
Architecting Energy-efficient STT-RAM Based Register File
on GPGPUs via Delta Compression

Hang Zhang†‡, Xuhao Chen‡, Nong Xiao†‡∗, Fang Liu‡
†State Key Laboratory of High Performance Computing, College of Computer,

National University of Defense Technology, China
‡College of Computer, National University of Defense Technology, China
∗School of Data and Computer Science, Sun Yat-sen University, China

{hangzhang, chenxuhao, nongxiao, liufang}@nudt.edu.cn

ABSTRACT
To facilitate efficient context switches, GPUs usually employ a
large-capacity register file to accommodate a massive amount of
context information. However, the large register file introduces
high power consumption, owing to high leakage power SRAM cells.
Emerging non-volatile STT-RAM memory has recently been stud-
ied as a potential replacement to alleviate the leakage challenge
when constructing register files on GPUs. Unfortunately, due to
the long write latency and high energy consumption associated with
write operations in STT-RAM, simply replacing SRAM with STT-
RAM for register files would incur non-trivial performance over-
head and only bring marginal energy benefits.

In this paper, we propose to optimize STT-RAM based GPU
register files for better energy-efficiency and performance via two
techniques. First, we employ a light-weight compression frame-
work with awareness of register value similarity. It is coupled with
a group-based write driver control to mitigate the high energy over-
head caused by STT-RAM writes. Second, to address the long write
latency overhead of STT-RAM, we propose a centralized SRAM-
based write buffer design to efficiently absorb STT-RAM writes
with better buffer utilization, rather than the conventional design
with distributed per-bank based write buffers. The experimental re-
sults show that our STT-RAM based register file design consumes
only 37.4% energy over the SRAM baseline, while incurring only
negligible performance degradation.

1 Introduction
General-purpose graphics processing units (GPGPUs) have been
used for high performance computing during last decades, owing to
its high throughput and energy-efficiency [1]. Its single instruction
multiple thread (SIMT) architecture enables thousands of threads
running concurrently to hide memory operations with long latency.
To maintain hardware contexts of a huge number of threads, GPG-
PUs usually employ a large-capacity register file for seamlessly
context switching. Typically, this size of register files on GPUs
is much larger than that on CPUs. For instance, the NVIDIA Tesla
K80 GPU employs 512KB 32-bit registers for each streaming mul-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897989

tiprocessors (SM) [2], while each core of Intel Haswell architecture
only has 336 registers [3].

However, such large-capacity register file consumes huge power
which usually accounts for 15-20% power consumption of the total
power in modern GPUs [4]. This is because register files are cur-
rently built with the SRAM technology that has high leakage power
in sub-micron technology nodes. Furthermore, the leakage power
of SRAM keeps increasing as technology scales in the future [5][6].
Meanwhile, the size of GPU register files is expected to be contin-
ually increased as scaling up the number of co-running threads,
to provide higher throughput for emerging applications, such as
big data and deep learning applications [7][8]. Consequently, it
is important to explore new design solutions for building energy-
efficient regiser files for future GPUs.

Recently, an emerging non-volatile memory technology, STT-
RAM (Spin Transfer Torque MRAM), has been explored to be a
substitution for SRAM as on-chip storage (such as L1 and last level
cache on CMP platforms) [9][10], due to its lower leakage power,
higher density and better scalability. Prior works have studied the
benefits of using single level cell (SLC) STT-RAM [11][12][13]
or multi-level cell (MLC) STT-RAM [14] to build the register file
for GPUs. Although STT-RAM has been shown to be able to re-
duce leakage power consumption, naively adopting STT-RAM to
construct register files on GPUs suffers from performance degrada-
tion and low energy-efficiency, because STT-RAM exhibits higher
write latency compared to SRAM [11][12][14] and the high dy-
namic write power consumption of STT-RAM may offset the ben-
efits of lower leakage power of STT-RAM.

Despite the fact that prior works have shown initial benefits of
designing GPU register file with STT-RAM, they have not explored
effective optimizations to further reduce the high dynamic energy
consumption incurred by employing STT-RAM. Such optimiza-
tions are necessary because the dynamic energy consumption starts
to dominate when adopting STT-RAM on register files, which are
frequently accessed. In addition, the write buffer also needs to be
carefully designed, otherwise the large size of SRAM may counter-
vail the benefit of employing STT-RAM. Consequently, we propose
several techniques in this paper to optimize the energy consumption
of STT-RAM based register file design.

