
JFP 15 (5): 653–667, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005605 Printed in the United Kingdom

653

EDUCATIONAL PEARL

A Nanopass framework for compiler education∗

DIPANWITA SARKAR

Microsoft Corporation

(e-mail: dipas@microsoft.com)

OSCAR WADDELL

Abstrax, Inc.

(e-mail: owaddell@abstrax.com)

R. KENT DYBVIG

Indiana University, IN, USA

(e-mail: dyb@cs.indiana.edu)

Abstract

A compiler structured as a small number of monolithic passes is difficult to understand and

difficult to maintain. The steep learning curve is daunting, and even experienced developers

find that modifying existing passes is difficult and often introduces subtle and tenacious bugs.

These problems are especially frustrating when the developer is a student in a compiler

class. An attractive alternative is to structure a compiler as a collection of many fine-grained

passes, each of which performs a single task. This structure aligns the implementation of a

compiler with its logical organization, simplifying development, testing, and debugging. This

paper describes the methodology and tools comprising a framework for constructing such

compilers.

1 Introduction

Production compilers often exhibit a monolithic structure in which each pass

performs several analyses, transformations, and optimizations. An attractive

alternative, particularly in an educational setting, is to structure a compiler as

a collection of many small passes, each of which performs a small part of the

compilation process. This “micropass” structure aligns the implementation of a

compiler with its logical organization, yielding a more readable and maintainable

compiler. Bugs that arise are more easily isolated to a particular task, and adding new

functionality is easier since new code need not be grafted onto existing passes nor

wedged between two logical passes that would have been combined in a monolithic

structure.

∗ A preliminary version of this article was presented at the 2004 International Conference on Functional
Programming.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

654 D. Sarkar et al.

expr −→ constant | (quote datum) | var

| (set! var expr) | (if expr expr) | (if expr expr expr)

| (begin expr expr*) | (lambda (var*) expr expr*)

| (let ((var expr)*) expr expr*)

| (letrec ((var expr)*) expr expr*)

| (primitive expr*) | (expr expr*)

Fig. 1. A small but representative Scheme subset.

Each pass of a micropass compiler performs a single specific task to simplify,

verify, convert, analyze, or improve the code. A simplification pass reduces the

complexity of subsequent passes by translating its input into a simpler intermediate

language, e.g., replacing pattern matching constructs with more primitive code. A

verification pass checks compiler invariants that are not easily expressed within the

grammar, e.g., that all bound variables are unique. A conversion pass makes explicit

an abstraction that is not directly supported by the low-level target language, e.g.,

transforming higher order procedures into explicitly allocated closures. An analysis

pass collects information from the input program and records that information with

annotations in the output program, e.g., annotating each lambda expression with

its set of free variables. An improvement pass attempts to decrease the run time or

resource utilization of the program.

While simplification and conversion passes alter the intermediate language in

some way, each verification or improvement pass produces a program in the same

intermediate language as its input program so that we may selectively enable or

disable individual checks or optimizations simply by not running the corresponding

passes. Verification passes are enabled only during compiler development, where

they can help identify bugs in upstream passes. The ability to disable optimizations

supports compiler switches that trade code quality for compile-time speed and is also

useful for regression testing when optimizations may mask bugs in seldom-executed

portions of other passes.

A few years ago we switched to the micropass structure in our senior- and

graduate-level compiler courses. Students are supported in the writing of their

compilers by several tools: a pattern matcher with convenient notations for recursion

and mapping, macros for expanding the output of each pass into executable code,

a reference implementation of the compiler, a suite of (terminating) test programs,

and a driver. The driver runs the compiler on each of the programs in the test suite

and evaluates the output of each pass to verify that it returns the same result as

the reference implementation. Intermediate-language programs are all represented

as s-expressions, which simplifies both the compiler passes and the driver.

