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36.1 INTRODUCTION

There are many issues that should be considered in examining the implications of the
imminent flood of data that will be generated both by the present and by the next
generation of global ‘e-Science’ experiments. The term e-Science is used to represent
the increasingly global collaborations — of people and of shared resources — that will be
needed to solve the new problems of science and engineering [1]. These e-Science prob-
lems range from the simulation of whole engineering or biological systems, to research
in bioinformatics, proteomics and pharmacogenetics. In all these instances we will need
to be able to pool resources and to access expertise distributed across the globe. The
information technology (IT) infrastructure that will make such collaboration possible in
a secure and transparent manner is referred to as the Grid [2]. Thus, in this chapter the
term Grid is used as a shorthand for the middleware infrastructure that is currently being
developed to support global e-Science collaborations. When mature, this Grid middleware
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will enable the sharing of computing resources, data resources and experimental facilities
in a much more routine and secure fashion than is possible at present. Needless to say,
present Grid middleware falls far short of these ambitious goals. Both e-Science and the
Grid have fascinating sociological as well as technical aspects. We shall consider only
technological issues in this chapter.

The two key technological drivers of the IT revolution are Moore’s Law — the expo-
nential increase in computing power and solid-state memory — and the dramatic increase
in communication bandwidth made possible by optical fibre networks using optical ampli-
fiers and wave division multiplexing. In a very real sense, the actual cost of any given
amount of computation and/or sending a given amount of data is falling to zero. Needless
to say, whilst this statement is true for any fixed amount of computation and for the trans-
mission of any fixed amount of data, scientists are now attempting calculations requiring
orders of magnitude more computing and communication than was possible only a few
years ago. Moreover, in many currently planned and future experiments they are also
planning to generate several orders of magnitude more data than has been collected in
the whole of human history.

The highest performance supercomputing systems of today consist of several thousands
of processors interconnected by a special-purpose, high-speed, low-latency network. On
appropriate problems it is now possible to achieve sustained performance of several ter-
aflop per second — a million million floating-point operations per second. In addition,
there are experimental systems under construction aiming to reach petaflop per second
speeds within the next few years [3, 4]. However, these very high-end systems are, and
will remain, scarce resources located in relatively few sites. The vast majority of com-
putational problems do not require such expensive, massively parallel processing but can
be satisfied by the widespread deployment of cheap clusters of computers at university,
department and research group level.

The situation for data is somewhat similar. There are a relatively small number of
centres around the world that act as major repositories of a variety of scientific data.
Bioinformatics, with its development of gene and protein archives, is an obvious example.
The Sanger Centre at Hinxton near Cambridge [5] currently hosts 20 terabytes of key
genomic data and has a cumulative installed processing power (in clusters — not a single
supercomputer) of around 1/2teraflops~!. Sanger estimates that genome sequence data
is increasing at a rate of four times each year and that the associated computer power
required to analyse this data will ‘only’ increase at a rate of two times per year — still
significantly faster than Moore’s Law. A different data/computing paradigm is apparent
for the particle physics and astronomy communities. In the next decade we will see
new experimental facilities coming on-line, which will generate data sets ranging in size
from hundreds of terabytes to tens of petabytes per year. Such enormous volumes of
data exceed the largest commercial databases currently available by one or two orders of
magnitude [6]. Particle physicists are energetically assisting in building Grid middleware
that will not only allow them to distribute this data amongst the 100 or so sites and the
1000 or so physicists collaborating in each experiment but will also allow them to perform
sophisticated distributed analysis, computation and visualization on all or subsets of the
data [7-11]. Particle physicists envisage a data/computing model with a hierarchy of data
centres with associated computing resources distributed around the global collaboration.



