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Abstract —This paper presents a series of examples in which the global performance of flow systems is optimized subject to global
constraints. The flow systems are assemblies of ducts, channels and streams shaped as Ts, Ys and crosses. In pure fluid flow,
thermodynamic performance maximization is achieved by minimizing the overall flow resistance encountered over a finite-size
territory. In the case of more complex objectives such as the distribution of a stream of hot water over a territory, performance
maximization requires the minimization of flow resistance and the leakage of heat from the entire network. Taken together, these
examples show that the geometric structure of the flow system springs out of the principle of global performance maximization
subject to global constraints. Every geometric detail of the optimized flow structure is deduced from principle. The optimized structure
(design, architecture) is robust with respect to changes in some of the parameters of the system. The paper shows how the geometric
optimization method can be extended to other fields, e.g., urban hydraulics and, in the future, exergy analysis and thermoeconomics.
 2000 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

a, b variables
A area . . . . . . . . . . . . . . . . . . . . m2

Ac cross-sectional area . . . . . . . . . . . m2

c1,2 constants

cp specific heat at constant pressure . . . . J·kg−1·K−1

d depth . . . . . . . . . . . . . . . . . . . m
D diameter, channel width . . . . . . . . . m
f friction factor
F geometric group
h heat transfer coefficient . . . . . . . . . W·m−2·K−1

k thermal conductivity . . . . . . . . . . . W·m−1·K−1

L length . . . . . . . . . . . . . . . . . . . m
ṁ mass flow rate . . . . . . . . . . . . . . kg·s−1

p perimeter . . . . . . . . . . . . . . . . . m
q′ heat transfer rate per unit length . . . . . W·m−1

r,R geometric groups
ri,o inner and outer radii of insulation . . . . m
tw wall thickness . . . . . . . . . . . . . . m

* Correspondence and reprints.
abejan@duke.edu

T temperature . . . . . . . . . . . . . . . . K
T0 inlet temperature . . . . . . . . . . . . . K
T∞ ambient temperature . . . . . . . . . . . K

U mean velocity . . . . . . . . . . . . . . . m·s−1

V volume . . . . . . . . . . . . . . . . . . m3

x, y variables
x, y Cartesian coordinates . . . . . . . . . . m
z elevation . . . . . . . . . . . . . . . . . m

Greek symbols

α,β angles . . . . . . . . . . . . . . . . . . . rad
1P pressure drop . . . . . . . . . . . . . . . Pa

ν kinematic viscosity . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . kg·m−3

Subscripts

j junction
min minimum
opt optimum
out outlet
∼ dimensionless variables, equations (42)
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1. THERMODYNAMIC OPTIMIZATION OF
GEOMETRY

Among the more recent methods that have become
established in thermal engineering, thermodynamic op-
timization has the objective of improving the global per-
formance of the system subject to specified global con-
straints. Improvement means the decrease in the irre-
versibility (or entropy generation, exergy destruction)
that characterizes all the components and processes of the
system. Thermodynamic optimization is useful as a first
step, for orientation in the search of tradeoffs that govern
the geometric configuration of the system. This knowl-
edge is useful later, as guidelines in the development of
more complex and realistic models, and in the final de-
sign optimization that is based on cost minimization [1].

An engineering flow system owes its irreversibility to
several mechanisms, most notably the flow of heat, fluid
and electric current against finite resistances. The entropy
generated by each current is proportional to the product
of the current times the driving potential (e.g., pressure
difference) [1, 2], i.e. proportional to the resistance
overcome by the current. In simple terms, the entire
effort to optimize thermodynamically the greater system
rests on the ability to minimize all the internal flow
resistances, together. Resistances cannot be minimized
individually and indiscriminately, because of constraints:
space is limited, streams must connect components, and
components must “fit” inside the greater system. Because
of constraints, the resistances compete against each other.

The route to improvements in global performance is
by balancingthe reductions in the competing resistances.
Thermodynamically, this amounts to spreading the en-
tropy generation rate through the system in an optimal
way, so that the total irreversibility is reduced. Optimal
spreading is achieved by properly sizing, shaping and
positioning the components. Optimal spreading means
geometry. In the end, the geometric structure of the sys-
tem — its architecture — emerges as a result of global
thermodynamic optimization.

The generation of system structure by global opti-
mization is, of course, complicated and opaque to the
observer’s eye when the systems and its functions are
complex. It is simpler and easier to see when the system
houses only a few streams, as in the fluid-flow examples
treated in the present paper. These examples belong to the
wide class of engineering and natural flows that connect
an infinity of points (volume, area) to one or more dis-
crete points (sources, sinks). All the volume-point flows
are shaped as trees. Natural examples are the river basins
and deltas, lungs, vascularized tissues, botanical trees,

and leaves. Manmade flows shaped as trees are found in
the cooling systems of electronics packages and wind-
ings of electric machines, regenerative heat exchangers,
street and traffic patterns, and networks for distributing
city water and for collecting rainwater and sewage.

