
64    COMMUNICATIONS OF THE ACM    |   JANUARY 2016  |   VOL.  59  |   NO.  1

practice
DOI:10.1145.2844112

 Article development led by  
       queue.acm.org

We need it, we can afford it,  
and the time is now.

BY PAT HELLAND

THERE IS  AN inexorable trend toward storing and 
sending immutable data. We need immutability 
to coordinate at a distance, and we can afford 
immutability as storage gets cheaper. This article 
offers an amuse-bouche of repeated patterns of 
computing that leverage immutability. Climbing up 
and down the compute stack really does yield a sense 
of déjà vu all over again.

It was not that long ago that computation was 
expensive, disk storage was expensive, DRAM 
(dynamic random access memory) was expensive, but 
coordination with latches was cheap. Now all these 
have changed using cheap computation (with many-
core), cheap commodity disks, and cheap DRAM and 
SSDs (solid-state drives), while coordination with

latches has become harder because 
latch latency loses lots of instruction 
opportunities. Keeping immutable 
copies of lots of data is now affordable, 
and one payoff is reduced coordination 
challenges.

Storage is increasing as the cost per 
terabyte of disk keeps dropping. This 
means a lot of data can be kept for a 
long time. Distribution is increas-
ing as more and more data and work 
are spread across a great distance. 
Data within a data center seems “far 
away.” Data within a many-core chip 
may seem “far away.” Ambiguity is 
increasing when trying to coordinate 
with systems that are far away—more 
stuff has happened since you have 
heard the news. Can you take action 
with incomplete knowledge? Can you 
wait for enough knowledge?

Turtles all the way down.17 As vari-
ous technological areas have evolved, 
they have responded to these trends 
of increasing storage, distribution, 
and ambiguity by using immutable 
data in some very fun ways. This ar-
ticle explores how apps use immu-
tability in their ongoing work, how 
they generate an immutable dataset 
for later offline analysis, how SQL 
can expose and process immutable 
snapshots, and how massively paral-
lel big-data work relies on immutable 
datasets. This leads to looking at the 
ways in which semantically immu-
table dataset may be altered while re-
maining immutable. 

Next, the article considers how up-
datability is layered atop the creation 
of new immutable files via techniques 
such as LSF (log-structured file sys-
tem), COW (copy-on-write), and LSM 
(log-structured merge-tree). How do 
replicated and distributed file systems 
depend on immutability to elimi-
nate anomalies? Hardware folks have 
joined the party by leveraging these 
tricks in SSDs and HDDs (hard-disk 
drives). Immutability is a key archi-
tectural concept at many layers of the 
stack, as shown in Figure 1. 

Finally, the article looks at some of 
the trade-offs of using immutable data.

Immutability 
Changes 
Everything
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Accountants Don’t Use Erasers
Many kinds of computing are append-
only. This section looks at some of the 
ways this is commonly accomplished.

In append-only computing, obser-
vations are recorded forever (or for a 
long time). Derived results are calcu-
lated on demand (or periodically pre-
calculated).

This is similar to a DBMS in which 
transaction logs record all the changes 
made to the database. High-speed ap-
pends are the only way to change the 
log. From this perspective, the contents 
of the database hold a caching of the lat-
est record values in the logs. The truth 
is the log. The database is a cache of a 
subset of the log. That cached subset 
happens to be the latest value of each 
record and index value from the log.

Accounting: Observed and derived 
facts. Accountants don’t use erasers; 
otherwise they may go to jail. All entries 
in a ledger remain in the ledger. Correc-
tions can be made but only by making 

new entries in the ledger. When a com-
pany’s quarterly results are published, 
they include small corrections to the 
previous quarter. Small fixes are OK. 
They are append-only, too.

Some entries describe observed 
facts. For example, receiving a debit or 
credit against a checking account is an 
observed fact. Some entries describe 
derived facts, meaning that based on 
the observations, something new can 
be calculated. For example, amortized 
capital expenses based upon a rate and 
a cost are derived facts. Another exam-
ple is the current bank account balance 
with applied debits and credits.

Append-only distributed single mas-
ter. Single-master computing means 
changes are ordered somehow. The or-
der can come from a centralized master 
or some Paxos-like11 distributed proto-
col providing serial ordering. Changes 
are semantically applied one at a time 
and are layered over their predeces-
sors. New values supersede old ones. 