The switch to the micropass methodology and the tools that support it have

enabled our students to write more ambitious compilers. Each student in our one-

semester compiler class builds a 50-pass compiler from the s-expression level to Sparc

assembly code for the subset of Scheme shown in Figure 1. The compiler includes

several optimizations as well as a graph-coloring register allocator. Students in the

graduate course implement several additional optimizations. The passes included in

the compiler for a recent semester are listed in Figure 2. Due to space limitations,

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 655

Week 1: simplification
verify-scheme1

rename-var

remove-implicit-begin1

remove-unquoted-constant
remove-one-armed-if

verify-a1-output1

Week 2: assignment conv.
remove-not
mark-assigned

optimize-letrec2

remove-impure-letrec
convert-assigned

verify-a2-output1

Week 3: closure conversion
optimize-direct-call
remove-anon-lambda
sanitize-binding-forms
uncover-free
convert-closure

optimize-known-call3

uncover-well-known2

optimize-free2

optimize-self-reference2

analyze-closure-size1

lift-letrec

verify-a3-output1

Week 4: canonicalization
introduce-closure-prims
remove-complex-constant
normalize-context

verify-a4-output1

Week 5: encoding/allocation
specify-immediate-repn
specify-nonimmediate-repn

Week 6: start of UIL compiler
verify-uil

Week 7: labels and temps
remove-complex-opera*
lift-letrec-body
introduce-return-point

verify-a7-output1

Week 8: virtual registerizing
remove-nonunary-let
uncover-local
the-return-of-set!
flatten-set!

verify-a8-output1

Week 9: brief digression
generate-C-code4

Week 10: register alloc. setup
uncover-call-live2

optimize-save-placement2

eliminate-redundant-saves2

rewrite-saves/restores2

impose-calling-convention
reveal-allocation-pointer

verify-a10-output1

Week 11: live analysis
uncover-live-1
uncover-frame-conflict
strip-live-1
uncover-frame-move

verify-a11-output1

Week 12: call frames
uncover-call-live-spills
assign-frame-1
assign-new-frame

optimize-fp-assignments2

verify-a12-output1

Week 13: spill code
finalize-frame-locations
eliminate-frame-var
introduce-unspillables

verify-a13-output1

Week 14: register assignment
uncover-live-2
uncover-register-conflict

verify-unspillables1

strip-live-2
uncover-register-move
assign-registers
assign-frame-2
finalize-register-locations

analyze-frame-traffic1

verify-a14-output1

Week 15: assembly
flatten-program
generate-Sparc-code

Fig. 2. Passes assigned during a recent semester, given in running order and grouped roughly

by week and primary task. Notes: 1Supplied by the instructor. 2Challenge passes required

of graduate students, not necessarily in the week shown. 3Actually written during Week 4.
4Not included in final compiler. During Week 6, students also had an opportunity to turn in

updated versions of earlier passes. Week 9 was a short week leading up to spring-break week.

Most passes are run once, but the passes comprising the main part of the register and frame

allocator are repeated until all variables have been given register or frame homes.

we cannot go into the details of each pass, but the pass names are suggestive of

their roles in the compilation process.

The micropass methodology and tools are not without problems, however. The

repetitive code for traversing and rewriting abstract syntax trees can obscure the

meaningful transformations performed by individual passes. In essence, the sheer

volume of code for each pass can cause the students to miss the forest for the trees.

Furthermore, we have learned the importance of writing out grammars describing

the output of each pass as documentation, but the grammars are not enforced.

Thus, it is easy for an unhandled specific case to fall through to a more general

case, resulting in either confusing errors or malformed output to trip up later

passes. Finally, the resulting compiler is slow, which leaves students with a mistaken

impression about the speed of a compiler and the importance thereof.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

656 D. Sarkar et al.

To address these problems, we have developed a “nanopass” methodology and

a domain-specific language for writing nanopass compilers. A nanopass compiler

differs from a micropass compiler in three ways: (1) the intermediate-language

grammars are formally specified and enforced; (2) each pass needs to contain

traversal code only for forms that undergo meaningful transformation; and (3) the

intermediate code is represented more efficiently as records, although all interaction

with the programmer is still via the s-expression syntax. We use the word “nanopass”

to indicate both the intended granularity of passes and the amount of source code

required to implement each pass.

The rest of this paper describes the nanopass methodology and supporting tools.

Section 2 describes the tools that are used to build nanopass compilers. Section 3

presents an example set of language and pass definitions. Section 4 describes the

implementation of nanopass tools. Section 5 discusses related work. Section 6

presents our conclusions and discusses future work.