Tree-shaped flows have been studied extensively in
physiology, geophysics and engineering. To review this
large body of work is not the purpose of this article; book-
size reviews can be found in [3–6]. The work described
in this paper was stimulated by a series of recent articles
that showed that tree networks and other geometric forms
of flow systems can be derived from the optimization of
global performance subject to global constraints [7–10].

The form-generating principle was encountered first
in heat transfer, in the problem of minimizing the global
thermal resistance between a heat-generating volume and
a point-size heat sink [7]. This fundamental problem
was stimulated by electronics cooling applications at
progressively smaller dimensions, where geometric op-
timization plays an increasingly important role. In the
volume-to-point flow problem heat was generated uni-
formly throughout the volume. A small amount of high-
conductivity material was used in the form of thin inserts,
to collect the generated heat, and to channel it with mini-
mum resistance to the heat sink.

The geometric optimization consisted of choosing
the best thicknesses, shapes and positions for the high-
conductivity inserts. This work was done at several
volume scales, starting with the smallest and proceeding
toward larger scales (assemblies, constructs). During
this optimization and construction procedure the inserts
formed a tree network in which every single geometric
feature was a result of the invoked design principle.
The method was named “constructal” because of the
construction based on optimized building blocks, or the
sequence from small to large with optimization at every
step.

The method was also applied to systems with fluid
flow [8], convection [9], and urban traffic [10]. The
engineering contribution of the method is to show that it
is possible to arrive at the main features of the optimized
architecture in a few steps of geometric optimization.
Refinements of the optimized architecture can be pursued
subsequently, for example, via numerical simulations of
the flow in many configurations that differ only slightly
from each other.

In this paper we propose a simpler way of approaching
the geometric optimization of tree-shaped paths for fluid
flow. Instead of focusing on the volume-point flow and
arriving at the tree structure, we consider the much
simpler building block consisting of a few streams that
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serve as tributaries or branches in a constrained space.
For example, a larger stream with two branches (or two
tributaries) forms a construct shaped as a T or Y. We
show how all the geometric features of the construct can
be derived from the global minimization of resistance to
flow. We also show that by putting together the optimized
constructs it is possible to reconstruct features of the
much more complicated tree structures optimized in the
past.

2. LAMINAR FLOW IN A T-SHAPED
ASSEMBLY OF TUBES

Consider first the case of incompressible flow through
the T-shaped structure formed by a tube of lengthL1
and diameterD1, which is continued by two tubes of
lengthL2 and diameterD2. The streamṁ may flow in the
direction shown infigure 1, or it may flow in the opposite
direction. The flow through each tube is laminar and
fully developed (Hagen–Poiseuille). The total volume
occupied by the tubes is fixed,

π

4

(
D2

1L1 + 2D2
2L2

)
= const (1)

Figure 1. T-shaped assembly of round tubes.

Fixed is also the total space occupied by the planar
structure,

2L2L1 = A = const (2)

The objective is to minimize the global flow resistance
encountered by the streaṁm. This is achieved geometri-
cally, by selecting the proper aspect ratios that define the
architecture (D2/D1, L2/L1).

The relation between mass flow ratėm and end-to-
end pressure drop1P in fully developed laminar flow
through a tube of inner diameterD and lengthL is

1P

ṁ
=

128

π

νL

D4
(3)

The flow resistance1P/ṁ is proportional to the geomet-
ric ratio L/D4. For the sake of brevity, in the following
analysis we writeL/D4 for flow resistance, instead of the
full expression (3).

The stream flows through a resistanceR1 = L1/D
4
1

and continues through (or comes from) two branches
of resistanceR2 = L2/D

4
2. The R2 resistances are in

parallel; their overall effect is the resistanceR3 given by

1

R3
=

1

R2
+

1

R2
(4)

which yieldsR3 = R2/2. TheR1 andR3 resistances are
in series; their total resistance isR = R1 + R3, or

R =
L1

D4
1

+
L2

2D4
2

(5)

The internal volume of each tube is proportional toD2L.
For brevity, instead of equation (1) we account for the
total tube volume by writing

V = L1D
2
1 + 2L2D

2
2 (6)

We seek to minimize the total resistance (5) subject
to the volume constraint (6). The geometric optimization
proceeds in two stages. In the first we optimize the
“internal” aspect ratioD2/D1. For this we use the
notation

x = D2
1, y = D2

2 (7)

such that equations (5) and (6) become

R =
L1

x2 +
L2

2y2 (8)

V = L1x + 2L2y (9)
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Next, we eliminatey from equation (9),y = a − bx,
wherea = V/(2L2) andb = L1/(2L2), andR becomes

R =
L1

x2
+

L2

2(a − bx)2
(10)

TheR minimum is found by solving dR/dx = 0, which
in combination withb = L1/(2L2) yields(a − bx)/x =

2−2/3. Substituting this result into the preceding relations
we findy/x = 2−2/3 and, in order,

D2

D1
= 2−1/3 (11)

Rmin =
1

x2

(
L1 + 21/3L2

)
(12)

V = x
(
L1 + 21/3L2

)
(13)

RminV
2
=

(
L1 + 21/3L2

)3
(14)

The ratio of successive tube diameters (11) is an
old result, which in physiology is known as Murray’s
law [11, 12]. For us it marks the end of the first step of
geometric optimization. This result is remarkable for its
robustness: the optimal ratioD2/D1 is independent of
the assumed tube lengths (L1,L2). It is also independent
of the relative position of the tubes — the layout of the
T-shaped structure. It is independent of geometry.