The granularity of this may be a set of 
records in a relational store or a new 
version of a document. Distributed sin-
gle-master computing means there is a 
space of data (relational records, docu-
ments, export files, and more) that em-
anates from one logical location with 
new versions over time.

Distributed computing “back in 
the day.” Before telephones, people 
used messengers—often kids walking 
through town to deliver the message. 
Alternatively, the postal service deliv-
ered the messages, which took a long 
time. Sometimes people used fancy 
forms with many layers, each a differ-
ent color. They had multiple sections 
on the page. Each participant filled out 
a section (pressing hard with the pen), 
then tore off the back page of the form 
and filed it. Each participant got the 
data needed and added more data to 
the form. Earlier sections could not be 
updated; data could only be appended 
to the end. 
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ferred to as a service.
Data on the inside lives in a trans-

actional world with changes applied 
in a serializable fashion (or something 
close to that).

Data on the outside is prepared as 
messages, files, documents, and/or 
Web pages. These are sent out from a 
service into the world. It is also possi-
ble that outside data has been created 
by some other mechanism than one us-
ing databases.

Data on the outside:
˲˲ is immutable. Once it is written, it is 

never changed.
˲˲ is unlocked. It is not locked in the 

database. A copy is extracted and sent 
outside.

˲˲ has identity. When sent outside, 
these files, documents, and messages 
have a unique identity (perhaps a URL).

˲˲ may be versioned. Updates are not 
updates but new versions with a new 
unique identifier.

Contrasting inside vs. outside. 
There are deep differences in the rep-
resentation, meaning, and usage of in-
side data versus outside data. Increas-
ingly, data is being kept as outside 
(immutable) data (see Figure 2).

Referencing Immutable Data
The dataset is a collection of data with 
a unique ID. Some datasets have struc-
tures that look like a number of tables 
with schema. How are these datasets 
referenced by a relational database, 
and how do relational operators span 
both the DBMS and dataset?

A dataset is a fixed and immutable 
set of tables. The schema for each table 
is captured in the dataset. The con-
tents of each table are captured when 
the dataset is created. Since the dataset 
is immutable, it is created, may be con-
sumed for reading, and then deleted. A 
dataset may be relational, or they may 
have some other representation such 
as a graph, a hierarchy such as JSON 
(JavaScript Object Notation), or any 
other representation (Figure 3). A data-
set is a logical set of immutable tables 
along with its schema.

A dataset may be referenced by 
an RDBMS (relational DBMS). The 
metadata is visible to the DBMS. The 
data can be accessed for a read, even 
though it may not be updated. The 
dataset may be semantically present 
within the relational system even if it 

Before computers, workflow was fre-
quently captured in paper forms with 
multiple parts on the form and multi-
ple pages (for example, “Fill out Part 3 
and keep the goldenrod page from the 
back”). This “distributed computing” 
was append-only. New messages were 
new additions to the form—each was a 
version and each was immutable. You 
were never allowed to overwrite what 
had been written.

Data on the Outside vs. 
Data on the Inside
Surprisingly (to database old-timers), 
not all data is kept in relational data-
base systems. This section (based on 
an earlier paper7) discusses some of 
the implications of unlocking data.

Data on the inside refers to what is 
kept and managed by a classic relation-
al database system and its surrounding 
application code. Sometimes this is re-

Figure 1. Immutability is a key architectural concept at many layers of the stack.

Layers Usages of Immutable Data

Append-only apps App over immutable data: record facts, then derive

App-generated datasets Generate immutable data

Massively parallel big data Read and write immutable datasets

SQL snapshots and datasets Generate immutable data

Subjectively immutable datasets Interpret data as immutable

LSF, LSM, and COW Expose change over immutable files by append

Immutable files Replication of files/blocks without update anomalies

Wear leveling on SSD Change via COW to spread physical update blocks

Shingles on HDD Change via COW to allow large physical rewrites

Figure 2. Characteristics of inside data and outside (immutable) data.

Inside Data Outside Data

Changeable Yes! No! Immutable

Granularity Relational field Document, file, or message

Representation Typically relational Typically semi-structured

Schema Prescriptive Descriptive

Identity No identity: Data by values Identity: URL, Msg#, Doc-ID…

Versioning No versioning: data by value Versions may augment identity

Figure 3. A dataset is a logical set of immutable tables and its schema.

dataset-x

table1 table2

schema

tableN
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is physically stored elsewhere. Because 
the dataset is immutable, there is no 
need for locking and no worries about 
controlling updates.

