
64 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

practice
DOI:10.1145.2844112

 Article development led by
 queue.acm.org

We need it, we can afford it,
and the time is now.

BY PAT HELLAND

THERE IS AN inexorable trend toward storing and
sending immutable data. We need immutability
to coordinate at a distance, and we can afford
immutability as storage gets cheaper. This article
offers an amuse-bouche of repeated patterns of
computing that leverage immutability. Climbing up
and down the compute stack really does yield a sense
of déjà vu all over again.

It was not that long ago that computation was
expensive, disk storage was expensive, DRAM
(dynamic random access memory) was expensive, but
coordination with latches was cheap. Now all these
have changed using cheap computation (with many-
core), cheap commodity disks, and cheap DRAM and
SSDs (solid-state drives), while coordination with

latches has become harder because
latch latency loses lots of instruction
opportunities. Keeping immutable
copies of lots of data is now affordable,
and one payoff is reduced coordination
challenges.

Storage is increasing as the cost per
terabyte of disk keeps dropping. This
means a lot of data can be kept for a
long time. Distribution is increas-
ing as more and more data and work
are spread across a great distance.
Data within a data center seems “far
away.” Data within a many-core chip
may seem “far away.” Ambiguity is
increasing when trying to coordinate
with systems that are far away—more
stuff has happened since you have
heard the news. Can you take action
with incomplete knowledge? Can you
wait for enough knowledge?

Turtles all the way down.17 As vari-
ous technological areas have evolved,
they have responded to these trends
of increasing storage, distribution,
and ambiguity by using immutable
data in some very fun ways. This ar-
ticle explores how apps use immu-
tability in their ongoing work, how
they generate an immutable dataset
for later offline analysis, how SQL
can expose and process immutable
snapshots, and how massively paral-
lel big-data work relies on immutable
datasets. This leads to looking at the
ways in which semantically immu-
table dataset may be altered while re-
maining immutable.

Next, the article considers how up-
datability is layered atop the creation
of new immutable files via techniques
such as LSF (log-structured file sys-
tem), COW (copy-on-write), and LSM
(log-structured merge-tree). How do
replicated and distributed file systems
depend on immutability to elimi-
nate anomalies? Hardware folks have
joined the party by leveraging these
tricks in SSDs and HDDs (hard-disk
drives). Immutability is a key archi-
tectural concept at many layers of the
stack, as shown in Figure 1.

Finally, the article looks at some of
the trade-offs of using immutable data.

Immutability
Changes
Everything

http://dx.doi.org/10.1145.2844112
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2844112&domain=pdf&date_stamp=2015-12-21

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 65

I
M

A
G

E
 B

Y
 E

V
A

 O
Z

K
O

I
D

I

Accountants Don’t Use Erasers
Many kinds of computing are append-
only. This section looks at some of the
ways this is commonly accomplished.

In append-only computing, obser-
vations are recorded forever (or for a
long time). Derived results are calcu-
lated on demand (or periodically pre-
calculated).

This is similar to a DBMS in which
transaction logs record all the changes
made to the database. High-speed ap-
pends are the only way to change the
log. From this perspective, the contents
of the database hold a caching of the lat-
est record values in the logs. The truth
is the log. The database is a cache of a
subset of the log. That cached subset
happens to be the latest value of each
record and index value from the log.

Accounting: Observed and derived
facts. Accountants don’t use erasers;
otherwise they may go to jail. All entries
in a ledger remain in the ledger. Correc-
tions can be made but only by making

new entries in the ledger. When a com-
pany’s quarterly results are published,
they include small corrections to the
previous quarter. Small fixes are OK.
They are append-only, too.

Some entries describe observed
facts. For example, receiving a debit or
credit against a checking account is an
observed fact. Some entries describe
derived facts, meaning that based on
the observations, something new can
be calculated. For example, amortized
capital expenses based upon a rate and
a cost are derived facts. Another exam-
ple is the current bank account balance
with applied debits and credits.

Append-only distributed single mas-
ter. Single-master computing means
changes are ordered somehow. The or-
der can come from a centralized master
or some Paxos-like11 distributed proto-
col providing serial ordering. Changes
are semantically applied one at a time
and are layered over their predeces-
sors. New values supersede old ones.

