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Abstract

A reflective language enables us to access, inspect, and/or modify
the language semantics from within the same language framework.
Although the degree of semantics exposure differs from one lan-
guage to another, the most powerful approach, referred to as the
behavioral reflection, exposes the entire language semantics (or the
language interpreter) that defines behavior of user programs for
user inspection/modification. In this paper, we deal with the behav-
ioral reflection in the context of a functional language Scheme. In
particular, we show how to construct a reflective interpreter where
user programs are interpreted by the tower of metacircular inter-
preters and have the ability to change any parts of the interpreters
during execution. Its distinctive feature compared to the previous
work is that the metalevel interpreters observed by users are writ-
ten in direct style. Based on the past attempt of the present au-
thor, the current work solves the level-shifting anomaly by defunc-
tionalizing and inspecting the top of the continuation frames. The
resulting system enables us to freely go up and down the levels
and access/modify the direct-style metalevel interpreter. This is in
contrast to the previous system where metalevel interpreters were
written in continuation-passing style (CPS) and only CPS functions
could be exposed to users for modification.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures;
D.3.4 [Programming Languages]: Processors—Interpreters

General Terms Languages

Keywords Reflection, metacircular interpreter, metacontinuation,
continuation-passing style (CPS), direct style, partial evaluation

1. Introduction

A reflective language enables us to access, inspect, and/or modify
the language semantics from within the same language framework.
Originally, reflection was proposed by Smith in his pioneering work
on 3-LISP [15], where user programs were executed by an infinite
number of metacircular interpreters (called a reflective tower) and
had access to the expression, environment, and continuation of the
current computation. Since these pieces of information determine
the complete state of computation, user programs effectively have
control over how the state of computation is manipulated, in other
words, the language semantics itself. This kind of reflection is
called behavioral reflection.
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The theoretical idea of 3-LISP was followed by two reflective
languages, Brown [6, 17] and Blond [5], which explained switching
of levels using metacontinuations and improved on the efficient
execution of programs under a tower of interpreters. The ability
to change the metalevel interpreter, as opposed to simply having
access to the state of computation, was added to these languages
by the present author in the reflective language Black [1, 2]. In this
language, the metalevel interpreter (or the operational semantics of
the language) is open to user programs as a collection of standard
functions and is subject to change at runtime. User programs have
not only access to the state of computation but also ability to change
the operational semantics directly.

The idea of reflection affected the design of programming lan-
guages in various ways. In the object-oriented language CLOS
(Common Lisp Object System), metaobject protocol [11] was used
to grant user programs access to metaobjects that define the se-
mantics of baselevel objects as a kind of metacircular interpreter.
Similar idea was applied in the concurrent object-oriented language
ABCL/R3 [13] to tune and optimize the behavior of concurrent
objects. The idea of reflection was further developed into Aspect-
Oriented Programming [12], where various kinds of semantic as-
pects (among many cross-cutting concerns) are modularized and
made public for user control.

Although reflective capabilities are strong and useful, the reflec-
tive mechanisms provided in most languages are restricted, because
it is difficult to efficiently execute reflective programs, in particular
the ones that use behavioral reflection. For example, Java allows to
access various information via reflection, but does not allow radical
changes to the language semantics. On the other hand, it is difficult
to predict all the reflective capabilities that could be useful before-
hand. Thus, whenever we need new reflective capabilities, we need
to modify the underlying language implementation.

To remedy this situation, the original approach to the behavioral
reflection using metacircular interpreters is gaining interest. Most
notably, Verwaest et al. [16] recently proposed a reflective system
which adopts Smalltalk-like object model with a tower of first-
class interpreters. Because the full language semantics is exposed
to user programs as a first-class interpreter, any modification to the
language semantics is possible.

To back up such work and provide its foundation, we deal with
the behavioral reflection in the context of a functional language
Scheme. In particular, we consider how to build a reflective system
in which the metalevel interpreter is written without any restric-
tion. In our previous work [2], we have already proposed a gen-
eral method to build a reflective system, but the method crucially
depended on the fact that the metalevel interpreter was written in
continuation-passing style (CPS). In this paper, we remove this re-
striction and allow for the metalevel interpreter to be written in the
ordinary direct style. In our past attempt [1], we have already con-
structed such a reflective system, but it was not quite right because
it suffered from the level-shifting anomaly. This paper clarifies why
the anomaly occurs and shows one possible method to avoid it. As



a result, the current system becomes the first such system without
the anomaly.

The system is easier to use than before, since we do not have
to program in CPS any more. We shall demonstrate a number of
example executions in the paper. Theoretically, this paper clarifies
how to build a reflective system where the metalevel interpreters
are written in direct style. More practically, it gives a foundation
upon which advanced features such as runtime specialization can
be built for efficient execution of reflective programs.

2. Preliminaries: shift and reset

We will use the delimited control operators [4], shift and reset,
in this paper. The shift operator captures and clears the current
continuation up to the enclosing reset operator and binds it to its
first argument before executing its second argument. For example,
in the following expression

(+ 1 (reset (* 2 (shift k (k (k 3))))))

the captured continuation bound to k is (* 2 2). It is applied
twice in the body of shift, so the shift expression evaluates to
12. Since the captured continuation is cleared, it becomes the value
of reset and the final answer becomes 13.

The shift operator is like call-with-current-continu-
ation, but is different in that the captured continuation is delimited
and thus composable, and that the captured continuation is cleared.
We will use the delimited context as a representation of a level, and
use shift to capture the continuation of the current level.

3. The reflective language Black

The reflective language we use in this paper is a Scheme-based lan-
guage called Black [1, 2]. It is a standard Scheme interpreter with
two new reflective constructs, EM and exit. The former stands for
Execute at Metalevel and evaluates its argument at the metalevel,
namely, at the level of the interpreter the current expression is eval-
uated. The latter is used to finish the current level and go up to the
metalevel. The interaction between exit and the reflective frame-
work in this paper will become one of the interesting topics of this
paper.

To see how EM works, we demonstrate some example execution
of Black.