The contributions are summarized as follows:

• We present a lightweight compression framework with the
awareness of the register value similarity to reduce the dy-
namic energy consumption of STT-RAM based register file.
A novel group-based write driver control is proposed along
with the compression to enable effective energy saving.

• We propose a centralized write buffer design instead of pre-
viously proposed distributed per-bank design, to improve the

utilization of the SRAM write buffer and therefore mitigate
the performance degradation due to the long latency over-
head of STT-RAM write operations.

• We implement our design in a cycle-accurate GPGPU sim-
ulator. The evaluation results show that our proposed STT-
RAM register file design consumes only 37.4% energy com-
pared to the baseline SRAM design with negligible perfor-
mance loss.

2 Preliminary
In this section, we briefly introduce the GPU architecture and its
register file structure, as well as the STT-RAM technology.

2.1 GPGPU Architecture and Register Files
Our baseline GPU architecture is similar to NVidia’s Fermi GTX480,
which is composed of 16 streaming multiprocessors (SMs). Each
SM contains a 5-stage pipeline. An SM consists of 32 single struc-
tured CUDA cores. All the CUDA cores inside an SM share the
same instruction fetch and issue logic. In CUDA programs, a ker-
nel is a grid of parallel thread blocks. Each thread block can have at
most 1,024 threads. A warp which contains 32 threads is the mini-
mum scheduling unit in GPUs and executes in a lock-step manner.

In each SM there are 32,768 32-bit registers. These registers
constitute a total 128KB register file. To enable simultaneous ac-
cesses to the register file from multiple warps, the register file is
divided into 16 banks, each of which has 8KB capacity. Each bank
is partitioned into 64 register entries, and each entry has 1024-bit
data width. A register entry can be read/written to fulfill an access
request of a warp.

2.2 STT-RAM Memory Technology
Non-volatile memory technologies, such as STT-RAM (Spin Trans-
fer Torque MRAM), PCM (Phase Change Memory) and ReRAM
(Resistive Memory), are widely explored to replace existing SRAM
or DRAM technologies, due to their advantages of near-zero leak-
age power, high density, good scalability and non-volatility. Com-
pared with PCM and ReRAM, STT-RAM has a relatively low read/write
latency and high endurance (> 1012), and thus is intensively stud-
ied as a promising alternative to replace SRAM [15, 16].

To store a bit of data, an STT-RAM cell uses a magnetic tun-
neling junction (MTJ) structure. The MTJ is composed of two
ferromagnetic layers separated by a dielectric layer (usually built
in MgO). The magnetization of one ferromagnetic layer is fixed
(referred as the reference layer), whereas the magnetization of the
other is changeable (referred as the free layer). The magnetization
of the free layer switches to the other direction when the applied
current exceeds the critical threshold by injecting spin polarized
electrons. If the free layer is parallel with the reference layer, the
MTJ exhibits low resistance, which denotes the logic value as "0";
If the free layer is anti-parallel with the reference layer, the MTJ
exhibits high resistance, which denotes the logic value as "1".

Table 1 illustrates the circuit level parameters comparison be-
tween SRAM and STT-RAM at 32nm technology node for 700MHz

Table 1: Parameters of SRAM and STT-RAM

Parameter SRAM STT-RAM

Cell Factor (F 2) 146 57.5

Area (mm2) 0.194 0.038

Read latency (cycle) 1 1

Write latency (cycle) 1 4

Read energy (pJ/bit) 0.203 0.239

Write energy (pJ/bit) 0.191 0.300

Leakage power (mW) 248.7 16.2

Bank Arbitor

Compressor Unit Array

SIMD Execution Units

Operand
Colloctor

Operand
Colloctor

Operand
Colloctor

Interconnect

Valid Reg ID Ready
Operands

32-bit Registers X 32 (128-byte)

Valid Reg ID Ready
Operands

32-bit Registers X 32 (128-byte)

Valid Reg ID Ready
Operands

32-bit Registers X 32 (128-byte)

Warp
ID

MLC STT-
RAM Array

R
ow

 D
ec

od
er

Sense Amplifier
& Write Driver

Decompressor Unit Array

Register
Bank

Register
Bank

Register
Bank ...