The granularity of this may be a set of
records in a relational store or a new
version of a document. Distributed sin-
gle-master computing means there is a
space of data (relational records, docu-
ments, export files, and more) that em-
anates from one logical location with
new versions over time.

Distributed computing “back in
the day.” Before telephones, people
used messengers—often kids walking
through town to deliver the message.
Alternatively, the postal service deliv-
ered the messages, which took a long
time. Sometimes people used fancy
forms with many layers, each a differ-
ent color. They had multiple sections
on the page. Each participant filled out
a section (pressing hard with the pen),
then tore off the back page of the form
and filed it. Each participant got the
data needed and added more data to
the form. Earlier sections could not be
updated; data could only be appended
to the end.

66 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

practice

ferred to as a service.
Data on the inside lives in a trans-

actional world with changes applied
in a serializable fashion (or something
close to that).

Data on the outside is prepared as
messages, files, documents, and/or
Web pages. These are sent out from a
service into the world. It is also possi-
ble that outside data has been created
by some other mechanism than one us-
ing databases.

Data on the outside:
˲˲ is immutable. Once it is written, it is

never changed.
˲˲ is unlocked. It is not locked in the

database. A copy is extracted and sent
outside.

˲˲ has identity. When sent outside,
these files, documents, and messages
have a unique identity (perhaps a URL).

˲˲ may be versioned. Updates are not
updates but new versions with a new
unique identifier.

Contrasting inside vs. outside.
There are deep differences in the rep-
resentation, meaning, and usage of in-
side data versus outside data. Increas-
ingly, data is being kept as outside
(immutable) data (see Figure 2).

Referencing Immutable Data
The dataset is a collection of data with
a unique ID. Some datasets have struc-
tures that look like a number of tables
with schema. How are these datasets
referenced by a relational database,
and how do relational operators span
both the DBMS and dataset?

A dataset is a fixed and immutable
set of tables. The schema for each table
is captured in the dataset. The con-
tents of each table are captured when
the dataset is created. Since the dataset
is immutable, it is created, may be con-
sumed for reading, and then deleted. A
dataset may be relational, or they may
have some other representation such
as a graph, a hierarchy such as JSON
(JavaScript Object Notation), or any
other representation (Figure 3). A data-
set is a logical set of immutable tables
along with its schema.

A dataset may be referenced by
an RDBMS (relational DBMS). The
metadata is visible to the DBMS. The
data can be accessed for a read, even
though it may not be updated. The
dataset may be semantically present
within the relational system even if it

Before computers, workflow was fre-
quently captured in paper forms with
multiple parts on the form and multi-
ple pages (for example, “Fill out Part 3
and keep the goldenrod page from the
back”). This “distributed computing”
was append-only. New messages were
new additions to the form—each was a
version and each was immutable. You
were never allowed to overwrite what
had been written.

Data on the Outside vs.
Data on the Inside
Surprisingly (to database old-timers),
not all data is kept in relational data-
base systems. This section (based on
an earlier paper7) discusses some of
the implications of unlocking data.

Data on the inside refers to what is
kept and managed by a classic relation-
al database system and its surrounding
application code. Sometimes this is re-

Figure 1. Immutability is a key architectural concept at many layers of the stack.

Layers Usages of Immutable Data

Append-only apps App over immutable data: record facts, then derive

App-generated datasets Generate immutable data

Massively parallel big data Read and write immutable datasets

SQL snapshots and datasets Generate immutable data

Subjectively immutable datasets Interpret data as immutable

LSF, LSM, and COW Expose change over immutable files by append

Immutable files Replication of files/blocks without update anomalies

Wear leveling on SSD Change via COW to spread physical update blocks

Shingles on HDD Change via COW to allow large physical rewrites

Figure 2. Characteristics of inside data and outside (immutable) data.

Inside Data Outside Data

Changeable Yes! No! Immutable

Granularity Relational field Document, file, or message

Representation Typically relational Typically semi-structured

Schema Prescriptive Descriptive

Identity No identity: Data by values Identity: URL, Msg#, Doc-ID…

Versioning No versioning: data by value Versions may augment identity

Figure 3. A dataset is a logical set of immutable tables and its schema.

dataset-x

table1 table2

schema

tableN

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 67

practice

is physically stored elsewhere. Because
the dataset is immutable, there is no
need for locking and no worries about
controlling updates.