> (black)
0-0: start
0-1> (* 2 (+ 1 4))
0-1: 10
0-2>

It is basically a standard Scheme interpreter. The first number
0 in the prompt indicates the current level. The second number
indicates the number of iterations in the current level. To evaluate
an expression at the metalevel, we use EM.

0-2> (EM (* 2 (+ 1 4)))
0-2: 10
0-3>

When EM is executed, its argument is sent as is to the metalevel
for execution. At the metalevel, the expression (* 2 (+ 1 4)) is
evaluated to 10 and the result is sent back to the current level.

We can observe the metalevel interpreter using EM.

0-3> (EM base-eval)
0-3: #<procedure #2 base-eval>
0-4>

The main function of the metalevel interpreter is called base-eval.
We can even modify the definition of base-eval executing the

user programs. To do so, however, we need to know how the met-
alevel interpreter is written. Figure 1 shows the main parts of the
metalevel interpreter. User programs are supposed to be executed
by this interpreter. In other words, this is the interpreter observed
by the user programs whenever they access it using EM. However,
the actual Black interpreter is different from this user-observable
interpreter. The Black interpreter executes user programs as though
they are interpreted by the user-observable interpreter. It defines
the API to access the metalevel, or the Metaobject Protocol, so to
speak.

The user-observable interpreter is a standard eval/apply-style
interpreter written in monadic style. Given an expression e and
an environment r, the main function base-eval dispatches over
e, and executes one of eval-* functions. We call these functions
that comprise an interpreter evaluator functions. Lambda closures
are represented as a tagged list, where the address (eq-ness) of
lambda-tag is used to distinguish closures from other data.

The interpreter is standard except for three points. First, it in-
cludes eval-EM to interpret the EM construct. Its definition is (al-
most) metacircular: a special construct primitive-EM is used to
interpret EM. The former is a primitive version of EM where the ar-
gument is evaluated before it is sent to the metalevel. The impor-
tant point here is that the behavior of eval-EM cannot be described
without the help of such a special construct. Since EM escapes the
current level, its precise behavior can be described only in terms of
the reflective tower. Thus, the user-observable interpreter can only
include the definition of eval-EM that magically evaluates its argu-
ment at the metalevel.

Secondly, the definition of my-error in the user-observable in-
terpreter is disappointing. It is supposed to print an error message
and abort the current execution, but it is defined as returning 0 nor-
mally. Thus, if an error occurs (e.g., by applying a boolean to an ar-
gument; see the else branch of base-apply), the result becomes
0 unconditionally and the execution continues which could result
in further errors.

0-4> ((#t 3) 4)
(Not a function: #t)
(Not a function: 0)
0-4: 0
0-5>

In this example, (#t 3) results in an error and the corresponding
error message is printed, but since its result becomes 0, it incurs
further error at the outer application (0 4). Only the first error
message is valid and the rest of the computation is completely
bogus. For now, the user-observable interpreter is defined like this,
because aborting the current execution requires special treatment,
such as introduction of an error value or first-class continuation
constructs. We will come back to this problem first in Section 4.4
and then more seriously in Section 5.

Finally, the user-observable interpreter is written in monadic
style. It might first appear to contradict what this paper claims
to achieve, because CPS is an instance of monadic style and the
interpreter can be thought of as written in CPS rather than direct
style. This is not the case, since the two monadic operators, unit
and bind, in the user-observable interpreter do not have any special
status. They are just other functions. The interpreter is written in
direct style, because nested function calls are used. For example, in
eval-if, the result of applying base-eval is passed to bind. We
use monadic-style interpreter in this paper because we can change
the language semantics in an interesting way by modifying unit
and bind. Alternatively, we could have inlined the definition of
unit and bind and started from a direct-style interpreter: all the
rest of the story equally holds (except that we can no longer replace
unit and bind because they would not exist any more).



(define (unit x) x)
(define (bind u v) (v u))
(define (base-eval e r)

(cond ((number? e) (unit e))
((boolean? e) (unit e))
((symbol? e) (eval-var e r))
((eq? (car e) ’if) (eval-if e r))
((eq? (car e) ’set!) (eval-set! e r))
((eq? (car e) ’lambda) (eval-lambda e r))
((eq? (car e) ’EM) (eval-EM e r))
((eq? (car e) ’exit) (eval-exit e r))
...
(else (eval-application e r))))

(define (eval-var e r) (cdr (get e r)))
(define (eval-if e r) ; (if pred then else)

(bind (base-eval (car (cdr e)) r)
(lambda (pred)

(if pred
(base-eval (car (cdr (cdr e))) r)
(base-eval (car (cdr (cdr (cdr e)))) r)))))

(define (eval-set! e r) ; (set! var body)
(let ((var (car (cdr e)))

(body (car (cdr (cdr e)))))
(bind (base-eval body r)

(lambda (data)
(set-value! var data r)
(unit var)))))

(define lambda-tag (cons ’lambda ’tag))
(define (eval-lambda e r) ; (lambda params body)

(let ((params (car (cdr e)))
(body (car (cdr (cdr e)))))

(unit (list lambda-tag params body r))))
(define (eval-EM e r) ; (EM exp)

(primitive-EM (car (cdr e))))
(define (eval-exit e r) ; (exit exp)

(bind (base-eval (car (cdr exp)) r)
(lambda (v) (my-error v r))))

(define (eval-application e r) ; (f a b c ...)
(bind (eval-list e r)

(lambda (l) (base-apply (car l) (cdr l) r))))
(define (eval-list e r)

(if (null? e)
(unit ’())
(bind (base-eval (car e) r)

(lambda (val1)
(bind (eval-list (cdr e) r)

(lambda (val2)
(unit (cons val1 val2))))))))

(define (base-apply op args r)
(cond ((procedure? op)

(unit (apply op args)))
((and (pair? op)

(eq? (car op) lambda-tag))
(let ((params (car (cdr op)))

(body (car (cdr (cdr op))))
(env (car (cdr (cdr (cdr op))))))

(base-eval body
(extend env params args))))

(else
(my-error

(list ’Not ’a ’function: op) r))))
(define (my-error e r)

(write e) (newline) (unit 0))

Figure 1. The metalevel interpreter observed by users

Now that we know how the metalevel interpreter is written, we
are ready to modify it. First, we save the original base-eval before
modifying it.1

0-5> (EM (define old-eval base-eval))
0-5: old-eval
0-6>

The standard example is to change base-eval so that it prints the
expression to be evaluated before actually evaluating it:

0-6> (EM (set! base-eval
(lambda (e r)

(write e) (newline) (old-eval e r))))
0-6: base-eval
0-7> (* 2 (+ 1 4))
(* 2 (+ 1 4))
*
2
(+ 1 4)
+
1
4
0-7: 10
0-8>

After replacing base-eval, the user program is interpreted by the
modified interpreter. More examples will be shown in the subse-
quent sections.