...

Source LineBit Line

Word Line

MTJ

STT-RAM Cell

Figure 1: The STT-RAM based register file design.

clock rate. All these parameters are derived from NVsim [17] and
is configured similarly as prior work [12]. It shows that STT-RAM
has much lower leakage power consumption but longer write op-
eration latency and higher write energy consumption than that of
SRAM. Note that the energy consumption of a write operation can
be roughly estimated as the production of write pulse width, cur-
rent, and supply voltage. It is expected to decrease as the MTJ size
scales down.

3 Energy-efficient Register File Design
With much lower leakage power, STT-RAM is therefore studied to
replace SRAM for building on-chip storage. To overcome the lim-
itations (long write latency and high write energy) of STT-RAM,
we propose propose several techniques to optimize the STT-RAM
based register file on GPUs.

3.1 Design Overview
We build the 128KB register file with STT-RAM cells and also keep
the banked structure. Thanks to the high density, the total area of
the STT-RAM array is only 19.5% of the SRAM array as shown in
Table 1. The saved area can be utilized for further optimization.

The architecture of our proposed STT-RAM based register file
is shown in Fig. 1. Each of the register bank has a 8KB capacity.
There are 64 register entries in each bank. Each register entry con-
sists of 1024 STT-RAM cells, which contribute to 1024 data bits,
and serves 32 read/writes of 32-bit registers. Therefore, each reg-
ister bank contains 2048 32-bit registers in total. Note that our de-
sign is different from the distributed register file design [12] where
a register access request is serviced by 32 register banks, which
inevitably increases the possibility of bank conflicts.

Despite the advantages of low leakage and high density, STT-
RAM still has two downsides compared with SRAM. First, the
dynamic power consumption of STT-RAM writes is higher than
that of SRAM. Second, STT-RAM has relatively long write latency.
Such long write latency increases the probability of postponing suc-
cessive register reads from obtaining data from a register bank that
is busy on servicing a write request. Given the drawbacks, it is im-
perative to devise architectural optimizations to alleviate the over-
heads, while preserving the advantages of STT-RAM.

3.2 Value Similarity Aware Compression
Recent works have explored the value similarity that exists in the
SIMT execution model on GPUs [3, 18]. As mentioned, threads
of a warp execute the same instruction in the lock-step way, but
may access 32 different registers or memory locations. Typically
the data accessed by the 32 threads are likely to have little differ-
ence with each other due to the SIMT model. Motivated by this
observation, we propose to employ compression techniques to op-
timize the dynamic write energy consumptions of the STT-RAM

yes

32-bit
subtractor

sign extention
comparator

Δ:01

0xBDE010xBDE00

32-bit
subtractor

sign extention
comparator

Δ:02

0xBDE02

32-bit
subtractor

sign extention
comparator

Δ:0FF

0xBDEFF

0xBDE00 Δ:01 Δ:02 Δ:FF sign extention
comparator

Compress data Out

128 Byte Register Data

Figure 2: The compress process example on BDI compression.

based register file by leveraging the value similarity of GPUs.

The basic idea is to reduce the number of writing bytes of a reg-
ister entry requested from a single warp via compression. Without
compression, writing 32 32-bit registers from one warp is usually
consolidated into a total 128-byte data. The 128-byte data is then
formed into one register write request for updating one register en-
try in the target register bank. If this 128-byte data can be com-
pressed as fewer data bytes, e.g. 40-byte, then we can save the en-
ergy of writing 128-40=68 bytes. In this case, more than half of the
consumed dynamic energy is reduced. The higher the compression
ratio is, the more energy can be saved via compression.

Since the access latency of the register file plays a vital role for
overall GPU throughput, only light-weight compression algorithms
are considered for the STT-RAM based register file. Complicated
compression algorithms that involve high compress/decompress la-
tency are not suitable for our design. In this work, we employ
the base-delta-intermediate (BDI) compression algorithm by virtue
of its low compress/decompress latency and high compression ra-
tio [3, 19]. However, the compression does not take effect without
fine-grained access control. To enable effective energy saving, we
propose a group-based write driver control on STT-RAM memory
arrays, which will be elaborated later.