Relational work on immutable da-
tasets. A functional calculation takes a
set of inputs and predictably creates a
set of outputs. This can happen with a
query against locked or snapshot data
in a relational database, and it can hap-
pen on a big-data MapReduce-style
system. In both cases, there is still an
unchanging collection of data. With
snapshots or some form of isolation,
database data becomes semantically
immutable for the duration of the cal-
culation. With big-data calculations,
the inputs are typically stored in GFS
(Google File System) or HDFS (Hadoop
Distributed File System) files.

There is no semantic obstacle to
doing JOINs across data stored inside
a relational database and data stored
in an external dataset. Locking (or
snapshot isolation) provides a version
of the relational database, which may
be joined. A named and frozen dataset
may be joined with relational data (see
Figure 4). You can meaningfully apply
relational operations across data held
in a DBMS and data held in an immu-
table dataset.

In some ways, the ability to work
across immutable datasets and re-
lational databases is surprising. An
immutable dataset is defined with
an identity and an optional version.
Its schema, which describes the
shape and form of the dataset at the
time of its creation, is descriptive,
whereas the schema held in the RD-
BMS is prescriptive.

This tailoring of the schema to
meld the two connects the schema
of the dataset (describing its data
when written) with the schema of the
RDBMS (describing its data as of the
snapshot). Also, the JOINs and other
relational operators must necessar-
ily combine the contents of the data-
set as interpreted as a set of relational
tables. This sidesteps the notion of
identity within the dataset and focus-
es exclusively on the tables as inter-
preted as a set of values held within
rows and columns.

Immutability Is in
the Eye of the Beholder
A consumer may see a dataset as immuta-

ble even if they change under the covers.
A dataset is semantically immu-

table. It has a set of tables, rows, and
columns. It may also have semi-struc-
tured data (for example, JSON). It may
have application-specific data in a pro-
prietary format.

Dataset may be defined as a SELEC-
TION, PROJECTION, or JOIN over a
previously existing dataset. Semanti-
cally, all that data is now a part of the
new dataset.

What is important about a dataset is
it appears to be unchanging from the
standpoint of the reader.

Optimizing a dataset for read pat-
terns. Datasets are semantically im-
mutable but can be physically changed.
You can add an index or two. It is OK to
denormalize tables to optimize for read
access. Datasets can be partitioned and
the pieces placed close to their readers.
A column-oriented representation of a
dataset may also make sense.

You can make a copy of a table with
far fewer columns to optimize for quick
access (a skinny table). The column val-
ues can be left in both the skinny table
and fat table.

By watching and monitoring the
read usage of a dataset, you may realize
new optimizations (for example, new
indices) are possible.

Immutability is the backbone of big
data. Massively parallel computations
are based on immutable inputs and
functional calculations. MapReduce3
and Dryad9 both take immutable files
as input. The work is cut into pieces,
each with immutable input. This func-
tional calculation (using immutable

inputs) is idempotent, making it pos-
sible to fail and restart. Immutability is
the backbone of big data. MapReduce
performs functional computations
over immutable data to create immu-
table outputs. Failure and restart, so
essential to reliable big data, are based
on the idempotent nature of functional
computation over immutable inputs.

Immutability as a semantic prism.
Datasets show an immutable semantic
prism, even if the underlying represen-
tation is augmented or completely re-
placed. The King James Bible is, char-
acter for character, immutable—even
when it is printed in a different font;
even when digitized; even when accom-
panied by different pictures.

Is a dataset changed if there is a
lossless transformation to a new sche-
ma representation? Can the new ad-
dress field have more capacity? Can
the enum values be mapped to a new
underlying representation? Can the
data be mapped from UTF-8 to UTF-16
encoding?

Having the right bits is not
enough. You have to know how to
interpret them. For example, “Presi-
dent Bush” had a different meaning
in 1990 than in 2005. The word “nap-
kin” is interpreted differently in the
U.S. and the U.K.

Descriptive metadata when immu-
table. When an immutable dataset is
created, the semantics of the data may
not be changed. The contents may only
be described as they are at the time the
dataset is created.