4. How to construct Black

Given the user-observable interpreter in a metacircular way, it is
not so difficult to construct a reflective tower by actually executing
the interpreter on top of itself and handling reflective constructs
specially. In fact, Jefferson and Friedman [8] implemented a simple
reflective interpreter in this way. However, it suffers from at least
two problems. First, the number of interpreters in the reflective
tower has to be fixed beforehand. Secondly, the execution of user
programs is extremely slow, due to the interpretive overhead. To
make the metalevel interpreter modifiable, we need to interpret
the metalevel interpreter using another interpreter. Thus, the user
programs are interpreted by two interpreters. Usually, one more
level of interpretation leads to order of magnitude slow down. This
slow down is unavoidable, even if we do not use any reflective
capabilities.

4.1 Interpreted vs. compiled code

To avoid the overhead of double interpretation, triple interpretation,
etc., the Black system introduces distinction between interpreted
code and compiled code. Interpreted code is sensitive to the redefi-
nition of the metalevel interpreter because it is interpreted by it: af-
ter the metalevel interpreter is modified, the code will be executed
under the modified interpreter. On the other hand, compiled code is
insensitive to the redefinition of the metalevel interpreter because it
is already compiled and is directly executed in machine code. Even
if the metalevel interpreter is modified, the compiled code behaves
the same as before.

By distinguishing two kinds of code, it becomes possible to
achieve both the redefinability of metalevel interpreters and effi-
cient execution. When Black is launched, all the functions in the
metalevel interpreter are compiled code. Thus, the user programs
are efficiently interpreted without requiring double interpretation.

1 The metalevel interpreter in Figure 1 does not have define special form,
but it is easy to support it. We will also use other standard special forms in
the paper.



When user programs use reflection and modify a part of the inter-
preter, that modified part is replaced with an interpreted code. The
point here is that until the metalevel interpreter is modified, user
programs are interpreted efficiently, and even after it is modified,
since only modified part is replaced with an inefficient interpreted
code, most parts of the interpreter remain efficient compiled code.

With the introduction of compiled code, we no more have to
fix the height of the reflective tower beforehand. When user pro-
grams use reflective capabilities and execute code at the metalevel,
we lazily create the metametalevel interpreter to interpret the user
code. If user goes up further (by a nested use of EM), more inter-
preters are created on demand.

Note that this design of a reflective tower does not keep all the
power of reflection. Even if we go up two levels and modify the
metametalevel interpreter, it does not affect the behavior of the met-
alevel interpreter because it is not interpreted. The introduction of
compiled code means that we keep only the ability to replace the
metalevel interpreter and abandon the ability to modify inner work-
ings of the interpreter (without replacing it) in favor of efficient exe-
cution. More discussion on this point as well as the general method
how to construct (CPS-based) reflective systems is found in [2].

4.2 Hook

The ability to replace the metalevel interpreter of Black is achieved
by inserting hooks whenever a function is called. For example,
eval-applicationmakes three function calls, bind, eval-list,
and base-apply (if we ignore the two calls to primitives):

(define (eval-application e r) ; (f a b c ...)
(bind (eval-list e r)

(lambda (l)
(base-apply (car l) (cdr l) r))))

At each function call, we insert a call to meta-apply as follows:

(define (eval-application e r) ; (f a b c ...)
(meta-apply ’bind

(meta-apply ’eval-list e r)
(lambda (l)

(meta-apply ’base-apply (car l) (cdr l) r))))

The role of meta-apply is to check whether the called function
is redefined or not and call an appropriate function. If it is not,
meta-apply calls the default compiled code directly. If it is re-
defined to a user-defined (interpreted) function, on the other hand,
meta-apply calls the interpreter one level above to interpret the re-
defined interpreted function. This way, meta-apply bridges a gap
between compiled code and interpreted code. The exact definition
of meta-apply is shown in the next section.

Where to insert meta-apply is arbitrary. If we insert it, the
function call becomes sensitive to redefinition. If we do not insert
it, the function call becomes insensitive to redefinition. In the cur-
rent Black implementation, we hook all the evaluator functions and
avoid hooking primitive functions and small environment manipu-
lating functions.

4.3 Shifting levels

In Black, non-level-shifting functions are implemented simply by
inserting meta-apply to appropriate places. The implementation
of level-shifting functions, on the other hand, involves manipu-
lation of levels. Before showing how level-shifting functions are
implemented in Black, we first explain how levels are handled in
Black.

To represent an infinite tower of interpreters, we use a metacon-
tinuation stored in a global variable Mcont. A metacontinuation
consists of a lazy stream containing a pair of an environment and a
continuation for each level, starting from the current level. We use

cons-stream to create a lazy stream (whose tail part is delayed)
and head and tail to extract head and tail parts of a stream (where
the tail part is forced when extracted). Using a metacontinuation,
shift up and down can be implemented as follows:

(define (shift-up code)
(let ((meta-env (car (head Mcont)))

(meta-cont (car (cdr (head Mcont))))
(meta-Mcont (tail Mcont)))

(set! Mcont meta-Mcont)
(code meta-env meta-cont)))

(define-macro (shift-down code env cont)
‘(begin

(set! Mcont (cons (list ,env ,cont) Mcont))
,code))

Shifting up a level is implemented as popping the environment and
continuation at the top of Mcont and executing code at the met-
alevel with the popped values. Shifting down a level is implemented
as pushing the environment and continuation to Mcont before ex-
ecuting code.2 Note that shift-down is implemented as a macro,
since the argument code has to be executed under the new Mcont.

