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Abstract 

GFll is a parallel computer operational at IBM's T.J. Watson Research Center. It is based on the SIMD 

(Single Instruction Multiple Data) model of parallel computing. GFll attains its peak execution rate of 11.3 

GigaFlops by using 566 identical processing elements, each capable of delivering 20 MegaFlops. Each 

processor has its own 64 Kb static RAM that can access a 32-bit word on each floating point operation, a 2 Mb 

dynamic RAM that operates at one fourth of the SRAM speed, and a 1 Kb register file that provides four 

accesses per floating point operation. The processors communicate through a 576x576 Benes network, 

organized as three stages of 24 × 24 crossbar switches. 

The network provides 11.3 Gb/sec of communication bandwidth to the processors and allows the processors 

to dynamically reconfigure themselves into arrays of various dimensions and sizes or other interesting 

interconnection patterns such as a tree, hypercube, etc. This reconfiguration can take place on every word 

transfer without sacrificing the bandwidth. GF11 has several architectural enhancements to circumvent the 

limitations of the standard SIMD model such as the ability to perform multiple operations in every instruction 

and the ability to modify the operations occurring within individual processors based on processor specific 

data. 

Preliminary benchmarking efforts on some applications indicate that near peak performance can be sustained 

on most applications, including some that were previously believed to be ill suited for SIMD machines. 

Minimal restructuring of programs and algorithms is required for achieving this performance. The architecture 

of GFll is summarized in this paper and the implementations of Finite Element analysis, LU decomposition, 

Gaussian Elimination, and Fast Fourier Transform are discussed to illustrate GFll's ability to deliver good 

performance with minor program restructuring. 

Keywords. GFll multiprocessor computer, architecture; Programming model; FEM analysis; LU decomposi- 

tion; Gaussian elimination; FFT, performance results 

1. Introduction 

GF11 is a parallel computer based on the Single Instruction Multiple Data (SIMD) model 

of computing [10]. It uses 566 processors that receive an identical stream of instructions from 

a central controller. The processors communicate with each other through a three-stage 

Benes network [3], which operates synchronously with the processors. The synchronous 

operation of the network with the processors, an architectural feature unique to GFll, is an 

important factor in GFll's ability to sustain high performance on a broad range of applica- 

tions. The network provides a unidirectional communication path from each processor to a 
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disjoint set of destination processors. The Benes network lets the processors configure 

themselves logically as meshes of different dimensions and sizes, or as trees, hypercubes, etc. 

The processors can change their configuration on every word transfer without sacrificing the 

network bandwidth. 

In comparison to the more popular MIMD (Multiple Instructions Multiple Data) machines 

[7,10,12,13], SIMD machines have simpler designs and lower manufacturing costs because the 

individual processors do not need the instruction memory and the instruction fetch and 

decode logic, which is centralized in a single place. Furthermore, in SIMD machines, the 

interprocessor communication can be synchronized with the execution of instructions in the 

processors, and therefore, synchronization overheads can be avoided. The interprocessor 

communication can also be scheduled a priori to avoid interference in the network, and 

therefore higher interprocessor communication bandwidth can be sustained. 

Because of these advantages, SIMD machines were the favorites during the early days of 

parallel processing [1,2,18]. However, a widespread belief that SIMD machines are unsuitable 

for a large number of problems, caused the SIMD machine to fall out of favor over the last 

few years. This belief has been refuted by the recent work of Fox [11] and the users of CM-2 

[17,20]. ICL's DAP [9] and CM-2 [20] are two commercially available SIMD machines. 

GFll was designed at IBM's T.J. Watson Research Center and is described in detail in 

[4,5,15]. The main application targeted for GFll was the numerical verification of the 

predictions of Quantum Chromodynamics (QCD), a theory of particles that participate in 

nuclear interactions [21]. However, the GFll design addressed the need of a wide variety of 

applications and as a result good performance is sustained on many applications. Some of 

these design features are the wide instruction word which specifies many concurrent opera- 

tions per instruction (the super-scalar approach), the novel approach for interconnection 

network that provides the flexibility and high-bandwidth for interprocessor communication, 

the 256 word register file, and the handling of condition codes. These architectural enhance- 

ments also eliminate or reduce the effort required to modify and restructure the application 

program. Normally, programs are modified to circumvent the limitations of interprocessor 

communication and memory bandwidth, but in GFll the problem does not arise for most 

applications and is less serious for others because of the balanced design. 

GFll is fully operational and benchmarking results show that while it can deliver sustained 

performance close to its peak performance on applications which are believed to be well 

suited for SIMD processing, it also delivers very high performance on applications which are 

widely believed to be ill suited for SIMD and distributed memory machines. Applications in 

the latter category include finite element methods on unstructured grids and molecular 

dynamics. In this paper we discuss the implementation of applications from this latter 

category on GF11. GFll implementation of applications from the former class is presented in 

detail in [15], and only reviewed here. The architecture of GFll has been described in 

considerable detail in [4,5,15], and is also only reviewed here for completeness. 

In the next section we will briefly review the GFll machine organization and hardware, 

and highlight the architectural elements we believe were essential for sustaining good 

performance, even on applications not considered suitable for SIMD computers previously. In 

Section 3 we use a simple 2-dimensional relaxation problem as an example to illustrate a 

programming style which is quite easy and at the same time effective in exploiting parallelism 

on GFll. The implementation of Finite Element analysis, LU decomposition, Gaussian 

Elimination, and Fast Fourier Transform codes on GFll is discussed in Section 4, and the 

performance sustained on these programs is reported. The new possibilities created for 

making more powerful and versatile SIMD machines are discussed in Section 5. Finally, in 

Section 6 we give some concluding comments on the suitability of GFll for a larger class of 

problems. 
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2. Overview of GFll machine organization and hardware 

The GFll hardware consists of 566 identical processors connected through a 576 x 576 

Benes network, a central controller, and 10 disk drives also connected to the network. Each 

processor has a peak performance of 20 MegaFlops, and therefore, the peak performance of 

the whole system is 11.3 GigaFlops. A high level overview of GFll is shown in Fig. 1, and 

details can found in [4,15]. Each processor has its own data memory, and there is no shared 

data memory. A single copy of the program exists in the program memory in the central 

controller, and instructions broadcasted from the program memory are executed by all active 

processors as soon as they are received at the processors. The whole system operates on a 50 

nanosecond machine cycle, and the network transports 1 Byte of data from every input in 

each cycle. Of the 566 processors, 512 are intended to be in use by a user program at any 

given time, and the remaining 54 function as hot spares. 