To perform compression, BDI algorithm uses a data represen-
tation of a base and delta values against the base to present the
compressed data. If the size of BDI data representation is smaller
than the original data, the original data is compressed as a BDI
representation. If the size is unchanged or larger, the original data
is left uncompressed. In BDI algorithm, the original data is first
divided into smaller chunks. The first chunk is usually selected
as the base value. The difference between the base and each of
other chunks is computed by subtraction, and stored as the delta. If
there exists value similarity between chunks, the size of computed
delta is small, and storing the delta requires less storage capacity
than storing the original chunk. The original BDI compression it-
erates the compressing process to figure out the optimal length of
the base and delta, ranging from 2, 4, to 8 byte. Since the compres-
sion latency is critical to the performance of the register file, only
three fixed representations of the compressed data is allowed [3]
to mitigate the overhead of the original BDI. Otherwise, the reg-
ister value is just left as uncompressed. Since both compression
and decompression operations only involve simple subtraction and
addition operations, compression latency or decompression latency
incur negligible overhead (details in Section 4). The architectural
design of BDI compression algorithm engine is shown in Fig. 2.

Although the data can be compressed, the dynamic energy con-
sumption is not reduced directly, because 1024 columns are ac-
cessed and sensed altogether in the STT-RAM array, after the corre-

W
rit

e
En

ab
le

D

ec
od

er

R
ow

 D
ec

od
er

Write Circuit

32 per group

32 Write
Enable

5 to 32

Write Circuit Write Circuit Write Circuit

32 per group

SL SL SL

SL

BL BL BL BL

BL

Write Data Write Data Write Data Write Data

SL BL SL BL SL BL

Column MultiplexerGroup
Control

SL

Figure 3: The group-based write driver control design.

sponding wordline is activated. In order to write fewer bytes when
the register write request can be compressed, the structure of a STT-
RAM array should also be redesigned to allow a fine-grained con-
trol on accessing STT-RAM data arrays. Therefore, we introduce
the group-based write driver control.

Group-Based Write Driver Control: Choosing the width of
a register entry for a register bank is important, because it deter-
mines the number of banks that needs to be accessed when servic-
ing one register request from a warp. Generally, the more banks a
register request needs to access, the higher possibility of bank con-
flicts will be. For STT-RAM based register file design, high bank
conflicts can lead to longer delays for the operator collector to re-
ceive requested register values. This long delay may even result in
pipeline stalls, thereby degrading the performance. In this work,
different from prior work [3][12], we choose a wider register entry
of 1024-bits for our proposed STT-RAM based register file design
to minimize the possibility of bank conflicts and thus achieve better
performance.

We redesign the write driver circuit to enable fine-grained control
on how many columns to be written for compressed register entries
under the BDI compression framework. The redesigned driver cir-
cuity is shown in Fig. 3. To reduce overheads of routing wires, the
control granularity is managed in a group manner, instead of using
a per-column granularity. For a 1024-bit register entry, all the 1024
write drivers from the STT-RAM array is divided into 32 groups,
and each group contains 32 columns.

The 32-group control signals are generated from the compres-
sion engine, depending on the data size of the compressed register
entry. Then the control signals are fed with a 5-to-32 Write En-
able Decoder as the write enable signals. Each write enable signal
controls whether the 32 pairs of the source line and the bitline in
the corresponding group need to be activated or not. If the register
entry to be written can be compressed, then only a small portion of
the group select lines that indicates the valid compressed data are
enabled. By doing this, the dynamic energy consumption of writ-
ing an STT-RAM register entry is saved. Note that the group-based
write driver control design incurs negligible hardware overhead,
since only 64 transistors and a 5-32 decoder are added for the write
driver circuit.

3.3 Centralized Write Buffer
The long write latency is another major concern when designing
the STT-RAM based register file on GPUs, given the register file
is tightly coupled with the SM pipeline. Any extra delays incurred
by STT-RAM writes may postpone register read requests and even
cause the pipeline stall.

Table 2: The Retention and Write Latencies for STT-RAM

Retention Time 10 years 10 ms
Write Latency @ 700MHz 4 cycle 2 cycle

Prior works choose to design the write buffer in a per-bank man-
ner. That is each STT-RAM bank is equipped with a dedicated
write buffer to absorb the write requests. When a write request is
sent to a targeting bank that is busy with a previous write, the write
buffer temporarily holds this pending write request. Such a write
buffer design can mitigate the performance loss when a register
read request is delayed by the long latency write.