THE DATA DELUGE: AN E-SCIENCE PERSPECTIVE 811

The plan of this chapter is as follows: The next section surveys the sources and mag-
nitudes of the data deluge that will be imminently upon us. This survey is not intended
to be exhaustive but rather to give numbers that will illustrate the likely volumes of sci-
entific data that will be generated by scientists of all descriptions in the coming decade.
Section 36.3 discusses issues connected with the annotation of this data with metadata
as well as the process of moving from data to information and knowledge. The need
for metadata that adequately annotates distributed collections of scientific data has been
emphasized by the Data Intensive Computing Environment (DICE) Group at the San
Diego Supercomputer Center [12]. Their Storage Resource Broker (SRB) data manage-
ment middleware addresses many of the issues raised here. The next section on Data
Grids and Digital Libraries argues the case for scientific data digital libraries alongside
conventional literature digital libraries and archives. We also include a brief description of
some currently funded UK e-Science experiments that are addressing some of the related
technology issues. In the next section we survey self-archiving initiatives for scholarly
publications and look at a likely future role for university libraries in providing permanent
repositories of the research output of their university. Finally, in Section 36.6 we discuss
the need for ‘curation’ of this wealth of expensively obtained scientific data. Such digital
preservation requires the preservation not only of the data but also of the programs that
are required to manipulate and visualize it. Our concluding remarks stress the urgent need
for Grid middleware to be focused more on data than on computation.

36.2 THE IMMINENT SCIENTIFIC DATA DELUGE

36.2.1 Introduction

There are many examples that illustrate the spectacular growth forecast for scientific data
generation. As an exemplar in the field of engineering, consider the problem of health
monitoring of industrial equipment. The UK e-Science programme has funded the DAME
project [13] — a consortium analysing sensor data generated by Rolls Royce aero-engines.
It is estimated that there are many thousands of Rolls Royce engines currently in service.
Each trans-Atlantic flight made by each engine, for example, generates about a gigabyte
of data per engine — from pressure, temperature and vibration sensors. The goal of the
project is to transmit a small subset of this primary data for analysis and comparison with
engine data stored in three data centres around the world. By identifying the early onset
of problems, Rolls Royce hopes to be able to lengthen the period between scheduled
maintenance periods thus increasing profitability. The engine sensors will generate many
petabytes of data per year and decisions need to be taken in real time as to how much data
to analyse, how much to transmit for further analysis and how much to archive. Similar
(or larger) data volumes will be generated by other high-throughput sensor experiments
in fields such as environmental and Earth observation, and of course human health-
care monitoring.

A second example from the field of bioinformatics will serve to underline the point [14].
It is estimated that human genome DNA contains around 3.2 Gbases that translates to
only about a gigabyte of information. However, when we add to this gene sequence data,
data on the 100000 or so translated proteins and the 32 000000 amino acids, the relevant
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data volume expands to the order of 200 GB. If, in addition, we include X-ray structure
measurements of these proteins, the data volume required expands dramatically to several
petabytes, assuming only one structure per protein. This volume expands yet again when
we include data about the possible drug targets for each protein — to possibly as many
as 1000 data sets per protein. There is still another dimension of data required when
genetic variations of the human genome are explored. To illustrate this bioinformatic data
problem in another way, let us look at just one of the technologies involved in generating
such data. Consider the production of X-ray data by the present generation of electron
synchrotron accelerators. At 3s per image and 1200 images per hour, each experimental
station generates about 1 terabyte of X-ray data per day. At the next-generation ‘DIA-
MOND’ synchrotron currently under construction [15], the planned ‘day 1’ beamlines will
generate many petabytes of data per year, most of which will need to shipped, analysed
and curated.

From these examples it is evident that e-Science data generated from sensors, satellites,
high-performance computer simulations, high-throughput devices, scientific images and
so on will soon dwarf all of the scientific data collected in the whole history of scientific
exploration. Until very recently, commercial databases have been the largest data collec-
tions stored electronically for archiving and analysis. Such commercial data are usually
stored in Relational Database Management Systems (RDBMS) such as Oracle, DB2 or
SQLServer. As of today, the largest commercial databases range from 10s of terabytes
up to 100 terabytes. In the coming years, we expect that this situation will change dra-
matically in that the volume of data in scientific data archives will vastly exceed that
of commercial systems. Inevitably this watershed will bring with it both challenges and
opportunities. It is for this reason that we believe that the data access, integration and
federation capabilities of the next generation of Grid middleware will play a key role for
both e-Science and e-Business.