The design of a GFll processor is shown in Fig. 2. Each processor performs 20 million 

arithmetic operations per second The key component in a processor is a 256 32-bit word 

register file. The register file performs four accesses every 50 nanosecs. Two accesses are for 

reading operands for an arithmetic operation, one access is for storing back the result of an 

arithmetic operation, and the fourth is for either transferring a word from the register file to 

the SRAM or for receiving a word into the register file from either the switch, the SRAM, or 

a delay pipe in the processor. The delay pipe provides an efficient way of handling boundary 

conditions in many algorithms. 

Two operands are read from the register file in each 50 nanosec cycle and are delivered to 

either an integer ALU or to one of the four floating point ALUs. The floating point ALUs 

are pipelined and operate on a 200 nanosec clock. Staggering four of them produces a floating 

point result every 50 nanosec. (Faster components were not available during GFll's design 

period.) Two floating point ALUs perform only multiplications, and the other two perform 

the remaining floating point operations. 

Each arithmetic operation generates a set of condition codes (<, >, ~ .... etc.), any one 

of which can be selected and stored in a 7 entry condition code register. The condition code 
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Fig. 1. Overview of the GFll machine organization and hardware. 
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Fig. 2. Overview of a GF11 processor. 

registers on each processor can be used to modify the operations being performed by that 

processor. Five condition code registers are accessed in each instruction. Two of them are 

used to abort the SRAM and the DRAM stores. The third converts a binary integer operation 

A ol) B to either pass A or pass B, depending on a mode bit in the instruction. The fourth 

condition code enables the processor to write back to the central controller, and the fifth one 

instructs the register file to select the data coming from the delay pipe in place of the data 

coming from the switch. Therefore, even though all boards in the system receive the same 

instruction, different boards could be doing different things depending on their local condi- 

tion codes. 

The communication network in GFll is a three stage Benes network, constructed from 

24 × 24 switches with 24 switches in each stage. This network has the following characteristics: 

• Full Connectivity: Benes networks can provide connections from all the network inputs to 

the network outputs simultaneously, according to any specified permutation. Furthermore, 

the added capability of the GFll switches to connect an input to multiple outputs allows 

the network to handle multiple broadcasts efficiently. Two passes are required over the 

network to allow each of several network inputs to broadcast their data to multiple outputs, 

provided each output is connected to a unique input [14]. 

• Fixed latency: In a SIMD parallel processing environment the non-blocking property 

implies that if in a given cycle all processors send a word of data to each other, they will 

receive their data simultaneously. The delay depends only on the hardware implementation 

of the Benes network, and is independent of the pattern of communication. This allows for 

efficient compile time overlap and synchronization of calculations and communication (just 

in time delivery, no buffering) at the instruction level. 

• Low Latency: This network design approach also allows the network latency to be kept as 

low as the processor latency, eliminating the need to restructure the programs to mask the 
communication latencies. 

Organization of the GFll memory subsystem is also shown in Fig. 2. Each processor in 
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GFll has 2 Mb of memory, and therefore, a 512 processor system has 1 Gb of memory. 

Memory on each processor is organized as 2 banks of 256K 32-bit words, and implemented in 

DRAM technology. If there are no bank conflicts, a sequence of loads or stores can be 

performed once every four cycles (an arithmetic operation is done once per cycle). Bank 

conflicts and alternating between loads and stores further reduces the bandwidth to DRAM. 

To prevent the DRAM bandwidth from affecting the performance of GFll, data from the 

DRAM is staged into a 16K word buffer implemented in Static RAM (SRAM) technology, 

and into a 256 word register file from there. The static RAM buffer can be accessed once 

every cycle. 
The memory subsystem contains hardware to support address calculations for data in 

SRAM and DRAM. Each SRAM address can be modified by adding to it an offset from one 

of the 256 relocation registers. The DRAM address can be modified similarly by adding the 

offset from the DRAM relocation register to the DRAM address being broadcast in the 

instruction. A single relocation register suffices for the DRAM because the DRAM is 

accessed at most once every four cycles and the relocation values can be obtained from the 

SRAM. 

The address relocation hardware gives the processors the ability to generate different 

SRAM or DRAM addresses based on processor specific data. This is useful in many 

situations, some of which are: 

• Table lookup: for calculating transcendental functions using series expansion, for determin- 

ing material properties when simulating a physical medium, if the property has different 

values for different ranges of some other variable being computed in the processors, and 

many similar situations. 

• Combinatorial algorithms: for traversing a tree or a graph according to some rule which 

prescribes a different path in each processor. 

• Indirect addressing: into arrays stored locally within the processors, and into large arrays 

distributed across data memories of all processors. 

The latter situation occurs very frequently in all unstructured grid applications, and an 

efficient way to handle it on GFll is explained in the discussion of PAM-CRASH implemen- 

tation in this paper. The capabilities of the GFll network are also crucial in handling indirect 

addressing across large arrays. 

Though the processors in GFll perform only one arithmetic operation in each instruction, 

they concurrently perform many other operations to calculate the address for and move data 

through the memory hierarchy. As mentioned earlier, interprocessor communication is 

overlapped with the arithmetic and memory operations within the processor. This contributes 

significantly to the ability of GFll in sustaining close to peak performance on most applica- 

tions. 