However, such per-bank design cannot make full use of write
buffers when write traffics are unbalanced among register file banks.
For instance, when the write buffer of Bank A is fully occupied by
pending write requests, the pipeline stalls if another write request
arrives at Bank A. In this situation, even though there are still avail-
able write buffers at Bank B, Bank A cannot use that. One possible
solution is to increase the number of write buffer entries for each
register bank as the prior strategy [12]. However, more high leak-
age SRAM buffers introduce higher area and energy overhead and
thus may offset the benefits of employing STT-RAM.

To address this issue, we propose a simple yet effective write
buffer design for the hybrid register file on GPGPUs. In this design,
the write buffer is constructed in a centralized way, and is deployed
at the arbiter and shared by all the register banks together. Each of
the register bank can access all the entries of this centralized write
buffers. By doing this, the utilization of write buffers is effectively
improved even under the same capacity as before. This design is
more effective especially when the write traffic is unbalanced.

Since the register value stored in the write buffer is finally writ-
ten into the register file, we also compress the register value before
storing them into the write buffer. This can also reduces the num-
ber of writing bits of data so as to save the dynamic energy con-
sumption of writing SRAM. In this way, the compress/decompress
overheads are only paid once, while the energy consumption of
the write buffer is optimized. To minimize access contention from
different warps to this centralized buffer, the write buffer is also ar-
chitected in a bank-based structure, while the total capacity of the
write buffer is still shared by all the register banks.

Additionally, we leverage the technique of relaxing the retention
time of STT-RAM cells [11][20] to further mitigate this effect of
long write latency of STT-RAM. By making the thickness of the
free layer thinner, we reconstruct the STT-RAM cell with retention
time of 10 ms, which corresponds to 7000000 cycles on GPUs and
is far more than 789 cycles that is reported as the average inter-
access distance to a register [5].

4 Evaluation
In this section, we present the simulation configuration, and evalu-
ate our proposed design in terms of performance, energy and hard-
ware overhead.

4.1 Simulation Configuration
We use a cycle-accurate simulator GPGPU-Sim [21] to model the
detailed GPU architecture. We augment the simulator with the
STT-RAM register file design, with respect to the circuit level pa-
rameters of both SRAM and STT-RAM. Our baseline GPU is con-
figured as NVIDIA Fermi GTX480. The detailed configuration
is shown in Table 3. The power and energy parameters for com-
press/decompress unit and wires are shown in Table 4, which is
derived from previous work [3].

Table 3: Simulation Configuration

Parameter Value

Number of SMs 16
Core/Shader/DRAM Frequency 700/1400/924MHz

Register File/SM 128KB
Max Warps/SM 48

Max Threads/SM 1536
Max Thread Blocks/SM 8
Max Registers/Thread 63

Max Threads/Thread Block 1024
L1/Shared Memory 16KB/48KB

Warp Scheduler GTO

Compression Latency 2 cycle
Decompression Latency 1 cycle

Table 4: Estimated energy and power values

Parameter Value

Operating Voltage (V) 1.0
Wire Capacitance (fF/mm) 300

Wire Energy (32-bit, pJ/mm) 2.6
Compression unit energy/activation (pJ) 23
Compression unit leakage power (mW) 0.12

Decompression unit energy/activation (pJ) 21
Decompression unit leakage power (mW) 0.08

0

0.2

0.4

0.6

0.8

1

N
or

m
. G

PU
 T

hr
ou

gh
pu

t STT STT+WB STT+BDI STT+BDI+RE

Figure 4: The system throughput normalized to the baseline.

We select 15 representative benchmarks from Rodina [22], Par-
boil [23] and NVIDIA CUDA SDK [24] benchmark suites to eval-
uate our proposed design. These benchmarks cover a wide range
of applications with various characteristics, including AES Encryp-
tion (AES), Back Propagation (BAK), Breadth-First Search (BFS),
Blackscholes (BLK), CFD Solver (CFD), Hotspot (HOT), LU De-
composition (LUD), Laplace Solver (LPS), Neural Network (NEU),
Needleman-Wunsch (NW), Sparse-Matrix Vector Product (SPM),
Srad (SRA), Similarity Score (SSC), Pathfinder (PAT) and Scan
(SCA).