To use these two functions, we somehow need to capture the
current continuation to save it into the metacontinuation and in-
stall a continuation restored from the metacontinuation. The latter
is easy: we just apply the continuation to a result. To accommo-
date the former, we use a control operator shift and maintain an
invariant that the current level is delimited by reset.

Now, level-shifting functions are implemented as follows. See
Figure 2. When meta-apply is called, it first captures and clears
the current continuation using shift. It then shifts up one level and
checks whether the called function is redefined or not by consulting
the metalevel environment mr. If the called function is bound to a
procedure, it means that it is a (default) compiled function. In this
case, it is applied to the arguments in the original level under the
original continuation. If the called function is not a procedure, it
means that it is replaced with a user-defined closure. In this case,
the closure is interpreted by the metalevel interpreter by calling
base-apply at the metalevel. When the execution of the closure
finishes, the result is passed to the original continuation at the
original level.

Similarly, the execution of eval-EM proceeds by shifting up
to the metalevel and executing the argument of EM by calling
base-eval at the metalevel. When the execution finishes, the re-
sult is passed back to the original continuation at the original level.

Finally, base-apply requires level shifting. Although it is quite
similar to base-apply in Figure 1 (except for the insertion of
meta-apply), it has a new additional case where the applied func-
tion op is not a primitive procedure3 but still a procedure (the sec-
ond branch of cond). This is the case when the applied function is
an evaluator function. In the user-observable interpreter (Figure 1),
base-apply handles both a primitive and an evaluator function in
the same way. In the actual interpreter, however, we need to dis-
tinguish them, because application of evaluator functions causes a
level to shift down.

The shift down at base-apply can be understood as follows.
The application of an evaluator function from a user program oc-
curs in two cases: (1) when a user program calls an evaluator func-
tion explicitly, like (base-eval 3 ’()), and (2) when a part of
the metalevel interpreter is replaced with a user-defined closure,

2 To push the environment and continuation, cons is used instead of
cons-stream. This is because Mcont must refer to the current value of
Mcont rather than the value when the tail part of the new Mcont is extracted.
3 The function primitive-procedure? returns #t (true) if its argument
is a primitive procedure, such as + and car.



(define (meta-apply proc-name . args)
(shift k (shift-up (lambda (mr mk)

(let ((op (cdr (get proc-name mr))))
(if (procedure? op)

(shift-down (k (apply op args))
mr mk)

(let ((x (meta-apply ’base-apply
op args mr)))

(shift-down (k x) mr mk))))))))
(define (eval-EM e r) ; (EM exp)

(shift k (shift-up (lambda (mr mk)
(let ((x (meta-apply ’base-eval

(car (cdr e)) mr)))
(shift-down (k x) mr mk))))))

(define (base-apply op args r)
(cond ((primitive-procedure? op)

(meta-apply ’unit (apply op args)))
((procedure? op) ; evaluator functions
(shift k

(shift-down
(go-up (apply op args))
(get-global-env r) k)))

((and (pair? op)
(eq? (car op) lambda-tag))

... similar to Figure 1 ... )
(else
(meta-apply ’my-error

(list ’Not ’a ’function: op) r))))
(define (go-up x)

(shift-up (lambda (mr mk) (mk x))))

Figure 2. The Black interpreter (level-shifting functions)

and during the execution of that closure, a default compiled eval-
uator function is called, like the call to old-eval from the user-
defined base-eval shown at the end of Section 3. In the former
case, application of an evaluator function means launching a new
interpreter below the current level. In the latter case, since the inter-
pretation of the user-defined closure has finished and the execution
resumes at the original level, the execution moves from the current
level to the level below. In both cases, the level shifts down. To
realize this shift down, base-apply first captures the current con-
tinuation in k and pushes it together with the current (global) envi-
ronment into the metacontinuation (through shift-down). It then
applies op to its argument at the level below. When the execution
finishes, the result is returned back to the current level by passing
it to go-up that returns its argument to the metalevel continuation
(also shown in the figure).

4.4 Example

We can now execute the examples shown in the introduction. Here,
we will demonstrate another example where we replace the two
monadic operators unit and bind. Remember that the implemen-
tation of my-error (and hence the behavior of exit construct
because eval-exit depends on my-error) was unsatisfactory.
There are at least two approaches to remedy the situation. The first
one is to introduce an error value and replace the identity monad
with the error monad, which we demonstrate in this section. This
solution has a benefit that it does not require modification of the
Black system itself, but can be implemented within the ordinary
user program. On the other hand, the system itself remains unsat-
isfactory and it leaves us a question whether it is possible at all
to construct a reflective system in which abortion is handled more
nicely. To address this question, the second solution uses the con-

trol operator shift to discard the current computation, which we
will discuss in the next section.

The first solution is as follows:

> (black)
0-0: start
0-1> (EM (begin

(define error-tag (cons ’error ’()))
(define (raise v) (cons error-tag v))
(set! bind (lambda (v u)

(if (and (pair? v)
(eq? (car v) error-tag))

v
(u v))))

(set! my-error (lambda (e r) (raise e)))))
0-1: my-error
0-2>

We replace the bind operator with the one from an error monad
and introduce a new monadic operator raise to raise an error. The
address of the cons cell for error-tag is used to distinguish an
error value from the ordinary value. If the first argument of bind
turns out to be an error value, the second argument (continuation
of bind) is discarded and the error value is returned. After this
modification, we have the following interaction:

0-2> (* 2 (+ 1 4))
0-2: 10
0-3> ((#t 3) 4)
0-3: ((error) Not a function: #t)
0-4>

If the computation does not raise any error, we obtain the result
as before. If an error occurs, on the other hand, all the rest of the
computation (in the above example, application to 4) is discarded
and the error value is returned.