3. Programming GFII 

Currently programs for GFll can be written in PL.8, a PL/1-1ike language. Extensions are 

defined in PL.8 to express parallel computations for GFll. In this section we will briefly 

discuss the programming model for GFll, the PL.8 programming environment used for 

developing, compiling and executing GFll applications, and then we will use a simple 

2-dimensional Jacobi relaxation problem to illustrate how programs are written for GFll in 

extended PL.8. 

3.1. The GFll programming model 

A GFll program consists of a control program which runs on the RT/PC host, and a 

collection of subroutines comprising the compute intensive parts of the application which 
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execute on GFll. The GF11 subroutines are straight line programs (branchless) because 

GFll controller does not have branching capability. Looping is done by calling the branchless 

subroutine repeatedly from the RT/PC. 

When programming GFll, the user identifies the computation intensive sections of his 

application which must be delegated to GFll. The user also partitions the computational 

work delegated to GFll among the available processors, taking care that all processors get 

identical computations which will be performed on different data. This partitioning of the 

computation is done in conjunction with the allocation of data accessed in that computation 

to the GFll processors so that the inter-processor communication patterns required during 

the computation remain few and simple. To prevent the network from becoming a bottleneck, 

the number of accesses to the SRAMs of remote processors has to be kept below one access 

per four arithmetic operations. 

The extensions in PL.8 allow the user to declare variables which reside on GFll proces- 

sors. Placement of data into SRAM or DRAM is currently determined by the user. The 

memory on each processor gets allocated in an identical manner. The permutation/broadcast 

patterns, which must be used by the processors to access data from other processor's SRAMs, 

are defined by setting the permutation tables declared in the code generator. Each permuta- 

tion table defines one communication (permutation or broadcast) pattern. The ith entry in the 

permutation table points to the processor from which the ith processor would receive the data 

in the communication pattern being defined. Calculations delegated to GFll are also 

expressed in PL.8 extensions. GFll operations (add, multiply, etc.) have the syntax of PL.8 

procedure calls, and these procedures are defined in the code generator. 

3.2. Writing, compiling, and executing GFll programs 

The process of generating executable code for GFll in the PL.8 programming environment 

is illustrated in Fig. 3. Once the user has identified the compute intensive sections of the 

application (Fig. 3(a)) he produces a program comprising of the control part which executes 

on the host and the compute intensive tasks that will execute on GFll (Fig. 3(b)). 

The GFll sections of a user program are usually enveloped in PL.8 control constructs. 

These PL.8 constructs use the PL.8 (RT/PC resident) variables, and serve as the macro 

language for writing the GFll part of the program. The control part of the program, 

depending on the input value of a control variable, performs one of the following functions: 

• GFll code generation mode 

In this mode of execution, all the subroutines comprising the GFll tasks are invoked 

exactly once. Execution of these routines on the RT/PC host in this mode causes the GFll 

instructions (object code for GFll) to be generated and stored on the host. The PL.8 

control constructs, used as macro definition language for expressing GFI 1 tasks succinctly, 

are executed. As a result, the procedure calls defining GFll operations are invoked 

repeatedly to generate long sequences of GFll code (Fig. 3(c)). For example, a PL.8 loop 

around a set of GFll operations will cause the GFll code for this set of operations to be 

generated repeatedly, which is the standard technique for unrolling GFll loops. This is 

explained in some detail in Section 3.3. 

• Execution mode 

In this mode, the GFll object code generated by the earlier mode is loaded to the GFll 

instruction memory, and the control program on the host now invokes the GFll tasks to 

carry out the desired calculations. 

• Simulation mode 

This mode is used before the code generation and execution modes described earlier to 

facilitate the development of GFll applications. When a GFll task is invoked in this 
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mode, it gets interpreted to simulate its execution, rather than being compiled to produce 

GFll code. The facility to interpret/simulate GFll tasks is part of the code generator. 

3.3. The Jacobi relaxation example 

In the Jacobi relaxation example we compute a N x N matrix A, in which each element is 

the average of the four neighbors of the corresponding element in another N X N matrix B 

(Ai,j = l(Bi,j_ 1 -I- B i_ 1j -t- Bij + l + Bi + 1.j ))" This step is executed repeatedly, interchanging the 

roles of A and B. We will assume periodic boundary conditions and use N processors to 

solve the problem. 

In this example we have only one computation intensive section which represents the 

entirety of the code. Real programs however, have several such sections in addition to the 

control constructs and some sequential code which is executed on the host. We generate a 

sequence of instructions which, when executed once on GFll, will carry out one iteration of 

Jacobi relaxation. Each processor will contain one row of the A and B matrices and compute 

the new values for the elements in those rows. When a processor i is computing the new value 

for an element Bij (0 <j < N), two of the four neighbors of Aij, Ai_lj and Ai+lj , reside on 

other processors, while Aij_ 1 and Ai.i+ l are available locally. Therefore, we require two 
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(1) DeclareArrays : Proc; 

(2) DclA( a._sr, scSR, rcReal, mic(LEN), ecFloat); 

(3) DelA( b_sr, sc.SR, rePeal, mie(LEN), eeFloat); 

(4) DclA(aZ_sr, scSR, reVirt, mie(LEN), ecFloat); 

(5) DelA(bZ_sr, scSR, reVirt, mic(LEN), ecFloat); 
End Proc DeelareArrays; 

(6) DeclareRelocates : Proc; 

(7) DclCR(craZ_sr, crSR); Anchor(aZ_sr, craZ_sr); 

(8) DclCR(crbZ_sr, crSR); Anchor(bZ_sr, crbZ_sr); 

End Proc DeclareRelocates; 

(9) DclSwitch : Proc; 

(10) Dcl Pr Integer; 

(11) Do Pr = 0 To PrMax-1; 

(12) SwPerms(0,Pr) = MOD(Pr-I,PrMax); 

(13) SwPerms(1,Pr) = MOD(Pr+I,PrMax); 

End Do Pr; 

End Proc; 

(14) gmc_SWEEP : Proc; 

(15) DCL (j,jpjm,r(4,LEN)) Integer; 

(16) Do j = 1 To LEN; 

(17) jp = MOD(j ,LEN) + 1; 