Most programmers are used to SQL
DDL (Data Definition Language) sup-

Figure 4. Immutable dataset may be joined with relational data.

dataset-x

join
tableA

and
table1

relational
database

table1 table2

schema

tableN

dataset-x

tableA

tableB

68 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

practice

index changes atop earlier versions. The
new versions can be captured as snap-
shots of the entire database (although
this would not result in high perfor-
mance).

Alternatively, the new version can be
captured as changes to the previous ver-
sion. In this way, a key-value store can be
built, and a relational database can be
built atop a key-value store. Records are
deleted by adding tombstones. Chang-
ing the database is done by adding new
records to the key-value store.

If a timestamp is added to each new
version, it is possible to show the state
of the database at a given point in time.
This allows the user to navigate the state
of the database to any older version. On-
going work can see a stable snapshot of
a version of the database.

LSM: Reorganizing immutable stuff.
LSM presents a façade of change atop
immutable files. With an LSM tree,15
changes to the key-value store are ac-
complished by writing new versions
of the affected records. These new ver-
sions are logged to an immutable file.
Periodically, the new versions of the
key values are sorted by key and written
to an immutable file known as a Level
0 file within the LSM tree. Level 0 files
are merged into a collection of Level
1 files (typically 10 Level 1 files, each
containing one-tenth of the key range).
Similarly, Level 1 files are merged with
Level 2 files on a 10-to-1 basis. As you
move down the LSM tree, each level has
10 times as many files. Reading a record
typically involves searching one file per
level. As the LSM files merge, new im-
mutable files with new identities can be
written.

Go ahead … have a COW! An LSM
tree can create changeable data out of
immutable files by performing a COW.
The granularity of the copy is typically a
key-value pair. For a relational database,
this can be a key-value pair for each re-
cord or each index entry. The changes
are copied into the log and then into the
LSM tree (and copied a few more times
for merges).

High-performance COW happens
with logging and classic DBMS perfor-
mance techniques. The new versions
are captured in memory and logged for
failure recovery. The identity of each log
file is a unique ID, and the log files are
immutable. Each new log file can record
the history of its preceding log files and

porting dynamic changes in the meta-
data for their tables. This happens at a
transaction boundary and can prescribe
a new schema for the existing data. SQL
DDL can be thought of as prescriptive
metadata since it is prescribing the rep-
resentation (which may change). Immu-
table datasets have descriptive metadata
that explains what is there.

Of course, it is possible to create a
new dataset that refers to one or more
existing datasets in order to create a
new representation of their data. Each
new dataset has a unique ID. There is
nothing wrong with having a dataset
implemented by reference and not by
value.

Normalization is for sissies. The goal
of normalization is to eliminate update
anomalies. When the data is not stored
in a normalized fashion, updates might
yield unpleasant results. The classic
example is an imperfectly normalized
table in which each employee has his or
her manager’s name and phone num-
ber. This makes it very difficult to update
the manager’s phone number since it is
stored in many places. Normalization is
very important in a database designed
for updating.

Normalization is not necessary in
an immutable dataset, however. The
only reason to normalize immutable
datasets may be to reduce the storage
necessary for them. On the other hand,
denormalized datasets may be easier
and faster to process as inputs to a com-
putation.

Versions Are Immutable, Too!
Each version is immutable. This section
looks first at multiversion concurrency
control; then techniques such as LSM
that provide a semantic of change with-
in a transactional space while generat-
ing immutable data that describes the
state of these changes; finally, it looks
at the world through the lens of COW,
in which high-performance updates
are implemented by writing new immu-
table data.

Versions and history. Versions
should have immutable names. Other
than the first version of something, a
new version captures a replacement
for or an augmentation of an earlier
version. A linear version history is some-
times referred to as being strongly con-
sistent: one version replaces another;
there is one parent and one child; each
version is immutable; each version has
an identity. The alternative to linear ver-
sion history is a DAG (directed acyclic
graph) of version history, in which there
are many parents and/or many chil-
dren. This is sometimes called eventual
consistency.