The next step is new: we minimizeRmin at constant
V by selecting the lengthsL1 and L2. According to
equation (14), it is sufficient to minimize the expression

r = L1 + 21/3L2 (15)

subject to the area constraint — the territory — allocated
to the three tubes, equation (2). The minimization ofr

subject to constantA yields the tube lengths

L1 = 2−1/3A1/2, L2 = 2−2/3A1/2 (16)

and their ratio

L2

L1
= 2−1/3 (17)

In conclusion, equations (11) and (17) show that at
the junction the tube lengths and diameters change in
the same proportion. This also means that each tube
is geometrically similar to its tributary or collector,
D1/L1 = D2/L2. We return to this observation at the end
of the next section.

3. TURBULENT FLOW IN A T-SHAPED
ASSEMBLY OF CHANNELS

The purpose of the preceding example was to illustrate
the method and its analytical steps. In this section and
the remainder of the paper we report the solutions to
a class of related problems. For brevity, we omit the
analytical details, and highlight only the features that are
new relative to the steps undertaken in section 2.

In the T-shaped assembly offigure 2 we have made
three changes:

(i) The flow is in the fully-rough turbulent regime,
so that the friction factor may be approximated by
a constant for all the channels. Turbulent flows are
especially encountered in civil engineering applications
such as hydraulics, hot water distribution and heating,
and air conditioning.

Figure 2. T-shaped assembly of closed or open channels.
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(ii) The channel cross-section may have several
shapes (round, parabolic, triangular, rectangular), and the
stream may even have a free surface (open channel flow).

(iii) The flow may be driven by differences in elevation
(i.e. gravity), or by the pressure difference1P shown in
figure 2.

Regarding (iii), there is a useful analogy between
gravity- and pressure-driven flows. For example, the flow
through each river channel is driven by the slope of the
channel, i.e. by the gravitational acceleration component
aligned with the channel. In steady flow this body force
is balanced by the longitudinal friction force integrated
over the wetted surface of the channel. The force balance
provides a relation between the channel slope and the
flow rate or mean velocity of the stream: this relation
will be presented in the next section, where it will be
clear that the channel slope plays the same role as the
pressure drop1P maintained between the ends of a duct
with through flow. We develop the solution in terms of
1P , so that its results can also be applied to completely
enclosed streams (ducts) with turbulent flow.

The geometry of the assembly offigure 2has three de-
grees of freedom, which are optimized in this order: the
shape of the channel cross-section, the internal aspect ra-
tio D2/D1, and the external aspect ratioL2/L1. Assume
that Ac andp are the area and wetted perimeter of the
channel cross-section. The force balance for a channel of
lengthL and mean velocityU yields

1P = f
pL

Ac

(
1

2
ρU2

)
(18)

In the fully rough turbulent limit the friction factorf is
essentially constant, i.e. independent of Reynolds number
or flow rate. The flow rate iṡm = ρUAc. LetD represent
the transversal dimension — the width — of the duct or
channel. Accordingly,p = πD for the round duct and
p = πD/2 for the open channel with half-disk cross-
section.

A rectangular cross-section has two dimensions, the
width D and depthd . To minimize the flow resistance of
equation (18) by varying the cross-sectional shape means
to minimize the wetted perimeterp subject to fixedAc.
If the rectangular flow cross-section does not have a
free surface, thenp = 2(D + d), and the optimal shape
subject toAc = dD, constant, is the square,d/D = 1.
If the rectangular cross-section houses an open channel
flow of depthd , thenp = D + 2d , and the optimal cross-
sectional shape isd/D = 1/2. Similarly, we find that the
optimal shape of a triangular cross-section withD-wide
free surface and maximum depthd is represented by
d/D = 1/2.

Putting these optimal cross-sectional shapes together,
including the round duct and the open channel flow with
half-disk cross-section, we conclude that the result of op-
timizing the stream cross-section is a wetted perimeterp

that scales withD, and a cross-sectional areaAc that is
of orderD2. This summary means that equation (18) ex-
presses the proportionality

1P

ṁ2
∼ r (19)

where r is a purely geometric group of the duct or
channel,

r =
L

D5 (20)

Unlike in laminar flow (section 2), where1P is propor-
tional toṁ, in the fully-rough and fully-turbulent regime
1P is proportional toṁ2.