We compare the experimental results for various configurations
as follows:

• Base: the conventional SRAM based register file design.
• SRAM+BDI: the SRAM based register file design with BDI

compression as in the previous work [3].
• STT: the STT-RAM based register file design without the

write buffer.
• STT+WB (Write Buffer): the STT-RAM based register file

design with the centralized write buffer, configured as similar
as in the previous work [12].

• STT+BDI: the optimized STT-RAM based register file with
BDI compression technique and the write buffer, enhanced
with the group-based write driver control.

• STT+BDI+RE: the same as BDI configuration, but with the
retention time of STT-RAM cells relaxed.

4.2 Performance Impact
Fig. 4 demonstrates the normalized GPU system throughput for
different configurations. It shows that directly building the reg-
ister file with STT-RAM incurs significant performance overhead,
which loses 17% performance on average compared to the baseline.
Some benchmarks, such as HOT and SCA, even suffer a significant

0

0.2

0.4

0.6

0.8

1
N

or
m

. R
F

En
er

gy
 SRAM+BDI STT STT+WB STT+BDI STT+BDI+RE

Figure 5: The register file energy consumption normalized to the
baseline.

slowdown of more than 30%. However, our proposed centralized
write buffer can effectively mitigate the performance loss, achiev-
ing nearly 95% performance of the baseline on average. The dif-
ference of centralized and distributed write buffer design will be
discussed in Fig. 7. Meanwhile, BDI compression does not incur
significant performance degradation, due to its lightweight algo-
rithmic property, though we increase the pipeline depth to accom-
modate compress/decompress operations, which is consistent with
previous observations [3]. Finally, after applying the relaxed reten-
tion scheme, the STT-RAM based register file can achieve nearly
99% performance of the baseline. Combining all the optimizing
techniques together makes the STT-RAM based design competitive
with the SRAM based design in terms of performance.

4.3 Energy Saving
The energy consumption of register files consists of static and dy-
namic energy consumption. Fig. 5 compares energy consumption
for different configurations, normalized to the SRAM baseline. It
shows that directly constructing the register file with STT-RAM
can save 24.8% energy consumption, since STT-RAM can effec-
tively reduce the static energy consumption, despite its non-trivial
performance degradation as shown in Fig. 4. Although the cen-
tralized (SRAM) write buffer design has substantial benefits for
performance, it also incurs extra energy consumption, leading to
79.3% energy consumption of the baseline on average. As for the
BDI compression technique, it can significantly reduce the total
energy consumption of the register file, consuming only 37.4% en-
ergy compared to the baseline on average. This is because the
BDI compression technique can effectively reduce the number of
written bytes to the STT-RAM based register file, when the com-
pression ratio of the written register entries is high. Note that for
the STT-RAM based register file, the dynamic energy consump-
tion dominates the total energy consumption, due to the high per-
bit energy consumption of STT-RAM. By reducing the number of
bits that are written, the BDI compression design can effectively
decrease the dynamic energy consumption of the STT-RAM based
design. Adopting the BDI compression to the SRAM based register
file design can also bring down energy consumption as in previous
work [3], achieving 65.2% energy consumption of the SRAM base-
line. However, it is not as effective as our proposed design, since 1)
STT-RAM has lower leakage energy consumption. 2) STT-RAM
has higher per-bit dynamic energy consumption, and hence BDI
can effectively cut off this high dynamic energy consumption of
STT-RAM based design.

4.4 Energy Consumption Breakdown
To understand the detailed reason why our design is effective for
reducing the dynamic energy consumption, Fig. 6 shows the en-
ergy consumption breakdown for different configurations, with a
few interesting observations. DP denotes dynamic power consump-
tion, whereas LP denotes leakage power consumptions. First, the

0

0.2

0.4

0.6

0.8

1

R
F

En
er

gy
 B

re
ak

do
w

n

DP LP compressor_DP decompressor_DP WB_DP WB_LP

Figure 6: The energy breakdown of the register file for different
configurations: Bar 1 is Base, Bar 2 is WB, Bar 3 is STT+BDI.