Multiversion concurrency control.
Strongly consistent, or ACID (atomi-
city, consistency, isolation, durability),
transactions appear as if they run in a
serial order. This is sometimes called
serializability.2

The database changes version by ver-
sion. Transaction T1 is a version and
later transaction T2 is a version. Trans-
actions layer new versions of record and

Figure 5. Immutable blocks over a consistent-hashing store.

name
space

consistent hashed store

file/
block
store

nameNode

nameSpace

block and
dataNode

management

data
node

data
node

data
node

data
node

data
node

data
node

data
node

catalog in
RDBMS

data
node

data
node

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 69

practice

even the identity of upcoming log files.
Having one of the recent log-file IDs
means the entire LSM key-value store
can be reconstructed.

Keeping the Stone Tablets Safe
Many file systems keep immutable files
consisting of immutable blocks. This
section explores at a high level the im-
plementation of GFS and HDFS and the
implications of what can be done with
these files. It discusses the vagaries of
files that can be renamed and consid-
ers the value of storing immutable data
within a consistent hash store.

Log-structured files: Running in
circles. An early example of reifying
change through immutability is the log-
structured file system.16 In this wonder-
ful invention, file-system writes are al-
ways appended to the end of a circular
buffer. Occasionally, enough metadata
to reconstruct the file system is added
to the circular buffer. Old data must be
copied forward so it is not overwritten.

Log-structured file systems have
some interesting performance charac-
teristics, both good and bad. Today they
are an important technique. As technol-
ogy trends continue to move in the di-
rection of recent years, they will become
even more important.

Files, blocks, and replication. GFS,5
HDFS,1 and others offer highly avail-
able files. Each file is a bunch of blocks
(also called chunks). The file consists
of a file name and a description of the
blocks needed to provide a bytestream.
Each block is replicated in the cluster
for durability and high availability. They
are typically replicated three times over
different fault zones in the data center.

Each file is immutable and (typi-
cally) single-writer. The file is created,
and one process can append to it. The
file lives for a while and is eventually de-
leted. Multiwriters are difficult, and GFS
had some challenges with this.13

Immutable files and immutable
blocks empower this replication. The
file system has no concept of a change
to a complete file. Each block’s immu-
tability allows it to be easily replicated
without any update anomalies because
it does not get updated.

Widely sharing immutable files is
safe. An immutable file has an iden-
tity and contents, neither of which can
change. You can copy an immutable file
whenever and wherever you want and

share the immutable copies across us-
ers. As long as you manage reference
counts (so you know when it is OK to
delete it), you can use one copy of the
file to share across many users. You can
distribute immutable files wherever you
want. With the same identity and same
contents, the files are location indepen-
dent.

Names and immutability … A slip-
pery slope. GFS and HDFS both provide
immutable files. Immutable blocks
(chunks) are replicated across data
nodes. Immutable files are a sequence
of blocks, each of which is identified
with a GUID (globally unique identi-
fier). The contents of a file are immu-
table and labeled with a GUID. The file-
ID GUID always refers to exactly one file
and its contents.

GFS and HDFS also provide a
namespace that can be changed. The
logical name of an immutable file may
be changed. File names may be rebound
to different contents. Users must take
great care to ensure they have predict-
able results when changing file names.
Is something really immutable when its
name can change?

Immutable data and consistent
hashing. Consider a strongly consistent
file system in which a single master is
controlling a namespace (perhaps a
Posix-style namespace). Looking up a
file results in a GUID that is used to find
an immutable bytestream.

Now consider a store implemented
with consistent hashing.10 It is well un-
derstood that consistent hashing offers
very robust rebalancing under failures
and/or additional capacity. It also has
somewhat chaotic placement behavior
while the ring is adjusting to changes.
At times, some participants have seen
the changes and others have not. When
reading and updating within a consis-
tent-hashing key-value store, the read
occasionally yields an older version of
the value. To cope with this, the applica-
tion must be designed to make the data
eventually consistent.4 This is a burden
and makes application development
more difficult.

When storing immutable data with-
in a consistent-hashing ring, you can-
not get stale versions of the data. Each
block stored has the only version it will
ever have. This provides the advantages
of a self-managing and master-less file
store while avoiding the anomalies and

challenges of eventual consistency as
seen by the application (Figure 5).

Using an eventually consistent store
to hold immutable data also means log
writes can have more predictable SLAs
(service-level agreements) by allowing
the replicas to land in less predictable
locations in the cluster. In a distribut-
ed cluster, you can know where you are
writing or you can know when the write
will complete but not both.8 By preal-
locating files from the strongly consis-
tent catalog, log writes using the file IDs
need only to touch weakly consistent
servers to be able to retry getting the
blocks durable in a bounded time.