2 Nanopass tools

This section describes tools for defining new intermediate languages and compiler

passes. These tools comprise a domain-specific language for writing nanopass

compilers and are implemented as extensions of the host language, Scheme, via

the syntax-case macro system (Dybvig et al., 1993). This approach provides access

to the full host language for defining auxiliary procedures and data structures, which

are particularly useful when writing complex passes, such as a register allocation

pass.

2.1 Defining intermediate languages

Intermediate language definitions take the following form:

(define-language name { over tspec+ } where production+)

The optional tspec declarations specify the terminals of the language and introduce

metavariables ranging over the various terminals. Each tspec is of the form

(metavariable+ in terminal)

where the terminal categories are declared externally. A metavariable declaration

for x implicitly specifies metavariables of the form xn , where n is a numeric suffix.

Each production corresponds to a production in the grammar of the intermediate

language.

A production pairs a nonterminal with one or more alternatives, with an optional

set of metavariables ranging over the nonterminal.

({ metavariable+ in } nonterminal alternative+)

Productions may also specify elements that are common to all alternatives using the

following syntax.

({ metavariable+ in } (nonterminal common+) alternative+)

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 657

(define-language L0 over

(b in boolean)

(n in integer)

(x in variable)

where

(Program Expr)

(e body in Expr

b n x

(if e1 e2 e3)

(seq c1 e2) => (begin c1 e2)

(lambda (x . . .) body)

(e0 e1 . . .))
(c in Cmd

(set! x e)

(seq c1 c2) => (begin c1 c2)))

L0 −→ Program

Program −→ Expr

Expr −→ boolean | integer | var

| (if Expr Expr Expr)

| (seq Cmd Expr)

| (lambda (var*) Expr)

| (Expr Expr*)

Cmd −→ (set! var Expr)

| (seq Cmd Cmd)

Fig. 3. A simple language definition and the corresponding grammar.

Common elements may be used to store annotations, e.g., source information or

analysis byproducts, that are common to all subforms of the intermediate language.

Each alternative is a metavariable or parenthesized form declaring an intermediate

language construct, followed by an optional set of production properties property+.

Parenthesized forms typically begin with a keyword and contain substructure with

metavariables specifying the language category into which each subform falls. Since

parenthesized forms are disambiguated by the beginning keyword, at most one

alternative of a production may be a parenthesized form that does not begin with

a keyword. This allows the intermediate language to include applications using the

natural s-expression syntax. Each property is a key , value pair. Properties are used

to specify semantic, type, and flow information for the associated alternative.

Figure 3 shows a simple language definition and the grammar it represents. It

defines metavariables x, b, and n ranging over variables, booleans, and integers,

and defines three sets of productions. The first set defines Program as an Expr.

The second defines metavariables e and body ranging over Expr and declares that

Expr is a boolean, integer, variable reference, if expression, seq expression, lambda

expression, or application. The third defines metavariable c ranging over Cmd and

declares that Cmd is a set! command or seq command.

The semantics of each intermediate language form may be specified implicitly via

its natural translation into the host language, if one exists. In Figure 3, this implicit

translation suffices for booleans, numbers, variable references, lambda, set!, if,

and applications. For seq expressions, the translation is specified explicitly using

the => (translates-to) property. Implicit and explicit translation rules establish the

meaning of an intermediate language program in terms of the host language. This is

an aid to understanding intermediate language programs and provides a mechanism

whereby the output of each pass can be verified to produce the same results as the

original input program while a compiler is being debugged. Explicit translations

can become complex, in which case we often express the translation in terms of a

syntactic abstraction (macro) defined in the host language.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

658 D. Sarkar et al.

2.2 Language inheritance

Consecutive intermediate languages are often closely related due to the fine

granularity of the intervening passes. To permit concise specification of these

languages, the define-language construct supports a simple form of inheritance

via the extends keyword, which must be followed by the name of a base language,

already defined:

(define-language name extends base

{ over { mod tspec }+ }
{ where { mod production }+ })

The terminals and productions of the base language are copied into the new

language, subject to modifications in the over and where sections of the definition,

either of which may be omitted if no modifications to that section are necessary.

Each mod is either +, which adds new terminals and productions, or -, which

removes the corresponding terminals and productions. The example below defines

a new language L1 derived from L0 (Figure 3) by removing the boolean terminal

and Expr alternative and replacing the Expr if alternative with an Expr case

alternative.