Relational work on immutable da-
tasets. A functional calculation takes a 
set of inputs and predictably creates a 
set of outputs. This can happen with a 
query against locked or snapshot data 
in a relational database, and it can hap-
pen on a big-data MapReduce-style 
system. In both cases, there is still an 
unchanging collection of data. With 
snapshots or some form of isolation, 
database data becomes semantically 
immutable for the duration of the cal-
culation. With big-data calculations, 
the inputs are typically stored in GFS 
(Google File System) or HDFS (Hadoop 
Distributed File System) files.

There is no semantic obstacle to 
doing JOINs across data stored inside 
a relational database and data stored 
in an external dataset. Locking (or 
snapshot isolation) provides a version 
of the relational database, which may 
be joined. A named and frozen dataset 
may be joined with relational data (see 
Figure 4). You can meaningfully apply 
relational operations across data held 
in a DBMS and data held in an immu-
table dataset.

In some ways, the ability to work 
across immutable datasets and re-
lational databases is surprising. An 
immutable dataset is defined with 
an identity and an optional version. 
Its schema, which describes the 
shape and form of the dataset at the 
time of its creation, is descriptive, 
whereas the schema held in the RD-
BMS is prescriptive.

This tailoring of the schema to 
meld the two connects the schema 
of the dataset (describing its data 
when written) with the schema of the 
RDBMS (describing its data as of the 
snapshot). Also, the JOINs and other 
relational operators must necessar-
ily combine the contents of the data-
set as interpreted as a set of relational 
tables. This sidesteps the notion of 
identity within the dataset and focus-
es exclusively on the tables as inter-
preted as a set of values held within 
rows and columns.

Immutability Is in  
the Eye of the Beholder
A consumer may see a dataset as immuta-

ble even if they change under the covers.
A dataset is semantically immu-

table. It has a set of tables, rows, and 
columns. It may also have semi-struc-
tured data (for example, JSON). It may 
have application-specific data in a pro-
prietary format.

Dataset may be defined as a SELEC-
TION, PROJECTION, or JOIN over a 
previously existing dataset. Semanti-
cally, all that data is now a part of the 
new dataset. 

What is important about a dataset is 
it appears to be unchanging from the 
standpoint of the reader.

Optimizing a dataset for read pat-
terns. Datasets are semantically im-
mutable but can be physically changed. 
You can add an index or two. It is OK to 
denormalize tables to optimize for read 
access. Datasets can be partitioned and 
the pieces placed close to their readers. 
A column-oriented representation of a 
dataset may also make sense.

You can make a copy of a table with 
far fewer columns to optimize for quick 
access (a skinny table). The column val-
ues can be left in both the skinny table 
and fat table.

By watching and monitoring the 
read usage of a dataset, you may realize 
new optimizations (for example, new 
indices) are possible.

Immutability is the backbone of big 
data. Massively parallel computations 
are based on immutable inputs and 
functional calculations. MapReduce3 
and Dryad9 both take immutable files 
as input. The work is cut into pieces, 
each with immutable input. This func-
tional calculation (using immutable 

inputs) is idempotent, making it pos-
sible to fail and restart. Immutability is 
the backbone of big data. MapReduce 
performs functional computations 
over immutable data to create immu-
table outputs. Failure and restart, so 
essential to reliable big data, are based 
on the idempotent nature of functional 
computation over immutable inputs.

Immutability as a semantic prism. 
Datasets show an immutable semantic 
prism, even if the underlying represen-
tation is augmented or completely re-
placed. The King James Bible is, char-
acter for character, immutable—even 
when it is printed in a different font; 
even when digitized; even when accom-
panied by different pictures.

Is a dataset changed if there is a 
lossless transformation to a new sche-
ma representation? Can the new ad-
dress field have more capacity? Can 
the enum values be mapped to a new 
underlying representation? Can the 
data be mapped from UTF-8 to UTF-16 
encoding?

Having the right bits is not 
enough. You have to know how to 
interpret them. For example, “Presi-
dent Bush” had a different meaning 
in 1990 than in 2005. The word “nap-
kin” is interpreted differently in the 
U.S. and the U.K.

Descriptive metadata when immu-
table. When an immutable dataset is 
created, the semantics of the data may 
not be changed. The contents may only 
be described as they are at the time the 
dataset is created.