This scenario is much better than the previous one. However, it
is still not completely satisfactory.

0-4> (exit 0)
0-5: ((error) . 0)
0-6>

Even if we want to exit the current level, we can’t, because exit
is simply a variant of my-error. Instead of exiting the current
level, it prints an error and stays in the same level. To actually
exit the current level, we need to treat my-error as a level-shifting
function.

5. Supporting exit

In this section, we consider how to finish the current level in
my-error. Rather surprisingly, the problem turns out to be not so
easy to solve.

5.1 Simple implementation

At first sight, it appears that we could simply and naturally define
my-error as follows:

(define (my-error e r)
(shift k (shift-up (lambda (mr mk)

(set-value! ’old-env r mr)
(set-value! ’old-cont k mr)
(mk e)))))

To exit the current level, we store the current continuation in k, shift
up one level, and execute the metalevel continuation mk. We can
even memoise the values of r and k in the metalevel environment
mr, so that after exiting to the level above, we can examine the
value of r through the name old-env and resume the aborted



computation by applying old-cont. We then have the following
interaction:

> (black)
0-0: start
0-1> (exit 0)
1-0: 0
1-1> old-cont
1-1: #<procedure #2>
1-2>

The first number in the prompt indicates that we exit to the level 1.
We see that the value old-cont is bound to a procedure. It contains
the aborted baselevel computation. We can resume it by applying
old-cont to a value.

1-2> (old-cont 10)
0-1: 10
0-2>

Because the execution is now back at the baselevel, the first number
of the prompt is 0 again. Furthermore, the second number indicates
that the value passed to old-cont becomes the value of (exit 0).

This capability of exiting the current level and visiting the met-
alevel is particularly useful in the interpreter environment. Rather
than issuing a sequence of expressions as an argument to EM, we
can simply go up one level, modify the metalevel interpreter as we
wish, and go back to the baselevel to see how the modified inter-
preter works. In fact, in our previous work [1], we treated exit as
the main reflective construct.

So far, so good. However, the above definition of my-error
leads to a rather subtle anomaly. The above scenario of going
up and down works well only until the metalevel interpreter is
modified. Suppose that we exit the baselevel again and install
tracing into base-eval as we did in Section 3. We can do it without
using EM, now:

0-2> (exit 0)
1-2: 0
1-3> (define old-eval base-eval)
1-3: old-eval
1-4> (set! base-eval

(lambda (e r)
(write e) (newline) (old-eval e r)))

1-4: base-eval
1-5>

After going back to the baselevel, a trace is displayed as expected.

1-5> (old-cont 0)
0-2: 0
0-3> (* 2 (+ 1 4))
(* 2 (+ 1 4))
*
2
(+ 1 4)
+
1
4
0-3: 10
0-4>

However, anomaly arises when we want to exit again.

0-4> (exit 0)
(exit 0)
0
0-4: 0
0-5>

We can no longer exit the level. Why does it happen?

5.2 Level-shifting anomaly

The level-shifting anomaly of not being able to exit the current
level once we modify the metalevel interpreter stems from the fact
that going up and down are not completely inverse of each other.
Although it is easy to show that shift-up and shift-down are
inverse of each other, their uses in meta-apply and base-apply
are not. There are two cases to consider. First, whenever an
evaluator function calls another compiled evaluator function via
meta-apply, we make a round trip. Does this going up and down
cause any problem? No. After coming back, the state is exactly the
same as before, as we can confirm below. Assume that proc-name
is bound to a compiled function f.

(meta-apply proc-name . args)
-> (shift k (shift-up (lambda (mr mk)

(shift-down (k (apply f args)) mr mk))))
-> (shift k (k (apply f args)))
-> (apply f args)

At the second step, shifting up followed by shifting down is can-
celed. At the last step, we used an axiom for shift [10]: (shift
k (k M)) is equal to M if k does not occur free in M. The details of
the above derivation is not important. What we observe here is that
a call to meta-apply reduces correctly to a call to the correspond-
ing compiled function. In other words, the use of meta-apply in
this setting is harmless.

The second case is more complicated. It happens when a com-
piled function calls a user-defined closure and after possible side-
effects, the closure calls another compiled function as a tail call.
The typical example is the tracing eval:

(set! base-eval
(lambda (e r)

(write e) (newline) (old-eval e r)))

Suppose that this user-defined base-eval is called from a com-
piled function, e.g., a REP loop. When called, base-eval displays
a trace and transfers control to old-eval. In this case, after print-
ing of e is finished, we want the execution to continue at the cur-
rent level as though old-eval was directly called from the original
caller, i.e., the REP loop. In other words, we want to cancel out go-
ing up and down needed to print traces.

However, in the current implementation, the original state is not
completely recovered. Suppose that proc-name is bound to a user-
defined closure op (such as base-eval above).

(meta-apply proc-name . args)
-> (shift k (shift-up (lambda (mr mk)

(let ((x (meta-apply ’base-apply op args mr)))
(shift-down (k x) mr mk)))))

Assuming that base-apply is not redefined, the execution pro-
ceeds by interpreting the body of op. If the body of op calls a com-
piled function f (such as old-eval above) at the tail position, the
execution eventually reaches the second branch of base-apply:

-> (shift k (shift-up (lambda (mr mk)
(let ((x (shift k2

(shift-down
(go-up (apply f args))
(get-global-env mr) k2))))

(shift-down (k x) mr mk)))))

At this point, the continuation bound to k2 is (shift-down (k
2) mr mk), in other words, “go down and execute k.” It is then
stored in the metacontinuation by shift-down. As a result, the
above expression reduces to:

(go-up (apply f args))



where the metalevel continuation (stored in the metacontinuation)
contains additional frame “go down” at the top of its continuation.

Again, the details of this derivation is not important. The point
is that the original call does not reduce to a call to f but it is
wrapped with “go up” at the end of the current continuation, and
the metacontinuation contains “go down” at the beginning. If the
execution of f finishes normally, there arises no problem. The
result is passed to the metalevel and is immediately sent back to
the current level. However, if f aborts, a problem arises. Even if
the current continuation is discarded and the control is transferred
to the metalevel, the metalevel continuation contains superfluous
frame “go down” at the front. Because of this frame, the execution
immediately goes back to the baselevel, prohibiting exit.