(define-language L1 extends L0

over

- (b in boolean)

where

- (Expr b (if e1 e2 e3))

+ (default in Expr

(case x (n1 e1) . . . default)))

Language L1 could serve as the output of a conversion pass that makes language-

specific details explicit en route to a language-independent back end. For example, C

treats zero as false, while Scheme provides a distinct boolean constant #f representing

false. Conditional expressions of either language could be translated into case

expressions in L1 with language-specific encodings of false made explicit.

Language inheritance is merely a notational convenience. A complete language

definition is generated for the new language, and this definition behaves exactly as

if it had been written out fully.

2.3 Defining passes

Passes are specified using a pass definition construct that names the input and output

languages and specifies transformation functions that map input-language forms to

output-language forms:

(define-pass name input-language -> output-language transform∗)

Analysis passes are often run purely for effect, e.g., to collect and record information

about variable usage. For such passes, the special output language void is used.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 659

Similarly, the special output language datum is used when a pass traverses an AST

to compute some more general result, e.g., an estimate of object code size.

Each transform specifies the transformer’s name, a signature describing the

transformer’s input and output types, and a set of clauses implementing the

transformation.

(name : nonterminal arg∗ -> val+

{ (input-pattern { guard } output-expression) }∗)

The input portion of the signature lists a nonterminal of the input language followed

by the types of any additional arguments expected by the transformer. The output

portion lists one or more result types. Unless void or datum is specified in place

of the output language, the first result type is expected to be an output-language

nonterminal.

Each clause pairs an input-pattern and a host-language output-expression that

together describe the transformation of a particular input-language form. Input

patterns are specified using an s-expression syntax that extends the syntax of

alternatives in the production for the corresponding input-language nonterminal.

Subpatterns are introduced by commas, which indicate, by analogy to quasiquote

and unquote (Kelsey et al., 1998), portions of the input form that are not fixed. For

example, (seq (set! ,x ,n) ,e2) introduces three subpatterns binding pattern

variables x, n, and e2. Metavariables appearing within patterns impose further

constraints on the matching process. Thus, the given pattern matches only those

inputs consisting of a seq form whose first subform is a set! form that assigns a

numeric constant to a variable, and whose second subform is an Expr.

Pattern variables are used within input patterns to constrain the matching of

subforms of the input AST. They also establish variable bindings that may be

used in output expressions to refer to input subforms or the results of structural

recursion. The various forms that subpatterns may take are summarized below, where

the metavariable a ranges over alternate forms of an input-language nonterminal

A, and the metavariable b ranges over alternate forms of an output-language

nonterminal B .

1. The subpattern ,a matches if the corresponding input subform is a form of A

and binds a to the matching subform.

2. The subpattern ,[f : a -> b] matches if the corresponding input subform

is a form of A, binds a to the input subform, and binds b to the result of

invoking f on a . An error is signaled if the result type is not a form of B .

3. The subpattern ,[a -> b] is equivalent to ,[f : a -> b] if f is the sole

transformer mapping A → B.

4. The subpattern ,[b] is equivalent to the subpattern ,[a -> b] in contexts

where the input form is constrained by the language definition to be a form

of A, except that no variable is bound to the input subform.

Transformers may accept multiple arguments and return multiple values. To support

these transformers, the syntax ,[f : a x∗ -> b y∗] may be used to supply

additional arguments x∗ to f and bind program variables y∗ to the additional

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

660 D. Sarkar et al.

values returned by f . The first argument must be an AST as must the first return

value, unless void or datum is specified as the output type. Subpatterns 3 and 4

are extended in the same way to support the general forms ,[a x∗ -> b y∗] and

,[b y∗]. Pattern variables bound to input subforms may be referenced among the

extra arguments x∗ within structural-recursion patterns 2 and 3 above. Metavariables

are used within patterns to guide the selection of appropriate transformers for

structural recursion.

When present, the optional guard expression imposes additional constraints on

the matching of the input subform prior to any structural recursion specified by

the subpattern. Pattern variables bound to input forms are visible within guard

expressions. Output expressions may contain templates for constructing output-

language forms using syntax that extends the syntax of alternatives in the production

for the corresponding output-language nonterminal.

