynamically linked libraries that were protected by means of the protection tool chain

produced by the Aspire project. DemoPlayer is a media player provided by Nagravision. It

incorporates DRM (Digital Right Management) that needs to be protected. LicenseManager

is a software license manager provided by SafeNet. OTP is a one time password authentica-

tion server and client provided by Gemalto. Table 2 (top) shows the lines of code (measured

by sloccount (Wheeler 2001)) of the three industrial case study applications. For each

case study (first column), the table reports the amount of C code (in “*.c” and “*.h” files,

respectively), the Java code (in “*.java” files) and the C++ code (in “*.ccp” and “*.c++”

files). Each application was protected by the configuration of protections that was deemed

most effective in each specific case by the corresponding company’s security experts, based

on the security requirements of their specific industrial use case. Table 1 lists the deployed

protections.

The professional penetration testers involved in the industrial case studies work for secu-

rity companies that offer third party security testing services. The industrial partners of the

project resort routinely to such companies for the security assessment of their products. Such

assessments are carried out by hackers with substantial experience in the field, equipped

with state-of-the-art tools for reverse engineering, static analysis, debugging, tracing and

profiling, etc. Moreover, these hackers are able to customize existing tools, to develop and

add plug-ins to existing tools, as well as to develop new tools if needed. In our case, exter-

nal hacker teams have been augmented/complemented with/by internal professional hacker

teams, consisting of security analysts employed by the project’s industrial partners. The

exact composition of the hacker teams, such as the name and the number of the hacker

participants could not be disclosed for confidentiality reasons.

The task for the hacker teams consisted of obtaining access to some sensitive assets

secured by the protections. Specifically, the task for the DemoPlayer application was to

Table 1 Protections applied to each industrial use case

Industrial UC Data Anti Remote Code Client-server Virtualization WBC Binary Diversified

obfusc debug attestation mobility splitting obfusc obfusc crypto libs

DemoPlayer × × × × ×

LicenseManager × × × × × ×

OTP × × ×



Empir Software Eng

Table 2 Size of industrial case study applications and the Public Challenges applications in SLoC per file

type, before the protection tool chain is applied

Application C H Java C++ Total

DemoPlayer 2,595 644 1,859 1,389 6,487

LicenseManager 53,065 6,748 819 – 58,283

OTP 284,319 44,152 7,892 2,694 338,103

Challenge 1 134 8 – – 142

Challenge 2 86 8 – – 94

Challenge 3 90 8 – – 98

Challenge 4 118 8 – – 126

Challenge 5 109 8 – – 117

Challenge 6 201 8 – – 209

Challenge 7 156 8 – – 164

Challenge 8 70 8 – – 78

violate a specific DRM protection; for LicenseManager it was to forge a valid license key;

for OTP it was to successfully generate valid one time passwords without valid creden-

tials. For confidentiality reasons on the industrial use cases, programs could not be shared

among different companies and each hacker team only attacked the program owned by the

corresponding company.

The hacker team activities could not be traced automatically or through questionnaires.

In fact, such teams ask for minimal intrusion into the daily activities performed by their

hackers and are only available to report their work in the form of a final, narrative report.

For instance, it was not acceptable for security companies to video record industrial hackers

while working, or to use screen capturing tools or other intrusive measures to have additional

information to compare the results from the reports to.

As a consequence, we had no choice but to adopt a qualitative analysis method. Based

on existing qualitative research techniques (Flick 2009), we defined the qualitative analysis

method to be adopted in our study, consisting of the following phases: (1) data collection;

(2) open coding; (3) conceptualization; (4) model analysis. Although some of the practices

that we have adopted are in common with grounded theory (GT) (Glaser and Strauss 1967;

Strauss and Corbin 1990), the following key practices of GT (Stol et al. 2016) could not

be applied: immediate and continuous data analysis, theoretical sampling, and theoretical

saturation, because we had no option to continue data sampling based on gaps in the inferred

theory.

Although the final hacker reports are in a free format, we wanted to make sure that some

key information was included, in particular information that can provide clues about the

ongoing program comprehension process. Hence, before the involved professional hackers

started their task, we shared with them a report template where we have asked them to cover

the following points in their final attack report:

1. type of activities carried out during the attack: detailed indications about the type of

activities carried out to perform the attack and the proportion of time devoted to each

activity.

2. level of expertise required for each activity: which of the successful actions required a

lot of expertise, which could be done easily.



Empir Software Eng

3. encountered obstacles: detailed description of the obstacles encountered during the

attack attempts. In particular, hackers were asked to report any software protection that

they think was put into place to prevent the attack and that actually represented a major

obstacle for their work.

4. decisions made, assumptions, and attack strategies: description of the attack strategy

and how it was adjusted whenever it proved ineffective. Hackers were asked to describe

the initial attempts and the decisions (if any) to change the strategy and to try alternative

approaches.

5. exploitation on a large scale in the real world: for attacks that succeeded once in the

lab, attackers were asked to describe what work would be required to exploit them in

the real world (i.e., on a large scale, on software running on standard devices instead of

on lab infrastructure, with other keys, etc.).

6. return / remuneration of the attack effort: quantification of the attack effort, if possible

economically, so as to provide an estimate of the kind of remuneration that would justify

the amount of work done to carry out the attack.

In particular, the second point refers to the level of expertise required by the task,

e.g., running an existing attack tool does not require a major expertise, while interpret-

ing complex tool output or customizing/extending the tool requires substantial higher

expertise.

Each industrial case study was available to hacker teams for a period of 30 days. During

that period they worked full-time on it. At the end of this period, hacker teams delivered

their reports. While, in general, attack reports covered the above points, not all of the points

are necessarily covered in all attack reports or with the same level of details. In particular,

quantitative data, such as the proportion of time devoted to each activity, were never pro-

vided, whereas qualitative indications about several of the suggested dimensions are present

in all reports, though with different levels of verbosity and detail. The reports themselves

cannot be made public because of confidentiality requirements. Only the academic Aspire

project partners had access to all three reports.

2.2 Data Collection from Public Challenge Winner

The Public Challenge consisted of a set of eight small applications, written by Aspire

project members and protected by eight distinct combinations of Aspire protections. Smaller

applications were more appropriate for a public challenge, because we expected mostly

practitioners to participate, rather than professional hackers.

The eight applications, hereafter called challenges, have been made available on-line to

registered users who could download and attack them. Registration could be done anony-

mously, as only a valid email address had to be provided. The first three participants to break

a challenge had their self-chosen user names listed next to that challenge on the challenge

web site, together with the timestamp on which the correct solution was submitted. Further-

more, the first successful attacker of each challenge was rewarded with a monetary prize of

e200. To be eligible for this prize, a participant had to agree to participate (through e-mail)

in a post-mortem forensic interview, in which she/he has been asked to describe how the

challenge was attacked and broken, which tools were used, what the general attack strategy

was, etc. Furthermore, she/he had to reveal her/his real identity to the organizers of the chal-

lenge to enable the pay out of the prize. By implementing the Public Challenge in this way,

we again aimed for complementing the data collection of the industrial use cases. Whereas



Empir Software Eng

the industrial hackers are white-hat professionals, the targeted audience of this Public Chal-

lenge and its prize money was the amateur, hobby, and black-hat community. Also in this

case, collecting data from multiple types of attackers helps towards building more generally

applicable models.

We provided attackers with GNU/Linux binaries of all challenges in addition to Android

binaries, Android being the main demonstration platform of Aspire. By letting the partici-

pants choose, hackers and reverse engineers who are skilled in GNU/Linux have not been

put off by the prospect of having to port their hacking tools and environment to an Android

environment.

The asset to be protected in all the applications is a random string of 64 characters in

length, which we will refer to as the key. Users received individualized versions of the appli-

cation, with every generated binary containing a different key, and could request up to three

different instances of every challenge. Each instance has a unique key, and the deployed

protections are invoked with unique random seeds2 where applicable, such that code looks

different for each instance. As valid keys can contain both upper and lower case characters

and numbers, the search space is large enough that attackers are not able to brute force the

correct key. The command-line application checks its first argument against this key, and

prints out whether or not the argument matches the key. Thus upon entering the correct key

as input, it becomes clear if the attack was successful or not. In seven challenges, the answer

appears immediately, in one challenge it appears after days only. The latter case was engi-

neered to force attackers to tamper with the code, such that the anti-tampering protections

could be evaluated. The attackers could then submit a combination of the identifier of the

attacked binary and the key as a solution to the challenge.

Table 3 provides an overview of deployed protections. Besides the indicated protections,

all challenges are protected with randomized control-flow obfuscations (opaque predicates,

branch functions and function flattening), anti-callback stack checks, and offline code

guards. Table 2 (bottom) shows the eight applications’ source code sizes. Whereas they are

small in that respect, the protected binaries were much larger than these source sizes hint

at, because those binaries contain protection functionality on top of the protected applica-

tion code. The code sections in the binaries, from which attackers start their attack, range

from approximately 12kb to 5MB. As all code in those sections is mingled by default by

the Aspire protection tool chain, the attackers cannot single out the application code from

the protection code easily.

Even though the asset is the same in all challenges (i.e., a key with the same function;

obviously the key value differs from binary to binary), and the program I/O behaviour is the

same in all challenges, we have decided to tailor the source code of each challenge to suit

the protections that are applied in each of those challenges. We did so because different pro-

tection combinations can trigger different attack paths, and because different code features

lend themselves to different forms of protections. Also in this way, we aim to broaden our

data collection in order to yield more generally applicable models, in this case by ensuring

that different attack paths are included in the data collection.

2The random seed was not meant to decide what protection to deploy or in what variant. The random seed

is used by protections to initialize values, e.g., the value to use as key, and to diversify the way certain

protections are injected and obfuscated, such that the injected code cannot be identified through trivial pattern

matching. Nonetheless, we verified that the randomization process did not change the code and execution

patterns in such a way that diversified versions required different ways to be attacked, as it would have altered

the analysis of the results.



Empir Software Eng

For each of the challenges summarized in Table 3, the source code characteristics and

the challenge-specific protections are the following ones:

Ch 1: In this challenge, an array is constructed by a block of code that is protected

with an anti-debugging protection that prevents an attacker from attaching his own

debugger to study the internal operation of the program (Abrath et al. 2016). Next,

code mobility (Cabutto et al. 2015) is used to protect the XORing of this array with

mobile data (i.e., data that is not present in the static program binary, but is down-

loaded from a secure server at run time). Mobile code also contains the invocation

to the strncmp C function that checks the validity of the key, this hiding that

operation.

Ch 2: The key is split into 16 integers, each of which is encoded using Residue Number

Coding (RNC) (Demissie et al. 2015). The input to the program is also split into 16

integers, and these integers are then compared with the RNC-encoded key.

Ch 3: This challenge uses RNC data obfuscation and anti-debugging.

Ch 4: The main function is protected by moving it into a virtual machine (VM): the main

function body is translated into bytecode that is interpreted by the VM, instead of

being executed directly.

Ch 5: The key is used as ciphertext for White Box Cryptography (WBC) with a fixed key

(Wyseur 2009). This is then “decrypted” when a challenge instance is generated,

and the decrypted key is stored in the challenge instance. Furthermore, the WBC

code has been protected with anti-debugging.

Ch 6: The key is checked in two parts: the first half of the key is checked byte per byte.

The code that checks the key performs a very long delay loop (two nested loops,

both of which only finish after looping through 264 values) and a sleep of about 11

days after each character is checked. These delays are to encourage the attackers

to try to modify the binary to remove or shorten the delay to verify the key, i.e., to

tamper with the code, which is protected with Remote Attestation (RA) (Collberg

and Nagra 2009). The next part of the binary is protected using mobile code, so that

if the RA component detects tampering, the protection server can trigger a tamper

response in the code mobility component.

Ch 7: This challenge starts from code that has “ugly” control flow at the source level.

Then this code has binary control flow obfuscations applied, and is furthermore

protected with anti-debugging.

Table 3 Protections applied to each challenge (Ch)

Ch Data Anti Remote Code Client-server Virtualization WBC

obfusc debug attestation mobility splitting obfusc

1 × × ×

2 ×

3 × ×

4 × ×

5 × ×

6 × ×

7 ×

8 × ×



Empir Software Eng

Ch 8: The code is protected with client-server code splitting (Ceccato et al. 2007), where

each character is sent individually to the server, and the client only asks for the

correctness of the next key character if the previous one was correct.

The Public Challenge was advertised on the reverse engineering sub-reddit, on Twitter,

in the institutions that partnered in the Aspire project, and in summer schools to which they

participated.

Five challenges were broken (in the order 5, 7, 2, 3, and 4) by the same hacker, who par-

ticipated in the post-mortem forensic interview. The content of the interview represents the

qualitative report, comprising several paragraphs dedicated to each one of the five broken

challenges as well as some general considerations and impressions on the challenges, e.g.,

on how to prepare the attacks and activities shared among challenges. After an initial email,

asking for general explanations about the successful attacks (“how did you find the keys?”,

“which tools did you use?”, “how did you approach the different challenges?”, “which diffi-

culties (if any) did you experience and how did you tackle them?”), the interview proceeded

with further requests of clarifications and explanations, based on the hacker’s replies. Exam-

ples of follow-up questions are: “Could you estimate how much effort / time you spent per

challenge?”, “How did you know it was WBC?”, “For the seventh and third challenges,

apart from the checksums, did you experience any problems when attaching the debugger?

If so, how did you circumvent them; if not, which debugger did you use and how did you

attach to the program? (Did you notice that there were two processes running?)”, “How

did you know where to put the breakpoints?”. The interview was closed when the associ-

ated report contained enough information to understand the attack strategy as well as the

technical details behind the five successful attacks.

The interview also confirmed that the participant who solved the public challenges was

indeed an experienced amateur hacker, with access to advanced, but publicly available tools.

This participant, thus, fitted the intended target of the Public Challenge. Considering that

this profile differs from the professional hackers involved in the first experiment, we aim for

a substantial extension of the initial taxonomy built just on industrial settings, by including

data from two diverse settings.

2.3 Open Coding and Conceptualization (Professional Hacker Experiment)

Open coding was applied to the qualitative data collected from the Professional Hackers.

Open coding of the reports was carried out by each academic institution participating in the

Aspire project. Coding by seven different coders was conducted autonomously and inde-

pendently. Only high level instructions have been shared among coders before starting the

coding activity, so as to leave maximum freedom to coders and to avoid the introduction of

any bias during coding. These general instructions are reported in Fig. 1.