Most programmers are used to SQL 
DDL (Data Definition Language) sup-

Figure 4. Immutable dataset may be joined with relational data.
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index changes atop earlier versions. The 
new versions can be captured as snap-
shots of the entire database (although 
this would not result in high perfor-
mance). 

Alternatively, the new version can be 
captured as changes to the previous ver-
sion. In this way, a key-value store can be 
built, and a relational database can be 
built atop a key-value store. Records are 
deleted by adding tombstones. Chang-
ing the database is done by adding new 
records to the key-value store.

If a timestamp is added to each new 
version, it is possible to show the state 
of the database at a given point in time. 
This allows the user to navigate the state 
of the database to any older version. On-
going work can see a stable snapshot of 
a version of the database.

LSM: Reorganizing immutable stuff. 
LSM presents a façade of change atop 
immutable files. With an LSM tree,15 
changes to the key-value store are ac-
complished by writing new versions 
of the affected records. These new ver-
sions are logged to an immutable file. 
Periodically, the new versions of the 
key values are sorted by key and written 
to an immutable file known as a Level 
0 file within the LSM tree. Level 0 files 
are merged into a collection of Level 
1 files (typically 10 Level 1 files, each 
containing one-tenth of the key range). 
Similarly, Level 1 files are merged with 
Level 2 files on a 10-to-1 basis. As you 
move down the LSM tree, each level has 
10 times as many files. Reading a record 
typically involves searching one file per 
level. As the LSM files merge, new im-
mutable files with new identities can be 
written. 

Go ahead … have a COW! An LSM 
tree can create changeable data out of 
immutable files by performing a COW. 
The granularity of the copy is typically a 
key-value pair. For a relational database, 
this can be a key-value pair for each re-
cord or each index entry. The changes 
are copied into the log and then into the 
LSM tree (and copied a few more times 
for merges).

High-performance COW happens 
with logging and classic DBMS perfor-
mance techniques. The new versions 
are captured in memory and logged for 
failure recovery. The identity of each log 
file is a unique ID, and the log files are 
immutable. Each new log file can record 
the history of its preceding log files and 

porting dynamic changes in the meta-
data for their tables. This happens at a 
transaction boundary and can prescribe 
a new schema for the existing data. SQL 
DDL can be thought of as prescriptive 
metadata since it is prescribing the rep-
resentation (which may change). Immu-
table datasets have descriptive metadata 
that explains what is there.

Of course, it is possible to create a 
new dataset that refers to one or more 
existing datasets in order to create a 
new representation of their data. Each 
new dataset has a unique ID. There is 
nothing wrong with having a dataset 
implemented by reference and not by 
value.

Normalization is for sissies. The goal 
of normalization is to eliminate update 
anomalies. When the data is not stored 
in a normalized fashion, updates might 
yield unpleasant results. The classic 
example is an imperfectly normalized 
table in which each employee has his or 
her manager’s name and phone num-
ber. This makes it very difficult to update 
the manager’s phone number since it is 
stored in many places. Normalization is 
very important in a database designed 
for updating.

Normalization is not necessary in 
an immutable dataset, however. The 
only reason to normalize immutable 
datasets may be to reduce the storage 
necessary for them. On the other hand, 
denormalized datasets may be easier 
and faster to process as inputs to a com-
putation.

Versions Are Immutable, Too!
Each version is immutable. This section 
looks first at multiversion concurrency 
control; then techniques such as LSM 
that provide a semantic of change with-
in a transactional space while generat-
ing immutable data that describes the 
state of these changes; finally, it looks 
at the world through the lens of COW, 
in which high-performance updates 
are implemented by writing new immu-
table data. 

Versions and history. Versions 
should have immutable names. Other 
than the first version of something, a 
new version captures a replacement 
for or an augmentation of an earlier 
version. A linear version history is some-
times referred to as being strongly con-
sistent: one version replaces another; 
there is one parent and one child; each 
version is immutable; each version has 
an identity. The alternative to linear ver-
sion history is a DAG (directed acyclic 
graph) of version history, in which there 
are many parents and/or many chil-
dren. This is sometimes called eventual 
consistency.

Multiversion concurrency control. 
Strongly consistent, or ACID (atomi-
city, consistency, isolation, durability), 
transactions appear as if they run in a 
serial order. This is sometimes called 
serializability.2

The database changes version by ver-
sion. Transaction T1 is a version and 
later transaction T2 is a version. Trans-
actions layer new versions of record and 

Figure 5. Immutable blocks over a consistent-hashing store.
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even the identity of upcoming log files. 
Having one of the recent log-file IDs 
means the entire LSM key-value store 
can be reconstructed.

