
I I

Supporting Document
Development with Concordia

Janet H. Walker

Symbolics, Inc.

ocumentation projects are
always behind schedule ‘D and over budget, and the

quality of the final result is disappoint-
ing.’’ “Documentation is a problem that
everybody knows about and wishes would
just go away.” “Nobody ever really wants
to write technical documentation; it’s the
boring afterthought after all the hard work
is finished.”

What causes this kind of popular per-
ception about technical documentation?
Why is documentation the unglamorous
part of most projects? Could it be due to
a lack of appropriate technology for sup-
porting the job? While software
developers have long produced software
development environments for them-
selves, few people have addressed the
analogous working environment issues for
technical writers.’,’

It is surprising that software develop-
ment environments and document devel-
opment environments have remained quite
separate, since writing code and
documenting it are really the same kind of
effort at some abstract level. Document
engineering is no less an intellectual chal-
lenge than software engineering, and cer-
tainly offers a greater operational

development paradigm, using the same 11 substrate as the Genera system, and it inte-
grates seamlessly into Genera as a concep-

Concordia amlies tual extension.
I I ~ ~~

Concordia integrates the facilities
needed to create, revise, publish, distrib- ob ject-oriented

techniques to creating,
publishing, and

ute, and maintain very large document sets
with very long life cycles. I t provides an
environment for professional communica- - -
tors to create and maintain large informa-
tion bases of text and graphic information, maintaining

documentation. Using
this highly integrated
working environment,
writers move beyond

conventional limits on
their productivity.

challenge in the absence of appropriate
technology.

To address these issues, we designed and
implemented a development environment
for technical writers. This environment,
which we call Concordia, is an extension

with the capability for large-scale informa-
tion development and delivery. Various
generations of this application have been
used in-house at Symbolics since 1984 for
producing system software documen-
tation.

Authoring environment. In their daily
work writers create, revise, publish, and
maintain a document database. Concordia
has specialized support for the different
phases of a document life cycle: writing,
editing, illustration, design, production,
and maintenance.

For small jobs, a single person could
take on all roles in the process; personal or
desktop publishing systems support this
model of document production. (For the
advantages and disadvantages of desktop
publishing in handling documentation, see
the sidebar “What about desktop publish-

Another version ofthis article appears in Conference of Genera, the software development envi- ing?”) For large documentation jobs,
RecordH‘csS-2’* Hawaii lnternational Conference ronment provided on Symbolics com- tasks are typically performed by different on System Sciences, January 5-8, 1988, Kailua-Kona,
Hawaii. put er^.^ We built it for the same people at different times or by the same

48 ~ 1 8 - 9 1 6 2 / 8 8 / 0 1 ~ - ~ 8 $ 0 1 . ~ 01988 IEEE COMPUTER

person at different times. Accordingly,
Concordia supports the different tasks
with their own software facilities. For
example, the environment separates
specifying book design from editing con-
tent. Likewise, it separates production
from modification of the document’s
overall structure.

Despite separate support for each task,
a single application integrates all of the
environment’s capabilities. As writers’
tasks change at different times in the docu-
ment’s life cycle, they use different abili-
ties of the application. Thanks to the
integration, parts of a developing docu-
ment are always available when needed, in
the format required. Concordia requires
no format conversions to move from one
kind of task to another.

Goals and design
The Concordia development project

had the following broad goals: enhance
productivity of technical writers, speed
time-to-market for documents, streamline
document maintenance processes, reduce
maintenance costs, and increase flexibility
in document delivery options (including
on-line delivery).

Our somewhat abstract productivity
goals became more concrete implementa-
tion projects: a database for document^,^
embodying hypertext5 concepts; a struc-
ture editor, combining concepts from
what-you-see-is-what-you-get editing
(called WYSIWYG) and generic markup
languages6; an object-oriented graphic
editor for manipulating illustrations; con-
figuration tools for managing versions and
postproduction distribution; incremental
development tools to support a group of
writers cooperating on the development of
a large document set; and a flexible inter-
face for on-line inspection of documents
during development and for final delivery
to customers.

Architecture. Concordia is part of the
Symbolics documentation system,
diagrammed in Figure 1. The central com-
ponent is the documentation itself,
arranged in a database of independently
accessible records maintained using Con-
cordia. End users can retrieve information
from the database using Document
Examiner,’ the delivery interface for on-
line lookup. We also deliver the database
as published manuals, in conventional
paper form, and could extend to other
electronic media.

Concordia

k z /
database

Document Examiner Published
Documents

Figure 1. Document system architecture. The central component is the documenta-
tion itself, arranged in a database of independent records. This database is written
using Concordia. End-user retrieval from the database is handled using Document
Examiner, the delivery interface for on-line lookup. The database can be published
as conventional paper manuals or in various electronic forms.

What about desktop publishing?
Doesn’t desktop publishing provide the key to solving all documentation

problems? Desktop publishing has done much to speed up document produc-
tion, with many of the same goals as Concordia-more productive documen-
tation departments producing more cost-effective publications faster.
Effective as it is for the right jobs, desktop publishing is designed for a differ-
ent kind of document than Concordia.

The differences between desktop publishing and Concordia become appar-
ent only when you examine the documents, their life cycles, and the
processes used to produce them. Desktop publishing is designed for short
documents (from five to a practical limit of around 50 pages) produced for a
single use, often by one person. Concordia was designed for large documents
(hundreds or thousands of pages) with very long development and life cycles,
maintained by a team of writers.