36.2.2 Normalization

To provide some sort of normalization for the large numbers of bytes of data we will be
discussing, the following rough correspondences [16] provide a useful guide:

A large novel 1 Mbyte
The Bible 5 Mbytes
A Mozart symphony (compressed) 10 Mbytes
OED on CD 500 Mbytes
Digital movie (compressed) 10 Gbytes
Annual production of refereed journal literature 1 Tbyte
(~20k journals; ~2M articles)

Library of Congress 20 Tbytes
The Internet Archive (10B pages) 100 Tbytes
(From 1996 to 2002) [17]

Annual production of information (print, film, 1500 Pbytes

optical & magnetic media) [18]
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Note that it is estimated that printed information constitutes only 0.003% of the total
stored information content [18].

36.2.3 Astronomy

The largest astronomy database at present is around 10 terabytes. However, new tele-
scopes soon to come on-line will radically change this picture. We list three types of new
‘e-Astronomy’ experiments now under way:

1.

Virtual observatories: e-Science experiments to create ‘virtual observatories’ contain-
ing astronomical data at many different wavelengths are now being funded in the
United States (NVO [19]), in Europe (AVO [20]) and in the United Kingdom (Astro-
Grid [21]). It is estimated that the NVO project alone will store 500 terabytes per year
from 2004.

Laser Interferometer Gravitational Observatory (LIGO): LIGO is a gravitational wave
observatory and it is estimated that it will generate 250 terabytes per year beginning
in 2002 [22].

VISTA: The VISTA visible and infrared survey telescope will be operational from
2004. This will generate 250 GB of raw data per night and around 10 terabytes of
stored data per year [23]. By 2014, there will be several petabytes of data in the
VISTA archive.

36.2.4 Bioinformatics

There are many rapidly growing databases in the field of bioinformatics [5, 24]:

1.

Protein Data Bank (PDB): This is a database of 3D protein structures. At present
there are around 20 000 entries and around 2000 new structures are being added every
12 months. The total database is quite small, of the order of gigabytes.
SWISS-PROT: This is a protein sequence database currently containing around 100 000
different sequences with knowledge abstracted from around 100 000 different scientific
articles. The present size is of the order of tens of gigabytes with an 18% increase
over the last 8 months.

TrEMBL: This is a computer-annotated supplement to SWISS-PROT. It was created
to overcome the time lag between submission and appearance in the manually curated
SWISS-PROT database. The entries in TrEMBL will eventually move to SWISS-
PROT. The current release has over 600000 entries and is updated weekly. The size
is of the order of hundreds of gigabytes.

. MEDLINE: This is a database of medical and life sciences literature (Author, Title,

Abstract, Keywords, Classification). It is produced by the National Library of Medicine
in the United States and has 11.3M entries. The size is of the order of hundreds
of gigabytes.

EMBLnucleotide sequence database: The European Bioinformatics Institute (EBI) in
the United Kingdom is one of the three primary sites for the deposition of nucleotide
sequence data. It contains around 14 M entries of 15 B bases. A new entry is received
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every 10s and data at the 3 centres — in the United States, United Kingdom and
Japan — is synchronized every 24h. The European Molecular Biology Laboratory
(EMBL) database has tripled in size in the last 11 months. About 50% of the data
is for human DNA, 15% for mouse and the rest for a mixture of organisms. The total
size of the database is of the order of terabytes.

6. GeneExpression database: This is extremely data-intensive as it involves image data
produced from DNA chips and microarrays. In the next few years we are likely to
see hundreds of experiments in thousands of laboratories worldwide. Data storage
requirements are predicted to be in the range of petabytes per year.

These figures give an indication of the volume and the variety of data that is currently
being created in the area of bioinformatics. The data in these cases, unlike in some other
scientific disciplines, is a complex mix of numeric, textual and image data. Hence mech-
anisms for curation and access are necessarily complicated. In addition, new technologies
are emerging that will dramatically accelerate this growth of data. Using such new tech-
nologies, it is estimated that the human genome could be sequenced in days rather than
the years it actually took using older technologies [25].