0.7

0.75

0.8

0.85

0.9

0.95

1

AES BAC BFS BLK CFD HOT LUD LPS NEU NW SPM SRA SSC PAT SCA AVG

N
or

m
. G

PU
 T

ho
ug

hp
ut

wb_perbank_16 wb_perbank_32 wb_perbank_64 writebuffer_16 writebuffer_32 writebuffer_64

Figure 7: The GPU throughput comparison for different write
buffer configurations normalized to the baseline.

ratio between the dynamic energy consumption and the static en-
ergy consumption for different applications differ at a wide variety.
Some benchmarks have high ratios of static energy consumption,
such as BFS, NW and SSC, whereas some other have high ratios of
dynamic energy consumption, such as AES, CFD and LPS. For ap-
plications with high static power consumption, such as BFS and
SPM, STT-RAM is able to effectively decrease the total energy
consumption by reducing the static energy consumption. However,
for applications with high dynamic power consumption, the STT-
RAM design is less effective to reduce the total energy. It even
increases the dynamic energy consumption in some cases due to
the high per-bit dynamic access energy.

In contrast, the BDI compression technique can effectively lower
the dynamic power consumption of the STT-RAM based design
on applications that are dynamic energy consumption dominated,
such as LPS and SCA. Overall, our design has the capability to
mitigate the increasing dynamic energy consumption incurred by
employing STT-RAM memory, and does not incur significant per-
formance loss. Note that the compressor and decompressor only
consume negligible dynamic energy and static energy, due to their
simple circuit design.

4.5 Centralized Write Buffer Evaluation
The performance evaluation of our proposed centralized write buffer
is shown in Fig. 7. The wb_perbank_XX denotes the write buffer
constructed in a per-bank manner with total XX entries, while write-
buffer_XX denotes the write buffer constructed in a centralized
way with total XX entries. For per-bank configurations, the per-
formance is correlated to the total write buffer entries, and the 16-
entry configuration always has the best performance. This is be-
cause fewer per-bank write buffer entry leads to higher contention
of the corresponding register bank. For the centralized write buffer
design, the performance remains nearly unchanged, thanks to the
sharing of write buffer entries among register banks.

4.6 Compression Ratio Analysis
The effectiveness of the BDI compression technique on reducing
the total energy consumption depends on the compression ratio for
register values. The compression ratio for different benchmarks are
show in Fig. 8. Most of the benchmarks have shown relatively high

0

1

2

3

4

5

6
R

F
C

om
po

re
ss

io
n

R
at

io

Figure 8: The compression ratio comparison for different applica-
tions.

0

0.2

0.4

0.6

0.8

1

R
F

C
om

po
re

ss
io

n
Pe

rc
en

ta
ge

Figure 9: The percentage of the register entries that can be com-
pressed by BDI compression.

compression ratios, and the average compression ratio is around
2.81. As mentioned, the high compression ratio stems from the
value similarity that exists in the SIMT execution model of GPUs’,
which has also been observed by previous work [3, 18]. To get
the overall understanding of the application characteristics, we also
evaluate the existence of value similarities in details. The percent-
age of the written register entries that can be compressed over the
total written register entires is shown in Fig. 9. All the benchmarks
have shown the existence of value similarity. For some bench-
marks, such as BFS and LPS, it is surprising to see that nearly all
the register written entries can be compressed.

4.7 Hardware Area Analysis
The area overhead for building a 128KB STT-RAM register file per
SM is only 19.5% of the SRAM based design, according to Table 1,
thanks to the small feature size of STT-RAM. For the centralized
write buffer design, 16 buffer entries are enough to avoid pipeline
stalls incurred by the long write latency of STT-RAM from our
experimental results. The writer buffer is modelled as 8-way asso-
ciative SRAM cache with 8KB capacity using NVsim [17], and its
area incurs 5.6% hardware overhead. We use the compressor and
decompressor design in previous work [3], and their total area is
0.07mm2, which incurs 36.0% hardware overhead. In summary,
the area of our proposed STT-RAM register file is only 61.2% of
the SRAM-based register file design.

5 Conclusion
As technology scales, the high leakage power of SRAM hampers
the deployment of larger size register files for future GPUs. STT-
RAM is a promising technology to replace SRAM, but needs care-
ful consideration to mitigate its write latency and high write en-
ergy issue. In this work we propose an STT-RAM based register
file design to improve energy efficiency for GPUs via compres-
sion. To overcome the high write energy issue of STT-RAM, the
light-weight BDI compression technique is employed to reduce dy-
namic energy consumption of the register file. Meanwhile, a cen-
tralized write buffer design is proposed to mitigate the performance
gap caused by the long write latency. Experimental results show
that our proposed design is able to substantially reduce energy con-
sumption and area of the register file while preserving the perfor-

mance. This work demonstrates that the STT-RAM based register
file design is a promising solution for future GPU architectures.