In a short document, relatively little time goes into preparing the content of
the document; most of the effort goes into typesetting, layout, and final
production. Desktop publishing moved control over those details into the
hands of the people creating the document, thus reducing delays and mis-
communication and giving people more control over their own products.

half of the project resources, while final production takes much leSS (less
than 10 percent according to some estimates). Therefore, to improve produc-
tivity and reduce costs in large documentation projects, you need to concen-
trate on the development cycle; relatively small gains come from improving
the final production cycle.

Desktop publishing systems differ in the details of their features, but all
have essentially the same goal-good layout of text and graphics on paper
for subsequent reproduction. Many desktop publishing systems have only a
primitive word processor, on the assumption that the actual preparation of
the text happens elsewhere. They provide primarily a publishing facility, with-
out features for assisting large-scale development.

Concordia, on the other hand, changes the nature of document develop-
ment instead of simply speeding up the manual production process.

In large documentation projects, the development (writing) stages take over

January 1988 49

I Yn A
K m n e n t database

section G
A

G
B See also B
h
I ’

F

B

C
D Seealso D

c L

F

Figure 2. Document structure. Independent records in the database are represented
by the ovals labeled A through G . Records can refer to each other by way of links,
which have types. The links labeled i are inclusion links, specifying that the target
record is included at that point; the links labeled r are conventional cross-reference
links. The figure shows what a reader of records A and G would see. The i links
have been replaced by the contents of the target records and the r links have been
replaced by cross-reference sentences.

Document database. Conceptually, the
documentation is organized as a database
of interconnected modules called records.
A record is a unit of information retriev-
able from the database, as well as a seman-
tic unit of the subject matter. Think of
records as semantic cut-and-paste units.

Records contain the subject matter from
which we construct documents. A docu-
ment is formed by linking records
together, much as a program is formed by
the calling structure of subroutines and
functions. Figure 2 diagrams the creation
of a document from a set of records by
means of links between the records. We
use this mechanism for creating conven-
tional hierarchical documents from a col-
lection of independent units. The records

are reusable units and can be used in more
than one document.

Writers decompose subject matter into
records fairly naturally in most cases, since
the divisions depend on the conceptual
structure of the subject matter. Reference
material and definitions of terminology
easily separate into independent records.
Conceptual and tutorial materials are
harder to organize, much the same as in
conventionally written manuals. As a rule
of thumb, writers construct a separate rec-
ord for any item of information that a
reader might need to access directly. Thus
the process of constructing the records for
a document relates to the purpose of the
document and the needs of the audience.
As with software modularity, it takes expe-

rience and judgment to construct well
modularized documents.

This conceptual database is not cur-
rently implemented using any standard
database technology. Instead, we based
our implementation on a set of binary files
containing records and indexes. The data-
base consists of any number of document
sets (one set for each software product),
where each document set contains one or
several books. (A good explanation of the
concepts of document databases appears
in J a m e ~ . ~) Abstractly, we have books
within document sets within the database;
physically, we have records within files
within a collection of configuration-
controlled systems.

End-user delivery interface. We deliver
documentation to customers both on
paper and on line. On-line delivery is more
important because it represents the future
direction for information delivery in the
computer industry.

On-line delivery of the document data-
base is managed by Document Examiner,
a window-based utility closely integrated
with the rest of the Symbolics software
environment. (See the sidebar “An on-line
manual” for further information on
Document Examiner.) In the course of
developing documentation, writers often
use the facilities of Document Examiner to
see how a particular section will appear to
its readers.

Creating and editing
documents with
Concordia

Concordia is a framework organizing
the tasks and activities in the document life
cycle. The three major subactivities are
text editing, graphic editing, and
previewing.

Its editor is the major software compo-
nent of Concordia, since the majority of
time in a complex project is spent in devel-
opment, not in proofing, layout, and
production. Concordia modifies and
extends the standard software editing par-
adigm of Symbolics Genera to suit large-
scale document editing jobs. Figure 3
shows a screen display of Concordia, with
the editor visible. The editor is a structure
editor, capable of manipulating the
records represented within files.*

The text editing component of Concor-
dia, called ConEd, provides editing capa-
bilities that are not WYSIWYG yet do not

50 COMPUTER

Concordia
When you enter Converse for the first tlme, the window is
empty except for a blank message at the top of the
screen. starting with TO:.

You start a message by filling In a recipient after the
lo:, pressing RETURN and then typing the message text.
it Is not necessary to know what machine the person is
using. but If you do know and glve the recipient as
“e . Imt the message is sent considerably faster since
i t Is not necessary to search the namespace to find the
machine. To send the Hnlohed message, press END.

I
8 : KJonesSUonbat
, YOU have a ntnute nou?

*Caption: CA Converse Message About to be Senta

LEE!