We now turn our attention to the pressure drop1P

across the entire assembly of channels. Let1P1 be
the pressure drop across the single channel (ṁ,L1,D1),
and 1P2 the pressure drop across the two channels
(ṁ/2,L2,D2 each) connected in parallel. Assuming that
the pressure drop due to losses right at the T junction is
small when compared with1P , we recognize that

1P = 1P1 + 1P2 (21)

and, after using equation (19), we obtain the global
relationship between1P andṁ for the assembly:

1P

ṁ2 ∼ r1 + r2

(
ṁ/2

ṁ

)2

(22)

The right side of equation (22) shows that the object of
the geometric minimization effort is the expression

R =
L1

D5
1

+
L2

4D5
2

(23)

Assume that the total volume occupied by the channels
is constrained, equation (6). Using the notation (7), and
following the steps shown in equations (8)–(14), we
obtain the optimal ratio of channel widths

D2

D1
= 2−3/7 (24)

RminV
5/2

= 21/2(2−1/7L1 + L2
)7/2 (25)

The third minimization of the global resistance is
achieved by minimizing the geometric group

953



A. Bejan et al.

(2−1/7L1 + L2) subject to the fixed two-dimensional ter-
ritory A, equation (2). The result is

L2

L1
= 2−1/7 (26)

This ratio is closer to 1 than the corresponding ratio
for ducts with laminar flow, equation (17). Unlike in
the laminar case (section 2), in which the geometric
similarity ratio D/L was preserved in going from each
tube to its branch, in turbulent flow the geometric ratio
that is preserved isD/L3: note that equations (24)
and (26) yieldD1/L

3
1 = D2/L

3
2.

4. EQUIPARTITION OF PRESSURE DROP
AND ELEVATION

In sections 2 and 3 we minimized the resistance of
the three-channel assembly, and obtained two optimal
geometric ratios,D2/D1 and L2/L1. An interesting
feature of this optimal design is that the overall pressure
drop 1P is divided exactly in half by the junction
point. For example, using equations (24) and (26) in the
resistance formula (23), we see that

1P1

1P2
=

L1/D
5
1

L2/4D5
2

= 1 (27)

Similarly, by using equations (11) and (17) in equa-
tion (5), we conclude that the equipartition of pressure
drop characterizes the optimal design not only in turbu-
lent flow but also in laminar flow.

The preceding geometric results are valid for pressure-
driven and gravity-driven flows. The analogy between the
two is demonstrated as follows. Assume that the open
channel flow driven by gravity is straight, and that the
height difference between its ends isz, wherez ≪ L.
The channel slope isz/L, the gravitational acceleration
component that drives the flow isgz/L, and the total
body force that pulls the liquid column through the
channel is (ρAcL)gz/L. This force is balanced by the
friction force integrated over all the wetted surface,
namely,τpL, whereτ is the shear stressτ = f (ρU2/2).
The force balance

ρAcL
gz

L
= f

1

2
ρU2pL (28)

can be rewritten as

ρgz = f
pL

Ac

(
1

2
ρU2

)
(29)

Figure 3. The equipartition of elevation when the T-shaped
assemblies of figures 1 and 2 are optimized geometrically for
gravity-driven flow with minimum resistance.

Equations (29) and (18) show that the productρgz plays
the same role as1P in duct flow. If z1 and z2 are the
net drops in elevation along theL1 and L2 channels,
respectively, then the total drop between the two inlets
and the outlet is

z = z1 + z2 (30)

This equation replaces equation (21), and the optimiza-
tion (18)–(27) applies unchanged. In particular, equa-
tion (27) means that the elevation of the junction is ex-
actly half-way between the elevations of the inlet and
outlet ports of the assembly. This feature is illustrated in
figure 3.

5. OPTIMAL ANGLE OF CONFLUENCE IN
A Y-SHAPED ASSEMBLY

Further progress on the geometric minimization of
flow resistance can be made by relaxing some of the
simplifying features used in the T-shaped assemblies. In
figure 4, for example, we have abandoned the 90◦ angles
between streams. The angleβ is variable, and adds itself
as a degree of freedom in the optimization of the new
Y-shaped assembly.

As in figure 1, we assume that the flow is laminar
through round tubes, and that the entire construct is
housed by a rectangular areaA. According to the notation
defined onfigure 4, the area constraint is

A = 2L2 cosβ(L1 + L2 sinβ) (31)

The optimized ratio of tube diameters, equation (11),
continues to be valid because it is insensitive to changes
in the tube lengths. This means that the flow resistance
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Figure 4. Y-shaped assembly occupying a rectangular area.

to optimize is the expression reported in equation (14),
which is minimum for the Y configuration where the
group (L1 + 21/3L2) is minimum.