Keeping the Stone Tablets Safe
Many file systems keep immutable files 
consisting of immutable blocks. This 
section explores at a high level the im-
plementation of GFS and HDFS and the 
implications of what can be done with 
these files. It discusses the vagaries of 
files that can be renamed and consid-
ers the value of storing immutable data 
within a consistent hash store.

Log-structured files: Running in 
circles. An early example of reifying 
change through immutability is the log-
structured file system.16 In this wonder-
ful invention, file-system writes are al-
ways appended to the end of a circular 
buffer. Occasionally, enough metadata 
to reconstruct the file system is added 
to the circular buffer. Old data must be 
copied forward so it is not overwritten. 

Log-structured file systems have 
some interesting performance charac-
teristics, both good and bad. Today they 
are an important technique. As technol-
ogy trends continue to move in the di-
rection of recent years, they will become 
even more important.

Files, blocks, and replication. GFS,5 
HDFS,1 and others offer highly avail-
able files. Each file is a bunch of blocks 
(also called chunks). The file consists 
of a file name and a description of the 
blocks needed to provide a bytestream. 
Each block is replicated in the cluster 
for durability and high availability. They 
are typically replicated three times over 
different fault zones in the data center.

Each file is immutable and (typi-
cally) single-writer. The file is created, 
and one process can append to it. The 
file lives for a while and is eventually de-
leted. Multiwriters are difficult, and GFS 
had some challenges with this.13

Immutable files and immutable 
blocks empower this replication. The 
file system has no concept of a change 
to a complete file. Each block’s immu-
tability allows it to be easily replicated 
without any update anomalies because 
it does not get updated.

Widely sharing immutable files is 
safe. An immutable file has an iden-
tity and contents, neither of which can 
change. You can copy an immutable file 
whenever and wherever you want and 

share the immutable copies across us-
ers. As long as you manage reference 
counts (so you know when it is OK to 
delete it), you can use one copy of the 
file to share across many users. You can 
distribute immutable files wherever you 
want. With the same identity and same 
contents, the files are location indepen-
dent.

Names and immutability … A slip-
pery slope. GFS and HDFS both provide 
immutable files. Immutable blocks 
(chunks) are replicated across data 
nodes. Immutable files are a sequence 
of blocks, each of which is identified 
with a GUID (globally unique identi-
fier). The contents of a file are immu-
table and labeled with a GUID. The file-
ID GUID always refers to exactly one file 
and its contents.

GFS and HDFS also provide a 
namespace that can be changed. The 
logical name of an immutable file may 
be changed. File names may be rebound 
to different contents. Users must take 
great care to ensure they have predict-
able results when changing file names. 
Is something really immutable when its 
name can change? 

Immutable data and consistent 
hashing. Consider a strongly consistent 
file system in which a single master is 
controlling a namespace (perhaps a 
Posix-style namespace). Looking up a 
file results in a GUID that is used to find 
an immutable bytestream.

Now consider a store implemented 
with consistent hashing.10 It is well un-
derstood that consistent hashing offers 
very robust rebalancing under failures 
and/or additional capacity. It also has 
somewhat chaotic placement behavior 
while the ring is adjusting to changes. 
At times, some participants have seen 
the changes and others have not. When 
reading and updating within a consis-
tent-hashing key-value store, the read 
occasionally yields an older version of 
the value. To cope with this, the applica-
tion must be designed to make the data 
eventually consistent.4 This is a burden 
and makes application development 
more difficult.

When storing immutable data with-
in a consistent-hashing ring, you can-
not get stale versions of the data. Each 
block stored has the only version it will 
ever have. This provides the advantages 
of a self-managing and master-less file 
store while avoiding the anomalies and 

challenges of eventual consistency as 
seen by the application (Figure 5).

Using an eventually consistent store 
to hold immutable data also means log 
writes can have more predictable SLAs 
(service-level agreements) by allowing 
the replicas to land in less predictable 
locations in the cluster. In a distribut-
ed cluster, you can know where you are 
writing or you can know when the write 
will complete but not both.8 By preal-
locating files from the strongly consis-
tent catalog, log writes using the file IDs 
need only to touch weakly consistent 
servers to be able to retry getting the 
blocks durable in a bounded time.