When the message has been sent successfully. i t appears
as part of a conversation. A blank message remains at
the top of the screen, and Just below that, 8 heavy black
line dellmlts the message(s) of the conversation you j w t
started. Just below the heevy black line Is another blank
message. but this one has the name of the person to
whom you sent the message filled In. Below this blank
message, separated by 8 thin black line, the message
you just sent appears, with the date and time it was
sent.

cs 2 (Yr i tcrTools F i l l) convl.s& >sys)doc)conu H: (10) I [nore above and bcloul

luffers
lopies

Show Outline m-X
Edit Outline
Show final Form *Yl
Add to Database wl
Check Spelling RYl

Hardcopy l Y l

Show Links From Record m-X
Show Links To Record m-X
Graph Links From Record m-X
Collect Record Name m-X
Create Link m-X

.inks

Lcords
Beginning 0-C-A
End s-c-E
Mark s-c-H
C W S t 4 m-X
Edit s-c-.
K i l l m-X
Add Record Field m-X
Rename m-X
show status 1111
Verify 6-C-S
Add to Database
Remove from Database “11
Show Records in Buffer m-X
Reorder Record. m-X
Move records among buffers m-

Beginning O-C-(
End s-c-)
crest4 s-c-I4
Hake Language form 6-c-i
Remove Markup s-c-
Change Environment
K i l l 0-C-K
Show Definition wl

lu(tup

alltcted Record N u “

Figure 3. Concordia screen display, showing the ConEd document editor. It shows part of a record in which a figure appears.
The right-hand panel is a command menu showing the commands that manipulate record structure and appearance. All of
these commands can be issued via keyboard commands as well as by using the menu.

require writers to maintain document
sources in a conventional textual markup
language. ConEd implements an amalgam
of these capabilities that we call semblance
editing.

WYSIWYG editing requires writers to
attend simultaneously to structure, con-
tent, and appearance. For small jobs,
writers can fail to notice the conceptual
differences between these aspects of a
document. The emphasis in WYSIWYG
editors (in fact, their raison d’Ctre) is on
controlling the appearance of a document.
This partially carries over from the days of
typing pools, when the typist’s only job
was to ensure the good appearance of the
text. Writers of large document sets should
care little about final appearance during
development. What they do care about
during development is being able to

categorize the information for display-
text, headings, tables, lists of various
kinds, and so on.

Concordia uses a generic markup lan-
guage for documentation because of the
importance for writer productivity of
separating content from form. The differ-
ence between this and other edi-
tor/formatter systems based on generic
markup is that users do not edit text inter-
mingled with textual commands. (For
more on formatting, see the sidebar “For-
matter command languages. ”) Instead
they edit a semblance of the final result, as
shown in Figure 4.

The figure contains an example of
markup, indicated by the small boxed
delimiters surrounding a text area on the
screen. Itemize is a specification about the
communications intent of the enclosed text

(and, eventually, its appearance). The list
is indented and set off from the body text
much as it would be in a WYSIWYG edi-
tor. Unlike WYSIWYG, there is no
attempt to show the nature of the high-
lighting or the exact details of the sur-
rounding spacing. What you can’t see
from looking at the figure is that the writer
typed in only the request for markup, not
any of the formatting effects; ConEd
made the decisions about spacing and
indenting.

Rather than doing real-time formatting,
ConEd shows the writer some semblance
of the final formatted result. This provides
the feel of a WYSIWYG editor without
sacrificing any of the power of a generic
markup language. ConEd supplies for-
matting on demand of any region of the
text, for occasions when the semblance is

January 1988 51

not sufficient for the writers’ needs.
In creating documents, writers must

manage four different kinds of infor-
mation:

(1) structure-the organization of
material, for example, in a chap-
ter/section/subsection hierarchy;

(2) content-the subject matter of the
document;

(3) format-the appearance of the
document (in a typographic and
information design sense); and

information not generally part of
what the reader of the document
sees, but relevant nonetheless to
its development.

Writers need assistance with managing

(4) meta-information-auxiliary

each of these four kinds of information.
They should be able to consider each
aspect of a document relatively indepen-
dently of the others, and not have to work
simultaneously at several levels of dis-
course.

Structure editing. In Concordia, records
are the raw material from which docu-

good user interface.
The interface to our on-line manual, called Document

Examiner, is an independent window-based utility closely inte-
grated with the rest of the Symbolics Genera environment.
The window is Uhrldrrcl info panw (subwindows) that help
users manage various aspects of their Interaction with the
dwumetlt. (See tha accompanying figure on Document
Examher‘s screen Bie@ay.)

Document Examiner

Fi le-System nrrom
The followlng condltlon flavors are part of the Symbollcs Llsp
Machlne’s generlc fl le system Interface. These flavors work for all f l le
systems. whether local Llsp Machine fi le systems, remote Llsp
Machlne fl le systems (accessed over a network), or remote fl le
systems of other kinds, such as UNlX or TOPS-20. A l l of them report
errors uniformly.
Some of these condltlon flavors descrlbe situations that csn occur
durlng any fi le system operation. These Include not only the most
basic flavors, such as f s : f l l e - r e q ~ s t - f a l l ~ and fs :data-errw,
but also flavors such ss fs:f l le-not-found and
fs:dlrectory-not-found. Other fl le system condltlon flavors
describe failures related to speclflc f l le system operatlons. such ss
f s : r m ~ m e - f a l l u r r . and fs :ddete - fa l lum. Glven all these
cholces. you have to detumlne what condltlon Is approprlate to
handla, for exsmple In checklng for succeso of a rename operation.
Would fs:raname-faIIU(Y Include csaas where, say, the dlrectory of
the fl le belng renamed Io not found?
The answer to this questlon Is that you should handle
fs:flle-operrtlon-fallucr. fs:raname-fal lure and all other
conditions at that level are slgnalled only for errors that relate
speclflcally to the semantics of the operation Involved. if you csnnot
delete a f i le because th. f l le Is not found. fs:f l le-not-found would
be olgnalled. Suppore you cannot delete tha fl le because Its ‘don‘t
delete switch’ Is set, whlch 1s an error relatlng speclflcally to
deletion. fs :ddete - fa l lum would be slgnalled. Therefore, .Inca you
cannot know whother a condltlon flavor related to an operatlon
requested or soma more general error 1s slgnslled. you usually want
to handle one of the most general flavors of f l le system error.
Under normal condltlons, you would blnd only for
fs:f l le-request-fal lura or fs:fI 1e-op.r i t Ion- fa l lum rather than