In sum, the optimization of the Y configuration con-
sists of minimizing (L1 + 21/3L2) subject to the area
constraint (31), by varying the shape parametersL1/L2
and β . First, the optimization with respect toL1/L2
yields

L1

L2
= 21/3

− 2 sinβ (32)

relative to which equation (17) is the special caseβ = 0,
or figure 1. Next, by substituting this ratio length in
the flow resistance group (L1 + 21/3L2), and using the
constraint (31) to eliminateL1 (or L2), we obtain

L1 + 21/3L2 =

(
2A

21/3 − sinβ

cosβ

)1/2

(33)

The optimization with respect toβ requires the minimiza-
tion of (21/3 − sinβ)/cosβ , which yields sinβ = 0.794,
or β = 0.917 rad. The groupL1 + 21/3L2 decreases
monotonically fromβ = 0 to 0.917 rad. The angleβ =

0.917 rad does not represent a realistic design, because
if we substitute it into equation (32) we obtain a nega-
tive L1. The smallest realistic resistance corresponds to
the degenerate Y without a stem (L1 = 0), where theL2
tubes stretch all the way from the corner P to the root
point M (seefigure 4).

An optimal angle of confluence in a Y-shaped assem-
bly with finite L1 exists when the shape of theA terri-
tory is not free to vary, i.e. when the ratio of tube lengths
(L1/L2) is disconnected from the aspect ratio ofA. As an
example, we chose the Y inscribed in a disk-shaped do-
main. The disk radiusr is fixed. The layout of the Y con-
struct is defined by the anglesα andβ defined infigure 5.

Again, the focus of the resistance minimization effort
is equation (14), or the group (L1 + 21/3L2). The tube
lengths can be expressed in terms ofr, α andβ :

Figure 5. Y-shaped assembly occupying a disk-shaped area.

L2 = r
sinα

cosβ
(34)

L1 = r(1+ cosα − sinα tanβ) (35)

Next, we find that the group(L1+21/3L2) is proportional
to the geometric expression

F = 1+ cosα − sinα tanβ + 21/3 sinα

cosβ
(36)

Solving∂F/∂α = 0 and∂F/∂β = 0 together, we obtain
the optimal angles

α = 0.654 rad, β = 0.917 rad (37)

and, consequently, the length ratios:

L1

r
= 1,

L2

r
= 1,

L2

L1
= 1 (38)

In this optimal configuration the tubes are connected
exactly in the center of the Y-shaped construct. The angle
between the twoL2 tubes is very close to 75◦. The
ratio L2/L1 is larger than in the optimized T construct,
equation (17).

6. CROSS-SHAPED ASSEMBLY OF TUBES

The same method can be applied to more complicated
constructs. More complex than the three-tube assembly
of figure 1 is the four-tube assembly offigure 6. As

955



A. Bejan et al.

Figure 6. Cross-shaped assembly of round tubes.

in section 2, the flow is assumed laminar and fully
developed, the tubes are slender (Li/Di ≫ 1), and the
angles of confluence are all equal to 90◦. The architecture
is defined by six dimensions, three lengths(L1,L2,L3)

and three diameters (D1,D2,D3). There are only four
degrees of freedom, because of the two constraints
(territory, tube volume) that replace equations (2) and (6),

2L2(L1 + L3) = A = const (39)

L1D
2
1 + 2L2D

2
2 + L3D

2
3 = V = const (40)

The resistance of each tube (Ri ) is proportional to the
geometric groupLi/D

4
i (i = 1,2,3). The total resistance

encountered by the flow fromP = 1P to P = 0 is
proportional toRt, where

Rt = R3 +
(
R−1

1 + 2R−1
2

)−1 (41)

whereRi = Li/D
4
i . For the proper nondimensionaliza-

tion of the problem we note that the tube length scale
follows from theA constraint (Li ∼ A1/2), and the diam-
eter length scale is governed by theV constraint,D2

i ∼

V/Li ∼ V/A1/2. The problem statement is placed in di-
mensionless form by using the dimensionless variables

L̃i =
Li

A1/2 , D̃i =
Di

V 1/2A−1/4 ,

(42)

R̃t =
Rt

A3/2V −2

We minimizedR̃t numerically by varying the six dimen-
sions subject to the two constraints. We did this in two

Figure 7. Optimized cross-shaped assembly of tubes when the
center of the cross is free to move.

steps. First, we used the constraints and expressedR̃t as
a function of only four variables. Second, we constructed
four nested optimization loops, in which we optimized, in
order,D̃1, D̃2, D̃3 andL̃2. We used the two constraints
to calculatẽL1 and L̃3 during each iteration. The mini-
mized value of̃Rt was retained only if the calculated̃L1
andL̃3 were positive. The numerical method guaranteed
accuracy of at least 0.8 percent [13].

The optimized geometry is reported graphically in
figure 7. Its main feature is the complete disappearance
of the stem tubeL3. When the lateral tubes of the cross
L2 are free to move, i.e. when the center of the cross is
not fixed, then the easiest route for the flow is through
two L2 tubes positioned closest to the exit. The third
tube (L1) is almost absent: (D1/D2 = 0.14 in figure 7).
This degeneracy is similar to the disappearance of the
stem in the Y-tube optimization offigure 4. The rest of
the geometry offigure 7is characterized byL1/(2L2) =

0.99, andD3/D2 = 1.