36.2.5 Environmental science

The volume of data generated in environmental science is projected to increase dramati-
cally over the next few years [26]. An example from the weather prediction community
illustrates this point.

The European Centre for Medium Range Weather Forecasting (ECMWF) in Reading,
United Kingdom, currently has 560 active users and handles 40 000 retrieval requests daily
involving over 2000000 meteorological fields. About 4000000 new fields are added
daily, amounting to about 0.5 terabytes of new data. Their cumulative data store now
contains 3 x 10° meteorological fields and occupies about 330 terabytes. Until 1998, the
increase in the volume of meteorological data was about 57% per year; since 1998, the
increase has been 82% per year. This increase in data volumes parallels the increase in
computing capability of ECMWF supercomputers.

This pattern is mirrored in the United States and elsewhere. Taking only one agency,
NASA, we see predicted rises of data volumes of more than tenfold in the five-year period
from 2000 to 2005. The Eros Data Center (EDC) predicts that their data holdings will
rise from 74 terabytes in 2000 to over 3 petabytes by 2005. Similarly, the Goddard Space
Flight Center (GSFC) predicts that its holdings will increase by around a factor of 10,
from 154 terabytes in 2000 to about 1.5 petabytes by 2005. Interestingly, this increase in
data volumes at EDC and GSFC is matched by a doubling of their corresponding budgets
during this period and steady-state staffing levels of around 100 at each site It is estimated
that NASA will be producing 15 petabytes of data by 2007. The NASA EOSDIS data
holdings already total 1.4 petabytes.

In Europe, European Space Agency (ESA) satellites are currently generating around
100 GB of data per day. With the launch of Envisat and the forthcoming launches of
the Meteosat Second Generation satellite and the new MetOp satellites, the daily data
volume generated by ESA is likely to increase at an even faster rate than that of the
NASA agencies.
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36.2.6 Particle physics

The BaBar experiment has created what is currently the world’s largest database: this is
350 terabytes of scientific data stored in an Objectivity database [27]. In the next few
years these numbers will be greatly exceeded when the Large Hadron Collider (LHC)
at CERN in Geneva begins to generate collision data in late 2006 or early 2007 [28].
The ATLAS and CMS experiments at the LHC each involve some 2000 physicists from
around 200 institutions in Europe, North America and Asia. These experiments will need
to store, access and process around 10 petabytes per year, which will require the use
of some 200 teraflops~! of processing power. By 2015, particle physicists will be using
exabytes of storage and petaflops per second of (non-Supercomputer) computation. At
least initially, it is likely that most of this data will be stored in a distributed file system
with the associated metadata stored in some sort of database.

36.2.7 Medicine and health

With the introduction of electronic patient records and improvements in medical imaging
techniques, the quantity of medical and health information that will be stored in digital
form will increase dramatically. The development of sensor and monitoring techniques
will also add significantly to the volume of digital patient information. Some examples
will illustrate the scale of the problem.

The company InSiteOne [29] is a US company engaged in the storage of medical
images. It states that the annual total of radiological images for the US exceeds 420 million
and is increasing by 12% per year. Each image will typically constitute many megabytes
of digital data and is required to be archived for a minimum of five years.

In the United Kingdom, the e-Science programme is currently considering funding a
project to create a digital mammographic archive [30]. Each mammogram has 100 Mbytes
of data and must be stored along with appropriate metadata (see Section 36.3 for a dis-
cussion on metadata). There are currently about 3 M mammograms generated per year in
the United Kingdom. In the United States, the comparable figure is 26 M mammograms
per year, corresponding to many petabytes of data.

A critical issue for such medical images — and indeed digital health data as a whole — is
that of data accuracy and integrity. This means that in many cases compression techniques
that could significantly reduce the volume of the stored digital images may not be used.
Another key issue for such medical data is security — since privacy and confidentiality of
patient data is clearly pivotal to public confidence in such technologies.