Immutability and decentralized re-
covery. Separating the namespace from 
block-placement control has a number 
of advantages. The consistent-hashing 
ring can take writes and reads even 
when the ring is in flux.

Although the catalog is a central 
point for access, it does not have the 
same varying load a name node does 
when handling failures in the cluster. 
The larger the cluster, the more data 
nodes will fail, each necessitating many 
controlling operations to elevate the 
replica count back to three. While this 
traffic happens, operations to read and 
write from the cluster will experience 
SLA variation. Immutability allows de-
centralized recovery of data-node fail-
ures with more predictable SLAs.

Hardware Changes 
Toward Unchanging
The trend toward leveraging immuta-
bility in new designs is so pervasive it 
can be seen in a number of hardware 
areas. Here, I examine the implemen-
tation of SSDs and some new trends in 
hard disks.

SSDS and wear leveling. The flash 
chip within most SSDs is broken into 
physical blocks, each of which has a fi-
nite number of times it may be written 
before it begins to wear out and give 
increasingly unreliable results. Conse-
quently, chip designers have a feature 
known as wear leveling12 to mitigate this 
aspect of flash. Wear leveling is a form 
of COW and treats each version of the 
block as an immutable version.

Each new block or update to a block 
in the logical address space of the flash 
chip is mapped to a different physical 
block. Each new write (or update to a 
new block) is written to a different phys-



70    COMMUNICATIONS OF THE ACM    |   JANUARY 2016  |   VOL.  59  |   NO.  1

practice

  Related articles  
  on queue.acm.org

If You Have Too Much Data,  
then “Good Enough” Is Good Enough
Pat Helland
http://queue.acm.org/detail.cfm?id=1988603

Enhanced Debugging with Traces
Peter Phillips
http://queue.acm.org/detail.cfm?id=1753170

Condos and Clouds
Pat Helland
http://queue.acm.org/detail.cfm?id=2398392

References
1.	 Apache Hadoop; http://en.wikipedia.org/wiki/Apache_

Hadoop.
2.	 Bernstein, P., Hadzilacos, V. and Goodman, N. 

Concurrency Control and Recovery in Database 
Systems. Addison Wesley, 1987.

3.	 Dean, J. and Ghemawat, S. MapReduce: Simplified 
data processing on large clusters. In Proceedings 
of the 6th Annual Symposium on Operating System 
Design and Implementation, 2004.

4.	 DeCandia, G. et al. Dynamo: Amazon’s highly available 
key-value store. In Proceedings of the 21st Annual ACM 
Symposium on Operating Systems Principles, 2007.

5.	 Ghemawat, S., Gobioff, H. and Leung, S. The Google 
File System. In Proceedings of the 19th Annual ACM 
Symposium on Operating Systems Principle, 2003.

6.	 Gibson, G. and Ganger, G. Principles of operation for 
shingled disk devices. Carnegie Mellon University 
Parallel Data Lab Technical Report CMU-
PDL-11-107, 2011.

7.	 Helland, P. Data on the outside versus data on the 
inside. In Proceedings of the Conference on Innovative 
Database Research, 2005.

8.	 Helland, P. Heisenberg was on the write track. 
Abstract: Proceedings of the Conference on Innovative 
Database Research, 2014.

9.	 Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, 
D. Dryad: Distributed data-parallel programs from 
sequential building blocks. In Proceedings of the 
European Conference on Computer Systems, 2007.

10.	 Karger, D., Lehman, E., Leighton, T., Panigraphy, 
R., Levine, M. and Lewin, D. Consistent hashing 
and random trees: distributed caching protocols 
for relieving hot spots on the World Wide Web. In 
Proceedings of the 29th Annual ACM Symposium on 
Theory of Computing, 1997.

11.	 Lamport, L. The part-time parliament. ACM Transactions 
on Computer Systems 16, 2 (1998), 133-169.

12.	 Lofgren, K., Normal, R., Thelin, G. and Gupta, A. Wear-
leveling techniques for flash EEPROM systems. US 
Patent #6850443, 2003, SanDisk, Western Digital.

13.	 McKusick, M. and Quinlan, S. GFS: Evolution on fast 
forward. ACM Queue 7, 7 (2009).

14.	 New, R. and Williams, M. Log-structured file system 
for disk drives with shingled writing. US Patent 
#7996645, 2003, Hitachi.

15.	 O’Neil, P., Cheng, E., Gawlick, D. and O’Neil, E. The log-
structured merge-tree (LSM-tree). Acta Informatica 
33, 4 (1996).