More meaningful as an engineering construct is the
cross where all four tubes are present. This requires an
additional (a third) constraint: fixing the position of the
center of the cross relative to the frame ofA. As an
example, we place the center of the cross in the center
of A,

L1 = L3 (43)

and repeat the numerical optimization. This time there
are three degrees of freedom represented by three nested
optimization loops in the sequencẽL1, D̃3 andD̃2. The
positive value of̃L3 is guaranteed by equation (43). The
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Figure 8. Optimized cross-shaped assembly of tubes when the
center of the cross is placed in the center of the A territory.

two constraints allowed us to verify the values ofL̃2
and D̃1 during each iteration. Again, we retained only
the minimized values of̃Rt for which the calculated̃L2
and D̃1 values are positive. The numerical method had
an accuracy of at least 0.65 percent [13]. The optimized
geometric features of the assembly are drawn to scale in
figure 8.

7. OTHER DUCT MATERIAL
CONSTRAINTS

In all the examples treated until now we invoked the
total duct volume constraint, equation (6). This constraint
is appropriate in flow systems where the volume fraction
occupied by ducts is at a premium. This is certainly the
case in living systems (e.g., lungs, vascularized tissues),
where incentives are great for packing the volume with
solid tissue that performs metabolic and motor functions.
Not surprisingly, the volume constraint originates from
physiology [3, 4, 11, 12], where its invocation is frequent
and not questioned.

Similar applications are found in engineering, as in
the cooling of electronics packages with single-phase
fluid ducted through optimally sized and positioned
channels [14]. Here, again, the incentive is to build the
most electronics possible into the volume — the most

working solid — and this puts pressure on the designer
to limit the volume fraction set aside for fluid.

The minimization of construction and operating costs
is the ultimate optimization basis in engineering. Ap-
proached from this point of view, the constraint that ac-
counts for the ducts in the present problems assumes
forms similar to but not exactly the same as equation (6).
In the important field of urban hydraulics [15–20], for
example, the cost of a network of ducts (lengthsLi ,
widthsDi ) is driven by the amount of duct wall material
(∼

∑
i LiDi). For this reason, in place of equation (6) we

also considered the wall material and/or excavated soil
constraint. For the T-shaped assemblies offigures 1and2
the new material constraint is the volume of excavated
soil

V = (L1D1 + 2L2D2)z (44)

wherez is the depth of excavation. Repeating the two-
step geometric optimization of the T-shaped assembly
with round tubes and fully-developed laminar flow (sec-
tion 2) we obtain the aspect ratios

D2

D1
= 2−2/5,

L2

L1
= 2−3/5 (45)

These ratios are comparable with but not the same as
those derived earlier, equations (11) and (17). The duct
material constraint does matter.

This conclusion finds reinforcement in the results
obtained by repeating the three-step optimization of
the T-shaped assembly of ducts (not necessarily round)
with fully-developed and fully-rough turbulent flow (sec-
tion 3). When the duct material constraint (44) replaces
equation (6), the optimized aspect ratios (24) and (26) are
replaced, in order, by

D2

D1
= 2−1/2,

L2

L1
= 2−1/2 (46)

These ratios are not the same as in equations (24)
and (26). Furthermore, equations (46) show thatD2/D1
is equal toL2/L1. When the duct volume constraint (6)
was used, this coincidence occurred in the case of fully-
developed laminar flow (section 2), cf. equations (11)
and (17).

8. T-SHAPED ASSEMBLY OF TUBES FOR
THE DISTRIBUTION OF HOT WATER

An interesting class of problems that may be viewed
as being superimposed on the flow problems considered
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until now, is the distribution of hot water over a given
territory. The importance of this problem has been recog-
nized in studies where the layout of the water flow over
the territory is assumed [21]. In the present approach the
layout (e.g., aspect ratio of the territory covered by the
T-shaped construct) is one of the features to be optimized,
and is deduced based on the minimization of the overall
resistance to fluid flow. An additional optimization op-
portunity is offered by the question of how to distribute
over the ducts a given amount of thermal insulation so
that the temperature of the hot water that is being deliv-
ered is maximum.

For illustration, consider again the T-shaped assembly
of round tubes with laminar flow (section 2),figure 1. Hot
water of temperatureT0 enters theL1 tube from the left,
reaches the temperatureTj at the junction with theL2
tubes, and exits with the temperatureTout. The tempera-
ture decreases along the flow length because of the loss
of heat to the ambient (T∞). Assume that the dominant
thermal resistance between the water stream and the am-
bient is due to the cylindrical shell of insulation wrapped
around each pipe. The rate of heat loss per unit of pipe
length is

q ′
=

2πk(T − T∞)

ln(ro/ri)
(47)

whereri andro are the inner and outer radii of the insula-
tion layer (figure 9), T (x) is the temperature distribution
along the stream (or along theri wall), x is the longi-
tudinal coordinate, andk is the thermal conductivity of
the insulating material. To obtain the temperature distri-
butionT1(x) along theL1 tube we write the first law for
the tube element of length dx,