New abstract syntax trees are constructed via output templates specified using

an overloaded quasiquote syntax that constructs record instances rather than

list structure. Where commas, i.e. unquote forms, do not appear within an output

template, the resulting AST has a fixed structure. An expression prefixed by a comma

within an output template is a host-language expression that must be evaluated to

obtain an AST to be inserted as the corresponding subform of the new AST being

produced. For example, ‘(if (not ,e1) ,e2 ,e3) constructs a record representing

an if expression with an application of the primitive not as its test and the values

of program variables e1, e2, and e3 inserted where indicated. An error is signaled

if a subform value is not a form of the appropriate output-language nonterminal.

Where ellipses follow an unquote form in an output template, the embedded

host-language expressions must evaluate to lists of objects. For example,

‘(let ((,x ,e) . . .) ,body) requires that x be bound to a list of variables and

e be bound to a list of Expr forms.

Often, a pass performs nontrivial transformation for just a few forms of the

input language. In such cases, the two intermediate languages are closely related

and the new language can be expressed using language inheritance. When two

intermediate languages can be related by inheritance, a pass definition needs to

specify transformers only for those forms that undergo meaningful change, leaving

the implementation of other transformers to a pass expander. The pass expander

completes the implementation of a pass by consulting the definitions of the input and

output languages. Strong typing of passes, transformers, and intermediate languages

helps the pass expander to automate these simple transformations. The pass expander

is an important tool for keeping pass specifications concise. Intermediate language

inheritance and the pass expander together provide a simple and expedient way to

add new intermediate languages and corresponding passes to the compiler.

3 Example: Assignment conversion

Assignment conversion is a transformation that replaces assigned variables with

mutable data structures to make the locations of assigned variables explicit. For

example, assignment conversion would translate the program:

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 661

(lambda (a b) (seq (set! a b) a))

into the following.

(lambda (t b)

(let ((a (cons t #f)))

(seq (set-car! a b) (car a))))

Assignment conversion involves two passes. The first pass, mark-assigned, locates

assigned variables i.e. those appearing on the left-hand side of an assignment, and

marks them by setting a flag in one of the fields of the variable record structure. The

second pass, convert-assigned, rewrites references and assignments to assigned

variables as explicit structure accesses or mutations.

The mark-assigned pass runs for effect only over programs in a language L1 that

may be derived from L0 (Figure 3) by adding the forms let and primapp and the

terminal primitive:

(define-language L1 extends L0

over

+ (pr in primitive)

where

+ (Expr

(let ((x e) . . .) body)

(primapp pr e . . .))
+ (Command

(primapp pr e . . .)))

Since convert-assigned removes the set! form, its output language, L2, is derived

from its input language L1 to reflect this change.

(define-language L2 extends L1 where - (Command (set! x e)))

The code for both passes is shown in Figure 4. Each pass deals with just those

language forms that undergo meaningful transformation and relies on the pass-

expander to supply the code for the remaining cases.

Only one language form, set!, need be handled explicitly by the first of the two

passes. If the input is a set! command, the pass simply sets the assigned flag in

the record structure representing the assigned variable and recursively processes the

right-hand-side expression via the ,[·] syntax.

The second pass handles three forms explicitly: variable references, lambda

expressions, and assignments. It binds each assigned variable to a pair whose car

is the original value of the variable, replaces each reference to an assigned variable

with a call to car, and replaces each assignment with a call to set-car!.

4 Implementation

From a student’s perspective, a language definition specifies the structure of

an intermediate language in terms of the familiar s-expression syntax. All of

the student’s interactions with the intermediate language occur via this syntax.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

662 D. Sarkar et al.

; mark-assigned runs for effect over programs in language L1, marking each

; assigned variable by setting a flag in its record structure.

(define-pass mark-assigned L1 -> void

(process-command : Command -> void

[(set! ,x ,[e])

(set-variable-assigned! x #t)]))

; convert-assigned produces a program in language L2 from a program in language

; L1, creating an explicit location (pair) for each assigned variable and rewriting

; references and assignments accordingly.