(18) jm = MOD(j-2+LEN,LEN) + 1; 

(19) 

(20) 

(21) 

SwLd(aZ_sr(j),r(l j),swa(0)); 

SwLd(aZ_sr(j),r(2,j),swa(1)); 

r(2j) = FIAdd(r(1,j),r(2,j)); 

(22) Ld(aZ sr(jp),r(3,j)); 

(23) Ld(aZ sr0m),r(4,j)); 

(24) r(4,j) = F1Add(r(3,j),r(4,j)); 

(25) r(2,j) = FIAdd(r(2,j),r(4j)); 

(26) r(2,j) = FlMul(RConst(0.25),r(2,j)); 

(27) St(r(2j),bZ st(j)); 

End Do j; 

End Proc; 

(28) Run_SWEEP : Proc(aZ_sr, bZ_sr); 

(29) DCL (aZ_sr,bZ_sr) pgElt; 

(30) Point(craZ_sr, aZ_sr); 

(31) Point(crbZ_sr, bZ_sr); 

(32) If rMode = rMode_Run Then Fire(MCode_SWEEP); 
(33) Else gmc SWEEP; 

End Proc; 

/* ...................... COMPUTATION ............................... */ 

(34) Do iter = 1 To itermax; 

(35) Run_SWEEP(a_sr( 1),b_sr( 1 )); 

(36) Run_SWEEP(b_sr( 1),a_sr( 1)); 
End Dq iter; 

Fig. 4. GF11 program for the Jacobi relaxation problem. 
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communication patterns; one to import the value of the top neighbor A i_ 1j and the other for 

the bottom neighbor Ai+lj. 

The actual program for the above problem is shown in Fig. 4. The first five lines declare 

the data structures allocated in the GFll processors, a_sr and b_sr are one-dimensional 

arrays of length 'LEN' allocated in SRAM. They are the rows of the matrices A and B, and 

contain floating point numbers, aZ_sr and bZ_sr are virtual arrays that are not assigned any 

storage. Addresses for elements of virtual arrays are computed in the central controller by 

adding the offsets stored in the SRAM relocation registers of the central controller to the 

SRAM address broadcast in the instruction. By relocation, virtual arrays can be mapped to 

real arrays of the same size and shape. In lines 7 and 8 in Fig. 4 the DclCR function allocates 

registers in the central controller for storing offsets, and the Anchor specifies that the 

addresses for elements of aZ_sr are always relocated using the offset stored in craZ_sr. 

crbZ_sr is used similarly to relocate bZ_sr. 

The code for updating one row of the matrix is shown in lines 16 through 27. It uses the 

virtual arrays aZ_sr and bZ_sr as input and output matrices, so that the same code can be 

used to take the real matrices a_sr and b_sr as inputs in alternate iterations to produce b sr 

and a_sr respectively as result matrices. The controller relocation registers are modified to 

achieve this in lines 30 and 31. When statement 35 makes the call to Run_Sweep, craZ_sr is 

adjusted to map virtual array aZ_sr to real array a_sr, and crbZ_sr is adjusted to map virtual 

array bZ_sr to real array b_sr. However, when line 36 makes the Run_Sweep call, aZ_sr is 

mapped on b_sr and bZ_sr is mapped on a_sr. 

The GFll program written in PL.8 extensions to update one element within a row is in 

lines 19 through 27. This code is enveloped in a PL.8 'Do' loop at line 16 whose index variable 

j is an RT/PC variable. The loop also calculates two RT/PC variables jp and jm, which are 

used in GFll calculations in lines 22 and 23. The entire program is run in one of the two 

modes indicated by the system variable rMode in line 32. When the value of rMode is not 

equal to rMode_run, the gmc_SWEEP subroutine is invoked, and the execution of the code 

generator subroutines comprising the GFll program causes the GFll program to be com- 

piled and GFll code is generated. In each iteration of the do loop in line 16, new GFll code 

is generated for processing the next element of the row, and the loop required to index over 

the elements of the row is completely unrolled. No calculations are performed on GF11 in 

this mode. Once the GFll code has been compiled in the above manner, executing the entire 

program with rMode equal to rMode_ Run causes the actual calculations to be performed on 

GFll using the earlier generated code. 

Lines 9 through 13 in Fig. 4 define the interprocessor communication patterns required. 

Apt j is stored in processor Pr as a_sr r Its top neighbor Apr_lj and its bottom neighbor 

Apr+l J are stored in processors Pr- 1 and Pr + 1 respectively in the same location a_srj. 

Neighbors of B are stored similarly. 

In extended PL.8, all variables which are not assigned storage in either the SRAM or the 

DRAM (such as the r(.,.) variables in the Jacobi code), are automatically allocated by the 

compiler into registers. The do loop in line 16 provides indices to process all elements of a 

row. Statements 19 and 20 show the top and bottom neighbors of an element being loaded 

using the network. Lines 21 through 27 show the remaining loads, the averaging of the 

neighbors, and the storing back of the results. 

4. Applications 

Several algorithms have been implemented on GFll to understand its suitability for 

Scientific/Engineering applications. In this section we have chosen some of these algorithms 
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to discuss the implementation issues, the performance sustained, the architectural features of 

GFll which allow good sustained performance where other machines with distributed 

memory have difficulty, and the reasons for the sustained performance being less than the 

peak performance. Structural analysis was chosen because it is widely believed to be ill suited 

for SIMD machines because of the indirect addressing involved. The matrix applications and 

FFT were chosen because they are simple, widely known, and bring out the capabilities/ 

weaknesses of the architecture. 

4.1. Structural analysis application (Pam-Crash) 

Pam-Crash is a structural analysis code developed by ESI France [24]. It is used for 

analyzing dynamic response of structures. It is used primarily to study automobile crash 

worthiness. This is a finite element code. Time integration is done by an explicit finite 

difference scheme to compute the acceleration, velocity, and displacement of the discretized 

points in the structure as a function of time. 