−ṁcp dT1 = q ′ dx (48)

and integrate using equation (47) andT1 = T0 at x = 0,

T1(x) − T∞

T0 − T∞

= exp

(
−

c1x

ṁcp

)
(49)

wherec1 is the conductance factor appearing in equa-
tion (47),

c1 =
2πk

ln(ro/ri)1
(50)

In particular, the junction temperature corresponds to
settingx = L1 in equation (49),

Tj − T∞

T0 − T∞

= exp

(
−

c1L1

ṁcp

)
(51)

Figure 9. Geometry of insulation shell on a round pipe.

The same analysis delivers the temperature distribu-
tionT2(y) along one of theL2 tubes, wherey is measured
away from the junction,

T2(y) − T∞

Tj − T∞

= exp

(
−

c2y

(ṁ/2)cp

)
(52)

Note the index 2, which accounts for properties of the
L2 stream. Note also the flow ratėm/2 through theL2
tubes. The water exit temperature isTout = T2(L2), cf.
equation (52),

Tout − T∞

Tj − T∞

= exp

(
−

c2L2

(ṁ/2)cp

)
(53)

Finally, by eliminatingTj between equations (53) and
(51) we obtain the outlet temperature as a function of the
distribution of thermal insulation,

Tout − T∞

T0 − T∞

= exp

[
−

1

ṁcp

(c1L1 + 2c2L2)

]
(54)

To maximizeTout is to minimize the group (c1L1 +

2c2L2), or

F =
L1

ln(ro/ri)1
+

2L2

ln(ro/ri)2
(55)

subject to the fixed amount of insulation,

V = π
(
r2
o − r2

i

)
1L1 + 2π

(
r2
o − r2

i

)
2L2 (56)

This constraint can be rearranged to show explicitly the
role played by the radii ratios (ro/ri)1,2,

V

πr2
i1

=

[(
ro

ri

)2

1
− 1

]
L1 + 2f 2

[(
ro

ri

)2

2
− 1

]
L2 (57)

958



Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams

wheref is the step change in pipe radius (or diameter)
that takes place at the junction,

f =
ri2

ri1
=

D2

D1
< 1 (58)

This ratio is known from the minimization of flow
resistance subject to total tube volume (section 2), or total
tube wall material (section 7). The minimization ofF

with respect to(ro/ri)1,2 and subject to the insulation
constraint (57) yields

(ro/ri)1

(ro/ri)2
= f < 1 (59)

In conclusion, the smaller tubes (L2) must have
largerro/ri ratios, i.e. relatively thicker shells of thermal
insulation. The analysis that led us to this conclusion can
be repeated if a more realistic model of the heat loss
process is required. For example, the heat loss model (47)
is based on the assumption that the thermal resistance
between the hot fluid and the ambient is dominated by the
shell of insulating material, ln(ro/ri)/(2πk). Now that
the ratioro/ri has been determined, equation (59), it is
important to check the validity of the dominant resistance
assumption,

ln(ro/ri)

2πk
≫

(
tw

2πrikw
,

1

2πroh

)
(60)

wheretw andkw are the specified pipe wall thickness and
thermal conductivity, andh is the convective heat transfer
coefficient between the outer surface of the insulation and
the ambient.

9. CONCLUSIONS

In this paper we applied the method of thermodynamic
optimization to several classes of simple flow systems
consisting of T- and Y-shaped assemblies of ducts, chan-
nels and streams. In each case, the objective was to iden-
tify the geometric configuration that maximized perfor-
mance subject to several global constraints. In pure fluid
flow (e.g.,figures 1and2) the maximization of thermo-
dynamic performance reduced to the minimization of re-
sistance to fluid flow, or the minimization of entropy gen-
eration when the flow rate is prescribed. In systems with
multiple functions such as the distribution of hot water
over a territory (section 8), the maximization of global
performance is a combination of minimizing fluid-flow
resistance and the total loss of heat from the pipe assem-
bly.

The relatively simple constructs, and the various for-
mulations of the global performance maximization prob-
lem were chosen intentionally in order to stress the most
important features of the method. First is the emergence
of geometric structure as a result of the consistent maxi-
mization of performance subject to constraints. From the
T-shaped construct with laminar flow (figure 1) to the dis-
tribution scheme for hot water (section 8), every detail of
the optimal flow geometry was a result of the pursuit of
better global performance subject to global constraints.
Geometry matters, and its optimal selection (design, ar-
chitecture) is the key to achieving superior performance.

Another important feature illustrated by these exam-
ples is the robustness of the optimized designs. For ex-
ample, in sections 2 and 3 we saw that the optimal ratio
of channel thicknesses (D2/D1) is completely indepen-
dent of the rest of the geometric parameters and global
constraints. Robustness, and the physical parameters with
respect to which the optimized structure is relatively in-
sensitive are very important in practice. They simplify the
design of future and more complex systems, and, at the
same time, they insure a near-optimal performance of ex-
isting systems the structures of which may deviate from
the originally intended design.