36.2.8 Social sciences

In the United Kingdom, the total storage requirement for the social sciences has grown
from around 400 GB in 1995 to more than a terabyte in 2001. Growth is predicted in the
next decade but the total volume is not likely to exceed 10 terabytes by 2010 [31]. The
ESRC Data Archive in Essex, the MIMAS service in Manchester [32] and the EDINA
service in Edinburgh [33] have experience in archive management for social science.
The MIMAS and EDINA services provide access to UK Census statistics, continuous
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government surveys, macroeconomic time series data banks, digital map datasets, biblio-
graphical databases and electronic journals. In addition, the Humanities Research Board
and JISC organizations in the UK jointly fund the Arts and Humanities Data Service [34].
Some large historical databases are now being created. A similar picture emerges in
other countries.

36.3 SCIENTIFIC METADATA, INFORMATION AND
KNOWLEDGE

Metadata is data about data. We are all familiar with metadata in the form of catalogues,
indices and directories. Librarians work with books that have a metadata ‘schema’ contain-
ing information such as Title, Author, Publisher and Date of Publication at the minimum.
On the World Wide Web, most Web pages are coded in HTML. This ‘HyperText Markup
Language’ (HTML) contains instructions as to the appearance of the page — size of head-
ings and so on — as well as hyperlinks to other Web pages. Recently, the XML markup
language has been agreed by the W3C standards body. XML allows Web pages and other
documents to be tagged with computer-readable metadata. The XML tags give some
information about the structure and the type of data contained in the document rather
than just instructions as to presentation. For example, XML tags could be used to give
an electronic version of the book schema given above.

More generally, information consists of semantic tags applied to data. Metadata consists
of semantically tagged data that are used to describe data. Metadata can be organized in
a schema and implemented as attributes in a database. Information within a digital data
set can be annotated using a markup language. The semantically tagged data can then be
extracted and a collection of metadata attributes assembled, organized by a schema and
stored in a database. This could be a relational database or a native XML database such
as Xindice [35]. Such native XML databases offer a potentially attractive alternative for
storing XML-encoded scientific metadata.

The quality of the metadata describing the data is important. We can construct search
engines to extract meaningful information from the metadata that is annotated in docu-
ments stored in electronic form. Clearly, the quality of the search engine so constructed
will only be as good as the metadata that it references. There is now a movement to stan-
dardize other ‘higher-level’ markup languages, such as DAML + OIL [36] that would
allow computers to extract more than the semantic tags and to be able to reason about
the ‘meaning or semantic relationships’ contained in a document. This is the ambitious
goal of Tim Berners-Lee’s ‘semantic Web’ [37].

Although we have given a simple example of metadata in relation to textual informa-
tion, metadata will also be vital for storing and preserving scientific data. Such scientific
data metadata will not only contain information about the annotation of data by semantic
tags but will also provide information about its provenance and its associated user access
controls. These issues have been extensively explored by Reagan Moore, Arcot Rajasekar
and Mike Wan in the DICE group at the San Diego Supercomputer Center [38]. Their
SRB middleware [39] organizes distributed digital objects as logical ‘collections’ distinct
from the particular form of physical storage or the particular storage representation. A
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vital component of the SRB system is the metadata catalog (MCAT) that manages the
attributes of the digital objects in a collection. Moore and his colleagues distinguish four
types of metadata for collection attributes:

e Metadata for storage and access operations

e Provenance metadata based on the Dublin Core [40]

e Resource metadata specifying user access arrangements

e Discipline metadata defined by the particular user community.

In order for an e-Science project such as the Virtual Observatory to be successful, there is
a need for the astronomy community to work together to define agreed XML schemas and
other standards. At a recent meeting, members of the NVO, AVO and AstroGrid projects
agreed to work together to create common naming conventions for the physical quantities
stored in astronomy catalogues. The semantic tags will be used to define equivalent
catalogue entries across the multiple collections within the astronomy community. The
existence of such standards for metadata will be vital for the interoperability and federation
of astronomical data held in different formats in file systems, databases or other archival
systems. In order to construct ‘intelligent’ search engines, each separate community and
discipline needs to come together to define generally accepted metadata standards for
their community Data Grids. Since some disciplines already support a variety of existing
different metadata standards, we need to develop tools that can search and reason across
these different standards. For reasons such as these, just as the Web is attempting to move
beyond information to knowledge, scientific communities will need to define relevant
‘ontologies’ — roughly speaking, relationships between the terms used in shared and well-
defined vocabularies for their fields — that can allow the construction of genuine ‘semantic
Grids’ [41, 42].