We used the QFORCEI subroutine of the Pam-Crash code. This routine computes the 

intermediate results needed for calculating the forces acting on each element. The QFORCEI 

subroutine was chosen because the calculations in this routine are representative of the entire 

computationally intensive part of the code. This routine has five types of computational loops, 

and two distinct communication patterns. The communication patterns are analogous to the 

gather step in vector processing. They arise frequently from the need to collect the variable 

associated with the nodes of an element when the calculations are performed on the 

elements, as illustrated in Fig. 5. 

Because of the frequent indirect addressing associated with the gather/scatter steps, finite 

element codes are considered to be ill suited for SIMD machines. Furthermore, since each 

node is involved with multiple elements, the communication from nodes to elements is not a 

permutation but a broadcast/multicast pattern instead. However, the indirection vector used 

to access the nodes corresponding to each element does not change with time. Therefore the 

movement of nodal values from the processors in which they are stored to the processors in 

which they are required for calculations can be scheduled over the network at compile time 

on GFll. Thus, remarkable efficiency can be achieved for the communication step. 

To implement the code on GFll, we distributed the approximately 10,000 nodes and 

elements in the problem equally among the 500 processors without worrying about the locality 

of access. To generate the network permutation patterns needed to move the nodal values, a 

virtual Benes network is implemented in software as shown in Fig. 6. Each network input and 

output corresponds to a node and an element of the problem, and elements/nodes assigned 

to any processor are assigned to the same network switch. This 10,000 × 10,000 virtual 

Elements in edge node 
nl physical domain tables table 

, E 

e2 n 2 

n31 o o 

o e 

o o 

o o 

I/0.  ° 
n6 discrete en nn 

ns" node 
locations Indirect 

addressing 

Fig. 5. Indirect memory access pattern in Pam-Crash. 



The GF11 parallel computer 1403 

f~ 499 

Simulated by Simulated by Time multiplexed 
processors on network processors 

,o .... .... 7 
..... Switch I 

', "'/~ 3,'" , 

Fig. 6. 10,000 × 10,000 virtual network. 

network can realize any broadcast/multicast pattern from the nodes to the elements in two 

passes over the network [14]. It comprises of 500 20 x 20 switches in the first and the third 

stages, and 20 500 x 500 switches in the middle stage. The switch settings for the virtual 

network are determined by using the same algorithm which is used for the real Benes 

network. 20 GFll communication cycles are used to implement one pass of the virtual 

network. (Each communication cycle is equal to the four clock cycles required to transfer one 

word over the network.) In these 20 cycles each processor simulates the function of some first 

stage and the same third stage switch, by using the SRAM/DRAM relocation features, and 

the GFll network simulates the function of the 20 middle stage switches. Thus, 2 passes of 

the virtual network are implemented using 40 GFll communication cycles, or 2 communica- 

tion cycles (8 processor cycles) for each value moved. 40 GFll network communication 

patterns are used for the purpose. 

The computation loops in the problem execute at efficiencies varying from 60% to 80%. 

The computation is completely overlapped with communication, and the communication step 

is the performance limiting step in the current implementation. We did not run the code on 

an actual data set, but by looking at the compiled output we infer that the computation 

intensive part of Pam-Crash is expected to perform at about 55% efficiency on GFll (i.e. 5.5 

Gigaflops). 

It is important to note that no attempt was made for a sophisticated partitioning of the 

problem that improves the locality of access. Such partitioning is a necessary headache for 

parallel architectures which lack the high bandwidth and routing capabilities of the Benes 

network. We still achieved good performance, which could be improved if we optimized the 

data partitioning for the locality of access. Communication cost in our current implementation 

can also be reduced by merging a few communication steps. Communication costs also 

remained low on GFll because the network replicates the nodal values being communicated 

when multiple elements require the same nodal value, a capability lacking in other parallel 

machines. 

4.2. Solving dense linear systems using LU decomposition 

This algorithm, often used to solve dense system of linear equations, was implemented on 

GFll in two different versions to processes small and large matrices in an optimal manner. 

Small matrices can be completely contained in the fast SRAM memory of GFll (2500 x 2500 

matrix for 500 processors). The LU decomposition included the forward and back substitution 

steps required to solve a system of linear equations. 
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4.2.1. The SRAM version 

The SRAM version of the algorithm was restructured so that the inner most loop would 

subtract the product of the pivot row and pivot column in the appropriate region of the 

coefficient matrix. With this restructuring the algorithm has a control structure with a triple 

nested loop. The outermost loop consists of two major steps, finding the pivot element within 

a specified column followed by the update of the matrix using the pivot element, pivot 

column, and the pivot row. The middle loop is used to index through the rows of the 

coefficient matrix, and the inner loop to index through the columns. 

Consecutive rows were assigned to the processors evenly. Therefore the middle loop is 

parallelized. Though this partitioning of data simplifies the programming of the update step, 

it creates two difficulties. Firstly, each column is now spread across all processors and 

interprocessor communication is required to select a pivot. Secondly, now the pivot row has to 

be broadcasted to all processors. The latter is not a problem in GFll because the network can 

support broadcast communication. To find the pivot element, first the local maximum is 

determined in each processor, and then binary reduction is used requiring log n communica- 

tion steps. Because the ALU pipeline depth is 25 clock cycles and interprocessor communica- 

tion latency is 20 cycles, this step takes almost 1000 clock cycles, which is almost a one 

processor performance. However, the pivot finding step is much smaller than the update step, 

and therefore the aggregate performance is not affected. The impact would diminish further 

when larger matrices are used. 

The static RAM bandwidth will degrade the performance of GFll by 9%, if we follow the 

above approach strictly. For example, when processing a 2500 x 2500 matrix, using 500 

processors, each processor updates five elements of a column using five subtracts and five 

multiplies, requires five SRAM accesses for the coefficients to be updated, and five accesses 

to store back the updated values. The processor containing the pivot row has to do the same 

calculations, and in addition it has to access the pivot row element in that column from the 

SRAM and broadcast it to all processors, using up 11 cycles for 10 arithmetic operations. To 

avoid this penalty we process two columns of the matrix between the update steps, as 

illustrated in Fig. 7. Essentially, we follow the first pivot step by an update of the next 

column, find the second pivot for the second column, and subtract the suitable multiple of the 

first pivot row from the second pivot row. To update the remaining matrix, the dot product of 

two two-element vectors is subtracted from each element of the matrix. 20 operations are 

performed on the five elements accessed and stored back per column in each processor, 

leaving sufficient spare SRAM bandwidth to access the pivot rows. Another optimization 

incorporated was to overlap this update step with the two pivoting steps of the next iteration. 