The annotated reports obtained after open coding were merged into a single report con-

taining all collected annotations. We have not attempted to unify the various annotations

because we wanted to preserve the viewpoint diversity associated with the involvement of

multiple coders operating independently from each other. Unification is one of the main

goals of the next phase, conceptualization.

Conceptualization was applied to the annotated data collected from the Professional

Hackers. This phase consists of a manual model inference process carried out jointly by all

coders. The process involves two steps: (1) concept identification; (2) model inference. The

goal of concept identification is to identify key concepts that coders used in their annota-

tions, to provide a unique label and meaning to such concepts and to organize them into a



Empir Software Eng

OPEN CODING PROCEDURE:

Fig. 1 Coding instructions shared among coders of the Professional Hackers report

concept hierarchy. The most important relation identified in this step is the “is-a” relation

between concepts, but other relations, such as aggregation or delegation, might emerge as

well. In this step, the main focus is a static, structural view of the concepts that emerge

from the annotations. The output is thus a so-called “lightweight” ontology (i.e., an ontol-

ogy where the structure is modelled explicitly, while axioms and logical constraints are

ignored).

The goal of model inference is to obtain a model with explanation and predictive power.

To this aim, the concepts obtained in the previous step are revised and the following rela-

tions between pairs of concepts are conjectured, based on considerations or observations

formulated by the participants: (1) temporal relations (e.g., before); (2) causal relations

(e.g., cause); (3) conditional relations (e.g., condition for); (4) instrumental relation (e.g.,

used to). Evidence is sought for such conjectures in the annotations. It should be noted that

relations are not based on the exact words used in the reports. Concept relations are rather

based on the meaning of participants comments, so that a consistent model is inferred even

if different participants used different words to mean the same relation. The outcome of this

step is a model that typically includes a causal graph view, where edges represent causal,

conditional and instrumental relations, and/or a process view, where activities are organized

temporally into a graph whose edges represent temporal precedence. This step is deemed

concluded when the inferred model is rich enough to explain all the observations encoded in

the annotations of the hacker reports, as well as to predict the expected hacker behaviour in

a specific attack context, which depends on context factors such as the features of the pro-

tected application, the applied protections, the assets being protected, the expected obstacles

to hacking.

Correspondingly, two joint meetings (over conference calls) have been organized to carry

out the two steps. During each meeting, the report with the merged codes was read sentence

by sentence and annotation by annotation. During such reading, abstractions have been pro-

posed by coders either for concept identification (step 1) or for model inference (step 2). The

proposed abstractions have been discussed; the discussion proceeded until consensus was

reached. During the process, whenever new abstractions were proposed and discussed, the

abstractions introduced earlier were possibly revised and aligned with the newly introduced

abstractions.



Empir Software Eng

Although the conceptualization phase is intrinsically subjective, subjectivity was reduced

by: (1) involving multiple coders with different backgrounds and asking them to reach con-

sensus on the abstractions that emerged from codes; (2) keeping traceability links between

abstractions and annotations. Traceability links are particularly important, since they pro-

vide the empirical evidence for the inference of a given concept or relation. Availability

of such traceability links allows coders to revise their decisions later, at any point in time,

and allows external inspectors of the model to understand (and possibly revise/change) the

connection between abstractions and initial annotations.

2.4 Taxonomy Extension (Public Challenge Experiment)

The taxonomy extracted from the experiment with Professional Hackers was reused to anno-

tate the report collected from the Public Challenge. It has been extended with new concepts

when the existing ones were insufficient for the annotation of the report. The closed/open

coding procedure followed to annotate the Public Challenge report is described in Fig. 2.

Whenever a relevant text fragment could not be annotated by reusing an existing concept

(closed coding), the annotator could recommend a new concept for the given text fragment

(open coding).

The annotated reports obtained after individual closed/open coding were merged into

a single report containing all collected annotations. Two consensus meetings have been

carried out over conference calls to reach a consensus on a unified annotation of the Public

Challenge report. During each consensus meeting, the report with the merged codes was

read sentence by sentence and annotation by annotation. The proposed annotations with

existing or new concepts have been discussed and the discussion proceeded until consensus

was reached. During the process, whenever new concepts were approved, their position in

the existing taxonomy was also discussed and decided as well as their relations with other

concepts in the taxonomy.

3 Results

Table 4 shows the number of annotations produced for the Professional Hacker reports (top)

and the Public Challenge winner report (bottom). The three case study reports (indicated as

P: DemoPlayer; L: LicenseManager; O: OTP) produced by Professional Hackers have been

annotated by seven annotators (indicated as A, B, C, D, E, F, G) from the academic partners

of Aspire. Each annotation is labelled by a unique identifier having the following structure:

[<case study> : <annotator> : <number>] (e.g., [P:D:7]) to simplify traceability between

CLOSED/OPEN CODING PROCEDURE:

Fig. 2 Coding instructions shared among coders of the Public Challenge report



Empir Software Eng

Table 4 Number of annotations by annotator and by case study report

Industrial Annotator

Case study A B C D E F G Total

P 52 34 48 53 43 49 NA 279

L 20 10 6 12 7 18 9 82

O 12 22 NA 29 24 11 NA 98

Total 84 66 54 94 74 78 9 459

Public challenge Annotator team

T1(A,G) T2(C,D) T3(B,F) T4(E) Total

C2 11 14 4 5 34

C3 3 9 2 3 17

C4 21 44 12 7 84

C5 10 12 3 3 28

C7 3 4 3 1 11

Common 22 46 9 14 91

Total 70 129 33 33 265

inferred concepts and models on one side and annotations supporting them on the other side.

The reports have been processed in the same order by all the annotators, that is P, L and

O. The reports on the five broken challenges produced from the interview with the Public

Challenge winner have been annotated by four teams of annotators (indicated as T1, T2, T3,

T4), one from each academic institution participating in the Aspire project. The composition

of annotator teams is reported in parentheses near to the team name.

In total, 459 annotations have been produced for the Professional Hacker reports. Case

study P received considerably more annotations than L and O, mostly because of the amount

and richness of the information available in this hacker report. The number of annotations

made by different annotators is quite consistent across the case studies (NA = Not Avail-

able indicates that the annotator did not annotate that specific report), with L showing the

highest variability (min = 6; max = 20). For the Public Challenge report, 265 annotations

have been produced in total by the four teams, with wide variability (min = 33; max =

129) indicating a spectrum of attitudes on the amount of concepts used for each text frag-

ment to be annotated. These 265 annotations clearly form a relevant extension over the 459

annotations considered in our previous work (Ceccato et al. 2017).

The Public Challenge annotations have been applied to both text describing a specific

challenge and text describing general considerations concerning all the challenges. General

considerations cover aspects that are independent of the single challenge, like environment

preparation and use of analysis tools. Table 4 reports the number of annotations associated to

text of the report that was explicitly referred to a specific challenge. It is possible to see how

text concerning individual challenges has been heavily annotated. The most complicated

challenge to break, i.e., the fourth challenge that used white box crypto, deserved a long

description by the hacker and it was annotated by teams with a number of annotations

similar to that of the L and O industrial case studies.

Annotators were the same for the two experiments. The difference in the annotation pro-

cedure between the first and the second experiment (i.e., individual annotators versus teams

of annotators) is due to the slightly different settings between the two experiments. In fact,

in the second experiment annotators started from the existing taxonomy, not from scratch,



Empir Software Eng

and they could benefit from the experience maturated in annotating the first experiment

reports. Teams were used in the second experiment to anticipate some discussion within

each team when annotating the reports, to allow for an easier successive plenary meeting in

which consensus was aimed for.

3.1 Identified Concepts

Figures 3 and 4, and 5 show the taxonomy of concepts resulting from the conceptualization

process carried out by the annotators. New concepts introduced in the Public Challenge

experiment are underlined; concepts emerged in both experiments are in boldface.

The top concepts in the taxonomy correspond to the main notions that are useful to

describe the hacker activities. These are: Obstacle, Analysis / reverse engineering, Attack

strategy, Attack step, Workaround, Weakness, Asset, Background knowledge, Tool, Software

elements, Difficulty (the last one, Difficulty, was introduced only when the Public Chal-

lenge data have been processed). The taxonomy in OWL format is available online at: http://

selab.fbk.eu/ceccato/hacker-study/EMSE2017.owl. To help readability, in the graphical rep-

resentation of our taxonomy, concepts are ordered according to possible phases, e.g the

preparation comes ideally first, then some code understanding is done, the attack attempt

takes place before the evaluation of the attack result. We did not opt for a more formal

ordering, such as the number of concepts or the size of reports, because it would have been

arbitrary or based on sensitive information that we could not disclose. Moreover, it would be

difficult to keep a consistent ordering approach in future experiments, possibly conducted

by other researchers, where data sharing might be still difficult because of confidentiality

issues.

3.1.1 Obstacle

As expected, in the Obstacle hierarchy (Fig. 3) we find the protections that are applied to

the software to prevent the hacker attacks (under concept Protection). We observe that this

is not the only kind of obstacle reported by hackers.

In particular, the Execution environment may also be a major impediment to the com-

pletion of an attack. In a report we read “Aside from the [omissis]3 added inconveniences

[due to protections], execution environment requirements can also make an attacker’s task

much more difficult. [omissis] Things such as limitations on network access and maximum

file size limitations caused problems during this exercise”; on this part one coder annotated

[P:F:7]: “General obstacle to understanding [by dynamic analysis]: execution environment

(Android: limitations on network access and maximum file size)”.

3.1.2 Difficulty

Most difficulties (see Difficulty hierarchy in Fig. 3) are problems encountered by the hacker

while performing the Public Challenge, due to lack of knowledge (“This was my first major

encounter with ARM arch and Linux platform”) or portability (“The problem as far as

I could gather was inside libwebsockets processing, probably because of my device

3With the placeholder “[omissis]” we indicate that a part of the text is not reported either because it cannot

be disclosed for confidentiality reasons or because it is not relevant since we want the reader to focus on the

most meaningful (and shorter) portion.

http://selab.fbk.eu/ceccato/hacker-study/EMSE2017.owl
http://selab.fbk.eu/ceccato/hacker-study/EMSE2017.owl


Empir Software Eng

Fig. 3 Taxonomy of extracted concepts (part I): the analysis methods and tools hackers may use (Anal-

ysis / reverse engineering, Tool), weaknesses in design and coding of the application to protect that may

help the hacker tasks (Weakness), the difficulty hackers may experience when trying to perform an attack

task (Difficulty), the protections a defender can place to limit certain attack steps (Obstacle), and other

high-level concepts that characterize the hacking scenarios (Asset, Attack strategy, Background knowledge,

Workaround). * indicates multiple inheritance; new concepts added during the second qualitative experiment

are underlined; concepts emerged in both experiments are in boldface



Empir Software Eng

Fig. 4 Taxonomy of extracted concepts (part II): the attack steps hackers may perform. They include the

operations to prepare the attack (Prepare attack) and decide how to mount it (Build the attack strategy), the

tasks to understand the software through reverse engineering the application code (Reverse engineer software

and protection), the modifications to code and executions to tamper with the application (Tamper with code

and execution), and the tasks to evaluate whether the attack was successful or not and learn from errors

(Analyse attack result). * indicates multiple inheritance; new concepts added during the second qualitative

experiment are underlined; concepts emerged in both experiments are in boldface



Empir Software Eng

Fig. 5 Taxonomy of extracted concepts (part III): software elements. * indicates multiple inheritance;

new concepts added during the second qualitative experiment are underlined; concepts emerged in both

experiments are in boldface

setup”). Another difficulty (formerly classified as an Obstacle (Ceccato et al. 2017)) is

represented by Tool limitations, for which we can find annotated sentences such as [P:A:33]:

“Attack step: overcome limitation of an existing tool by creating an ad hoc communication

means” in the professional hacker reports.

3.1.3 Analysis/reverse Engineering

The Analysis / reverse engineering hierarchy (see Fig. 3) is quite rich and interesting. It

includes advanced techniques that are part of the state of the art of the research in code anal-

ysis, such as Symbolic execution / SMT solving; Dependency analysis; Statistical analysis.

Of course, hackers are well aware of the most recent advances in the field of code analysis.



Empir Software Eng

Control flow reconstruction and Diffing were added when processing the report from

the Public Challenge. In particular, the Public Challenge hacker compared (using the utility

diff) the original source code of a publicly available interpreter with the decompiled code

obtained from the challenge, to detect any modification that could have been made to that

interpreter, that was in fact re-used in the Aspire project to protect the challenge (“I was

cross-referencing the original [omissis] source code with challenge’s decompilation to spot

the differences in processing [omissis] file”) .

3.1.4 Attack Step

The central concept that emerged from the hacker reports is Attack step, whose hierarchy

is shown in Fig. 4. An Attack step represents each single activity that must be executed

when implementing a chosen Attack strategy. The top level concepts under Attack step cor-

respond to the major activities carried out by hackers. Hackers that opted for dynamic attack

strategies first of all prepare the attack (concept Prepare attack) to ensure the code can be

executed under their control. Then, they usually spend some time understanding the code

and its protections by means of a variety of activities that are sub-concepts of Reverse engi-

neer software and protections in the taxonomy. Once they have gained enough knowledge

about the software under attack, they build a strategy (concept Build attack strategy, they

execute any necessary, preliminary task (concept Prepare attack and they actually execute

the attack by manipulating the software statically or at run time (concept Tamper with code

and execution. Finally, they analyse the attack results and decide how to proceed (concept

Analyse attack result).

Reverse Engineer Software and Protections The attack step Reverse engineer software

and protections includes several activities in common with general program understanding

(see Fig. 4), but it also includes some hacking-specific activities. For instance, recogniz-

ing the occurrence of program behaviours that are not expected for the software under

attack (concept Recognize anomalous/unexpected behaviour; [P:A:27] “Identified strange

behaviour compared to the expected one (from their background knowledge)”) is important,

since it may point to computations that are unrelated with the software business logic and

are there just to implement some protection. It might also point to variants of well known

protections ([P:E:17] “Infer behaviour knowing AES algo details”). Identification of sensi-

tive assets in the software (concept Identify sensitive assets; [P:D:4] “prune search space of

interesting code, using very basic static (meta-) information”) and of points of attack (con-

cept Identify points of attack; [P:E:14] “Analyse traces to locate output generation”) are

other examples of hacking-specific program understanding activities. The Identify protec-

tion sub-hierarchy is also unique to code hacking and can take advantage of similarities with

previously attacked applications or with manual inspection of the protection logic (“they

calculated checksums of a certain sections of binary and compared it with input (which was

divided by dwords)”).