tfieww: lbfault Viewer (Rsrdw)

b6hou Candidate. (uord(a) [default ‘netboot.1) f i l e error.
b Shou h r u i o u FiKo-syttu, Errors
b S h w Doounentation F i l o - s p t o n Errors

Current Candidate6
Sccessing Fep Fi les
kcessing Filea
DBF6:SHUTDOYN-DBFS
DBF6:SHUTDOYN-DBFS-FILE-SYSTEM
Errors Loading Binary Fi les
Fi le Lookup
pile-ayaten Errors
Fs:change-property-failure
Fs:creation-failure
Fs:dclete-failure
FS:FILE-ERROR
FS:FILE-LOOKUP-ERROR
Fs:renane-failure
FS:URONG-KIND-OF-FILE
Input Functions
tleasegea to Tape Streans
Neu Group of Condition.: Error. Loadins Binary
6YS:END-OF-FILE
[S e r w r Errorml F i l e 6ymt.m Maintenuloe Menu I t

eoohmu&
FORMATTING-GRAPH-NODE Macro
[Renove Partit ion1 F i l e Syatcn Maintenmu* n
A S C I I Character. Section
The Character Set Section
:COLON-MODE option for DEFPACKROE end WE-P
:MODULE keyword optiona Section
DEFSUSSYSTEN Special Forn
Converting Source t o Veraion Control Section
TOKEN-OR-TYPE Preaentatlon Type
“CStr-3 Section
-cstr-a Section
‘*str’+ Section
-+ Section . File-Syaten error. Section

Show Candidates Help

Show Overview Reselect Candidstss
Show Documentotion Select Viewer

Show Tsble o f Contents Read Pnvsta Document

Documonl €xamlnw s c w clisplay. The vl-r area contains the flrst scwnful of a soction, whoa0 bookm.rlt Is marked in the
bookma- pane. The canYlldCltba plMi ContaYns the results of a sear& for rekv.nt tapla. S ” t “t commands are vislble
intlwcommwdpam.

52 COMPUTER

ments are constructed. Structure is
imposed on the raw material by links from
one record to another (as sketched in Fig-
ure 2). The links are all executable; they tell
the formatter or displayer to include the
target record as if it were part of the origi-
nating record. Figure 4 shows a record
containing literal text as well as a number
of links to other records.

The position of a record within a docu-
ment depends on the links to it. If the top-
level record is called a chapter, then the
records it has links to would be called sec-
tions; the records that those sections link
to would be called subsections, and so on.
These organizational levels are not part of
the records themselves, but rather are
assigned dynamically by the process of

viewing the record-from a reader’s point
of view.

In one sense, a document is a directed
graph structure. Editing this structure
requires a specialized set of commands for
manipulating both records themselves and
the links among them.

Creating a record. Since records are

menu and a command interactor area where the user can type
commands. (Most commands can be invoked with either the
mouse or the keyboard.)

To find relevant sections, users have commands that let
them do the on-line equivalent of looking in the index and
table of contents for the document set. The set of interesting
sections (called candidates) is listed in a menu at the top right
of the screen. Candidates are mouse-sensitive, so a user can
click directly on a name to read it or look at how it fits into the
document set.

of important sections. One area of the screen maintains a
chronological list of the topics that a user has read in the ses-
sion. The bookmarks are mouse-sensitive, so the user can
reselect a topic read previously.

Topics are rarely independent, and part of using a manual
well lies in deciding what to read. Users can request a “peep-
hole” display of context for a topic. A temporary display
graphs the links between a record and other, immediately
related, records. The accompanying figure on Document
Examiner’s overview window shows an examDle of an overview

Anyone using a document needs bookmarks to keep track for a record that appears in two different doc’uments.

Section: ’Using Converse‘
It is included In topics: ‘Converse’, ‘Taiklng to Other Users’
It appears in documents: CMwnunicaticg With Other Users. Genera

Keywords:

See also:

Replying t o h a l l flesseges
Select R11 Conversations by Reference8 (n-x) Zn
Select Conversation by References (H-x) Znail C
Ur i te Conversation (H-M) Converse Connand

User‘s Guide

Sendlng interactive Messages

‘Customizing Converse‘

~p Listener Commands for converse
ending and Rcplylng to Messages with Conve
efaulr Behavior of Convene

sp Listener COmmmIds tor Converse

Show Documentation Select Viewer
Shou Candldates (uord(8) Cdcfwlt * f + \ e errwn’ l) conversations Show Overview Reselcct Candidates

WShou Overvleu (a documentation topic) Uslng Converse Show Table o f Contents Read Private Document
b

Overview window visible in Document Examiner. The overview describes the topic, “Using Converse.” The textual part of the
overview shows the keywords associated with this record and the cross-references that it makes to other records. The diagrams
show the local context for a record, in what section It appears, and what other sections are nearby In the document.