6 Acknowledgements
We are grateful to our anonymous reviewers for their suggestions to
improve this paper. This work is supported by National Natural Sci-
ence Foundation of China, under grant Nos. 61433019, U1435217,
61232003, 61502514, 61402503, 61402501, 61120106005 and 61303073;
National High Technology Research and Development 863 Pro-
gram of China, under grant 2015AA015305.

References
[1] “Top500 Supercomputers List,” 2015. [Online]. Available: http://www.top500.

org/lists/2015/06/

[2] NVIDIA, “NVIDIA Kepler GK110/GK210 Architecture Whitepaper.”

[3] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, “Warped-
compression: enabling power efficient GPUs through register compression,” in
ISCA, 2015.

[4] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt
et al., “GPUWattch: enabling energy optimizations in GPGPUs,” in ISCA, 2013.

[5] M. Abdel-Majeed and M. Annavaram, “Warped register file: A power efficient
register file for GPGPUs,” in HPCA, 2013.

[6] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-e. Wang, E. Kan, and G. E. Suh,
“SRAM-DRAM hybrid memory with applications to efficient register files in
fine-grained multi-threading,” in ISCA. New York, New York, USA: ACM
Press, 2011.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances In Neural Information Pro-
cessing Systems, pp. 1–9, 2012.

[8] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding et al., “Concurrent Analyt-
ical Query Processing with GPUs,” in VLDB, 2014.

[9] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of the 3D
stacked MRAM L2 Cache for CMPs,” in HPCA, 2009.

[10] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing
non-volatility for fast and energy-efficient STT-RAM caches,” in HPCA, feb
2011.

[11] N. Goswami, B. Cao, and T. Li, “Power-performance co-optimization of
throughput core architecture using resistive memory,” in HPCA, 2013.

[12] G. Li, X. Chen, G. Sun, H. Hoffmann, Y. Liu, Y. Wang et al., “A
STT-RAM-based low-power hybrid register file for GPGPUs,” in DAC, 2015.

[13] J. Wang and Y. Xie, “A Write-Aware STTRAM-Based Register File Architecture
for GPGPU,” ACM Journal on Emerging Technologies in Computing Systems,
vol. 12, no. 1, pp. 1–12, aug 2015.

[14] X. Liu, M. Mao, X. Bi, H. Li, and Y. Chen, “An efficient STT-RAM-based
register file in GPU architectures,” in ASP-DAC, 2015.

[15] J. Zhou, X. J. Yang, J. J. Wu, X. Zhu, X. D. Fang, and D. Huang, “A memristor-
based architecture combining memory and image processing,” Science China
Information Sciences, vol. 57, no. 5, pp. 1–12, 2014.

[16] L. Wang, J. L. Xue, and X. J. Yang, “Acyclic orientation graph coloring for
software-managed memory allocation,” Science China Information Sciences,
vol. 57, no. 9, pp. 1–18, sep 2014.

[17] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7,
pp. 994–1007, 2012.

[18] J. Kim, C. Torng, S. Srinath, D. Lockhart, and C. Batten, “Microarchitectural
mechanisms to exploit value structure in SIMT architectures,” in ISCA, 2013.

[19] G. Pekhimenko, V. Seshadri, O. Mutlu, M. Kozuch, P. Gibbons, and T. Mowry,
“Base-delta-immediate compression: Practical data compression for on-chip
caches,” in PACT, 2012.

[20] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer et al., “Cache revive:
Architecting volatile STT-RAM caches for enhanced performance in CMPs,” in
DAC, 2012.

[21] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyz-
ing CUDA workloads using a detailed GPU simulator,” in ISPASS, 2009.

[22] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A
characterization of the Rodinia benchmark suite with comparison to contempo-
rary CMP workloads,” in IISWC, 2010.

[23] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari et al.,
“Parboil: A revised benchmark suite for scientific and commercial throughput
computing,” IMPACT Technical Report, 2012.

[24] NVIDA, “GPU Computing SDK.” [Online]. Available: https://developer.nvidia.
com