Build Attack Strategy When iteratively building the attack strategy (concept Build attack

strategy, Fig. 4), it is important to be able to reduce the scope of the attack to a manageable

portion of the code. This key activity is expressed through the concept Limit scope of attack

([O:D:5] “use symbolic operation to focus search”). Within such narrowed scope, hackers

evaluate the alternatives and choose the path of least resistance (concepts Evaluate and

select alternative steps / revise attack strategy and Choose path of least resistance; see, e.g.,

the sentence: “As the libraries are obfuscated, static analysis with a tool such as IDA Pro is



Empir Software Eng

difficult at best”, annotated as [P:D:5] “discard attack step/paths”). When possible, they try

to reuse an attack strategy that worked in the past (“I used same strategy to extract the key”).

Tamper with Code and Execution Another remarkable difference from general pro-

gram understanding is the substantial amount of code and execution manipulation carried

out by hackers. Indeed, a core attack step consists of the alteration of the normal flow of

execution (concept Tamper with code and execution in Fig. 4). This is achieved in many

different ways, as apparent from the richness of the hierarchy rooted at Tamper with code

and execution. Some of them are hacking-specific and reveal a lot about the typical attack

patterns. For instance, activity Replace API functions with reimplementation is carried out

to work around a protection, by replacing its implementation with a fake implementation by

the hackers ([P:F:49] “New attack strategy based on protection API analysis: replace API

functions with a custom reimplementation to be done within the debugging tool”). Activity

Tamper with data is carried out to alter the program state to defeat a protection (sentence

“to set a fake value in virtual CPU registers in order to deceive the debugged applica-

tion”, annotated as [O:D:11] “tamper with data to circumvent triggering protection”). Out

of context execution is carried out to run the code being targeted by an attack, e.g., a pro-

tected function, in isolation, as part of a manually crafted main program (sentence “write

own loader for [omissis] library”, annotated as [L:D:20] “adapt and create environment in

which to execute targeted code out of context”). Moreover, hackers tamper with the execu-

tion to undo the effects of a protection (concept Undo protection), often to reverse engineer

the clear code from the obfuscated one (concepts Deobfuscate the code, Convert code to

standard format, and Obtain clear code after code decryption at run time). When possible,

they prefer to bypass a protection rather than undoing it (concept Bypass protection used

to annotate the following sentences from the Public Challenge report: “I was successful

in overriding checksum mechanism”; ”I [omissis] put breakpoints after they executed so I

simply caught expected results”).

3.1.5 Software Elements

To put the concepts that describe the program comprehension processes and activities in

perspective, it is interesting to know the artifacts on which attackers focus in programs,

i.e., the structures, components and elements they consider as relevant program aspects to

interpret and manipulate in their reverse-engineering and tampering attacks. To that extent,

we identified all the Software elements that the attackers mentioned in their reports and

interview responses. Figure 5 provides a taxonomy of the extracted terms, with four top-

level concepts.

The concept Code representation and structure contains the forms and representa-

tions of software that attackers consider, varying from very concrete (e.g., Core dump)

to more abstract (Decompiled code), from static (Control flow graph and Call Graph)

to dynamic (Trace), and the structural elements they consider at those different levels

and in the different forms. The feature Size plays an important role, because attackers

consider the apparent size of different components (ranging from the whole applica-

tion under attack to the size of individual functions) for deciding on the best attack

strategy.

Semantics of the code structures in the representations is often derived from, and attached

to, specific operations. Four relevant ones are covered by the Operation concept. Some are

generic, like Function call, Memory access and System call. XOR operations are considered

specifically in the context of cryptographic primitives and attacks thereon.



Empir Software Eng

While performing dynamic attacks steps, e.g., by observing program execution with a

debugger or by analysing execution traces, the attackers observe and track different aspects

and features of the dynamic program data and states. Those are covered in the concept Data

and program state. Most are generic because they are relevant in almost all programs; other

concepts, such as those evolving around differences, correlation, and randomness are again

related to cryptography, where those aspects are understood to relate to weaknesses, e.g.,

with respect to side-channel attacks.

Finally, the concept Static data covers all forms of extra information (i.e., not just the

actual static code and data that is part of the running program) that attackers can extract

from the statically available attack objects, i.e., from the executable files.

3.2 Comparison Between Professional Hackers and Public Challenge Winner

Here, we present the differences that we spotted in the concepts identified between the

two experiments. As such, this difference should not be interpreted as representative of the

general difference between public challenges and professional industrial hackers.

Table 5 shows the taxonomy concepts that are used to annotate uniquely the professional

hacker reports, uniquely the public challenge report, or both. The number of concepts is

computed by simply counting the leaves in the taxonomy. The numbers indicate a substantial

degree of taxonomy reuse in the second experiment (41%), despite the completely different

setting, which involved small, ad-hoc programs instead of large, industrial applications, and

an amateur hacker versus professionals. This means the original ontology, emerged from the

first experiment (Ceccato et al. 2017), included part of the core concepts required to annotate

hacker reports. The second experiment was effective in adding new concepts, missing from

the original ontology.

Figures 3, 4 and 5 depict in boldface the 53 concepts common to the two experiments.

All top level concepts (except Difficulty, which was added in the second experiment as a

similar but distinct Obstacle) are used to annotate both experiments. This means that several

high level categories of activities were identified in both experiments, including Analysis

/ reverse engineering, Attack strategy, Attack step, Background knowledge, Tool. Looking

deeper into the taxonomy, we can notice that several nested concepts, including several leaf

concepts, are shared between the two experiments. String / name analysis, Pattern matching,

Dynamic analysis and in particular Debugging are core techniques for Analysis / reverse

engineering that were used in both experiments.

Among the Attack step’s (see Fig. 4) sub-concepts, most of the first and second level

ones are found in both experiments. Hackers in both experiments performed activities

like: Reverse engineer software and protections, Understand the software, Identify sensi-

tive asset, Identify points of attack, Identify protection, Reverse engineer the code, Prepare

attack, Customize/extend tool, Create new tool for the attack, Build workaround, Assess

effort, Tamper with code and execution, Undo protection, Tamper with execution, Tam-

per with code statically, Brute force attack, Build the attack strategy, Evaluate and select

alternative step / revise attack strategy, Limit scope of attack, Analyse attack result, Make

hypothesis.

Among the deeply nested concepts shared between the two experiments, it is interesting

to notice the importance of basic, low level binary code analysis techniques (concepts Dis-

assemble the code, Deobfuscate the code), which are standard toolkit parts in any successful

hacker attack. The concept Tamper with data is also interesting. In fact, looking at the text

fragments annotated with this concepts, a clear pattern of tampering with the data emerges:

hackers set a breakpoint in the binary code and before resuming the execution they alter



Empir Software Eng

Table 5 Comparison of concepts emerged in the two experiments

Unique to professional hackers 76 concepts (45%)

Asset, Black-box analysis, Clear data in memory, Code representation and structure, Condition, Confirm

hypothesis, Constant, Control flow flattening, Convert code to standard format, Core dump, Correlation

analysis, Correlation between observed values, Crypto analysis, Customize execution environment, Data

flow analysis, Decrypt code before executing it, Dependency analysis, Difference between observed values,

Differential data analysis, Disassembler, Dynamic data, Emulator, Execution environment, File format

analysis, File name, Function argument, Function pointer, Global function pointer table, Identify API calls,

Identify assets by naming scheme, Identify assets by static meta info, Identify input / data format, Identify

output generation, Identify thread/process containing sensitive asset, Java library, Knowledge on execution

environment framework, Library / module, Limit scope of attack by static meta info, Limitations from

operating system, Make hypothesis on reasons for attack failure, Memory access, Memory dump, Meta

info, Monitor public interfaces, Obtain clear code after code decryption at run time, Opaque predicates,

Operation, Out of context execution, Overcome protection, Port tool to target execution environment,

Preliminary understanding of the software, Profiler, Profiling, Randomness - random number, Recreate

protection in the small, Reference to API function / imported and exported function, Register, Replace API

functions with reimplementation, Round / repetition / loop, Run analysis, Run software in emulator, Shared

library, Socket, Static data, Statistical analysis, Switch statement, Symbolic execution / SMT solving,

System call, Tamper with execution environment, Tool limitations, Trace, Tracer, Tracing, Understand

persistent storage / file / socket, Workaround, XOR operation

Unique to public challenge 23 concepts (14%)

Bypass protection, Checksum, Code guard, Control flow graph reconstruction, Debug/superfluous features

not removed, Decompile the code, Decompiler, Difficulty, Diffing, Lack of knowledge, Lack of knowledge

on platform, Lack of portability, main(), Manually assist the disassembler, Recognize similarity with

already analysed protected application, Reuse attack strategy that worked in the past, Stack pointer, stderr,

Tamper detection, Understand protection logic, Virtualization, Weak crypto, Write tool supported script

Both experiments 70 concepts (41%)

Analyse attack result, Analysis / revrse engineering, Anti-debugging, Assess effort, Attack failure, Attack

step, Attack strategy, Background knowledge, Basic block, Brute force attack, Build the attack strategy,

Build workaround, Bytecode, Call graph, Choose path of least resistance, Clear key, Clues available in

plain text, Control flow graph, Create new tool for the attack, Customize/extend tool, Data and program

state, Debugger, Debugging, Decompiled code, Deobfuscate the code, Disable anti-debugging, Disassemble

the code, Disassembled code, Disassembler, Dynamic analysis, Evaluate and select alternative step / revise

attack strategy, File, Function / routine, Function call, Identify code containing sensitive asset, Identify

points of attack, Identify protection, Identify sensitive asset, Initialization function, In-memory data structure,

Limit scope of attack, Make hypothesis, Make hypothesis on protection, Obfuscation, Obstacle, Pattern

matching, Prepare attack, Process / parent-child relation, Program counter, Program input and output,

Protection, Recognizable library, Recognize anomalous/unexpected behaviour, Reverse engineer software

and protections, Reverse engineer the code, Size, Software element, Static analysis, String, String / name

analysis, Tamper with code and execution, Tamper with code statically, Tamper with data, Tamper with

execution, Tool, Understand code logic, Understand the software, Undo protection, Weakness, White box

cryptography

Total 169 concepts

some critical data (the value of a checksum, of a key, etc.) to test some hypothesis or expose

some anomalous behaviour. Breakpoint setting and execution state manipulation seems yet

another important basic technique that any hacker is willing to use. Hence the importance

of Anti-debugging protections, which hackers tried to defeat in both experiments (see con-

cept Disable anti-debugging in Fig. 4, an Attack step common to both experiments). From

the point of view of the attack strategy, important low level concepts emerged in both exper-

iments, such as Make hypothesis on protection and Choose path of least resistance. In the

attempt to save and optimize the attack effort, hackers speculate on protections even when

they have not much evidence about them and choose the attack path that requires minimum

effort based on the hypothesized protection.



Empir Software Eng

Table 5 (top) shows the concepts uniquely used to annotate the professional hacker

reports. Some quite advanced analysis and reverse engineering techniques have been used

only by professional hackers. For instance: Symbolic execution / SMT solving, Crypto anal-

ysis, Data flow analysis, Differential data analysis, Correlation analysis. The explanation

for this might be twofold: on one hand, these are techniques that require specialist compe-

tences and dedicated tools, which probably are unavailable to the typically non-professional

hacker engaged in the Public Challenge. In our case, indeed, the Public Challenge was

solved by a practitioner, whose interest in reverse engineering is purely a hobby. On the

other hand, the industrial applications protected in the first experiment were much more

complex than the small challenges used in the second experiment (see Table 2): they were

larger, they consisted of dynamically linked libraries that provided complex functionality

to external applications instead of being a main binary that only performs command-line

input-output, and more protections were combined in them. Moreover, the assets protected

in the industrial applications are substantially different from the asset (a key) protected in

the public challenge, since they consist of an entire functionality (e.g., authentication) of

the industrial applications. The higher complexity of the software and the assets protected

in the first experiment offers another explanation for the need of more sophisticated and

advanced tools and techniques.

Among the attack steps uniquely executed by professional hackers, a common feature

seems to be the time and effort devoted to preparation activities. Professional hackers

performed several attack preparation activities that were not carried out in the public

challenge, such as: Prepare the environment, Preliminary understanding of the software,

Choose/evaluate alternative tool, Port tool to target execution environment, Customize exe-

cution environment, Recreate protection in the small. This amounts for a lot of work, which

is documented in detail in the professional hacker reports and that was necessary to port

the attacks. In part such necessity might be due to the complexity of the industrial appli-

cations, which cannot be faced directly using off-the-shelf tools, with no preparation or

customization. Observing and manipulating dynamically linked Android libraries in action

requires a much more specialized environment than doing the same on a simple command-

line Linux application. Whereas a more or less standard Linux setup suffices for the latter,

a standard Android setup offers very little support to attackers. Another explanation might

be that professional hackers are used to think in terms of attack automation. They want their

attacks to be repeatable deterministically by anyone, rather than being the result of hardly

reproducible, manually executed steps. Hence, they spend some time preparing tools and

environment to achieve such level of reproducibility.

There are also a few tampering activities that were carried out exclusively by profes-

sional hackers, among which: Tamper with execution environment, Replace API functions

with reimplementation, Out of context execution. These are all advanced and sophisticated

tasks that require deep knowledge and competence. In fact, tampering with the execution

environment often involves patching the operating system kernel or developing a new one.

Reimplementing API functions also refers typically to operating system level functions that

provide basic services and that the attacker wants to replace. Being able to execute a protec-

tion mechanism in isolation requires the capability to isolate some functions, mock (some

of) the library calls involved and develop a driver that can run the extracted code in isola-

tion. All these activities may be out of reach for non-professional hackers and may pay off

only when complex industrial applications are being attacked.

Regarding the software elements that are uniquely used by the professional hackers, it

suffices to observe that they mostly correspond to the activities they uniquely reported.

Most analysis or tampering techniques target specific kinds of software structures or



Empir Software Eng

components. So those structures and components occur in a report when the result or trigger

of a discussed attack step is mentioned.