January 1988 53

I Concordia

ectlon "Using Zmall"

Using Zmall

Zmall Is a dlsplay-orlented mall system for Genera.
Uslng Zmall, you can send and recelve electronic mall,
archlve your mall In dlsk flles, and operate on groups of
messages selected accordlng to very flexible crlterla.
Thls tutorlal provides a brlef lntroductlon to the bask
features of Zmall. For a complete descrlptlon of all
Zmall's capabllltles:
4 See the sectlon Zmall Reference Gulde.

Thls sectlon covers the followlng topics: Ill Sendlng a message to another umr.

-
Startlng up the Zmall mall reader.

Readlng mall that other people send to you.

m Include llnk to 'Startlng up Zmall (sectlon)' Ill -
m Include llnk to 'Sendlng Your Mall (sectlon)'

Include llnk to 'Readlng Your Mall (sectlon)'

II I Electronic mall
Irslrr,
lEnd of 'Utlng Zmlll' record

Znacs 2 (Uriterloole Fill) user2.sab >sys>doc>user H: (24) 1 [More aboue and beloul

I luffarr
'opics

Show Outline
Edit Outline
Show Final Form
Add to Database
Check Spelling
Hardcopy

inks
Show Links From Record m-X
Show Links To Record m-X
Graph Links From Record m-X
Collect Record Name m-X
Creak Link m-X

Beginning s-c-A
End 0-C-E
Mar* 0-C-H
Creatc m-X
Edit s-c-.
K i l l m-X
Add Record Field m-X
Rename m-X
show status n i l
VSr ih, 8-c-S
Add to Database n i l
Remove h-om Database
Show Recorda in Euffer m-X
Reorder Records m-X
Hove records among buffera m-

Beginning 8-24
End .-e-)
Create s-c-H
Make Language form s-c-L
Remove Markup .-eA
Ch- Environment
K i l l 0-C-K
Show Definition m i l

&cords

I&up

OLcted Record Names
lanaglng mall collectlons
lperatlons on mall collectlons

Figure 4. ConEd screen, showing a complete record containing appearance markup and links to other records. Small boxed
delimiters (Itemize) show the extent of formatting markup. The vertical spacing and shifted left margin constitute a semblance
of the final formatting effects. When this record is processed from a reader's point of view, the records that are the targets of
the links are included dynamically as sections within this record.

structural rather than textual elements,
writers can't just "type in" new records.
Instead, commands are provided for creat-
ing records, with a template supplying
standard fields and sometimes initial con-
tents for the fields. For example, in creat-
ing a new record for a function, Concordia
fills the argument list field from informa-
tion in the compiled object database. A
number of validation checks run during
record creation ensure against uninten-
tional duplication and spelling errors in
definition names.

Creating links. Again, since the links
between records are structural rather than
textual, ConEd provides commands for
creating and changing them. T o create a
link from one record to another, you place
the cursor at the desired origin of the new
link, click on the Create Link command,

and then supply the target record. You can
type in the target name, but more often
would click on it, either on the main screen
or in the pane of collected record names in
the bottom right corner (Figure 4).

Changing the organization. You change
the organization of a document (for exam-
ple, the order of subsections within a sec-
tion) by changing the order of the links.
You can move a whole subtree of the docu-
ment simply by moving the link to the root
of the subtree. As a result, you can quickly
evaluate a number of different organiza-
tions for material with little risk of becom-
ing confused or inadvertently deleting
material without pasting it back.

Showing relationships between records.
ConEd supplies several commands to help

you visualize the structural relationships
between records. A table of contents
shows the complete subtree below any rec-
ord to help in visualizing the structure.
Other commands show all of the links
from the current record or all of the links
that point to it. Being able to see the links
to a record allows you to manage cross-
references to it.

Selecting a record for editing. Although
you can scroll around in ConEd buffers or
select buffers by name (as in normal text
editing), you can also select records
directly, by name, for editing. ConEd uses
a location database (maintained by the
Concordia compiler) to select a record. It
ensures that the relevant file is in a buffer
(reading it in if necessary), selects the
buffer, and positions the cursor so that the
requested record is visible on the screen.

54 COMPUTER

I Graphlc Editor I Help 1

lecord

Name - I
TYPO - ?F

Record

Link -

Name -
TYPO -
Contents

Kaywords - ...

Iecord

Name -
Contents
Type -

Kaywords - ...