16.	 Rosenblum, M. and Ousterhout, J. The design and 
implementation of a log-structured file system. ACM 
Transactions on Computer Systems 10, 1 (1992), 26–52.

17.	 Wikipedia. Turtles all the way down; http://
en.wikipedia.org/wiki/Turtles_all_the_way_down.

18.	 Wikipedia. Write amplification; http://en.wikipedia.org/
wiki/Write_amplification.

Pat Helland has been implementing transaction systems, 
databases, application platforms, distributed systems, 
fault tolerant systems, and messaging systems since 
1978. He currently works at Salesforce.

Copyright held by author.  
Publication rights licensed to ACM. $15.00.

ical block in a circular fashion, evening 
out the writes so each physical block is 
written about as often as the others.

Hard disks: Getting the shingles. 
As hard-disk manufacturers strive to 
increase the areal density of the data 
on disk, some physical headaches 
have intervened. Current designs 
have a much larger write track than 
read track. Writes overlap the previ-
ous ones in a fashion evocative of 
laying shingles on a roof—hence the 
name shingled disk systems.6

In shingled disks, a large band of 
data is written as layered write tracks 
forming a shingle pattern, partially 
overwriting the preceding tracks. The 
data in the middle of the band cannot 
be overwritten without trashing the re-
maining part of the band.

To overcome this, the hardware 
disk controllers implement log-struc-
tured file systems within the disk con-
troller.14 The operating system is un-
aware of the use of shingles. What is 
written to the disk (that is, the band 
of data written with shingles) remains 
unchanged until it is discarded. The 
user of the disk (for example, the op-
erating system) perceives the ability 
to update in place.

Immutability May  
Have Some Dark Sides
As immutability is leveraged in all these 
ways, there are trade-offs to be man-
aged. Denormalized documents help 
with read performance at the expense of 
extra storage cost. Data is copied many 
times with COW. This is exacerbated 
when these mechanisms are layered.

Denormalization: Nimble but fat. 
Denormalization consumes storage as 
a data item is copied multiple times in 
a dataset. It is good in that it eliminates 
JOINs to put the data together, making 
the use of the data more efficient. Im-
mutable data has more choices for its 
representation. It can be normalized for 
space optimization or denormalized for 
read usage.

Write amplification vs. read perspi-
ration. Data may be copied many times 
with COW (for example, with log-struc-
tured file systems, log-structured merge 
systems, wear leveling in SSDs, and 
shingle management in HDD). This is 
known as write amplification.18

In many cases, there is a relation-
ship between the amount of write am-

plification and the difficulty involved 
in reading the data being managed. 
For example, some LSM systems will 
do more or less copying as the data is 
reorganized and merged. If the data 
is aggressively merged and reorga-
nized, then fewer places need check-
ing to read a record. This can reduce 
the cost of reading at the expense of 
additional writing.

Conclusion
Designs are driving toward immuta-
bility, which is needed to coordinate 
at ever increasing distances. Given 
space to store data for a long time, im-
mutability is affordable. Versioning 
provides a changing view, while the 
underlying data is expressed with new 
contents bound to a unique identifier.

˲˲ Copy-on-write. Many emerging 
systems leverage COW semantics 
to provide a façade of change while 
writing immutable files to an under-
lying store. In turn, the underlying 
store offers robustness and scalabil-
ity because it is storing immutable 
files. For example, many key-value 
systems are implemented with LSM 
trees (for example, HBase, BigTable, 
and LevelDB).

˲˲ Clean replication. When data is im-
mutable and has a unique identifier, 
many challenges with replication are 
eased. There is never a worry about 
finding a stale version of the data be-
cause no stale versions exist. Conse-
quently, the replication system may be 
more fluid and less picky about where 
it allows a replica to land. There are 
also fewer replication bugs.

˲˲ Immutable datasets. Immutable 
datasets can be combined by refer-
ence with transactional database 
data and offer clean semantics when 
the dataset project relational sche-
ma and tables. Looking at the se-
mantics projected by an immutable 
dataset, you can create a new version 
of it optimized for a different usage 
pattern but still projecting the same 
semantics. Projections, redundant 
copies, denormalization, indexing, 
and column stores are all examples 
of optimizing immutable data while 
preserving its semantics.

˲˲ Parallelism and fault tolerance. 
Immutability and functional com-
putation are keys to implementing  
big data. 	