Immutability and decentralized re-
covery. Separating the namespace from
block-placement control has a number
of advantages. The consistent-hashing
ring can take writes and reads even
when the ring is in flux.

Although the catalog is a central
point for access, it does not have the
same varying load a name node does
when handling failures in the cluster.
The larger the cluster, the more data
nodes will fail, each necessitating many
controlling operations to elevate the
replica count back to three. While this
traffic happens, operations to read and
write from the cluster will experience
SLA variation. Immutability allows de-
centralized recovery of data-node fail-
ures with more predictable SLAs.

Hardware Changes
Toward Unchanging
The trend toward leveraging immuta-
bility in new designs is so pervasive it
can be seen in a number of hardware
areas. Here, I examine the implemen-
tation of SSDs and some new trends in
hard disks.

SSDS and wear leveling. The flash
chip within most SSDs is broken into
physical blocks, each of which has a fi-
nite number of times it may be written
before it begins to wear out and give
increasingly unreliable results. Conse-
quently, chip designers have a feature
known as wear leveling12 to mitigate this
aspect of flash. Wear leveling is a form
of COW and treats each version of the
block as an immutable version.

Each new block or update to a block
in the logical address space of the flash
chip is mapped to a different physical
block. Each new write (or update to a
new block) is written to a different phys-

70 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

practice

 Related articles
 on queue.acm.org

If You Have Too Much Data,
then “Good Enough” Is Good Enough
Pat Helland
http://queue.acm.org/detail.cfm?id=1988603

Enhanced Debugging with Traces
Peter Phillips
http://queue.acm.org/detail.cfm?id=1753170

Condos and Clouds
Pat Helland
http://queue.acm.org/detail.cfm?id=2398392

References
1.	 Apache Hadoop; http://en.wikipedia.org/wiki/Apache_

Hadoop.
2.	 Bernstein, P., Hadzilacos, V. and Goodman, N.

Concurrency Control and Recovery in Database
Systems. Addison Wesley, 1987.

3.	 Dean, J. and Ghemawat, S. MapReduce: Simplified
data processing on large clusters. In Proceedings
of the 6th Annual Symposium on Operating System
Design and Implementation, 2004.

4.	 DeCandia, G. et al. Dynamo: Amazon’s highly available
key-value store. In Proceedings of the 21st Annual ACM
Symposium on Operating Systems Principles, 2007.

5.	 Ghemawat, S., Gobioff, H. and Leung, S. The Google
File System. In Proceedings of the 19th Annual ACM
Symposium on Operating Systems Principle, 2003.

6.	 Gibson, G. and Ganger, G. Principles of operation for
shingled disk devices. Carnegie Mellon University
Parallel Data Lab Technical Report CMU-
PDL-11-107, 2011.

7.	 Helland, P. Data on the outside versus data on the
inside. In Proceedings of the Conference on Innovative
Database Research, 2005.

8.	 Helland, P. Heisenberg was on the write track.
Abstract: Proceedings of the Conference on Innovative
Database Research, 2014.

9.	 Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly,
D. Dryad: Distributed data-parallel programs from
sequential building blocks. In Proceedings of the
European Conference on Computer Systems, 2007.

10.	 Karger, D., Lehman, E., Leighton, T., Panigraphy,
R., Levine, M. and Lewin, D. Consistent hashing
and random trees: distributed caching protocols
for relieving hot spots on the World Wide Web. In
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, 1997.

11.	 Lamport, L. The part-time parliament. ACM Transactions
on Computer Systems 16, 2 (1998), 133-169.

12.	 Lofgren, K., Normal, R., Thelin, G. and Gupta, A. Wear-
leveling techniques for flash EEPROM systems. US
Patent #6850443, 2003, SanDisk, Western Digital.

13.	 McKusick, M. and Quinlan, S. GFS: Evolution on fast
forward. ACM Queue 7, 7 (2009).

14.	 New, R. and Williams, M. Log-structured file system
for disk drives with shingled writing. US Patent
#7996645, 2003, Hitachi.