I Undo Redo Skip 1
Kill Drawing Read File Hardcopy
Rename Drawing W r i t e File Done
Select Drawing

Deselect Select All Group
Select Select Region UnorouD
Align Copy/Move Delete Transform
Bury Copy/Tranrform Delete Al l
Change Create Move
Copy Defaults Raise

Center View Refresh
Fit View Reset View Zoom Region Out

Zoom into Region- 1 I Move View Zoom by Factor

Handles: Cmtrol points Control i f selected

Diaolau orid: Yes Ne
Bounding bo8 Box I f selected

6ho; &;e poaition:-Yes No
Quantize nouse poattion: Yea MO
Diaplay rulera: Yes No I

I I
Text ,/

le/& end polnten (s n P : > ~ ~ ~ t ~ f i ~ ~ a . ~ w i ~ . ~ ~ t)
rhts Editor oonnand: Read F i l e (the pathnanc o f a f i l a) P:>Jualker>ut~conuerae.draui~
rhic Edttor connand: Read F i l e (the pathnane of a f i l e [default O:~Jwlker~ut~conuerse.drautna.neueatl) SRP:,papera>ept>Cigurcs.
ring. neucat
Yhic Editor connand:

Figure 5. Graphics editor. The main body of the editor contains a figure being edited. The right-hand panel contains several
kinds of menus, including a command menu, a shape menu, and a control panel for attributes of the editing. Most of the edit-
ing can be performed by typing in commands as well as by mouse selection.

This removes any need to remember file
names or perform textual searches to
locate material to be edited. Instead, you
remember record names-an easier task
aided by substantial on-line help. Record
name presentations on the screen are
mouse-sensitive, so you can click on the
name of a record to select it for editing.
This makes sequential editing from a
marked-up manuscript simple in spite of
the underlying modular structure.

Content editing. Documents usually
consist of text and pictures. (With com-
puter delivery, other media for documen-
tation such as video, sound, and animation
will become feasible as well.) In Concor-
dia, ConEd handles the textual subject
matter; an editor for line illustrations han-
dles the graphic subject matter. Using its
knowledge about record types, Concordia

switches automatically to the editor appro-
priate for the subject matter.

The ConEd editor is the top-level frame-
work for handling all aspects of document
editing; the graphic editor simply prepares
graphical subject matter for incorporation
into the records managed by the text
editor.

The parts of a record that look like text
are text; you use standard text editing com-
mands (as opposed to structure editing
commands) to modify them. ConEd has
sufficient understanding of the compo-
nents of text to manipulate words, sen-
tences, and paragraphs (the units of text)
as well as characters and lines. (ConEd is
an extension of Genera’s Zmacs editor,
which also has these text handling capa-
bilities.)

The parts of a record that look like pic-
tures are pictures. Concordia’s own

graphics editor is an object-oriented edi-
tor for line illustrations. It stores drawings
as structured descriptions rather than as bit
maps to enable flexible editing of structure
instead of pixels. To modify one of these
pictures, you click on it with the Edit com-
mand and Concordia automatically
invokes the graphics editor (see Figure 5) .
Pictures can also be accommodated in a
number of other formats, including Lisp
graphics programs, bit maps, Postscript,
and externally generated pictures (like
those from MacDraw),

Appearance editing. In Concordia, a
markup language controls the appearance
of documents. Unlike most other markup
languages, the markup is not embedded
text strings.

Markup is the term used for non-
procedural descriptions of the generic cat-

January 1988 55

Writers don't have to remember details of standards
for the appearance of various effects, only the kind
of effect they want and its name.

Editlng Is faster because the name specifies many
parameters, like changes In margins, spacing, style,
and placement of bullets. that otherwise would have
to be specified manually.

Writers don't have to waste time on formatting
in the early stages of development.

Subsequent maintainers can see what the original
author meant, not just what the document looked like.

Generic formatting specifications are device-
independent, giving more flexibility and higher quality for
a range of output devices.

Corporate formatting otandardo can be eotabiiohed
and revlsed whenever necessary without affecting
book under development or books already
completed.

Bilou: 0.5 Llnis
Blanklines: Ereat Hinge Hingebreak Hingekeep Ignore Isnored Kept
Indent: -2 Characters
Leftnargin: * Z Characters
Spread: 8.5 Lines
Other Rttribute: en a t t r i b u t e m e
C l i c k on t h t t l i n e t o r e s e t a t t r i b u t e s t o defeulf values,

aborts, QD use- these values
Show Links From Record m-X
Show Links To Record
Graph Links From Record
Collect Record Name
Create Link

Records
Beginning
End
Mark
Create
Edit
K i l l
Add Record Field
Rename
Show Status
Verify
Add t o Database
Remove from Database
Show Records in Buffer
Reorder Records
Move records among buffei

m-X
m-X
m-X
m-X

s-c-A
s-C-E
S-C-H

m-X

m-X
m-X
m-X

wl
8-c-s

"Yl
wl

m-X
m-X

n m-

0-c-.

n v k u p
Beginning S - C 4
End S-C-)
Create S-C-M
Make Language form 6-c-L
Remove Markup S-C--
Change Environment
K i l l S-C-K
Show Definition

Figure 6. Local markup modification in ConEd. The writer has selected the Itemize markup for modification, bringing up a
menu of the attributes involved in its standard definition. After changing and saving the attributes, the changes apply to this
one instance, leaving the standard definition unchanged.

egory of information in some region of
text. (Figure 4 contains examples of
markup.) The markup is delimited visually
by small iconic boxes. These delimiters are
structural rather than textual, meaning
that text editing operations do not apply
to them. For example, the text command
to delete a line does not delete a delimiter
line.