(define-pass convert-assigned L1 -> L2

(process-expr : Expr -> Expr

[,x (variable-assigned x) ‘(primapp car ,x)]

[(lambda (,x . . .) ,[body])

(let-values ([(xi xa xr) (split-vars x)])

‘(lambda (,xi . . .)
(let ((,xa (primapp cons ,xr #f)) . . .)
,body)))])

(process-command : Command -> Command

[(set! ,x ,[e]) ‘(primapp set-car! ,x ,e)]))

; split-vars is used by convert-assigned to introduce temporaries for assigned

; variables.

(define split-vars

(lambda (vars)

(if (null? vars)

(values ’() ’() ’())

(let-values ([(ys xas xrs) (split-vars (cdr vars))])

(if (variable-assigned (car vars))

(let ([t (make-variable ’tmp)])

(values (cons t ys) (cons (car vars) xas) (cons t xrs))

(values (cons (car vars) ys) xas xrs)))))))

Fig. 4. Assignment conversion.

Internally, however, intermediate language programs are represented more securely

and efficiently as record structures (Figure 5).

Intermediate language programs are also evaluable in the host language, using the

translation properties attached to production alternatives. To support these differing

views of intermediate language programs, a language defined via define-language

implicitly defines the following items:

1. a set of record types representing the abstract syntax trees (ASTs) of

intermediate-language programs,

2. a parser mapping s-expressions to record structure,

3. an unparser mapping record structure to s-expressions, and

4. a partial parser mapping s-expression patterns to record schema.

These products are packaged within a module and may be imported where they are

needed. The remainder of this section describes these products and how they are

used.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 663

(lambda (x) (if x (foo x) (bar x)))

#[x.expr.l0 bar] (#[x.expr.l0 x])]]

#[app.expr.l0

#[x.expr.l0 foo] (#[x.expr.l0 x])]

#[x.expr.l0 x]

#[if.expr.l0

#[lambda.program.l0 (x)

#[app.expr.l0

Fig. 5. All compiler-writer interactions are via the s-expression syntax.

(define-record L0 ())

(define-record program L0 ())

(define-record expr L0 ())

(define-record command L0 ())

(define-record b .expr expr (b))

(define-record n .expr expr (n))

(define-record x .expr expr (x))

(define-record if .expr expr (e1 e2 e3))

(define-record seq .expr expr (c1 c2))

(define-record lambda .expr expr (xs body))

(define-record app .expr expr (e0 es))

(define-record set! .command command (x e))

(define-record seq .command command (c1 c2))

Fig. 6. Record definitions generated for L0.

4.1 Record-type definitions

A language definition automatically generates a set of record definitions as illustrated

for language L0 in Figure 6. A base record type is constructed for the language along

with a subtype for each nonterminal. The subtype for each nonterminal declares the

common elements for that nonterminal. A new record type is also created for each

alternative as a subtype of the corresponding nonterminal.

4.2 Parser

Each language definition produces a parser capable of transforming s-expressions

to the corresponding record structure representing the same abstract syntax tree.

The parser for the first input language serves as the first pass of the compiler (after

lexical analysis and parsing) and provides the record-structured input required by

subsequent passes of the compiler. The parsers for other intermediate languages

simplify debugging and experimentation by making it easy to obtain inputs suitable

for any given pass.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

664 D. Sarkar et al.

(define (parser-lang .L0 s-exp)

(define (parse-program s-exp))

(define (parse-expr s-exp)

(if (pair? s-exp)

(cond

[(and (eq? ’seq (car s-exp)) (= 3 (length s-exp)))

(make-seq .expr .L0 .6
(parse-command (cadr s-exp))

(parse-expr (caddr s-exp)))]

[else

(make-anon .7
(parse-expr (car s-exp))

(map parse-expr (cdr s-exp)))])

(cond

[(boolean? s-exp) (make-b .expr .L0 .1 s-exp)]

[else (error)])))

(define (parse-command s-exp))

(parse-program s-exp))

Fig. 7. Parser generated for L0.

Figure 7 shows part of the code for the parser that is generated by the language

definition for L0 in Figure 3. The code for the parser mirrors the language

definition. The language definition produces a set of mutually recursive procedures,

parse-program, parse-expr and parse-command, each handling all the alternatives

of the corresponding nonterminal. The nonterminal parsers operate by recursive

descent on list structured input, following the grammar.