5.3 Analysis

Both the “go down” frame in base-apply and the “go up” frame
in meta-apply appear to be necessary. The former is required be-
cause the execution of (apply op args) in base-apply might
finish and return a value (rather than calling another compiled func-
tion in tail position). To properly pass the result to the current level,
the application has to be wrapped by the “go up” frame. The latter
is required for a similar reason. If the execution of (meta-apply
’base-apply op args mr) in meta-apply at the metalevel fin-
ishes and returns a value, it has to be passed to the current level
continuation k after going down.

However, closer inspection of these two functions reveals that
going down in base-apply is split into two cases. One is when a
new level is actually spawned (e.g., a user executes an evaluator
function) and the other is when the execution called from the
level below is finished and the computation goes back to the level
below (e.g., the execution of redefined base-eval is finished and
old-eval is called). The former requires the “go up” frame but the
latter does not because it has the “go down” frame at the top, so we
could instead cancel out the “go down” frame.

Unfortunately, to distinguish these two cases, we need to peek
in the context to see if the closest frame is the “go down” frame.
Such an operation is usually not permitted.

5.4 Solution

To avoid level-shifting anomaly, we need to examine the top frame
of the system stack. The best way to achieve it would be to support
tail-reflection optimization considered in [5], similar in spirit to tail-
call optimization. However, directly supporting tail-reflection opti-
mization requires modification of the underlying Scheme imple-
mentation. Since the optimization is specific to a reflective system,
rather than modifying the Scheme implementation, we emulate the
tail-reflection optimization in this paper by transforming the whole
interpreter into CPS once and for all.

Converting the Black interpreter into CPS spoils some of our
original benefits of having reflection in direct style. All the func-
tions that are exposed for user modification have to be written in
CPS. However, it appears to be the only solution under the environ-
ment where tail-reflection optimization is not supported. The good
news is that we have to do it only once when we build a Black in-
terpreter. Once it is done, we are able to reflect on the metalevel
interpreter written in direct style.

The CPS transformation is mechanical. We use the following
two monadic operators from the continuation monad:

(define (munit x) (lambda (k) (k x)))
(define (mbind u v)

(lambda (k) (u (lambda (x) ((v x) k)))))

and expand all the (serious) nested calls using these operators. For
example, the result of CPS transformation of eval-application
is as follows:

(define (eval-application e r) ; (f a b c ...)
(mbind (meta-apply ’eval-list e r)

(lambda (l0)
(meta-apply ’bind l0

(lambda (l)
(meta-apply ’base-apply

(car l) (cdr l) r))))))

We are tempted to instantiate unit and bind to the ones from
the continuation monad. We would then obtain a CPS interpreter
immediately without modifying the interpreter (except for unit
and bind). It is possible, but it results in a reflective interpreter
where the metalevel interpreter is written in direct style but not in
monadic style. Because unit and bind are given a special status,
they are no longer visible from user programs. We will not take
this approach in this paper to keep the ability to modify monadic
operators.

Level-shifting functions are CPS transformed as in Figure 3. Be-
cause of the CPS transformation, we do not need shift any more,
but the current continuation can be captured simply by lambda
abstraction. Thus, (shift k ...) in Figure 2 is transformed to
(lambda (k) ...) in Figure 3. Likewise, the context of a serious
function call is transformed to an application of the call to its con-
tinuation. For example, in meta-apply, (k (apply op args))
is transformed to ((apply op args) k) and

(let ((x (meta-apply ’base-apply op args mr)))
(shift-down (k x) mr mk))

is transformed to:

((meta-apply ’base-apply op args mr)
(lambda (x) (shift-down (k x) mr mk)))

The CPS transformation of k in my-error is a bit complicated.
It is basically a composition of k and k2, but shift-up and
shift-down are inserted to properly adjust levels.

Because contexts are made explicit as continuations, we can
now examine the top frame of a continuation by defunctionaliz-
ing [14] continuations. See Figure 4. We distinguish the frame “go
down” (lambda (x) (shift-down (k x) mr mk)) by repre-
senting it as a list of its free variables (list k mr mk) (see
the last line of meta-apply and eval-EM and the last part of
my-error in Figure 4). Whenever a continuation is applied to a
value x, we use an apply function (throw k x) as in munit and
my-error. It checks whether the continuation is a list and if it
is, it executes (shift-down (k x) mk mr). Similarly, mbind is
changed to cope with this new frame.

By representing the “go down” frame as a list, it becomes pos-
sible to perform tail-reflection optimization. When we go down a
level at the second branch of base-apply, we use a special opera-
tor shift-down/go-up. The role of this operator is to execute its
first argument one level below with the “go up” continuation, but
if the current continuation is the “go down” frame (list k2 mr
mk), it cancels them out and installs k2 as the continuation of the
level below.

With the above optimization, we can execute all the examples
shown in this paper (except that the last (exit 0) in Section 5.1
is properly handled). We obtained a reflective language where the
user-observable metalevel interpreter is written in direct style and
which allows us to freely exit the current level.

6. Parser example

In this section, we show as a bigger example how a monadic parser
[7] can be implemented by changing the metalevel interpreter.