Table 5 (bottom) shows the concepts uniquely used to annotate the public challenge

report. A new top level hierarchy emerged, rooted at concept Difficulty and including among

others Lack of knowledge and Lack of portability. This concept indicates a problem encoun-

tered by hackers during their work (e.g., due to their limited knowledge about a given

platform), rather than an Obstacle placed there by the defenders to protect the applications

or known to be part of the environment, which hence provides some implicit form of pro-

tection. The higher relevance of difficulties vs. obstacles in the Public Challenge indicates

a non-professional, occasional involvement of public the challenge hacker in attack tasks

(confirmed in the interview). Indeed, the winner of the public challenges seems to have

quite a different profile than professional hackers.

On the other hand, professional hackers work in team, where the lack of knowledge in a

specific field may be compensated by some other members. Moreover, professional hackers

have been explicitly selected by the industrial partners because of their specific expertise in

attacking their applications. A lack of knowledge or lack of portability, which highlights the

impossibility to execute the target application on their systems, were inadmissible.

Some obstacles and weaknesses are specific of the challenges designed for the Public

Challenge experiment, such as the Protections Virtualization and Checksum, and the Weak-

nesses Debug/superfluous features not removed and Weak crypto. That’s why they appear

only in the Public Challenge annotations.

Similarly, some software elements were uniquely mentioned by the Public Challenge

hacker, such as the main() function and stderr. This is of course due to the nature of the

applications he attacked: simple program binaries that feature a main function and standard

command-line input and output, versus libraries as attacked by the professional hackers.

Some attack steps performed exclusively by the Public Challenge hacker seem to indi-

cate an attempt to minimize the attack effort by performing several attack steps manually,

rather than trying to automate them (concept Manually assist the disassembler), by using

functionalities immediately available from tools (concept Write tool supported script) and

by trying to bypass rather than undo the protections (concept Bypass protection). This con-

firms a different attitude of Public Challenge hackers vs. professional hackers with respect

to preparation and automation of the attack: the former try to reuse what’s available in

tools and compensate for the missing functionalities with manual activities, while the latter

spend substantial time preparing the environment and tools for the attack and automating

the attack steps.Application size is also a decisive factor that certainly impacted the attack

effort minimization choices by the Public Challenge hacker and the professional hackers.

The successfully attacked Public Challenge applications were much smaller in size and pro-

vided much less functionality than the industrial use cases. This matters because manual

and automated attacks scale differently: automation requires a large initial effort to develop

tools and scripts. When attacking small applications, in which the occurrences of protection

code fragments are by definition limited, the initial automation effort is likely not worth-

while. For small applications, the lack of scalability of manual tampering and information

gathering methods is simply not problematic and does not warrant an initial investment in

automation.

External factors also affect this different behaviour. Indeed, in the Public Challenge the

reward is granted to the first hacker that succeeds in breaking a challenge, therefore, learning

and generalizing from the attack tasks and improving their attack arsenal is not their major

goal. On the other hand, professional hackers were asked to describe with proper level

of details the protection techniques identified and their weaknesses. Moreover, they are



Empir Software Eng

usually required (and paid for) writing reports, thus they collect enough information for a

complete document. There seems to be also some learning going on for the Public Challenge

hacker when moving from one challenge to the next one, as apparent from the following

Public Challenge exclusive concepts: Recognize similarity with already analysed protected

application, Reuse attack strategy that worked in the past.

3.3 Inferred Models

To help readability with a not too heavy presentation and to focus on the most interesting

findings, we decided not to present and comment all the temporal, causal, conditional and

instrumental relations that have been inferred from the hacker reports and their annotations.

Since some temporal relations have already been commented during the presentation of the

taxonomy of concepts, we do not include this kind of relations. For what concerns the other

three kinds of relations emerged during the discussion, we have grouped them by the kind of

hacker activity they represent. Hence, they are presented as part of four models: (1) a model

of how hackers understand the software and identify sensitive assets (shown in Fig. 6); (2)

a model of how they make or confirm a hypothesis, to build their attack strategy (Fig. 7);

(3) a model of how they choose, customize and create new tools (Fig. 8); (4) a model of

how they defeat protections by bypassing them, by building workarounds, by overcoming

protections with other means, and by undoing them (Fig. 9).

The models produced after the experiment with professional hackers have been compared

with the new concepts and annotations created in the Public Challenge experiment. It was

not necessary to introduce any major change due to the new concepts and annotations,

which indicates the general validity and applicability of the original models. A few minor

extensions were necessary to accommodate some new concepts introduced after the Public

Challenge and relevant for the inferred models. They are commented below at the end of

each model description.

3.3.1 How Hackers Understand Protected Software

Let us consider the first model, shown in Fig. 6. Hackers carry out understanding activities

with the goal of identifying the sensitive assets in the software that are the target of their

attacks. Ultimately, identification of such sensitive assets allows hackers to narrow down

the scope of the attack to a small code portion, where their efforts can be focused in the next

attack phase (see the “cause” relation in Fig. 6). In this process, (static / dynamic) program

analysis and reverse engineering play a dominant role. They are used to understand the

software, identify sensitive assets, and to limit the scope of the attack (see “used to” relation

in Fig. 6). For instance, dynamic analysis of IO system calls is used to limit the scope of

the attack ([L:D:24] “prune search space for interesting code by studying IO behavior, in

Fig. 6 Model of hacker activities related to understanding the software and identifying sensitive assets



Empir Software Eng

this case system calls”), because some IO operations are performed in the proximity of

the protected assets. String analysis is used for the same purpose ([L:D:26] “prune search

space for interesting code by studying static symbolic data, in this case string references

in the code”), because some specific constant strings are referenced in the proximity of

sensitive assets. Tampering with the execution is also a way to identify sensitive assets

([O:E:5] “static analysis + dynamic code injection to get the crypto key”). When libraries

with well known functionalities are recognized, hackers get important clues on their use for

asset protection (“condition for” relation in Fig. 6, based on annotations such as [O:E:6]

“static analysis: native lib is using java library for persistence giving clues on data stored to

attacker”).

The model in Fig. 6 was applied successfully to the public challenge annotations, without

any need for extensions. Based on this model, we expect the hackers’ task to become harder

to carry out when program analysis and reverse engineering are inhibited and when tamper-

ing of the program execution is not allowed. In fact, these are the core activities executed

to identify sensitive assets and limit the attack scope. Hiding the libraries that are involved

in the protection of the assets, not just the protection itself, seems also important to stop /

delay hackers.

3.3.2 How Hackers Build Attack Strategies

Figure 7 shows a model of how hackers come to the formulation and validation of hypothe-

ses about protections, and how this eventually leads to the construction of their attack

strategy. Hypothesis making requires (see “cause” relations in Fig. 7) running (static /

dynamic) program analyses and interpreting the results by applying background knowledge

on how software protection and obfuscation typically work (e.g., [O:E:4] “static analysis to

detect anti-debugging protections”). Identifying protections or libraries involved in protec-

tions is also an important prerequisite to be able to formulate hypotheses. When an attack

attempt fails (see “condition for” relation on the left in Fig. 7), the reasons for the fail-

ure often provide useful clues for hypothesis making (sentence “As the original process is

already being ptraced, this prevents a debugger, which typically uses the ptrace system, from

attaching”, annotated as [P:A:50] “Guess: avoid the attachment of another debugger”).

Fig. 7 Model of hacker activities related to making / confirming hypotheses and building the attack strategy



Empir Software Eng

To confirm the previously formulated hypotheses, further analyses are run and inter-

preted based on background knowledge (see “cause” relations connected to Confirm

hypothesis). Pattern matching is also useful to confirm hypotheses ([P:F:26] “Repeated exe-

cution patterns are identified and matched against repeated computations that are expected

to be carried out by the relevant code”; [P:D:25] “mapping of observed (statistical) patterns

to a priori knowledge about assumed functionality”). Another activity that contributes to the

confirmation of previously formulated hypothesis is the creation of a small program that

replicates the conjectured protection ([P:F:47] “Understanding is carried out on a simpler

application having similar (anti-debugging) protection”).

Once hypotheses about the protections are formulated and validated, an attack strategy

can be defined. This requires all the information gathered before, including the results of the

analyses, background knowledge, identified assets and identified protections (see “cause”

relations connected to Build the attack strategy). Another important input for the definition

of the (revised) attack strategy is the observation of anomalous or unexpected behaviours

(sentence “[omissis] It seems that the coredump didn’t contain all of the process’ memory

[omissis]”, annotated as [P:C:31] “Anomaly detected causing doubt in the tool’s abili-

ties: change attack strategy”). In fact, unexpected crashes or missing data might point to

previously unknown protections that are triggered by the hackers’ attempts or to tool limita-

tions. In turn, this leads to the definition of alternative attack paths. Background knowledge

plays a major role in strategy building, in particular knowledge about weaknesses (e.g.,

Debug/superfluous features not removed and Weak crypto) when these are recognized in the

software (“I did the simplest thing possible, the brute-forcing, and the way crypto worked

(processing 16 byte blocks independently of each other), meant it was time-inexpensive to

do it”). Similarity with previously attacked applications was also found to be an impor-

tant factor in strategy building in the public challenge experiment (see “cause” relation

between Recognize similarity with already analysed protected application and Build the

attack strategy).

An important condition that determines the feasibility of an attack strategy is the amount

of effort required to implement it (see “condition for” relation connected to Build the attack

strategy). Hence, effort assessment is one of the key abilities of hackers, who have to con-

tinuously estimate the effort needed to implement an attack, contrasting it with the expected

chances of success ([P:D:51] “assessment of effort needed to extend existing tool to make it

provide a workaround around a protection, i.e., defeat the protection that prevents an attack

step, in this case based on the concepts of the protection”). Even if potentially effective,

attack strategies that are deemed as extremely expensive (e.g., manual reverse engineering

and tampering of the code binary) are often discarded to favour approaches that are regarded

as more cost-effective.

The validity of the model in Fig. 7 was confirmed by the public challenge experiment,

which has provided additional evidence for most of the relations in the model. Only a

minor extension was necessary to accommodate a new concept that emerged from the pub-

lic challenge annotations: the relation between Recognize similarity with already analysed

protected application and Build the attack strategy.

Based on the model shown in Fig. 7, we can notice that hypothesis making and attack

strategy construction are inhibited by the same factors that inhibit software understanding

and sensitive asset identification. In addition, a further factor comes into play: the estimated

effort to implement an attack. Hence, even protections that can be eventually broken play

potentially a key role in preventing attacks, if they contribute to increase the effort required

for attacking the target sensitive assets.



Empir Software Eng

3.3.3 How Hackers Choose and Customize Tools

Hackers extensively use existing tools for their attacks. An important core set of the hack-

ers’ competences is deep knowledge of tools: when and how to use them; how to customize

them. Figure 8 shows how hackers evaluate, choose, configure, customize, extend and create

new tools (see also sub-concepts of Customize/extend tool, including Write tool supported

script). The starting point is usually the result of some analysis and/or the observation of

some specific obstacle, which leads to the identification of candidate tools (see “cause”

relations in Fig. 8). Then, a key factor that determines both tool selection and customization

is the execution environment and platform. Other important factors are known limitations of

existing tools, which might be inapplicable to a specific platform or application ([P:A:23]

“[omissis] Attack step: dynamic analysis with another tool on the identified parts to over-

come the limitation of Valgrind”), as well as observed failures of previously attempted

dynamic analysis ([P:C:38] “Experiment with tool options to try to circumvent failures

of the tool”), which may suggest alternative approaches and tools (see “condition for”

relations on the left in Fig. 8).

Once tools are selected and customized, they are used to find patterns, by running further

analyses on the protected code, or they are used directly to undo protections and mount the

attacks (see “used to” relations in the middle of Fig. 8). When existing tools are insufficient

for the hackers’ purposes, new tools might be constructed from scratch. This is potentially

an expensive activity, so it is carried out only if existing tools cannot be adapted for the

purpose in any way and if alternative tools or attack strategies are not possible. One case

where such tool construction from scratch tends to be cost-effective is when hackers want

to execute a part of the software out of context, to better understand its protections (see

“used to” relation connected to Out of context execution). In fact, this usually amounts to

writing scaffolding code fragments that execute parts of the application or library under

attack in an artificial, hacker-controlled, context ([L:E:17] “write custom code to load-run

native library”).

The model in Fig. 8 was fully applicable to the public challenge annotations, with no need

for any extensions. The public challenge experiment provided substantial further support

to the general validity of this model. The model shows that tools play a dominant role in

the implementation of attacks. Hence, software protections should be designed and realized

based on an amount of knowledge of tools and of their potential that should be as deep and

sophisticated as the hackers’ one. Preventing out of context execution is another important

line of defence against existing and new tools.

Fig. 8 Model of hacker activities related to choosing, customizing, and creating new tools



Empir Software Eng

3.3.4 How Hackers Defeat Protections

The actual execution of an attack against a protection aims at defeating it, by bypassing it,

building a workaround, undoing the protection completely, or overcoming it in some other

way. Figure 9 shows a model of such activities.

Undoing a protection is usually regarded as quite difficult and expensive. In some cases,

hackers opt to overcome a protection by tampering with the code or the execution (see

incoming relations of Overcome protection in Fig. 9). This means that instead of reversing

the effect of a protection (e.g., deobfuscating the code), they gather enough information

to be able to manipulate the code and the execution so as to achieve the desired effect,

without having actually removed the protection. Gathering the information and performing

the manipulations with the protections still present typically requires a considerable effort in

analysis, and in building external tools, scripts, or tool extensions. Overcoming a protection

eventually relies on the possibility to alter the normal flow of execution, this is the reason

for a causal relation between Tamper with execution and Overcome protection.

In some instances, altering the execution flow with external tools is not enough, not pos-

sible, or requires too much effort. In such cases, hackers may write custom workaround

code (Build workaround) that is integrated with or replaces the existing code, with the pur-

pose of preserving the correct functioning of the software, while at the same time making

the protections ineffective.

Sometimes hackers run program analyses to obtain information that is useful for man-

ually undoing protections. For instance, dynamic analysis and symbolic execution can be

used to understand if a predicate is (likely to be) an opaque one, such that one of the two

branches of the condition containing the predicate can be assumed to be dead code that

was inserted just to obfuscate the program ([L:F:2] “Undo protection (opaque predicates)

by means of dynamic analysis and symbolic execution”). The analyses needed to undo

protections may be quite sophisticated, hence requiring non trivial tool customization (see

incoming relations of Undo protection in Fig. 9).