15.	 O’Neil, P., Cheng, E., Gawlick, D. and O’Neil, E. The log-
structured merge-tree (LSM-tree). Acta Informatica
33, 4 (1996).

16.	 Rosenblum, M. and Ousterhout, J. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems 10, 1 (1992), 26–52.

17.	 Wikipedia. Turtles all the way down; http://
en.wikipedia.org/wiki/Turtles_all_the_way_down.

18.	 Wikipedia. Write amplification; http://en.wikipedia.org/
wiki/Write_amplification.

Pat Helland has been implementing transaction systems,
databases, application platforms, distributed systems,
fault tolerant systems, and messaging systems since
1978. He currently works at Salesforce.

Copyright held by author.
Publication rights licensed to ACM. $15.00.

ical block in a circular fashion, evening
out the writes so each physical block is
written about as often as the others.

Hard disks: Getting the shingles.
As hard-disk manufacturers strive to
increase the areal density of the data
on disk, some physical headaches
have intervened. Current designs
have a much larger write track than
read track. Writes overlap the previ-
ous ones in a fashion evocative of
laying shingles on a roof—hence the
name shingled disk systems.6

In shingled disks, a large band of
data is written as layered write tracks
forming a shingle pattern, partially
overwriting the preceding tracks. The
data in the middle of the band cannot
be overwritten without trashing the re-
maining part of the band.

To overcome this, the hardware
disk controllers implement log-struc-
tured file systems within the disk con-
troller.14 The operating system is un-
aware of the use of shingles. What is
written to the disk (that is, the band
of data written with shingles) remains
unchanged until it is discarded. The
user of the disk (for example, the op-
erating system) perceives the ability
to update in place.

Immutability May
Have Some Dark Sides
As immutability is leveraged in all these
ways, there are trade-offs to be man-
aged. Denormalized documents help
with read performance at the expense of
extra storage cost. Data is copied many
times with COW. This is exacerbated
when these mechanisms are layered.

Denormalization: Nimble but fat.
Denormalization consumes storage as
a data item is copied multiple times in
a dataset. It is good in that it eliminates
JOINs to put the data together, making
the use of the data more efficient. Im-
mutable data has more choices for its
representation. It can be normalized for
space optimization or denormalized for
read usage.

Write amplification vs. read perspi-
ration. Data may be copied many times
with COW (for example, with log-struc-
tured file systems, log-structured merge
systems, wear leveling in SSDs, and
shingle management in HDD). This is
known as write amplification.18

In many cases, there is a relation-
ship between the amount of write am-

plification and the difficulty involved
in reading the data being managed.
For example, some LSM systems will
do more or less copying as the data is
reorganized and merged. If the data
is aggressively merged and reorga-
nized, then fewer places need check-
ing to read a record. This can reduce
the cost of reading at the expense of
additional writing.

Conclusion
Designs are driving toward immuta-
bility, which is needed to coordinate
at ever increasing distances. Given
space to store data for a long time, im-
mutability is affordable. Versioning
provides a changing view, while the
underlying data is expressed with new
contents bound to a unique identifier.

˲˲ Copy-on-write. Many emerging
systems leverage COW semantics
to provide a façade of change while
writing immutable files to an under-
lying store. In turn, the underlying
store offers robustness and scalabil-
ity because it is storing immutable
files. For example, many key-value
systems are implemented with LSM
trees (for example, HBase, BigTable,
and LevelDB).

˲˲ Clean replication. When data is im-
mutable and has a unique identifier,
many challenges with replication are
eased. There is never a worry about
finding a stale version of the data be-
cause no stale versions exist. Conse-
quently, the replication system may be
more fluid and less picky about where
it allows a replica to land. There are
also fewer replication bugs.

˲˲ Immutable datasets. Immutable
datasets can be combined by refer-
ence with transactional database
data and offer clean semantics when
the dataset project relational sche-
ma and tables. Looking at the se-
mantics projected by an immutable
dataset, you can create a new version
of it optimized for a different usage
pattern but still projecting the same
semantics. Projections, redundant
copies, denormalization, indexing,
and column stores are all examples
of optimizing immutable data while
preserving its semantics.

˲˲ Parallelism and fault tolerance.
Immutability and functional com-
putation are keys to implementing
big data. 	