The idea of a monadic parser is to interpret a context-free gram-



(define (meta-apply proc-name . args)
(lambda (k) (shift-up (lambda (mr mk)

(let ((op (cdr (get proc-name mr))))
(if (procedure? op)

(shift-down ((apply op args) k)
mr mk)

((meta-apply ’base-apply op args mr)
(lambda (x)

(shift-down (k x) mr mk)))))))))
(define (eval-EM e r) ; (EM exp)

(lambda (k) (shift-up (lambda (mr mk)
((meta-apply ’base-eval (car (cdr e)) mr)
(lambda (x) (shift-down (k x) mr mk)))))))

(define (base-apply op args r)
(cond ((primitive-procedure? op)

(meta-apply ’unit (apply op args)))
((procedure? op) ; evaluator functions
(lambda (k)

(shift-down
((apply op args) go-up)
(get-global-env r) k)))

((and (pair? op)
(eq? (car op) lambda-tag))

(let ((params (car (cdr op)))
(body (car (cdr (cdr op))))
(env (car (cdr (cdr (cdr op))))))

(meta-apply ’eval-eval body
(extend env params args))))

(else
(meta-apply ’my-error

(list ’Not ’a ’function: op) r))))
(define (go-up x)

(shift-up (lambda (mr mk) (mk x))))
(define (my-error e r)

(lambda (k) (shift-up (lambda (mr mk)
(set-value! ’old-env r mr)
(set-value! ’old-cont

(lambda (x) (lambda (k2)
(shift-up (lambda (mr2 mk2)

(shift-down (k x) mr2
(lambda (x)

(shift-down (k2 x) mr2 mk2)))))))
mr)

(mk e)))))

Figure 3. The Black interpreter in CPS (level-shifting functions)

mar as a program. For example, consider the following grammar
representing addition and multiplication over numbers.

E ::= T E
′

T ::= N T
′

E
′ ::= + T E

′ | ε T
′ ::= * N T

′ | ε
N ::= number

Following this grammar, we write a parser program as in Figure 5.
The functions e, e2, t, t2, and num correspond to the non-terminals
E, E

′, T , T
′, and N , respectively. When called, these functions

parse an input string (implicitly passed around as a state), and
return all the possible parse trees together with the unparsed strings.
Whether an input string is completely parsed by the grammar can
be judged by checking the unparsed string: if it is an empty string,
the input is completely parsed (see finish).

When defining these functions, we can use several monadic
operators provided by the parser monad. The choice in the grammar
is handled by amb. It tries to parse both the alternatives. When

(define (throw k x)
(if (pair? k)

(let ((k2 (car k))
(mr (car (cdr k)))
(mk (car (cdr (cdr k)))))

(shift-down (throw k2 x) mr mk))
(k x)))

(define (munit x) (lambda (k) (throw k x)))
(define (mbind u v) (lambda (k)

(if (pair? k)
(let ((k2 (car k))

(mr (car (cdr k)))
(mk (car (cdr (cdr k)))))

(u (list
(lambda (x) (shift-up (lambda (mmr mmk)

((v x) (list k2 mmr mmk)))))
mr mk)))

(u (lambda (x) ((v x) k))))))
(define (meta-apply proc-name . args)

(lambda (k) (shift-up (lambda (mr mk)
(let ((op (cdr (get proc-name mr))))

(if (procedure? op)
(shift-down ((apply op args) k)

mr mk)
((meta-apply ’base-apply op args mr)
(list k mr mk)))))))) ; pass a list

(define (eval-EM e r) ; (EM exp)
(lambda (k) (shift-up (lambda (mr mk)

((meta-apply ’base-eval (car (cdr e)) mr)
(list k mr mk)))))) ; pass a list

(define (base-apply op args r)
(cond ((primitive-procedure? op)

(meta-apply ’unit (apply op args)))
((procedure? op) ; evaluator functions
(lambda (k)

(shift-down/go-up ; optimize
(apply op args)
(get-global-env r) k)))

((and (pair? op)
(eq? (car op) lambda-tag))

... the same as Figure 3 ... )
(else
(meta-apply ’my-error

(list ’Not ’a ’function: op) r))))
(define (my-error e r)

(lambda (k) (shift-up (lambda (mr mk)
(set-value! ’old-env r mr)
(set-value! ’old-cont

(lambda (x) (lambda (k2)
(shift-up (lambda (mr2 mk2)

(shift-down (throw k x)
mr2 (list k2 mr2 mk2))))))

mr) ; pass a list
(mk e)))))

(define (shift-down/go-up code r k)
(if (pair? k)

(let ((k2 (car k))
(mr (car (cdr k)))
(mk (car (cdr (cdr k)))))

(shift-down (code k2) mr mk))
(shift-down (code go-up) r k)))

Figure 4. The defunctionalized Black interpreter with tail-
reflection optimization



(define (sat p)
(let ((lst (read-state)))

(cond ((null? lst) (none))
((p (car lst)) (write-state! (cdr lst))

(car lst))
(else (none)))))

(define (item c) (sat (lambda (x) (eq? x c))))
(define (num) (sat number?))
(define (e) ; E = T E2

(let* ((x (t)) (lst (e2)))
(if (null? lst) x (cons ’+ (cons x lst)))))

(define (e2) ; E2 = + T E2 | ε

(amb (let* ((i (item ’+)) (x (t)) (lst (e2)))
(cons x lst))

’()))
(define (t) ; T = Num T2

(let* ((x (num)) (lst (t2)))
(if (null? lst) x (cons ’* (cons x lst)))))

(define (t2) ; T2 = * Num T2 | ε

(amb (let* ((i (item ’*)) (x (num)) (lst (t2)))
(cons x lst))

’()))

(define (finish result)
(if (null? (read-state)) result (none)))

(define (parse grammar lst)
(write-state! lst)
(finish (grammar)))

Figure 5. Monadic parser (baselevel program)

parsing fails, none is used. To obtain the input string, we use
read-state, and the input string is initialized and updated (e.g.,
parsed string is removed) by write-state!.

Compared to the standard monadic parsers, the parser presented
here does not need monadic programming. Since the monadic op-
erators are provided by changing the metalevel interpreter (to be
explained soon), the ordinary constructs such as let* and if are
interpreted in a monadic way. Thus, the surface program does not
have to mention monads at all.