With the imminent data deluge, the issue of how we handle this vast outpouring of
scientific data becomes of paramount importance. Up to now, we have generally been able
to manually manage the process of examining the experimental data to identify potentially
interesting features and discover significant relationships between them. In the future,
when we consider the massive amounts of data being created by simulations, experiments
and sensors, it is clear that in many fields we will no longer have this luxury. We therefore
need to automate the discovery process — from data to information to knowledge — as far
as possible. At the lowest level, this requires automation of data management with the
storage and the organization of digital entities. At the next level we need to move towards
automatic information management. This will require automatic annotation of scientific
data with metadata that describes both interesting features of the data and of the storage
and organization of the resulting information. Finally, we need to attempt to progress
beyond structure information towards automated knowledge management of our scientific
data. This will include the expression of relationships between information tags as well
as information about the storage and the organization of such relationships.

In a small first step towards these ambitious goals, the UK GEODISE project [43] is
attempting to construct a knowledge repository for engineering design problems. Besides
traditional engineering design tools such as Computer Aided Design (CAD) systems,
Computational Fluid Dynamics (CFD) and Finite Element Model (FEM) simulations on
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high-performance clusters, multi-dimensional optimization methods and interactive visual-
ization techniques, the project is working with engineers at Rolls Royce and BAESystems
to capture knowledge learnt in previous product design cycles. The combination of tradi-
tional engineering design methodologies together with advanced knowledge technologies
makes for an exciting e-Science research project that has the potential to deliver signif-
icant industrial benefits. Several other UK e-Science projects — the myGrid project [44]
and the Comb-e-Chem project [45] — are also concerned with automating some of the
steps along the road from data to information to knowledge.

36.4 DATA GRIDS AND DIGITAL LIBRARIES

The DICE group propose the following hierarchical classification of scientific data man-
agement systems [46]:

1. Distributed data collection: In this case the data is physically distributed but described
by a single namespace.

2. Data Grid: This is the integration of multiple data collections each with a sepa-
rate namespace.

3. Federated digital library: This is a distributed data collection or Data Grid with ser-
vices for the manipulation, presentation and discovery of digital objects.

4. Persistent archives: These are digital libraries that curate the data and manage the
problem of the evolution of storage technologies.

In this chapter we shall not need to be as precise in our terminology but this classification
does illustrate some of the issues we wish to highlight. Certainly, in the future, we envisage
that scientific data, whether generated by direct experimental observation or by in silico
simulations on supercomputers or clusters, will be stored in a variety of ‘Data Grids’.
Such Data Grids will involve data repositories together with the necessary computational
resources required for analysis, distributed around the global e-Science community. The
scientific data — held in file stores, databases or archival systems — together with a meta-
data catalogue, probably held in an industry standard relational database, will become
a new type of distributed and federated digital library. Up to now the digital library
community has been primarily concerned with the storage of text, audio and video data.
The scientific digital libraries that are being created by global, collaborative e-Science
experiments will need the same sort of facilities as conventional digital libraries — a set
of services for manipulation, management, discovery and presentation. In addition, these
scientific digital libraries will require new types of tools for data transformation, visual-
ization and data mining. We return to the problem of the long-term curation of such data
and its ancillary data manipulation programs below.