All markup is manipulated by special-
ized commands, some of which appear in
the right-hand menu in the ConEd figures.
Commands are used to add markup to
existing areas of text and to remove either
just the markup or the markup and the
relevant area of text. As a result, all of the
markup in a record is syntactically correct;
no formatting errors can occur later as a
result of missing or extra delimiters (com-
mon errors with text-based embedded

markup formatters).
ConEd itself shows a semblance of what

the final document product will look like.
Bold, italic, and fixed-width typefaces
appear as such in the editor window, rather
than being indicated by font change
characters or embedded notation specify-
ing the typeface. The final format, how-
ever, is only suggested by indentation,
which serves as an aid for checking visually
that the markup includes only the intended
text.

The markup that controls formatting is
backed up by a book design, which defines
the appearance parameters for all markup
used in a book. Markup definitions can be
changed globally (in Concordia's book
design environment) or locally in ConEd
for a particular case. Figure 6 shows the
mechanism by which you would use

ConEd to change the appearance specified
for a particular instance of a highlighted
list. Clicking on one of the markup
delimiters brings up a menu of formatting
attributes to modify. The modifications
are then saved as part of that markup
object.

Handling meta-information. WYSI-
WYG editors require by definition that the
document file contain only the informa-
tion that will appear to the final reader of
the document. They require the rest of the
information associated with a document to
be maintained on paper, informally in
unrelated files, or in people's heads.
Embedded command formatters usually
allow comments as an unstructured way of
capturing some of this information. The
record structure in Concordia provides

56 COMPUTER

I Em “p Concordia

-

Pas- 2/29 Page 3/29
’aae Previewer command: Next Paae
‘a& Previewer command: Next Paie
‘age Previewer command: Set Page (page number [default 61) 2
‘age Prevlewer command:

Figure 7. Hardcopy preview. A page previewer shows an exact facsimile of the placement of lines and page breaks. Spacing
and fonts used in the preview are different from those on the final output device due to differences in resolution. The place-
ment of words in lines, however, is exactly the same, so this previewer can be used for surveying the progress of the layout.
(Note: The text is not intended to be legible because this is used for design purposes, not proofreading.)

fields for storing accessory information
(for example, keywords, auditing infor-
mation, and notes) and, in some cases, for
processing it.

One kind of meta-information stored in
a record is its verification status. Concor-
dia keeps track of whether records have
been formatted since being changed or
changed without being installed in the
database. This status information is used
by various commands to help writers keep
track of their workload.

Viewing and reviewing
documents

At different points in the document life
cycle, writers need different ways of look-

ing at their work. Concordia provides a
number of ways to view a document.

Seeing the reader’s viewpoint. The sem-
blance editing in ConEd gives a good indi-
cation of the formatting structure within
a record. It is often necessary, however, to
look at a record from the perspective of a
reader, with its links expanded. ConEd has
a facility for formatting on demand that
shows a record formatted on the screen as
the eventual reader of it would see it in
Document Examiner or on paper.

Local hardcopy. You can produce hard-
copy of any topic (a record and its expan-
sions) in the database. Whether or not to
use paper is a question of personal prefer-
ence, since paper is not required for any
stage of development.

Preview. During final production of a
paper manual, you must consider the
placement of ink on paper. For this stage,
Concordia provides a page formatter that
shows on the screen a miniature but exact
facsimile of how the document will appear
when printed (see Figure 7). You can iden-
tify badly placed page breaks and poor
formatting decisions (and then fix the
source files) without having to print out
any paper copy at all. The text in this
previewer is not supposed to be legible; it
is used for proofing the overall layout, not
the text.

Final hardcopy. As the last stage in
production, Concordia produces print
masters for each book, expressed in Post-
script.’ The masters contain everything
needed to print a book (front matter, table

January 1988 5 1

of contents, index, figures, running requires effective configuration manage-
heads), leaving very little manual work in ment tools, since manually managing the
final production. files involved in various versions of a large

document set is very difficult. Concordia
uses the system configuration tools (SCT)
in Genera to address these information
management requirements.

Production
Managing the files for a large document

set consisting of one or more books Systems. SCT provides the mechanism

for specifying a document set as a system.
A system is a formal data structure that
manages a set of files and defines the oper-
ations available for those files, such as
editing, formatting, updating, and dis-
tributing.

Incremental update. Large documents
are created by teams of writers and

Formatter command langu
Before WYSIWYG editing and desktop publishing, people

lucky enough to have access to tkmsttaflng camputer sys-
tems used embeddedmmand batch formatars for their

Rles with format-
flag character indi.

s of
Run-
ike

Scrl be?).

.br

.s 1

.Im 5

.i -2
If call-next-method is used in an :around method ...

\beginlist
\item{\bull}
If { jbf call-next-method} is used in an { \bf :around}
method ...
@ be@f$#smiru)
If @b&~bnextmeUlsd] is used in an @b[:around]m.th od...

Many of these formatters had advanced macro and pro-
gramming capabilities and are still in use today because they
haw a number of advantages over the WYStWYG approaches.

There are two bask classes of command languages for

fflcettsns about eppearmcwW a

Dsctarativa languag.0 introduce P level of th8t

simple WYsIwyo, which uses fhe screen as an exact repre
sentation of a single final paper result.

In a writarm specify thMtl"t
for a perWouhr part of the document without epeoifylng .pry OP
thedetallsof 1~~~~~~~ the@
foro list with buMW pwog

urd of theeffect wanted, not

of advantages over sim-
ural formatting lan-

o waste time on formatting in the early

1.
a.
3.