The SRAM version of the LU decomposition algorithm achieves 5.6 GigaFlops on GFll 

using 500 processors (including the forward and back substitution steps to solve the equations). 

Load imbalance on processors is responsible for limiting the performance of this algorithm on 

GF11 to 6.7 GigaFlops. In each iteration of the outer loop, the number of rows and columns 

A(I,J) 

Bosic Step 

Do 1 K = 1, 1000, 2 

Do1I=1,2 

Do 1d = K+I, N 

A() = A() - rl.cl 

Fig. 7. Implementation of LU decomposition. 
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Fig. 8. Performance of LU decomposition. 

being processed in the coefficient matrix decreases by one. Since partial pivoting is employed, 

the sequence in which the rows become inactive can not be predicted at compile time. In all 

iterations (except the last four) some processor has the possibility of having five active rows. 

The SIMD implementation of the algorithm has to accommodate this possibility, and five 

rows are processed conditionally in each iteration of the outer loop. However, the columns 

become inactive in a known order, and inactive columns are not processed. Thus, to perform 
1 3 1 3 the 3N multiply-add operations required for the LU decomposition, we have to issue ~N 

multiply-add operations. One third of the issued operations are wasted on inactive rows. 

Thus, the maximum performance achievable in this situation is 6.7 GigaFlops. It should be 

noted that this problem is generic to distributed memory machines and is not specific to 

SIMD machines or GFll. 

The 5.6 GigaFlops achieved falls short of the 6.7 GigaFlops possible because of the 

inefficiencies in the pivoting step, the latency of ALU pipelines in the processors, and idling 

of the ALUs. The innermost loop is unrolled a 100 times to reduce the impact of ALU 

pipeline latency. The number of columns processed by the inner loops reduces by one in each 

iteration of the outer loop. Whenever the number of columns to be processed is not an exact 

multiple of 100, the ALUs have to idle to the next multiple of 100. Unrolling the inner loop 

100 times proved optimal for us. The relatively inefficient forward and back substitution steps 

also degrade the performance slightly. 

The performance of the above algorithm as a function of the matrix size is shown in Fig. 8. 
2 3 The number of useful operations is given by the formula gN + 2N 2, for N × N matrix. The 

performance curve has the shape of a high frequency saw-tooth superimposed on a lower 

frequency saw tooth. The low frequency saw-tooth appears because work load is distributed 

unevenly among the processors unless the matrix size is a multiple of 500, and the degradation 
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is proportional to the number of processors that have less work than the maximally loaded 

processor. The high frequency saw-tooth curve exists because of the large number of columns 

processed in a single iteration of the inner most loop. When the matrix size is not an exact 

multiple of this loop unfolding count, the matrix has to be padded with zeros to the next exact 

multiple, resulting in wasted calculations. To get optimal performance, the inner most loop 

was unfolded 200 times for matrices of size less than 1000 x 1000, 150 times for matrices of 

sizes between 1000 x 1000 and 1500 x 1500, and 100 times for larger matrices. 

4. 2. 2. The DRAM version 

The LU factorization of dense matrices with column pivoting, and the solution of the 

resultant dense triangular system was also implemented for large matrices. DRAM must be 

used for matrices larger than 2500 X 2500, which are referred to as large matrices in this 

paper. Matrices of sizes up to 6000 x 6000 can be handled using this algorithm. We assume 

that the size of the matrix N is multiple of P, the number of processors. 

The algorithm is partitioned and parallelized as follows. Consecutive columns of the matrix 

are assigned to processors in a round robin fashion as show in Fig. 9(a). Throughout Fig. 9, 

the shaded region of the matrix shows the elements of the matrix being modified at the 

corresponding step. Therefore, each processor has N/P columns of the matrix. The advan- 

tage of this mapping is that it leads to good load balance throughout the factorization, 

because as rows are eliminated, each processor still has to do the same amount of work on 

each active column, and as each column is eliminated, the number of active columns in any 

000 

(a) 

P columns 

(c) 
Fig. 9. LU decomposition in DRAM. 

(b) (d) 
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two processors can differ by at most 1. However, the algorithm must be carefully restructured 

to reuse the data transferred from DRAM to SRAM to avoid the DRAM bandwidth 

bottleneck. The strategy adopted was to perform the following rank-P update N/P times. 

The rank-P update proceeds as follows: 

• We transpose a sub-matrix of P consecutive columns of the matrix (one column from each 

processor) so that now each each processor has N/P rows of the submatrix, and P columns 

as shown in Fig. 9(a). 

• This sub-matrix fits entirely in SRAM and we factor this sub-matrix using the SRAM 

decomposition algorithm described in the preceding section. 

• Next we restore the rows of the submatrix to it original position, and permute the rows of 

the entire matrix to place the pivot elements generated in the previous step on the main 

diagonal. At this stage the P columns containing the pivot elements have the correct values 

for the L matrix. The P x P upper triangular matrix above the main diagonal has the 

correct values for the U matrix. (See Fig. 9b). 

• Then we use the P columns of the L matrix identified in the SRAM decomposition step to 

update the unprocessed columns of the P pivot rows, to generate the U matrix values for 

the P pivot rows. (See Fig. 9(c)). 

• Finally, we do a rank P update to the remaining unfactored piece of the matrix. This 

update consists of a subtracting from each (i, j) element of the unfactored matrix, the 

dot-product of the P newly formed columns in row i of the L matrix with the P newly 

formed rows in column j of the U matrix. (See Fig. 9(d)). 