Another example of robustness is the flow resistance
minimized in sections 2 and 3. In laminar flow, following
the two-way optimization presented in equations (5)–
(17), we find that the twice-minimized resistanceRmm
can be expressed in terms of the tube volumeV and plane
territoryA,

Rmm = 4
A3/2

V 2 (61)

The corresponding conclusion for the optimization of the
T-shaped construct with turbulent flow (section 3) is

Rmm = 4
A7/4

V 5/2 (62)

These twoRmm functions, equations (61) and (62),
are surprisingly close even though their respective flow
regimes are drastically different.

The constraints are also essential in the pursuit of
the unknown, which is the optimal flow geometry. Con-
straints are not boundary conditions. The boundaries are
the unknowns, the architecture to be optimized. Con-
straints are global concepts that must be recognized from
the beginning, in the same step as the global objective.
The constraint type affects the resulting geometry, as
shown by the duct wall material constraints (section 7) in
comparison with the duct volume constraint (section 2).
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Constraints also affect the meaningfulness of the results,
as shown in the degenerate examples of sections 5 and 6.

Throughout this series of examples we saw that the
optimized geometry has the effect of “partitioning” opti-
mally certain features of the system, e.g., pressure drop,
flow resistance, amount of thermal insulation, etc. Op-
timal partitioning, or optimal allocation of constrained
quantities is a by-product of the optimization of flow
geometry. It is encountered every time global perfor-
mance is maximized: optimal allocation is another way of
interpreting the spatial optimization of the flow arrange-
ment, i.e.the optimal spreading of imperfection(flow re-
sistances, irreversibilities) such that the entire system per-
forms as well as the constraints might allow it to perform.

More fundamentally, the sequence in which the exam-
ples were presented in this paper holds an important mes-
sage for future applications of the method. We started
with examples of pure fluid flow, because they are the
simplest: they suffer from only one irreversibility mech-
anism, fluid friction. Examples of pure heat flow are al-
ready documented in the literature. The paper ended with
an example of combined heat and fluid flow (section 8),
where the objective was to distribute hot water over a ter-
ritory. This problem can be reformulated in terms of dis-
tributing a flow other than hot water, for example, exergy
or a stream of goods. The message is that the method of
optimal allocation of streams over an area can and should
be introduced in other fields (exergy analysis, thermoe-
conomics) in the way in which it was introduced in urban
hydraulics in section 8.

REFERENCES

[1] Bejan A., Tsatsaronis G., Moran M., Thermal Design
and Optimization, Wiley, New York, 1996.

[2] Feidt M., Thermodynamique et optimisation éner-
getique des systèmes et procedés, Technique et documen-
tation, Lavoisier, Paris, 1987.

[3] Weibel E.R., Morphometry of the Human Lung,
Academic Press, New York, 1963.

[4] MacDonald N., Trees and Networks in Biological
Models, Wiley, Chichester, UK, 1983.

[5] Scheidegger A.E., Theoretical Geomorphology, 2nd
edition, Springer-Verlag, Berlin, 1970.

[6] Schumm S.A., Mosley M.P., Weaver W.E., Experi-
mental Fluvial Geomorphology, Wiley, New York, 1987.

[7] Bejan A., Int. J. Heat Mass Tran. 40 (1997) 799–816.

[8] Bejan A., Rev. Gén. Therm. 36 (1997) 592–604.

[9] Bejan A., Dan N., J. Heat Tran. 121 (1999) 675–682.

[10] Bejan A., Ledezma G. A., Physica A 255 (1998) 211–
217.

[11] Murray C.D., Proc. Acad. Nat. Sci. 12 (1926) 207–
214.

[12] Thompson D’A.W., On Growth and Form, Cam-
bridge University Press, Cambridge, UK, 1942.

[13] Taylor J.R., Introduction to error analysis, 2nd
edition, University Science Books, Sausalito, CA, 1997.

[14] Bejan A., Sciubba E., Int. J. Heat Mass Tran. 35
(1992) 3259–3264.

[15] Padet J., Fluides en écoulement, méthodes et mod-
èles, Enseignement de la Physique, Editions Masson, 1991.

[16] Deb A.K., J. Env. Engrg. Div., Proc. ASCE 99 (1973)
405–409.

[17] Alperovits E., Shamir U., Water Resources Res. 13
(1977) 885–900.

[18] Deb A.K., J. Env. Engrg. Div., Proc. ASCE 100 (1974)
821–835.

[19] Wilson A.J., Britch A.L., Templeman A.B., Engrg.
Optimization 1 (1974) 111–123.

[20] Mays L.W., Yen B.C., Water Resources Res. 11
(1975) 37–47.

[21] Barreau A., Moret-Bailly J., Entropie 75 (1977) 21–
28.

960