To overcome a previously identified protection, hackers alter the execution. For instance,

if they have identified some library calls used to implement a protection, they may try to

intercept such calls and replace their parameters on the fly; they may skip the body of

the called functions and return some forged values; or, they may redirect the calls to other

Fig. 9 Model of hacker activities related to defeating protections by undoing, overcoming, working around,

or bypassing them



Empir Software Eng

functions ([O:F:17] “Tamper with system calls (ptrace) that implement the anti-debugging

protection by means of an emulator”; see causal relation to Overcome protection in Fig. 9).

To achieve the desired effect, this might require also altering the code (see “used to” relation

to Overcome protection; [L:F:7] “Tamper with protection (anti-debugging), by patching the

code [omissis]”).

Tampering with the execution can be more or less expensive, depending on the intended

manipulation of the execution ([P:C:48] “Investigate API usage of the protection to see how

much effort it is to emulate it”). For this reason, a key decision support activity is Assess

effort (see “condition for” relation at the top in Fig. 9). In practice, implementing execution

tampering requires non-trivial skills on tools such as emulators, instrumentation tools, and

debuggers, and on the customization of the execution environment (see “used to” relations

at the top). Hackers may even resort to a custom execution kernel ([O:F:18] “Tamper with

system calls (ptrace) that implement the anti-debugging protection by means of a custom

kernel”).

Whenever protections cannot be easily undone or overcome (with the help of existing

tools), hackers build workarounds. Hence, the trigger for this activity is an observed obsta-

cle that cannot be defeated by simpler means (see “cause” relation at the top in Fig. 9).

Since building workarounds is typically an expensive activity, effort estimation is routinely

conducted before starting this attack step (see “condition for” relations at the top; [P:A:51]

“Identification of a potential trick to avoid the protection technique. Estimation of the con-

sequences (scripts and time wasted on this)”). Moreover, identifying the specific protection

(component) to defeat is a prerequisite for the construction of the proper workaround (see

“condition for” relation at the top in Fig. 9). For instance, hackers may intercept decrypted

code before it is executed rather than trying to decrypt it ([O:G:3] “[omissis] Bypass

encryption; weakness: decryption before execution”). In the Public Challenge experiment,

we found cases where no workaround was actually necessary and the protection could be

bypassed directly from the debugger, by simply tampering with the data at run time. This

justified the introduction of a new concept, Bypass protection, which is a viable attack

technique when protections and points of attack have been identified, and the effort to actu-

ally bypass the protection is deemed acceptable (see incoming relations of concept Bypass

protection in Fig. 9).

Based on the model of execution tampering to undo, overcome, work around, or bypass

protections shown in Fig. 9, we can again notice that effort assessment is a key activity that

is carried out continuously. Moreover, such continuous effort estimation leads hackers to

prioritize their attack attempts. If undoing a protection is regarded as too difficult and too

effort intensive, hackers may switch to limited code tampering or dynamic manipulation of

the execution, so as to overcome, work around, or bypass the protection without reverting

it completely. When all of those methods fail or are deemed too much demanding in terms

of effort, attackers can opt for circumventing a protection by deploying alternative attack

approaches that are not hampered by the particular protection. Making such decisions is a

standard activity when attackers choose the path of least resistance.

4 Discussion

4.1 Research Agenda

Based on the observed attack steps and strategies, we have identified the following research

directions for the development of novel or improved code protections.



Empir Software Eng

Protections Should Inhibit Program Analysis and Reverse Engineering (see “used

to” relation outgoing from Analysis / reverse engineering in Fig. 6). While several of the

existing protections are designed to inhibit program analysis (e.g., control flow flattening;

opaque predicates) and (manual) reverse engineering (e.g., variable renaming), in our study

we have noticed that hackers employ advanced program analysis techniques, like depen-

dency analysis, symbolic execution, and constraint solvers. These techniques are indeed

very powerful, but they come with known limitations. For instance, dependency analysis

is difficult when pointers or reflection are extensively used; symbolic execution is difficult

when loops and black box functions are used; constraint solvers may fail if non-linear or

black-box constraints are present in expressions. Protection developers may exploit such

limitations to artificially inject constructs that are difficult to analyse into the program. Since

manual intervention might be needed to help tools deal with such artificially injected con-

structs, it would be interesting to perform an empirical study to test the effectiveness of such

solutions. Such a study may compare, both qualitatively and quantitatively, a control group

and a treatment group, which attack software respectively without/with artificially injected

constructs. The two groups would be allowed to use the same program analysis tools. The

qualitative comparison could be focused on the difference in attack strategies and manual

comprehension steps between the two groups.

Protections Should Prevent Manipulation of Both the Execution Flow and the

Run-Time Program State (see relations outgoing from Tamper with execution in Figs. 6

and 9). Intercepting the execution and replacing the invoked functions or altering the pro-

gram state is a key step in most successful attacks. Protections that inhibit debuggers (e.g.,

anti-debugging techniques) or that check the integrity of the execution (e.g., remote attes-

tation) are hence expected to be particularly important and effective. Another approach to

prevent execution tampering is the use of a secure virtual machine for the execution of criti-

cal code sections. Our study provides empirical evidence on the importance of pushing these

research directions even further. Human studies could be designed to determine the strate-

gies adopted by attackers to defeat each of the above mentioned protections. Such empirical

studies would be also useful to assess quantitatively the relative strength of the alternative

protections.

Protections Should Adopt Integrity Checking Techniques with Improved Effec-

tiveness (see the “condition for” Relation from Identify Point of Attack and Bypass

Protection) Both the applications used for the Public Challenge and the ones for the exper-

iment with Professional Hackers include code guards to verify the integrity of the executed

code. Code guards verify checksum values at run time, and in some cases, if values are cor-

rect the application execution continues, otherwise, the application could crash or gracefully

degrade its performance. Attackers were able to obtain the correct checksum values by set-

ting breakpoints on valid applications and injecting them with a debugger when requested

by the tampered applications, as precisely described in the Public Challenge report. These

lead to the observation that attackers can easily bypass these integrity protections. There-

fore, research should focus on improving the effectiveness of integrity checking techniques.

Research is progressing in this field with remote guards and software attestation techniques

(Armknecht et al. 2013), which allow the use of nonces to add “freshness” at every guard

check. Even in this case, using static values (like binaries) is the main limitation, as variants

of the Van Oorschot attack are possible (van Oorschot et al. 2005). It is therefore mandatory

to build new techniques that use dynamic/run-time information for attesting the application

integrity.



Empir Software Eng

Diversification and Hiding of the Fingerprints of Protections (see the “cause”

Relation from Recognize Similarity with Already Analysed Protected Applica-

tion to Build the Attack Strategy in Fig. 7) Protections, especially when automatically

applied by a tool-chain, use the same process and methods to protect the application, but

they usually randomize it, every time with a different seed. On both the Professional Hackers

and the Public Challenge Winner reports, we noticed that experienced attackers (this might

be generalized to smart occasional attackers) easily recognise when the same protections

are applied to different applications, despite the randomization. Therefore, they can imme-

diately Build attack strategies that aim at reusing methods and tools already used (and that

worked) in the past. Reapplying the same strategies usually does not require a deep under-

standing of the code and functionality of the protected application, and results in a very

fast successful attacks. Even if we already noticed in our study that hackers try to Recog-

nise libraries and Anomalous/unexpected behaviour and perform Pattern matching, further

human experiments can help understanding which are the characteristics of the fingerprints

that can be noticed by estimating the learning effect of undoing, bypassing, or removing

the same protection when applied on different code (from different applications). Based on

these empirical results, it would be possible to design methods to diversify and hide the fin-

gerprints of protections thus forcing hackers to resort to other strategies that require more

time and effort.

Libraries Involved in Code Protections Should be Hidden (see Relations Outgo-

ing from Recognizable library in Figs. 6 and 7) Libraries represent a side channel for

attacks that is often overlooked by protection developers. Our study shows that protecting

the code of the main application is not enough and that the libraries used by the applica-

tion and referenced in its code may leak information useful to hackers and may offer them

viable attack points. Techniques to prevent attacks to libraries and to obfuscate the use

of libraries or the libraries themselves deserve more attention from protection developers.

Moreover, vulnerability indicators and metrics could be defined to determine the occurrence

of libraries, system calls and external calls, which can be regarded as potential points of

attack.

Protections Should be Selected and Combined by Estimated Attack Effort (see

Relations Outgoing from Assess effort in Figs. 7 and 9) The (theoretical) strength of

a protection is of course important when deciding to apply it, but according to our study

the perceived effort to defeat a protection is even more important (and indeed it may differ

from the theoretical strength). The perceived strength is defined as subjective evaluation of

the impact a protection may have on hackers decision on how to tamper with the applica-

tion (Build the attack strategy). This means that even theoretically weak protections (e.g.,

variable renaming) should be used as they increase the attack effort and may discourage

some faster attack strategies. Hence we aim at estimating the perceived attack effort through

novel attack effort prediction metrics. Moreover, synergies among protections should be

investigated. Synergies may increase the effort necessary to defeat protection more than the

sum of the attack effort required by each protection alone (e.g., apply code guards to render

the code modified for out of context execution purposes unusable, together with obfus-

cation to render modifications even more complex). To actually prioritize the protections

to apply, more effective metrics that estimate the actual potency of protections would be

needed, either when applied in isolation or in combination with other protections. More-

over, it would be interesting to empirically assess the correlation between such metrics and



Empir Software Eng

the actual delays introduced by protections. The correlation between perceived strength and

actual delay would also be worth extensive empirical investigation.

Effectiveness of Protections Should be Tested Against Features Available in Exist-

ing Tools or by Customizing Existing Tools (see Choose Tool / Evaluate Alternative

Tools and Customize / Extend / Configure Tool in Fig. 8) While this practice might

sound quite obvious, in our experience it is overlooked by protection developers, who usu-

ally assess the strengths of protections either theoretically or through metrics. Empirical

evaluation based on deep knowledge and customization of existing tools may provide use-

ful insights for the improvement of the proposed techniques. This consideration also applies

to all the tools able to Undo protections, like deobfuscators. Indeed, undoing a protection

may be very time consuming, but only if there are no tools able to automatically perform

this attack step.

Out of Context Execution of Protected Code Should be Prevented (see Out of Con-

text Execution in Fig. 8) This attack strategy is not much known and investigated, but in

our study it appeared to play a quite important role. Protection developers should design

techniques to make the protected code tangled with the rest of the software, so as to make

out of context execution difficult to achieve. A human study could be conducted to mea-

sure the difficulty of out of context execution when the protected code is made arbitrarily

tangled with the rest of the software in comparison with the initial, untangled code.

Protections Should be Difficult to Defeat Without Rewriting Part of the Code as

a Workaround to them (see Build Workaround in Fig. 9) While the perfect protec-

tion for a software asset may not exist (Barak et al. 2001), practical protections should be

designed such that the only way to defeat them is writing substantial code (e.g., a new

library, a new kernel, a replacement function, etc.). In fact, this increases the attack effort

and deters or defers the attack. What workarounds hackers write in practice and how they

elaborate them is yet another research topic on which little is known and that would deserve

further investigation.

Empirical Validation of Protections Should Involve Highly Trained Subjects Play-

ing the Role of Hackers (see the Comparison Between Professional Hackers and

Public Challenge Winner Reported in Section 3.2) Differently from the amateur

hacker, professional hackers aim for automated and reproducible attacks, which require

substantial preparation of environment and tools, use of sophisticated and advanced analy-

ses / techniques, deep knowledge and competence. In order for an empirical validation of

protections to produce results that generalize to professional hackers, the involved subjects

should be trained to a comparable level of competence. This requires training on advanced

analysis and techniques, such as symbolic execution, SMT solving, cryptanalysis, data flow

analysis, differential data analysis, correlation analysis. It also requires training on the tools

most widely used by professional hackers, in particular debuggers (see Tool hierarchy in

Fig. 4), and it requires strong capabilities to choose/customize/port existing and to develop

new tools in preparation for the attack. Automation of the attack steps is another key differ-

ence between professional and occasional hackers, which deserve attention during training

for an empirical study. Advanced tampering activities, such as tampering with the execution

environment, replacing API functions with reimplementations and executing the protection

out of context, may require dedicated training, since they seem not to be part of the toolkit

commonly available to the occasional hacker.



Empir Software Eng

Protections Should Force Tools to Produce Incorrect Code Representations and

Structures When we discussed our results with professional (malware) reverse engineers,

it became clear that protections to mitigate or to complicate and delay reverse engineering

should not only aim for making the program representations, elements and structures (see

Fig. 5) harder to obtain (e.g., by blocking the use of tracing tools or debuggers), to identify

(e.g., by injecting many fake XOR operations), and to interpret (e.g., by means of control

flow flattening). When the protections only focus on those attack processes, such that, e.g.,

the control flow graph obtained with a disassembler tool like IDA Pro is incomplete, attack-

ers will typically either manually complete the control flow graph (via the tool’s interactive

functionality) or they will write scripts to extend the tool (via its built-in scripting support)

such that it produces a more complete control flow graph in later re-runs. The attackers are

hence moving forward on their attack path, implementing an attack strategy and gradually

obtaining more complete and more accurate information. In other words, they are unlikely

to start unsuccessful attack paths based on incorrect assumptions. In fact Piorkowski et

al. showed that developers tend to stubbornly follow even wrong cues (Piorkowski et al.

2013), moreover Edmundson et al. (2013) showed that even experienced developers tend to

overlook important information.

Protections become stronger if they also succeed in letting the tools produce incorrect

representations and structures, e.g., by including non-existing edges in a control flow graph

or by grouping code fragments incorrectly into functions. Attackers then determine their

strategy and next attack steps based on incorrect information, because their default modus

operandi is to initially accept the information obtained from the tools as is, and to build on it

as is. When that information is incorrect, they will hence more likely waste time and effort

on unsuccessful attack paths before backtracking, and before questioning the correctness of

the information, identifying the issues in it, and eventually correcting them.

4.2 Threats to Validity

External validity (concerning the generalization of the findings): The purpose of our quali-

tative studies was to infer models of the hackers’ activities starting from the hacker reports.