4.3 Unparser

The unparser converts the AST records to their corresponding host-language

executable forms. Like the parser this also serves as a good debugging aid by

allowing the student to view the output of any pass in host-language form.

It enables the student to trace and manually translate programs, e.g., during

the exploratory phase of the development of a new optimization. Each record-

type definition stores the parenthesized form and the host-language form for the

alternative. The host-language form, if different from the parenthesized form, is

expressed as the translates-to production property in the language definition, as in

the case of (seq c1 e2) => (begin c1 e2) in Figure 3. Each record type stores

the information required to unparse instances of itself. As a result, all languages

share one unparse procedure.

The unparser can also translate the record structures into their implied

parenthesized forms, i.e. with no host-language translations, allowing the student to

pretty-print intermediate language code.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 665

4.4 Partial parser

The partial parser is used to support input pattern matching and output construction,

which are described in sections 4.5 and 4.6.

The partial parser translates s-expression syntax representing an input pattern or

output template into its corresponding record schema. A record schema is similar

to a record structure except that the variable parts of the s-expression pattern are

converted to a special list representation that is later used to generate code for the

pass. The structures produced by the partial parser are not visible to the student,

but are used to generate the code for matching the given pattern and constructing

the desired output.

4.5 Matching input

When invoked, a transformer matches its first argument, which must be an AST,

against the input pattern of each clause until a match is found. Clauses are examined

in order, with user-specified clauses preceding any clauses inserted by the pass

expander. This process continues until the input pattern of some clause is found

to match the AST and the additional constraints imposed by guard expressions

and pattern variables are satisfied. When a match is found, any structural recursive

processing is performed and the corresponding output expression is evaluated to

produce a value of the expected result type. An error is signaled if no clause matches

the input.

Input patterns are specified using an s-expression syntax that extends the syntax

of alternatives for the corresponding nonterminal with support for pattern variables

as described in section 2.3.

4.6 Constructing output

When the input to a transformer matches the input pattern of one of the clauses,

the corresponding output expression is evaluated in an environment that binds

the subforms matched by pattern variables to like-named program variables. For

example, if an input language record representing (set! y (f 4)) matches the

pattern (set! ,x ,[e]), the corresponding output expression is evaluated in an

environment that binds the program variables x and e to the records representing

y and the result of processing (f 4). When a pattern variable is followed by an

ellipsis (. . .) in the input pattern, the corresponding program variable is bound to

a matching list of records.

The record constructors available within output templates are determined by the

output language specified in the pass definition. Instantiating the output template

must produce an AST representing a form of the output nonterminal for the

transformer containing the clause. The syntax of output templates is described in

section 2.3.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

666 D. Sarkar et al.

5 Related work

Our automatically generated parsers and unparsers are similar to the language-

specific functions that read and write the language-specific data structures generated

by tree-like intermediate languages in the Zephyr Abstract Syntax Definition

Language (ASDL). ASDL focuses solely on intermediate representation and

therefore does not integrate support for defining passes.

The TIL compiler operates on a series of typed intermediate languages (Tarditi

et al., 1996), allowing the output of each pass to be statically type-checked. The

unparsers produced by our language definitions for each intermediate language

allow us to generate semanticaly equivalent host-language programs with which we

can similarly verify static and dynamic properties, e.g., via control-flow analysis.

Polyglot (Nystrom et al., 2003) ensures that the work required to add new passes

or new AST node types is proportional to the number of node types or passes

affected, doing so with some fairly involved OOP syntax and mechanics. Our pass

expander and our support for language inheritance approach the same goal with

less syntactic and conceptual overhead.

Tm is a macro processor in the spirit of m4 that takes a source code template and

a set of data structure definitions and generates source code (van Reeuwijk, 1992).

Tree-walker and analyzer templates that resemble define-pass have been generated

using Tm (van Reeuwijk, 2003). These templates are low-level relatives of define-pass,

which provides convenient input pattern syntax for matching nested record structures

and output template syntax constructing nested record structures.