58

-

COMPUTER

engineers whose work can be highly inter-
dependent; sections from one book need
to refer to those in another. Using Concor-
dia, you can add your changes to the data-
base daily (or more often), which makes
those changes available immediately to
anyone else working on the same project.

Version and configuration control. SCT
records the source and update files that
constitute any particular version of a docu-
ment. As a result, document versions and
software versions are coordinated auto-
matically. A particular system version can
be distributed and its files marked to pro-
tect them against deletion.

Evaluation
The document development methodol-

ogy in Concordia has been used in-house
at Symbolics since late 1983. The
documentation group has consisted of
eight writers (on average), one editor, one
supervisor, and one person responsible for
production, each equipped with a Sym-
bolics workstation and software. In this
four-year period, the group has published
three major editions of the Symbolics
document set, ranging in size from 2500
pages (1984) to over 7500 pages (1987).
Each new edition was completely
reprinted. Several minor releases inter-
vened between the major releases, each
with release notes and sometimes newly
added documents.

The writing group members are not the
only users of Concordia. Many software
developers also use Concordia for organ-
izing design documents and for first-draft
reference documentation.

Our approach to document develop-
ment has been particularly successful in
the following areas:

Fast prototyping. New documents
based on existing material can be put
together in days. New organizations for
existing documents can be tried out
quickly and maintained in parallel with the
original.

On-line delivery. A single document
database is used for both on-line delivery
and paper manuals; both media deliver
exactly the same documents. With our dis-
play hardware and Document Examiner
interface, we have found on-line delivery
an acceptable alternative to paper.

Quality enhancement. Since the in-
house engineering community has access
to the document database, documents are
actually in use during development. As a

result, users can report errors and usabil-
ity problems as documentation bugs via
electronic mail. Minor revisions are
immediately available.

Maintenance. Writers can update
documents easily by replacing erroneous
records or by adding new ones, and
updated records are distributed electron-
ically to customers as part of minor
releases. The writing staff can respond
quickly and easily to problem reports
because changes do not result in change
pages. They manage updates with the same
configuration tools as used for software
changes.

We plan to continue using Concordia
for developing documentation at Sym-
bolics, extending it as our needs expand.
We see a number of areas needing further
research and exploration:

(1) Project support. Documentation is
produced by groups of people coordinat-
ing their efforts with other groups of peo-
ple. We need to address further technical
aspects of this coordination.

(2) Understanding modular writing. We
need more research to understand the dif-
ficulties inherent in technical communica-
tion, particularly in the rhetoric of
modular writing.

his approach is feasible for
producing large-scale documen- T tation. Using it, our writers have

become highly productive in a demanding
development environment. 0

Acknowledgments
The current Concordia project team consists

of Richard L. Bryan, Mike McMahon, Dennis
Doughty, Ellen Golden, and Susan Reisler.
Others contributing to the design and implemen-
tation over the last five years include Robert 0.
Mathews, William York, and Kelly Bradford.
Thanks to the documentation group at Sym-
bolics for their adventuring spirit. Particular
thanks are due to Ilene H. Lang, a manager who
took a chance.

References

1. D.E. Engelbart, “Authorship Provisions in
AUGMENT,” Intellectual Leverage: The
Driving Technologies, IEEE Spring
Compcon84, 1984, pp. 465-472.

2. J.H. Walker, “Symbolics Sage: A
Documentation Support System, ” Intellec-
tual Leverage: The Driving Technologies,
IEEE Spring Compcon84, 1984, pp.

3. J.H. Walker et al., “SymbolicsGeneraPro-
gramming Environment,” IEEESoftware,

4. G. James, DocumentDatabases, van Nos-
trand Reinhold, New York, 1985.

5 . J . Conklin, “Hypertext: An Introduction
and Survey,” Computer, Sept. 1987, pp.

6. R. Furuta, J . Scofield, and A. Shaw,
“Document Formatting Systems: Survey,
Concepts, and Issues,’’ Computing Sur-
veys, Vo1.14, 1982, pp. 417-472.

7 . J.H. Walker, “Document Examiner: Deliv-
ery Interface for Hypertext Documents,”
Proc. Hypertext ‘87 Workshop, Chapel
Hill, N.C., Nov. 1987, pp. 307-323.

8. J.H. Walker and R.L. Bryan, “An Editor
for Structured Technical Documents,” in
Protext IV: Proc. 4th Int’l Conf. on Text
Processing Systems, Boole Press, Dublin,
Ireland, 1987.

9. Adobe Systems Inc., PostScript Language
Manual, 1st ed., Palo Alto, Calif., 1984.

478-483.

NOV. 1987, pp. 36-45.

17-41.

Janet H. Walker is a principal member of the
technical staff at Symbolics, Inc. Her research
interests include user interfaces for software and
document development environments.

Walker received the BSc degree from Carle-
ton University, Canada, and the AM and PhD
in cognitive psychology from the University of
Illinois at Urbana-Champaign in 1974. She is a
member of ACM and the Computer Society of
the IEEE.

Readers may write to the author at Symbolics,
Inc., 11 Cambridge Center, Cambridge, MA
02142; jwalker@symbolics.com is her electronic
mail address.

January 1988 59

mailto:jwalker@symbolics.com