Being the result of an inference process grounded on concrete observations, our models

may not have general validity. Further empirical validation is needed to extend the scope

of their validity beyond the context of the reported studies. However, during conceptualiza-

tion we aimed explicitly at abstracting away the details, so as to distill the general traits of

the ongoing activities. Moreover, in order to obtain models that are applicable in an indus-

trial context, the first experiment was conducted in a realistic setting, involving professional

hackers who are used to perform similar attack tasks as part of their daily working routine.

Despite the substantially different setting of the Public Challenge, a proportion of con-

cepts (41%) could be reused to annotate the new report. This indicates a reasonable level

of generality of the taxonomy and provides a first, initial positive assessment of its exter-

nal validity. Fourteen percent new concepts had to be added to the taxonomy. This was

expected, because, according to our initial design, the context and hacker profiles of the sec-

ond study are remarkably different from those of the first study (amateur vs. professional

hackers, different combination of protections). The fact that the same person won all five

public challenges has certainly limited the variability and expressiveness of the narrative we

have experienced in the public challenge report. However, we cannot give objective indi-

cations on how the proportion of reused concepts would have changed with more winners

neither can we say if changes in the narrative would have resulted in an increased number

of new concepts. For instance, if the winner had a more professional profile, we could have



Empir Software Eng

experienced an increase in the reused concepts, while reports from more amateur hackers

could have led to a slightly higher number of new concepts. On the other hand, having a

single winner reduced the issues related to the comparison of reports from multiple persons

thus reducing the threats to the external validity.

Hence, we cannot claim to have reached theoretical saturation. New experiments are

needed to further expand the concept ontology. Still, reuse of a substantial proportion of

concepts in the second experiment, despite the differences, is encouraging.

Data collected in our experiments only refers to the client-side component of software

systems, because in our settings all the server-side component are considered out of the

attack scope.

Construct validity (concerning the data collection and analysis procedures): We adopted

widely used practices from grounded theory to limit the threats to the construct validity of

the study. To be sure that reports contain all the needed information, we asked professional

and public challenge hackers to cover a set of topics while filling their reports, including

obstacles, activities, tools and strategies, and to answer specific questions.

Internal validity (concerning the subjective factors that might have affected the results):

In order to avoid bias and subjectivity, in the first experiment coding was open (no fixed

codes) and it was performed by the seven coders independently and autonomously. More-

over, precise instructions have been provided to guide the coding procedure. To complete

concept identification and model inference, two joint meetings have been organized. All the

interpretations were subject to discussion, until consensus was reached. Traceability links

between report annotations and abstractions have been maintained. This was effective not

only to document decisions, but also in case of model revision, to base changes on evidences

from the reports. In the second experiment coding was closed, except for the new concepts

that were added to the taxonomy, for which it was open (as in the first experiment). Similarly

to the first experiment, precise coding instructions have been provided to the four teams

of annotators and two consensus meetings have been carried out to converge to an agreed

annotation of the Public Challenge report. While some subjectivity is necessarily involved

in the process, the above mentioned practices aimed at minimizing and controlling its impact.

5 Related Work

The related literature consists of the empirical studies conducted to produce a model

of program comprehension and of the developers’ behaviour. Empirical studies on the

effectiveness of software protections are also relevant.

5.1 Models of Program Comprehension and of the Developers’ Behaviour

The construction and validation of program comprehension models have been the topic of

investigation of a huge amount of works since the beginning of the discipline of software

engineering. There is agreement, based on experimental observations (von Mayrhauser and

Vans 1995), that program comprehension involves both top-down and bottom-up compre-

hension, and that often the most effective strategy is a combination of the two, known as

the integrated model (von Mayrhauser and Vans 1994, 1996a). A less systematic combi-

nation of top-down and bottom-up models is called the opportunistic model of program

comprehension (von Mayrhauser and Vans 1995).

Programmers resort to a top-down comprehension strategy when they are familiar with

the code. They take advantage of their knowledge of the domain (Pennington 1987) to



Empir Software Eng

formulate hypotheses (Letovsky 1987) that trigger comprehension activities. Hypotheses

(Letovsky 1987) can take the form of why/how/what conjectures about the expected imple-

mentation. Comprehension activities carried out on the code aim at verifying the hypotheses

on which uncertainty is highest. Upon resolution of such uncertainty, programmers build a

complete, mental top-down model of the program, consisting of a hierarchy in which the

lowest level hypotheses have been validated against the implementation and mapped onto

the code. When hypotheses fail to be verified, the top-down mental model is iteratively

refined until convergence to a stable model.

The bottom-up strategy is preferred by programmers who are relatively unfamiliar with

the code. Programmers may start with the construction of a control flow model of the pro-

gram behaviour (Pennington 1987), to continue with higher level abstractions, such as the

data flow model, the call hierarchy model and the inter-process communication model.

Eventually, programmers obtain a high level, functional abstraction of the implementation.

In the integrated model (von Mayrhauser and Vans 1994), programmers work at the

abstraction level that is deemed appropriate for the task at hand and switch between top-

down and bottom-up models. They recognize clues (aka beacons) in the code that point to

higher level abstractions and then they switch to a top-down comprehension of the abstrac-

tions inferred from such clues. This leads programmers to formulate new hypotheses to be

verified in the code, which in turn trigger a new bottom-up phase, consisting of code search

and clue recognition. While the bottom-up phase is usually quite systematic, the top-down

phase tends to be opportunistic and goal driven (von Mayrhauser and Vans 1997a, b). The

opportunistic strategy has been found to be much more effective and efficient than the sys-

tematic strategy when applied to large systems (Littman et al. 1987). However, it has the

disadvantage of producing incomplete models and partial understanding, which might affect

negatively program modification (von Mayrhauser and Vans 1994, 1996a, b).

Existing program comprehension models have been investigated in specific contexts,

such as component based (Andrews et al. 2002) or object oriented (Burkhardt et al. 2002)

software development, but to the best of our knowledge ours is the first work considering

the comprehension process followed by professional and public challenge hackers during

understanding of protected code to be attacked. The work by Sillito et al. (2006) investigates

general traits of program comprehension that are common to our observations. However,

some activities that we observed are hacker specific and driven by the hackers’ goal, which

is to break a protection, not to evolve a system, e.g., for adding new features, fixing bugs or

refactoring/adapting the code.

5.2 Qualitative Studies of the Developers’ Behaviour

The use of qualitative analysis methods in software engineering has gained increasing popu-

larity in recent years and among the various qualitative methods, GT appears to be the most

popular one. However, according to a survey (Stol et al. 2016) conducted on 98 papers that

have been published in the 9 top ranked journals, GT is largely misused in existing software

engineering studies. In fact, key features of GT, such as theoretical sampling, memoing,

constant comparison and theoretical saturation, are often ignored. We do not claim to have

used GT in our study. Instead, we claim that some practices that we adopted are in common

with GT. Other practices could not be applied because of limitations of our experimental

settings. The GT survey (Stol et al. 2016) reports some of the topics investigated in the 98

qualitative empirical studies analysed for the survey. These include studies on the software

engineering process and on software development teams, especially in the agile context.

For instance, the paper by Prechelt et al. (2016) investigates the factors that affect software



Empir Software Eng

quality in agile teams without dedicated testers. No mention is made in the survey of any

qualitative analysis dealing with the program comprehension process carried out by hackers.

Our search for papers on such topic has also produced no result.

In other domains in computer security, such as network penetration cyber attacks, qual-

itative modeling techniques have been proposed (Katipally et al. 2011; Mallikarjunan et al.

2015; Vectra 2017). Those models and modeling techniques specifically focus on auto-

mated intrusion detection, however. The concepts in them are observable symptoms of

attack activities in staged network penetrations. By checking whether or not monitored net-

work activities fit within the models of different types of attackers, network administrators

and their decision support tools can then distinguish benign activities from ongoing attacks.

The concepts and relations in those models are of a completely different nature, and hence

not reusable to model program comprehension activities. If program comprehension is cer-

tainly needed to prepare such attacks (i.e., to spot a bug), none of the existing works about

network penetration report any information.

Our previous experiment (Ceccato et al. 2017) of hackers’ code comprehension has been

extended in the present work with an additional experiment based on a public challenge.

The report of the public challenge winner was subjected to the same kind of qualitative

analysis conducted on the professional hacker reports. The additional results have confirmed

the validity of the taxonomy and of the comprehension models extracted from the initial

experiment, but they also allowed us to extend the taxonomy and the models with new

concepts that emerged in the public challenge context, a context substantially different from

the industrial one considered in the first experiment. The substantial number of concepts

identified with the second experiment suggests that theoretical saturation is not achieved,

and that more experiments are needed to enrich the concept ontology.

5.3 Empirical Studies on the Effectiveness of Software Protection

There are two main research approaches for the assessment of obfuscation protection tech-

niques, respectively based on internal software metrics (Collberg et al. 1997; Ceccato et al.

2015; Anckaert et al. 2007; Linn and Debray 2003; Udupa et al. 2005; Capiluppi et al. 2012)

and on experiments involving human subjects (Sutherland et al. 2006; Ceccato et al. 2009,

2014, Viticchié et al. 2016).

Assessment by means of experiments with human subjects has been first presented in a

work by Sutherland et al. (2006), who found the expertise of attackers to be correlated with

the correctness of reverse engineering tasks. They also showed that source code metrics are

not good estimators of the delays introduced by protections on attack tasks, if binary code is

involved. Ceccato et al. (2009) measured the correctness and effectiveness achieved by sub-

jects while understanding and modifying decompiled obfuscated Java code, in comparison

with decompiled clear code. This work has been extended with a larger set of experiments

and additional obfuscation techniques in successive works (Ceccato et al. 2014; Viticchié

et al. 2016).

While human experiments conducted to measure the effectiveness of protections often

draw also some qualitative conclusions on the activities carried out by the involved subjects,

their main goal is not to produce a model of the comprehension activities carried out against

the protected code. Moreover, the involved subjects are usually students, not professional

hackers. Hence, while these studies contributed to increase our knowledge of the effective-

ness of various software protection techniques, they did not develop any thorough model of

code comprehension during attack tasks.



Empir Software Eng

6 Conclusions and Future Work

The goal of this work was to investigate the way hackers comprehend protected code to be

attacked and how they build their attack strategy. We involved professional hackers in the

execution of three industrial case studies, each with a distinct attack task. We also published

eight public challenges, five of which were broken, all of them by the same hacker. The

reports produced by the professional hackers and by the public challenge winner have been

subjected to a rigorous qualitative analysis, resulting into a taxonomy of concepts and in

four behavioral models. The taxonomy consists of 169 concepts associated with the hacker

comprehension, attack activities, analysis tools and identified protections.

The models introduce relations (e.g., temporal, causal, conditional and instrumental

relations) among concepts to explain hackers behavior, i.e.:

• how hackers understand the code and identify sensitive assets within it;
• how hackers formulate and confirm hypotheses to build their attack strategy;
• how hackers choose and customize tools; and
• how hackers defeat protections by undoing, overcoming, working around, and bypass-

ing them.

The paper presents the commonalities and the differences emerged between the activities

conducted by professional hackers (involved in industrial settings) and by the practitioner

(involved in the Public Challenge). A major difference is represented by the level of

automation and reproducibility of attacks elaborated by professional hackers, and in their

considerable time investment in constructing new tools to achieve this objective. Practi-

tioners, instead, prefer to try many fast manual attacks or employ existing general purpose

tools.

The paper includes a discussion of possible research directions in code protection

based on the outcome of the empirical investigation. One of them is how to design novel

and stronger protection techniques. Since automated analysis tools play a central role in

elaborating successful attacks, a promising research direction to investigate is improving

protection techniques by addressing known (theoretical or practical) tool limitations, in

order to increase the manual effort in attacks.

While we believe the taxonomy and models have a general validity, it can be strengthened

only by conducting further empirical studies. The relations in our models that enable or

prevent hacker activities will be investigated in depth with controlled experiments, to obtain

quantitative evidence on their role and power, which in turn will guide the development of

novel code protection techniques.

Acknowledgments The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement number 609734.

Glossary

Analyse attack result Analyse the knowledge obtained from perform an attack step or

combination of attack steps

Anti-callback stack checks Checks performed on entry to internal functions to verify that they

are not called from externally

Anti-debugging Form of software protection that makes it harder for an attacker to

attack a debugger to an executing software to attack it

Assess effort Reason about effort needed to perform an attack step

Asset Software artefact valuable to attackers, typically the artefacts of the

original software on which security requirements are formulated,



Empir Software Eng

plus potentially the protections deployed on them in so far as those

protections become under attack as well

Background knowledge Relevant knowledge attackers have before starting attack activities

on a specific piece of software

Basic block Sequence of instructions that can only be executed as a whole and

in that order

Black-box analysis Analysis techniques that only consider the input-output behavior of

the program or a component thereof

Brute force attack Try all inputs on a code fragment to obtain the desired input or

output or behavior

Build the attack strategy The making of a decision regarding the next attack steps to be

executed

Build workaround Defeating a protection by developing custom code integrated in,

or replacing parts of, the software under attack (including the

protection in it under attack) to make a protection ineffective (pos-

sibly leaving the original software functionality intact) such that an

attack step can be executed.

Bypass protection Using debugger commands (or scripts) or other lightweight tech-

niques to manipulate the execution of the software without altering

its code, thus making the protection ineffective, e.g., by allow-

ing the software execution to progress nominally beyond the point

where the protection was supposed to intervene.

Bytecode Non-native instruction set architecture format

Checksum Hash computed over some data, in this context typically a code

region being checked by a code guard

Choose path of least resistance Reason about and select the potentially successful sequence of

attack steps that will lead to reaching the overall attack goal with

the least effort or cost

Choose/evaluate alternative tool Check whether alternative tool overcomes a limitation of a previ-

ously tried tool

Circumvent protection When a protection prevents reaching a goal with one or

more specific attack steps, execute one or more alternative

steps that are orthogonal to the deployed protection (i.e., not

hampered by the protection) to reach the same goal

Clear data in memory Asset other than key appearing in unprotected (plaintext) form in

binary or during execution

Clear key Cryptographic key appearing in unprotected form in binary or

during execution

Client-server code splitting Protection whereby part of the sensitive computations is extracted

from a client program and executed on a secure server instead,

where it is not accessible to attackers

Clues available in plain text Presence of strings in binary that present clues about protections,

assets, components, ...