The UK e-Science programme is funding a number of exciting e-Science pilot projects
that will generate data for these new types of digital libraries. We have already described
both the ‘AstroGrid’ Virtual Observatory project [21] and the GridPP project [10] that will
be a part of a worldwide particle physics Grid that will manage the flood of data to be
generated by the CERN LHC accelerator under construction in Geneva. In other areas of
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science and engineering, besides the DAME [13] and e-Diamond [30] projects described
above, there are three projects of particular interest for bioinformatics and drug discovery.
These are the myGrid [44], the Comb-e-Chem [45] and the DiscoveryNet [47] projects.
These projects emphasize data federation, integration and workflow and are concerned
with the construction of middleware services that will automatically annotate the experi-
mental data as it is produced. The new generation of hardware technology will generate
data faster than humans can process it and it will be vital to develop software tools and
middleware to support annotation and storage. A further project, RealityGrid [48], is con-
cerned with supercomputer simulations of matter and emphasizes remote visualization and
computational steering. Even in such a traditional High Performance Computing (HPC)
project, however, the issue of annotating and storing the vast quantities of simulation data
will be an important aspect of the project.

36.5 OPEN ARCHIVES AND SCHOLARLY
PUBLISHING

In the United Kingdom, the Higher Education Funding Council, the organization that
provides core funding for UK universities, is looking at the implications of the flood of e-
Science data for libraries on a 10-year timescale. In such a 10-year time-frame, e-Science
data will routinely be automatically annotated and stored in a digital library offering the
‘usual’ digital library services for management, searching and so on, plus some more
specialized ‘scientific data’—oriented services such as visualization, transformation, other
types of search engines and so on. In addition, scientific research in many fields will
require the linking of data, images and text so that there will be a convergence of scien-
tific data archives and text archives. Scientific papers will also routinely have active links
to such things as the original data, other papers and electronic theses. At the moment
such links tend to be transitory and prone to breaking — perhaps the research group Web
address ‘~tony’ stops working when Tony leaves and so on. The Open Archive Initia-
tive [49], which provides software and tools for self-archiving of their research papers by
scientists, addresses this issue to some extent, but this is clearly a large issue with pro-
found implications for the whole future of university libraries. On the matter of standards
and interworking of scientific digital archives and conventional repositories of electronic
textual resources, the recent move of Grid middleware towards Web services [50, 51] is
likely to greatly facilitate the interoperability of these architectures.

Scholarly publishing will presumably eventually make a transition from the present
situation — in which the publishers own the copyright and are therefore able to restrict
the group of people who can read the paper — to a model in which publishers are funded
not for the paper copy but for providing a refereeing service and a curated electronic
journal archive with a permanent URL. The difference between this model (proposed
by Stevan Harnad [52]) and Paul Ginsparg’s ‘Eprint’ archive for physics papers [53] is
that Ginsparg’s model is central and discipline-based, whereas Harnad’s is distributed
and institution-based. Both models depend on publishers to implement the peer review
for the papers. Peer review is essential in order to identify signal from noise in such
public archives. In Harnad’s model, researchers’ institutions pay ‘publishers’ to organize
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the peer reviewing of their research output and to certify the outcome with their journal
name and its established quality standard. The institutions’ research output, both pre-
peer review ‘preprints’ and post-peer review ‘postprints’, are archived in distributed,
interoperable institutional Eprint archives. The Open Archives Initiative is providing a
metadata harvesting protocol that could enable this interoperability. Using open source
archiving software partly sponsored by the Budapest Open Access Initiative of the Soros
Foundation, a growing number of universities in the United States and elsewhere are
setting up Eprint Archives to provide permanent open access to their research. In addition
to archiving their own research output, users also want to be able to search these archives
for related works of others. Using the metadata associated with the archived paper, the OAI
Metadata Harvesting Protocol [54] provides one solution to the problem of constructing
suitable search engines. Any search engine produced in this manner will only be as good as
the metadata associated with the papers [55], so strengthening and extending the metadata
tagging and standards is a task of very high priority.