The monadic operators can be implemented easily. After exiting
the current level, we load the program in Figure 6. We first replace
unit and bind with the ones from the parser monad:

M A = String → (A × String) List

We represent the input string as a list of symbols. The start
operator initiates the monadic computation by passing the initial
string. It is used in the REP loop, whose user-observable definition
is as follows:

(define (init-cont env level turn answer)
(write level) (write ’-) (write turn)
(display ": ") (write answer) (newline)
(write level) (write ’-) (write (+ turn 1))
(display "> ")
(let ((ans (start (base-eval (read) env))))

(init-cont env level (+ turn 1) ans)))

The evaluator functions for the new monadic operators follows
in Figure 6. They are registered as special forms by inserting case
branches before eval-application, in other words, before they
are treated as ordinary function calls. We then launch the parser in-
terpreter by calling init-cont, with “parser” as the name of the
level. Suppose that the functions in Figure 5 and Figure 6 are saved
in files "parser-meta.scm" and "parser.scm", respectively.

(set! unit (lambda (x)
(lambda (lst) (list (cons x lst)))))

(set! bind (lambda (u v) (lambda (lst)
(apply append

(map (lambda (p) ((v (car p)) (cdr p)))
(u lst))))))

(set! start (lambda (x) (x ’())))

(define (eval-read-state e r) ; (read-state)
(lambda (lst) ((unit lst) lst)))

(define (eval-write-state! e r);(write-state! exp)
(bind (base-eval (car (cdr e)) r)

(lambda (v)
(lambda (lst) ((unit #f) v)))))

(define (eval-amb e r) ; (amb e1 e2)
(lambda (lst) (append

((base-eval (car (cdr e)) r) lst)
((base-eval (car (cdr (cdr e))) r) lst))))

(define (eval-none e r) ; (none)
(lambda (lst) ’()))

(define old-eval-application eval-application)
(set! eval-application (lambda (e r)

(cond ((eq? (car e) ’read-state)
(eval-read-state e r))

((eq? (car e) ’write-state!)
(eval-write-state! e r))

((eq? (car e) ’amb) (eval-amb e r))
((eq? (car e) ’none) (eval-none e r))
(else (old-eval-application e r)))))

Figure 6. Monadic parser (metalevel modification/extension)

> (black)
0-0: start
0-1> (exit 0)
1-0: 0
1-1> (load "parser-meta.scm")
1-1: done
1-2> (init-cont init-env ’parser 0 ’start)
parser-0: start
parser-1> (load "parser.scm")
parser-1: ((done))
parser-2> (parse e ’(2 * 3 + 4 * 5 * 6 + 7))
parser-2: (((+ (* 2 3) (* 4 5 6) 7)))
parser-3> (exit 0)
1-2: 0
1-3>

The above grammar is unambiguous, but if we implement ambigu-
ous grammar, we will obtain all the possible parse trees.

Although we launched a REP loop in the above example, more
practical approach would be to call (start (base-eval exp
init-env)) where exp is the baselevel parser program (Fig-
ure 5) followed by the main expression to initiate parsing (such
as (parse e ’(2 * 3 + 4 * 5 * 6 + 7)) above). We could
then use the monadic parser whenever we need it, but stay in the
ordinary interpreter otherwise. Furthermore, we could consider op-
timizing (start (base-eval exp init-env)) by specializing
[9] (modified) base-eval with respect to exp, i.e., compiling exp
under the parser semantics defined by the modified base-eval.
Because we could resolve the level-shifting anomaly and fix the
basic framework of the reflective language, it becomes possible to
think of such interesting optimization.



7. Discussion and future direction

7.1 EM vs. exit

In this paper, we have introduced two reflective constructs, EM and
exit. If we used only EM, we would never encounter the level-
shifting anomaly, because we cannot observe the superfluous “go
up” and “go down” frames. Then, do we need exit at all? We be-
lieve yes at least for two reasons. The process of writing a reflective
program consists of two parts: a metalevel program followed by a
baselevel program. If exit was not provided, we have to wrap met-
alevel programs with EM all the time, which is quite cumbersome.
Furthermore, we make mistakes. Proper handling of errors, which
is realized by correct handling of the exit mechanism, is essential
in programming in an interpreter environment.

7.2 Direct style vs. CPS

In the previous work [2], we have already shown how to build a
reflective system where the metalevel interpreter is written in CPS.
Because we can transform any program into CPS, all we can do
with a direct-style Black can be done in the CPS Black. Then,
do we really need a reflective system whose metalevel interpreter
is written in direct style? We believe yes, because there is an
important difference between the two systems. In CPS Black, we
must write the metalevel interpreter in CPS. Otherwise, the exit
mechanism breaks down. In CPS Black, exit is implemented as
throwing away the current continuation. This is possible only when
the metalevel interpreter is properly written in CPS. It does not
work any more if we redefine evaluator functions in direct style.
In other words, the behavior of exit in CPS Black depends on
the user’s writing CPS. In direct-style Black, such danger does not
exist. To put differently, the DS Black makes it possible for the first
time to perform exit at all times.

7.3 Interpreted code vs. compiled code

One of the motivations of this work is to establish a foundation for
efficient implementation of reflective languages. This goal is not
yet achieved. Rather, we have set up the basis on which efficient
implementation is tried. In our previous work on CPS Black, we
have already mentioned the compilation framework of reflective
languages: converting interpreted code into compiled code via par-
tial evaluation [9] of the metalevel interpreter with respect to base-
level program. Since the metalevel interpreter (the language seman-
tics) is modifiable, we cannot construct a fixed compiler because it
depends on the particular language semantics. However, we have
not been able to tackle compilation, because so far we suffered from
the level-shifting anomaly and the restriction that the metalevel in-
terpreter has to be written in CPS. Now that we have solved these
problems, we are ready to consider partial evaluation seriously. An-
other promising approach would be to try traced-based compilation
framework successfully applied to the PyPy project [3] to reduce
interpretive overhead.

8. Conclusion

In this paper, we described the reflective language Black whose
metalevel interpreters are written in direct style. Implementation
of the reflective construct EM was possible by the manipulation of
metacontinuations, but implementation of seemingly simple con-
struct exit turned out to require tail-reflection optimization. We
have achieved the same effect by CPS transforming the metalevel
interpreter once and for all. Although the Black interpreter is now
written in CPS, the user-observable interpreter is in direct style.
Thus, user programs can reflect on the direct-style metalevel inter-
preter. We hope that the resulting system can be a base platform for
the efficient execution of reflective programs in the future.
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