Code guard Specific form of tamper detection that computes a checksum on

code regions and checks their values by comparing them to pre-

computed ones

Code mobility Online protection in which static code (and data) fragments are

removed from an executable file (to prevent static attacks) and

instead get downloaded from a secure server on demand during the

execution of the software

Code representation and structure Static or dynamic representations of software (fragments) and

structural forms or elements in it

Condition (combination of) values that inputs, variables, registers, memory

locations, ... need to have in order to let control be transferred into

a certain direction during execution of the software

Confirm hypothesis Confirm that a previously hypothesized feature is correct based on

the observation of an attack step’s results

Constant Static data with relevant or recognizable, non-mutable values

Control flow graph Static representation of potential control flow in a program



Empir Software Eng

Control flow graph reconstruction Determining and modelling the potential flow of control in a

program or part thereof

Convert code to standard format The act of converting (byte)code in a custom (diversified) format

to a format known by the attacker

Core dump Snapshot image of the software’s memory space during its execu-

tion, containing code and data segments such as stack, heap, and

code sections from binaries

Correlation analysis Statistical analysis where correlations between operations or data

occurrences are determined or analysed

Correlation between observed values The presence of statistical correlation in a set of data values

observed in a program, memory, or a trace

Create new tool for attack Create new standalone piece of software to aid in attack (e.g., a

main binary that invokes functionality in library under attack in a

specific order and that feeds it specific data)

Crypto analysis Use of cryptanalysis techniques

Customize execution environment Adapt software or hardware in execution environment in ways sup-

ported by their developers such that it supports specific attack

tasks

Customize/extend tool Adapt tool in ways supported by tool developers and tool itself

(e.g., availability source code) or exploit its built-in extensibility to

let it perform specific tasks

Data and program state Static or dynamic non-code aspects of a binary or running process

Data flow analysis Analysis techniques that determine how computations and com-

puted data depend on other computations and (computed or input)

data

Deobfuscate the code Use manual or automated tools to revert an obfuscation, i.e.,

to reduce its apparent complexity to that of the original , non-

obfuscated code

Debug/superfluous features not Functionality present for software development purposes (e.g.,

debugging aids) that was not removed before distributing the

binaries and that can be leveraged by attackers
removed

Debugger Tool used to test and debug software by offering support to inspect

and manipulate the status of running software

Debugging Using debugger functionality to observe, control, and manipulate a

program’s execution

Decompile the code Obtain source code equivalent of machine code

Decompiled code Representation of binary software code at the abstraction level of

source code

Decompiler Software that translates assembly language into equivalent source

code

Decrypt code before executing it (large) code fragments only available in encrypted form become

available in decrypted form at run time

Defeat protection Successfully undo or overcome or bypass a protection, or build a

workaround for it, such that an attack step that the protection was

supposed to mitigate can be executed successfully.

Dependency analysis Analysis techniques that determine which computations and com-

puted data depend on which other computations and (computed or

input) data

Difference between observed values The fact that two values in a trace, binary, or memory have different

values

Differential data analysis Statistical analysis where not the original observed operations or

data are considered but differences between multiple occurrences

Difficulty Problem encountered during an attack task that is caused by a fea-

ture, artefact or limitation of the attacker’s toolbox, i.e., of the

specific software or hardware attack aids being used or considered

during a concrete attack (that are not normally used during benign

use of the software under attack).

Diffing Identifying the differences between two programs or parts thereof

Disable anti-debugging Tampering with code to skip execution of anti debugging protection

actions



Empir Software Eng

Disassemble the code Use a tool to convert binary encoding of software into human

readable machine code

Disassembled code Representation of binary software code at the abstraction level of

assembly code

Disassembler Software that translates machine language into assembly language

(and determines the structure thereof, e.g., in the form of control

flow graphs)

Diversified cryptographic libraries Libraries with non-standard implementations of standard crypto-

graphic primitives

Dynamic analysis Analysis techniques based on observations made during program

execution

Emulator Hardware or software that enables one computer system to behave

like another system

Evaluate and select alternative step/ Reason about effort, success probability, usefulness, ... of possi-

ble next attack steps, building on results of previous attack steps,

and select next steps / revise decisions and selections made earlier

regarding next attack steps to execute

revise attack strategy

Execution environment Operating system, platform, network settings, etc. in which the

code has to be executed

File A resource for storing information, typically on a storage device

File name Symbolic identifier of a file

File format analysis Black-box analyses that consider the formats of input and output

files

Function / routine Software components making up programs in most programming

languages

Function argument Data (and value thereof) on which a function is invoked

Function call The operation of invoking a callee function within a caller function

Global function pointer table Standard data structures in binaries that contain addresses of

functions

Identify API calls Act of identifying locations in the code or trace, and their nature,

where interaction with public interfaces of external components

take place

Identify assets by naming scheme Use naming conventions or structure in available symbol informa-

tion

Identify assets by static meta info Use standard information available in binaries (e.g., exported

symbols) to identify components that embed assets

Identify output generation Identification of code around points where output is generated as

starting points of attacks

Identify points of attack Identify regions in the program or trace where assets or protections

are available/observable/active/... and hence attackable

Initialization function Function invoked by loader upon loading of a program or library

In-memory data structure Data structure found in the memory space of executing software

Knowledge on execution environment Relevant knowledge attackers have about the execution environ-

ment or framework in which they will execute attack steps or in

which the software normally executes
framework

Lack of knowledge Inexperience of attacker, not knowing relevant aspects

Lack of portability Fact that a tool or technique available in one context (e.g., platform)

is not available in the context in which the attacker wants to deploy

the tool or technique

Library / module Partition of an application as defined in software engineering

Limit scope of attack Identify regions in the software or in an execution trace where next

attacks steps should focus on, thus reducing the size of the code or

data or trace where the attacker needs to perform next attack steps,

thus reducing the effort to invest in them

Limit scope of attack by static meta Use standard information available in binaries (e.g., exported sym-

bols) to identify regions in software or traces where next attack

steps should focus on

info

Limitations from operating system Properties of specific operating system on which the code has to be

executed, that limit the attacker’s capabilities in some way

Main() Top-level function in an application



Empir Software Eng

Make hypothesis Based on the results of previous attack steps and background

knowledge make a hypothesis about the features of an asset, protec-

tion, piece of software under attack, or attack tool capability that, if

true, will enable certain attack steps to be performed successfully

Make hypothesis on protection Make a hypothesis regarding the potential deployment or nature or

features of a certain protection

Make hypothesis on reasons for Make a hypothesis based on the observation that an previous attack

step yielded insufficient resultsattack failure

Manually assist the disassembler Interact with a disassembler tool to correct and complement its

automated disassembler analyses

Memory access The operation of reading or writing to main memory

Memory dump Making a snapshot of (parts of) the code and data in the address

space of a running program and dumping that image on disk for

later analysis

Meta info Standard information available in binaries, in the form of data that

is not used by the software itself, but by the OS to load and launch

the software correctly

Monitor public interfaces Observing and analysing interaction (invocations, data passing,

communications) between components along publicly available

interfaces (such as exported functions in libraries or system calls)

Non-standard virtual machines Customized virtual machines embedded in a protected program

that interprets bytecode (in a custom, non-standard bytecode for-

mat) that replaces the original native code, thus hiding the seman-

tics of the original code

Obfuscation Form of software protection that increases apparent complexity of

code or data

Obstacle Feature or artefact that hinders attack steps and that is deliber-

atively put in place (or, if already present a priori, considered

relevant for providing protection) by the defender in protected

software, including in components of the software itself or of its

execution environment

Obtain clear code after code Identify and extract decrypted code in memory space of a running

application under attackdecryption at run time

Operation Software functionality at the lowest level of granularity / abstrac-

tion

Out of context execution Execute code fragments not as they are normally executed within

the full program’s execution, but in other crafted contexts (such as

self-written main binary)

Overcome protection Leaving a protection present and (partially) active, but manipulat-

ing the code and execution of the software or fragments therein

such that the goal of an attack step is reached despite the protec-

tion still being present and (partially) active. This typically requires

the custom, targeted development of external scripts and software

components. The resulting code or execution are not necessarily

representative for the original software as a whole, but they suffice

for the attacker to reach his goal.

Pattern matching Identifying code or data fragments of interest by comparing candi-

dates to known patterns

Prepare the environment Set-up and configuration of environment to execute and/or attack

the program

Process / parent-child relation Process are instances of software executing on a computer; parent

processes launch child processes

Program input and output External data consumed and produced by a program

Profiler Tool used to collect statistics about execution of software elements

Profiling Collecting statistics on a program’s execution and its components

(functions, instructions, libraries, ...)

Protection Software protection technique applied on software under attack

Recognizable library Part of software under attack that corresponds to a known library

and is identified as such by the attacker



Empir Software Eng

Recognize anomalous / unexpected Observe program features that contradict hypothesis about normal

behavior given background knowledge of the attackerbehavior
Recognize similarity with already Recognize that parts of a new piece of software under attack,

although it maybe has been protected differently, is identical to

parts of another software already attacked before, such that the

knowledge of the already attacked version can be reused, thus

reducing the amount of reverse-engineering effort needed

analysed protected application

Recreate protection in the small Create small program containing protection mock-up to aid in the

development of attacks on that protection

Reference to API function / imported Symbolic description of externally visible (standard library) func-

tions provided by or needed by libraries and modulesand exported function
Register A component inside a central processing unit for storing informa-

tion, that can be addressed directly in assembly code

Remote attestation Online protection technique in which a secure server demands a

running client to provide attestations to verify the integrity of the

client

Replace API functions with Use of hooking, interposers, detours and other techniques to inter-

vene in execution when external functions are invokedreimplementation
Reuse attack strategy that worked Use background knowledge on paths of least resistance and suc-

cessful attack paths based on attacks on similar pieces of soft-

ware or on pieces of software protected with identical or similar

(assumed or identified as such) protections

in the past

Round / repetition / loop Specific instance of a program fragment execution in a trace con-

taining multiple subsequent executions of the fragment; strongly

connected component in a control flow graph

Run analysis Invoke an automated analysis in a tool

Run software in emulator Use emulation to execute software and to execute dynamic attacks

Size Amount of code or data considered by an attacker

Socket Data structure and its interface serving as an internal endpoint for

sending and receiving data over a network

Software element Aspects of a program of interest to an attacker

Static analysis Analysis techniques that do not require code to be executed

Statistical analysis Use of statistical techniques to identify and/or recover operations

or data or features of interest

stderr Output connection through which many programs output error

messages

String Sequence of alphanumeric text or other symbols in memory or an

executable file

String / name analysis Extracting information from names of files, exported functions,

strings referenced in code fragments, etc.

Switch statement Control flow structure resembling a switch () { case ...:

case ...: } structure in C code

Symbolic execution / SMT solving Determining (semantic) properties of code fragments using sym-

bolic execution and SMT solving techniques

System call The operation invoking system routines from the operating system

Tamper detection Forms of software protection that try to detect that normal execu-

tion or code has been modified

Tamper with code statically Edit code in the binary, e.g., to implement a workaround

Tamper with data Alter data during the execution of a program

Tamper with execution Alter ongoing execution by altering code or data

Tamper with execution environment Adapt software or hardware in execution environment in ways not

intended by their developers such that it supports specific attack

tasks

Tool Any software or hardware aid that automates activities needed in

attack steps or that performs a task (semi)automatically

Tool limitations Practical limitations (supported file sizes, memory consumption,

lack of precision, ...) of a tool that make it unfit for the specific way

an attacker wants to use it

Trace Sequence of executed code fragments with or without additional

properties of their execution



Empir Software Eng

Tracer Tool used to collect sequences of executed software elements and

attributes of their execution

Tracing Collecting a sequence of activities occurring during the execution

of a program (instructions being executed, system calls, library

calls, etc.)

Understand code logic Act of reasoning about a code fragment

Understand persistent storage / Act of reasoning about overall program behavior regarding storage

- files - socketsfile / socket

Undo the protection Reversing the effect of a protection by undoing its deployment, i.e.,

reverting to the software without the protection (e.g., deobfuscating

code or removing code guards).

Weak crypto Use of cryptographic techniques that are even weak against black-

box attacks

White box cryptography Form of cryptography where keys do not occur in plain sight during

execution

Workaround of a difficulty Adaptation of tool or new tool that overcomes the limitation of

existing attack tool; of a protection: see build workaround

Write tool supported script Customize a tool using its built-in scripting features

XOR operation The operation of performing an XOR on two or more data values;

these occur very frequently in and around cryptographic primitives

References

Abrath B, Coppens B, Volckaert S, Wijnant J, De Sutter B (2016) Tightly-coupled self-debugging software

protection. In: Proceedings of the 6th workshop on software security, protection, and reverse engineering

(SSPREW), pp 7:1–7:10

Anckaert B, Madou M, De Sutter B, De Bus B, De Bosschere K, Preneel B (2007) Program obfuscation: a

quantitative approach. In: Proceedings of ACM workshop on quality of protection, pp 15–20

Andrews AA, Ghosh S, Choi EM (2002) A model for understanding software components. In: 18th inter-

national conference on software maintenance (ICSM 2002), maintaining distributed heterogeneous

systems, 3–6 October 2002, Montreal, Quebec, Canada, p 359

Armknecht F, Sadeghi AR, Schulz S, Wachsmann C (2013) A security framework for the analysis and design

of software attestation. In: Proceedings of the 2013 ACM SIGSAC conference on computer & commu-

nications security, CCS ’13. ACM, New York, USA, pp 1–12. https://doi.org/10.1145/2508859.2516650

Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001) On the (im) possibility

of obfuscating programs. Lect Notes Comput Sci 2139:19–23

Burkhardt J, Détienne F, Wiedenbeck S (2002) Object-oriented program comprehension: effect of expertise,

task and phase. Empir Softw Eng 7(2):115–156

Cabutto A, Falcarin P, Abrath B, Coppens B, De Sutter B (2015) Software protection with code mobility. In:

Proceedings of the second ACM workshop on moving target defense (MTD), pp 95–103

Capiluppi A, Falcarin P, Boldyreff C (2012) Code defactoring: evaluating the effectiveness of java

obfuscations. In: 2012 19th working conference on reverse engineering (WCRE). IEEE, pp 71–80

Ceccato M, Capiluppi A, Falcarin P, Boldyreff C (2015) A large study on the effect of code obfuscation on

the quality of java code. Empir Softw Eng 20(6):1486–1524

Ceccato M, Di Penta M, Falcarin P, Ricca F, Torchiano M, Tonella P (2014) A family of experiments to assess

the effectiveness and efficiency of source code obfuscation techniques. Empir Softw Eng 19(4):1040–

1074

Ceccato M, Di Penta M, Nagra J, Falcarin P, Ricca F, Torchiano M, Tonella P (2009) The effectiveness of

source code obfuscation: an experimental assessment. In: IEEE 17th international conference on program

comprehension (ICPC), pp 178–187. https://doi.org/10.1109/ICPC.2009.5090041

Ceccato M, Dalla Preda M, Nagra J, Collberg C, Tonella P (2007) Barrier slicing for remote software trust-

ing. In: Proceedings of the seventh IEEE international working conference on source code analysis

and manipulation, SCAM ’07. IEEE Computer Society, Washington, pp 27–36. https://doi.org/10.1109

/SCAM.2007.6

https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1109/ICPC.2009.5090041
https://doi.org/10.1109/SCAM.2007.6
https://doi.org/10.1109/SCAM.2007.6


Empir Software Eng

Ceccato M, Tonella P, Basile C, Coppens B, De Sutter B, Falcarin P, Torchiano M (2017) How professional

hackers understand protected code while performing attack tasks. In: Proceedings of the 25th interna-

tional conference on program comprehension (ICPC), pp 154–164. ICPC best paper award and ACM

Distinguished paper award

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. Technical Report

148, Dept. of Computer Science, The Univ. of Auckland

Collberg C, Nagra J (2009) Surreptitious software: obfuscation, watermarking, and tamperproofing for

software protection. Addison-wesley, London

Demissie BF, Ceccato M, Tiella R (2015) Assessment of data obfuscation with residue number coding.