To solve a 5400 x 5400 system of equations on GFll, using 450 processors (12 columns per 

processors), this algorithm achieves 82% efficiency, yielding 7.4 GigaFlops. 

4.3. Soh, ing dense linear systems using Gaussian elimination 

The Gaussian Elimination algorithm solves a system of linear equations by eliminating the 

variables, one at a time, from all but one equation. The sequence of transformations used in 

the process, if applied to a identity matrix produces the inverse of the coefficient matrix. For 

matrices smaller than 2500 x 2500, The algorithm used has a structure similar to the one used 

for the LU decomposition where the matrix is partitioned among the processors by rows. 

Column wise partial pivoting is performed in the outermost loop, and the middle and inner 

loops index over the rows and columns respectively. 

GF11 achieves 9.3 Gigaflops when performing Gaussian Elimination on a 2500 x 2500 

matrix, using 500 processors. Unlike LU decomposition, all rows of the coefficient matrix 

remain active throughout the algorithm, and thus load imbalance is not present. The 

inefficiency in the pivoting step, the latency of ALU pipelines in the processors, and idling of 

the ALUs (due to unrolling of the inner loop) account for the loss of performance. 

Matrices larger then 2500 x 2500 are processed from the DRAM with better efficiency. 

The efficiency improves for large matrices because the relative overhead of finding the pivot 

decreases with matrix size (the overhead of accessing DRAM is negligible). To perform 

Gaussian Elimination on a N x N matrix, N/P consecutive rows of the matrix are assigned to 

each processor. 

P consecutive columns of the matrix are handled at a time. These P columns are moved 

into the SRAM, where they are processed as described in the preceding section. However, 

during the processing, the multipliers used to update the rows and the row indices of the pivot 

elements are saved in SRAM for future use in applying identical updates to the remaining 

columns. The processed columns are returned to the DRAM. The pivot element values and 

the row indices are now used to update the remaining columns by bringing them into SRAM, 

P columns at a time. N/P iterations of this step yield the inverse of the coefficient matrix. 
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Using 500 processors, GFll required 45.2 seconds to compute the inverse of a 6000 x 6000 

matrix, sustaining an average execution rate of 9.5 GigaFlops. 

4.4. FFT (Fast Fourier Transform) 

A 2-dimensional N x N decimation in frequency FF-I" was implemented on GF11. The 

2-dimensional FFT of Z(kl, k 2) is: 

2jlj2 = ~ ~toJ'~+J2k2Zk1,2, where to = e i2~r/N, a N-th root of unity. 

kl kz 

This is accomplished by first performing a 1-dimensional FFT on the columns of z, and then a 

1-dimensional FFT on the rows of the result. The algorithm is parallelized and partitioned as 

follows. Each processor receives N/P complete columns of z. Each processor performs a 

1-dimensional FFT on all the columns it contains, with bit-reversal. This occurs without any 

inter-processor communication. After all the 1-dimensional FFT's have been performed, the 

matrix of transformed values is transposed across the machine. No computation occurs at this 

stage. Another complete set of FFT's are then performed and the matrix is again transposed 

to complete the algorithm. 

In order to hide the long ALU latencies, and to relieve the pressure on memory bandwidth, 

the innermost loop of the 1 dimensional FFT algorithm processes only a section of the 

column, but the processing on this data is done for several stages of the FFT. This minimizes 

the amount of microcode generated. The roots of unity are precomputed and stored in 

auxiliary arrays as are the various pointers needed for accessing these roots and for 

implementing the transpose. The performance of the FFT algorithm on GFll can not exceed 

8.3 GigaFlops due to the imbalance between the add and multiply operation (6 adds and 4 

multiply operations in a basic butterfly). The 1-dimensional FFT's achieved 96% of this 

number, or 80% of the GFll's peak performance. The bit-reversal and the transpose are not 

overlapped with any computation and degrade performance to 70% of peak. A 1024 X 1024 

FFT using 512 processors achieved 7.17 GigaFlops. 

4.5. Other applications 

As mentioned earlier, to obtain good performance on GFll, one must be able to partition 

the calculation into as many identical pieces as the number of processors, and one must also 

partition the data in a manner such that the intercommunication pattern induced by the data 

partitioning does not become a performance bottleneck. In our survey of applications we 

rarely come across programs where the calculation cannot be partitioned properly, but 

partitioning of data usually requires some care. 

It takes several hundred thousand steps to compute the switch setting for a given 

communication pattern and to load it in the switch. In all the applications discussed earlier, 

the communication patterns induced by data partitioning were known at compile time, so that 

the switch setting required to carry them out could be precomputed and preloaded in the 

network. If interprocessor communication patterns can be determined only at the time of 

program's execution, and their use is not long enough to amortize the cost of setting the 

switch, one has to find a more efficient way of carrying out such communication such as 

allowing the processors to broadcast sequentially, or simulating a packet switched network on 

top of the Benes network. 

Molecular dynamics is one application area where the interprocessor communication is of 

this type [23]. Molecular dynamics simulations involve evolving the spatial configuration of 

atoms in molecules. To compute the new position of an atom, its interaction with all other 
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atoms must be computed. Since this is a N 2 process, only those pairs which are close enough 

are actually considered. During the course of the simulation, the set of atoms which are close 

to any given atom changes, changing the set of interacting atoms and hence the communica- 

tion pattern. This change is data dependent and cannot be predicted in advance. In these 

simulations, the atoms are assigned to the processors of a parallel computer. Information 

about the interacting atoms must be available to processors during this computation. 

In the message passing mechanism implemented on GF11, a packet is constructed for each 

datum to be communicated, which contains the address of the target processor. The proces- 

sors are configured as a ring, and the packets are circulated between the processors, with each 

processor retaining a copy of all the packets addressed to it. If P is number of processors, this 

algorithm takes 55 × P cycles (1400 microseconds for P = 512) to guarantee delivery of all 

packets. The shuffle-exchange topology would be more efficient if the number of processors 

exceeds 50. For 512 processors, using the shuffle-exchange topology and uniformly distributed 

destination addresses, an average of 5.3 (standard deviation 0.48) passes through the network 

are required before all packets are delivered, requiring 650 microseconds. 