The PFC compiler (Allen & Kennedy, 1982) uses macro expansion to fill in

boilerplate transformations, while the object-oriented SUIF system (Aigner et al.,

2000a; Aigner et al., 2000b), which operates on a single intermediate language, allows

boilerplate transformations to be inherited. The nanopass approach achieves effects

similar to these systems but extends them by formalizing the language definitions,

including sufficient information in the language definitions to allow automated

conversion to and from the host language, and separating traversal algorithms from

intermediate language and pass definitions.

6 Conclusions

The nanopass methodology supports the decomposition of a compiler into many

small pieces. This decomposition simplifies the task of understanding each piece

and, therefore, the compiler as a whole. There is no need to “shoe-horn” a new

analysis or transformation into an existing monolithic pass. The methodology also

simplifies the testing and debugging of a compiler, since each task can be tested

independently, and bugs are easily isolated to an individual task.

The nanopass tools enable a compiler student to focus on concepts rather than

implementation details while having the experience of writing a complete and

substantial compiler. While it is useful to have students write out all traversal and

rewriting code for the first few passes to understand the process, the ability to focus

only on meaningful transformations in later passes reduces the amount of tedium

and repetitive code. The code savings are significant for many passes. With our old

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

Nanopass framework 667

tools, remove-not was the smallest pass at 25 lines; it is now seven lines. Similarly,

convert-assigned was 55 lines and is now 20 lines. On the other hand, the sizes

of a few passes cannot be reduced. The code generator, for example, must explicitly

handle every grammar element.

Our experience indicates that fine-grained passes work extremely well in an

educational setting. We are also interested in using the nanopass technology to

construct production compilers, where the overhead of many traversals of the code

may be unacceptable. To address this potential problem, we plan to develop a pass

combiner that can, when directed, fuse together a set of passes into a single pass,

using deforestation techniques (Wadler, 1988) to eliminate rewriting overhead.

Acknowledgements

Dan Friedman suggested the use of small, single-purpose passes and contributed

to an earlier compiler based on this principle. Erik Hilsdale designed and

implemented the matcher we used to implement micropass compilers. Our input-

pattern subpatterns were inspired by this matcher. Jordan Johnson implemented an

early prototype of the nanopass framework. Comments by Matthias Felleisen led to

several improvements in the presentation. Dipanwita Sarkar was funded by a gift

from Microsoft Research University Relations.

References

Aigner, G., Diwan, A., Heine, D., Lam, M., Moore, D., Murphy, B. and Sapuntzakis, C. (2000a)

An overview of the SUIF2 compiler infrastructure. Technical report, Stanford University.

Aigner, G., Diwan, A., Heine, D., Lam, M., Moore, D., Murphy, B. and Sapuntzakis, C.

(2000b) The SUIF2 compiler infrastructure. Technical report, Stanford University.

Allen, J. R. and Kennedy, K. (1982) Pfc: A program to convert fortran to parallel form.

Technical Report MASC-TR82-6, Rice University, Houston, TX.

Dybvig, R. K., Hieb, R. and Bruggeman, C. (1993) Syntactic abstraction in Scheme. Lisp &

Symbolic Computation, 5(4), 295–326.

Kelsey, R., Clinger, W. (eds.) and Rees, J. A. (1998) Revised5 report on the algorithmic

language Scheme. Sigplan Notices, 33(9), 26–76.

Nystrom, N., Clarkson, M. and Myers, A. (2003) Polyglot: An extensible compiler framework

for Java. Proceedings 12th International Conference on Compiler Construction: Lecture Notes

in Computer Science 2622, pp. 138–152. Springer-Verlag.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R. and Lee, P. (1996) TIL: a

type-directed optimizing compiler for ML. Proceedings ACM Sigplan 1996 Conference on

Programming Language Design and Implementation, pp. 181–192.

van Reeuwijk, C. (1992) Tm: a code generator for recursive data structures. Software – Pract.

& Exper. 22(10), 899–908.

van Reeuwijk, C. (2003) Rapid and robust compiler construction using template-based

metacompilation. Proceedings 12th International Conference on Compiler Construction:

Lecture Notes in Computer Science 2622, pp. 247–261. Springer-Verlag.

Wadler, P. (1988) Deforestation: Transforming programs to eliminate trees. ESOP ’88:

European Symposium on Programming: Lecture Notes in Computer Science 300, pp. 344–

358. Springer-Verlag.

https://doi.org/10.1017/S0956796805005605 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005605