It seems just a question of time before scholarly publishing makes the ‘Harnad
Switch’ — the outcome that Harnad has for a decade been describing as both optimal
and inevitable. Authors actually want to maximize the impact and uptake of their
research findings by making them accessible to as many would-be users as possible,
rather than having them restricted, as they were in the paper era, to the minority of
wealthy research libraries that can afford the access tolls. The Web has changed publishing
forever and such a transition is inevitable. A similar transformation is likely to affect
university libraries. The logical role for a university library in 10years will surely be
to become the responsible organization that hosts and curates (digitally) all the research
papers produced by the university. It will be the university library that is responsible for
maintaining the digital archive so that the ‘~tony’ link continues to work for posterity.
The Caltech Library System Digital Collections project [56] and the MIT DSpace project
with HP [57] are two interesting exemplars of such an approach. There is also the
interesting issue of how much responsibility individual universities would undertake for
hosting and curating the scientific data produced by their researchers. Presumably, some
universities would act as repositories for the scientific data for a number of university
e-Science ‘collaboratories’, as well as acting as mirror sites for other organizations
in the collaboration. Of course, particular communities will support specialized data
archives — such as those of the EBI [24] and some national research organizations — and
no doubt there will be commercial archives as well. An important issue not considered
here is the question of ownership of data. Since much of the research in universities is
funded by public bodies, there is clearly room for debate as to the ownership — and the
curation costs!

36.6 DIGITAL PRESERVATION AND DATA CURATION

Generating the data is one thing, preserving it in a form so that it can be used by
scientists other than the creators is entirely another issue. This is the process of ‘curation’.
For example, the SWISS-PROT database is generally regarded as the ‘gold standard’ for
protein structure information [58]. Curation is done by a team of 25 full-time curators split
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between the Swiss Bioinformatics Institute and the EBI. This shows how expensive the
curation process is and why it will be necessary to address this support issue — involving
extreme levels of automated, semi-automated and manual annotation and data cleansing. In
addition, preservation of the data will be a crucial aspect of the work of a data repository.
A recent EU/US study [59] recommended the establishment of a ‘Data Rescue Centre’
that would be concerned with research into the longevity of electronic data archives.
The report envisaged that such a centre would examine the issues concerned with the
refreshment, replication, repackaging and transformation of data and become a centre of
much-needed expertise in these technologies.

There are many technical challenges to be solved to ensure that the information gener-
ated today can survive long-term changes in storage media, devices and digital formats.
An introduction to the issues surrounding this problem has been given by Rothenberg [60].
To illustrate these issues we shall briefly summarize a novel approach to long-term preser-
vation recently suggested by Lorie [61]. Lorie distinguishes between the archiving of data
files and the archiving of programs. The archiving of programs is necessary in order that
their original behaviour with the original data set can be reproduced in the future. For
example, it is likely that a significant percentage of the scientific digital data to be pre-
served will be generated directly via some program P. A simple example is a spreadsheet
program. In order to make sense of the data in the future, we need to save the original
program P that was used to create and manipulate the data along with the data itself. Of
course, in one sense the program P is just a bit stream like the data it produces — but
the important difference is that the machine and the operating system required to run P
may no longer exist. Lorie discusses the pros and cons of two proposed solutions to this
problem: ‘conversion’ — copying files and programs to each new system as new systems
are introduced — and ‘emulation’ — saving the data and the program as a bit stream along
with a detailed description of the original machine architecture and a textual description
of what the original program P should do to the data. Lorie then proposes a third approach
based on specifying the program P in terms of instructions for a ‘Universal Virtual Com-
puter’ (UVC). When archiving data, the UVC would be used to archive the methods
that are required to interpret the stored data stream. For archiving a program, the UVC
would be used to specify the functioning of the original computer. It is not clear which
of these three approaches will turn out to be most feasible or reliable. Needless to say, a
solution to these problems is much more than just a technical challenge: all parts of the
community from digital librarians and scientists to computer scientists and IT companies
need to be involved.

36.7 CONCLUDING REMARKS

From the above discussion, it can be seen that the coming digital data deluge will have
profound effects on much of the current scientific infrastructure. Data from a wide variety
of new sources will need to be annotated with metadata, archived and curated so that both
the data and the programs used to transform can be reproduced in the future. e-Scientists
will want to search distributed sources of diverse types of data and co-schedule com-
putation time on the nearest appropriate resource to analyse or visualize their results.
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This vision of Grid middleware will require the present functionality of both SRB [39]
and Globus [62] middleware systems and much more. The present move towards Grid
Services and Open Grid Services Architecture represents a unique opportunity to exploit
synergies with commercial IT suppliers and make such a Grid vision a reality.
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