In addition to the applications already discussed, simulation of neural networks [22], 

factoring large numbers, bi-conjugate gradient method with incomplete LU preconditioner 

(the kernel of a large Finite Element program), Matrix Multiply, Shallow Water Equations 

[17], and the simulation of galactic evolution [6,16], are some of the other applications that 

have been implemented on GF11 and have sustained good performance. We briefly summa- 

rize the last three below. Details on these applications can be found in [15]. 

To multiply two N ×N matrices A and B, on GFll with p2 processors, the matrix is 

partitioned into NIP × NIP blocks on the P × P grid of processors. Each processor com- 

putes a N/P x N/P block of the result matrix C. The blocks of A and B matrices are stored 

on the processors in a staggered manner to allow each processor to compute one product 

term of the result matrix block assigned to it. After computing the product term, each block of 

the A matrix is cyclically shifted to the processor on its right in the same row. Each block of 

B is similarly cyclically shifted to the processor above it in the same column. The evolving 

block of the result matrix C does not move. After P iterations of block multiply/accumulates 

and shifts, the result is available. To implement a 1024 × 1024 matrix multiply using 512 

processors, a 32 × 32 grid of 1024 logical processors was used, each physical processor acted 

as 2 horizontally adjacent logical processors. This algorithm achieved 10 GigaFlops on GFll 

for the above problem size. 

NCAR is a standard benchmark for structured, explicit fluid dynamics calculations. A 

512 X 512 grid calculation was implemented on GFll. Each processor received 1 row of data. 

Table 1 

Performance sustained by GF11 on scientific/engineering applications 

Application Number of pro- Performance Problem size 

cessors used (GIgaFLOPS) 

Pare-Crash (finite element method) 500 

TPP (linear algebra, LU decomposition) 500 

TPP (linear algebra, LU decomposition) 500 

TPP (linear algebra, LU decomposition) 450 

Gaussian elimination 500 

Gaussian elimination 500 

2-D FFT 512 

Shallow Water equations (weather code) 512 

Matrix multiplication 512 

5.5 10,000 elements 

4.3 1000 × 1000 

5.6 2500 × 2500 

7.4 6000 × 6000 

9.3 2500 × 2500 

9.5 5400 x 5400 

7.2 1024 × 1024 

7.5 256 × 256 

10.0 1024 × 1024 
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Though there are less communication intensive decompositions, this decomposition is easily 

handled by the GFll switch and requires minimal program restructuring. The calculation 

achieved 7.5 GigaFlops, which is 83% of the peak speed attainable by the algorithm on GFll, 

in presence of the add/multiply imbalance. 

The GALAXY code simulates the evolution of galactic structures. This code is also a 

structured, explicit calculation on a 3-dimensional grid. However, it incorporates additional 

physics and chemistry to model the interaction of stars and gas of a representative piece of 

the galaxy for a significant length of time. Additionally, an adaptive time-stepping criterion 

was used to maximize the time step, requiring a global communication step. This code 

achieved 7 GigaFlops. 

The results of the applications discussed in the previous section are summarized in Table 1. 

5. Discussion and future directions 

The hardware technology for implementing GF11 was selected in 1984. Then the floating 

point ALU chips were capable of delivering 5 MegaFlops, the static RAM chips could store 

16 Kb of data, and the dynamic RAM chips could hold 256 Kb of data. In todays technology 

we have ALU chips which can deliver 100 MegaFlops, static RAM chips are twice as fast and 

can hold 4 Mb of data, and the dynamic RAM chips can hold 16 Mb of data. With this latest 

technology it it possible to make processor boards which are twenty times as powerful as the 

GFll processor boards, and switch boards can be made which are proportionately faster. We 

are investigating the use of this latest technology to build a SIMD machine architecturally 

similar to GFll, which would be significantly-more powerful and compact. 

The user interface in GFll is primitive and the compilation techniques are also quite 

elementary. Nonetheless, the compiled code produced by the GFll compiler is near optimal, 

as illustrated by the performance numbers. If the currently emerging/mature compiler 

technologies were employed in the GF11 compiler, the user would be freed from the burden 

of isolating the compute intensive sections of his program, and partitioning these calculations 

among the GFll processors. Identifying which data is assigned to GFll and how it is 

partitioned among the GFll processors, should be sufficient in most situations for a 

Fortran-D type compiler to successfully partition the calculations among the processors. 

Pragmas for specifying data layout are available in Fortran-D. The interprocessor communica- 

tion patterns, currently specified by the user based on the partitioning of data and calcula- 

tions, would also be automatically generated by the compiler when simple data layouts are 

specified using the Fortran-D pragmas. Finally, currently each GFll arithmetic/loadstore/ 

communication operation has to be written as a separate procedure call. Certainly these 

semantics would change to allow the GFll calculations to be expressed as Fortran expres- 

sions. 
For most of the 1980s, it was widely believed that SIMD machines in general are ill suited 

for a large class of parallel applications. With our application studies on GFll we have 

refuted this belief to a significant extent. We will continue to program new types of 

applications on GFll to demonstrate the versatility of this architecture, and also to refine the 

new design to accommodate the requirements of a wider class of applications. 

6. Conclusion 

GFll has been operational with 256 processors since October 1989. The full machine 

became operational in October 1990. A broad range of applications have already been 
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programmed on GF11. The use of a non-blocking circuit switched network for interprocessor 

communication, a large register file, a balanced bandwidth at all hierarchies of the memory, 

and the ability to perform many operations concurrently in each instruction are some of the 

GFll design features that allow it to sustain good performance on a variety of applications. 

These architectural features also greatly reduce the effort required to restructure the 

algorithms to avoid communication/memorybandwidth bottle-necks. GFll sustains good 

performance on not only the applications that are believed to be well suited for SIMD 

machines, but also on applications which are widely believed to be ill suited for SIMD 

machines. 
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