In: Proceedings of the 1st international workshop on software protection, SPRO ’15. IEEE Press,

Piscataway, pp 38–44. http://dl.acm.org/citation.cfm?id=2821429.2821440

Edmundson A, Holtkamp B, Rivera E, Finifter M, Mettler A, Wagner D (2013) An empirical study on the

effectiveness of security code review. In: International symposium on engineering secure software and

systems. Springer, pp 197–212

Flick U (2009) An introduction to qualitative research, 4th edn. Sage, London, England, UK

Glaser BG, Strauss AL (1967) The discovery of grounded theory. Aldine, Chicago, IL, USA

Katipally R, Yang L, Liu A (2011) Attacker behavior analysis in multi-stage attack detection system. In:

Proceedings of the seventh annual workshop on cyber security and information intelligence research,

CSIIRW ’11. ACM, New York, pp 63:1–63:1. https://doi.org/10.1145/2179298.2179369

Letovsky S (1987) Cognitive processes in program comprehension. J Syst Softw 7(4):325–339

Linn C, Debray S (2003) Obfuscation of executable code to improve resistance to static disassembly. In:

Proceedings of ACM conference on computer and communications security, pp 290–299

Littman DC, Pinto J, Letovsky S, Soloway E (1987) Mental models and software maintenance. J Syst Softw

7(4):341–355

Mallikarjunan KN, Prabavathy S, Sundarakantham K, Shalinie SM (2015) Model for cyber attacker behav-

ioral analysis. In: 2015 IEEE workshop on computational intelligence: theories, applications and future

directions (WCI), pp 1–4. https://doi.org/10.1109/WCI.2015.7495520

van Oorschot PC, Somayaji A, Wurster G (2005) Hardware-assisted circumvention of self-hashing soft-

ware tamper resistance. IEEE Trans Dependable Secur Comput 2(2):82–92. https://doi.org/10.1109

/TDSC.2005.24

Pennington N (1987) Stimulus structures and mental representations in expert comprehension of computer

programs. Cogn Psychol 19(3):295–341

Piorkowski DJ, Fleming SD, Kwan I, Burnett MM, Scaffidi C, Bellamy RK, Jordahl J (2013) The whats and

hows of programmers’ foraging diets. In: Proceedings of the SIGCHI conference on human factors in

computing systems. ACM, New York, pp 3063–3072

Prechelt L, Schmeisky H, Zieris F (2016) Quality experience: a grounded theory of successful agile projects

without dedicated testers. In: Proceedings of the 38th international conference on software engineering,

ICSE 2016, Austin, TX, USA, May 14–22, 2016, pp 1017–1027

Sillito J, Murphy GC, Volder KD (2006) Questions programmers ask during software evolution tasks. In: Pro-

ceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering,

FSE, pp 23–34

Stol K, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review and

guidelines. In: Proceedings of the 38th international conference on software engineering, ICSE 2016,

Austin, TX, USA, May 14–22, 2016, pp 120–131

Strauss A, Corbin J (1990) Basics of qualitative research: grounded theory procedures and techniques. Sage,

London

Sutherland I, Kalb GE, Blyth A, Mulley G (2006) An empirical examination of the reverse engineering

process for binary files. Comput Secur 25(3):221–228

Udupa SK, Debray SK, Madou M (2005) Deobfuscation: reverse engineering obfuscated code. In: Proceed-

ings of the 12th working conference on reverse engineering. IEEE Computer Society, Washington, pp

45–54. https://doi.org/10.1109/WCRE.2005.13. http://dl.acm.org/citation.cfm?id=1107841.1108171

Vectra (2017) Attacker behavior industry report. https://info.vectra.ai/attacker-behavior-industry-report-1q

2017

Viticchié A, Regano L, Torchiano M, Basile C, Ceccato M, Tonella P, Tiella R (2016) Assessment of source

code obfuscation techniques. In: Proceedings of the 16th IEEE international working conference on

source code analysis and manipulation, pp 11–20

von Mayrhauser A, Vans AM (1994) Comprehension processes during large scale maintenance. In: Pro-

ceedings of the 16th international conference on software engineering, Sorrento, Italy, May 16–21, pp

39–48

http://dl.acm.org/citation.cfm?id=2821429.2821440
https://doi.org/10.1145/2179298.2179369
https://doi.org/10.1109/WCI.2015.7495520
https://doi.org/10.1109/TDSC.2005.24
https://doi.org/10.1109/TDSC.2005.24
https://doi.org/10.1109/WCRE.2005.13
http://dl.acm.org/citation.cfm?id=1107841.1108171
https://info.vectra.ai/attacker-behavior-industry-report-1q2017
https://info.vectra.ai/attacker-behavior-industry-report-1q2017


Empir Software Eng

von Mayrhauser A, Vans AM (1995) Industrial experience with an integrated code comprehension model.

Softw Eng J 10(5):171–182

von Mayrhauser A, Vans AM (1996a) Identification of dynamic comprehension processes during large scale

maintenance. IEEE Trans Softw Eng 22(6):424–437

von Mayrhauser A, Vans AM (1996b) On the role of hypotheses during opportunistic understanding while

porting large scale code. In: 4th international workshop on program comprehension (WPC ’96), March

29–31, 1996, Berlin, Germany, pp 68–77

von Mayrhauser A, Vans AM (1997a) Hypothesis-driven understanding processes during corrective mainte-

nance of large scale software. In: 1997 international conference on software maintenance (ICSM ’97),

1–3 October 1997, Bari, Italy, Proceedings, pp 12–20

von Mayrhauser A, Vans AM (1997b) Program understanding needs during corrective maintenance of large

scale software. In: 21st intern. computer software and applications conference (COMPSAC’97), 1997,

USA, pp 630–637

Wheeler DA (2001) More than a gigabuck: estimating gnu/Linux’s size. https://www.dwheeler.com/sloc/

redhat71-v1/redhat71sloc.html

Wyseur B (2009) White-box cryptography. Ph.D. thesis, Katholieke Universiteit Leuven. https://www.cosic.

esat.kuleuven.be/publications/thesis-152.pdf

Mariano Ceccato is tenured researcher in FBK (Fondazione Bruno

Kessler) in Trento, Italy. He received the master degree in Software

Engineering from the University of Padova, Italy, in 2003 and the

PhD in Computer Science from the University of Trento in 2006 with

the thesis “Migrating Object Oriented code to Aspect Oriented Pro-

gramming”. His research interests include security testing, migration

of legacy systems, aspect oriented programming and empirical stud-

ies. He was program co-chair of the 12th IEEE Working Conference

of Source Code Analysis and Manipulation (SCAM 2012) to be held

in Riva del Garda, Italy.

Paolo Tonella is head of the Software Engineering Research Unit at

Fondazione Bruno Kessler (FBK), in Trento, Italy. He is also Hon-

orary Professor at University College London (UCL). He received

his PhD degree in Software Engineering from the University of

Padova, in 1999, with the thesis “Code Analysis in Support to Soft-

ware Maintenance”. In 2011 he was awarded the ICSE 2001 MIP

(Most Influential Paper) award, for his paper: “Analysis and Testing

of Web Applications”. He is the author of “Reverse Engineering of

Object Oriented Code”, Springer, 2005, and of “Evolutionary Testing

of Classes”, ISSTA 2004. Paolo Tonella was Program Chair of ICSM

2011 and ICPC 2007; General Chair of ISSTA 2010 and ICSM 2012.

He is/was associate editor of TOSEM/TSE and he is in the editorial

board of EMSE and JSEP. His current research interests include code

analysis, web testing, search based test case generation and the test

oracle problem.

https://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
https://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf


Empir Software Eng

Cataldo Basile received a M.Sc. (summa cum laude) in 2001 and

a Ph.D. in Computer Engineering in 2005 from the Politecnico

di Torino, where is currently a research associate. His research is

concerned with software security, software attestation, policy-based

security management in networked environments, policy refinement,

and general models for detection, resolution and reconciliation of

security policy conflicts.

Paolo Falcarin is a Reader in Computer Science at the University

of East London, leading the Software Systems Engineering research

group. He was awarded a PhD degree in Software Engineering from

Polytechnic of Turin (Italy) in 2004. Paolo was the General Chair of

SPRO 2015 and guest editor of a special issue on software protection

of IEEE Software. His current research interests span over software

engineering, distributed systems, software protection and security.

Marco Torchiano is an associate professor at the Control and

Computer Engineering Dept. of Politecnico di Torino, Italy; he has

been post-doctoral research fellow at Norwegian University of Sci-

ence and Technology (NTNU), Norway. He received an MSc and

a PhD in Computer Engineering from Politecnico di Torino. He is

Senior Member of the IEEE and member of the software engineer-

ing committee of UNINFO (part of ISO/IEC JTC 1). He is author

or co-author of over 140 research papers published in international

journals and conferences, of the book ‘Software Development–Case

studies in Java’ from Addison-Wesley, and co-editor of the book

‘Developing Services for the Wireless Internet’ from Springer. He

recently was a visiting professor at Polytechnique Montréal study-

ing software energy consumption. His current research interests are:

green software, UI testing methods, open-data quality, and soft-

ware modeling notations. The methodological approach he adopts

is that of empirical software engineering. Contact him via email at

marco.torchiano@polito.it. Follow him on twitter @mtorchiano



Empir Software Eng

Bart Coppens is a postdoctoral researcher at Ghent University in

the Computer Systems Lab. He received his Ph.D. in Computer Sci-

ence Engineering from the Faculty of Engineering and Architecture

at Ghent University in 2013. His research focuses on protecting

software against different forms of attacks using compiler-based

techniques and run-time techniques.

Bjorn De Sutter is professor at Ghent University in the Computer

Systems Lab. He obtained his MSc and PhD degrees in Computer

Science from Ghent University’s Faculty of Engineering in 1997 and

2002. His research focuses on the use of compiler techniques to aid

programmers with non-functional aspects of their software, such as

performance, code size, reliability, and software protection. As for

the latter, he developed techniques to mitigate reverse engineering,

software tampering, code reuse attacks, fault injection attacks, and

timing side channel attacks. He co-authored over 80 peer-reviewed

papers in international conferences and journals. He coordinated the

ASPIRE project.


	Understanding the behaviour of hackers while performing attack tasks in a professional setting and in a public challenge
	Abstract
	Introduction
	Qualitative Analysis Method
	Data Collection from Professional Hackers
	Data Collection from Public Challenge Winner
	Open Coding and Conceptualization (Professional Hacker Experiment)
	Taxonomy Extension (Public Challenge Experiment)

	Results
	Identified Concepts
	Obstacle
	Difficulty
	Analysis/reverse Engineering
	Attack Step
	Reverse Engineer Software and Protections
	Build Attack Strategy
	Tamper with Code and Execution

	Software Elements

	Comparison Between Professional Hackers and Public Challenge Winner
	Inferred Models
	How Hackers Understand Protected Software
	How Hackers Build Attack Strategies
	How Hackers Choose and Customize Tools
	How Hackers Defeat Protections


	Discussion
	Research Agenda
	Protections Should Inhibit Program Analysis and Reverse Engineering
	Protections Should Prevent Manipulation of Both the Execution Flow and the Run-Time Program State
	Protections Should Adopt Integrity Checking Techniques with Improved Effectiveness (see the ``condition for'' Relation from Identify Point of Attack and Bypass Protection)
	Diversification and Hiding of the Fingerprints of Protections (see the ``cause'' Relation from Recognize Similarity with Already Analysed Protected Application to Build the Attack Strategy in Fig. 7)
	Libraries Involved in Code Protections Should be Hidden (see Relations Outgoing from Recognizable library in Figs. 6 and 7)
	Protections Should be Selected and Combined by Estimated Attack Effort (see Relations Outgoing from Assess effort in Figs. 7 and 9)
	Effectiveness of Protections Should be Tested Against Features Available in Existing Tools or by Customizing Existing Tools (see Choose Tool / Evaluate Alternative Tools and Customize / Extend / Configure Tool in Fig. 8)
	Out of Context Execution of Protected Code Should be Prevented (see Out of Context Execution in Fig. 8)
	Protections Should be Difficult to Defeat Without Rewriting Part of the Code as a Workaround to them (see Build Workaround in Fig. 9)
	Empirical Validation of Protections Should Involve Highly Trained Subjects Playing the Role of Hackers (see the Comparison Between Professional Hackers and Public Challenge Winner Reported in Section 3.2)
	Protections Should Force Tools to Produce Incorrect Code Representations and Structures


	Threats to Validity

	Related Work
	Models of Program Comprehension and of the Developers' Behaviour
	Qualitative Studies of the Developers' Behaviour
	Empirical Studies on the Effectiveness of Software Protection

	Conclusions and Future Work
	Acknowledgments
	Glossary
	References


