
Parallel Computing 19 (1993) 1393-1412 1393

North-Holland

PARCO 802

The GFll parallel computer

Manoj Kumar *, Y. Baransky and M. Denneau

IBM Research Divisions, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Received 5 May 1991

Revised 29 August 1991, 25 November 1992

Abstract

GFll is a parallel computer operational at IBM's T.J. Watson Research Center. It is based on the SIMD

(Single Instruction Multiple Data) model of parallel computing. GFll attains its peak execution rate of 11.3

GigaFlops by using 566 identical processing elements, each capable of delivering 20 MegaFlops. Each

processor has its own 64 Kb static RAM that can access a 32-bit word on each floating point operation, a 2 Mb

dynamic RAM that operates at one fourth of the SRAM speed, and a 1 Kb register file that provides four

accesses per floating point operation. The processors communicate through a 576x576 Benes network,

organized as three stages of 24 × 24 crossbar switches.

The network provides 11.3 Gb/sec of communication bandwidth to the processors and allows the processors

to dynamically reconfigure themselves into arrays of various dimensions and sizes or other interesting

interconnection patterns such as a tree, hypercube, etc. This reconfiguration can take place on every word

transfer without sacrificing the bandwidth. GF11 has several architectural enhancements to circumvent the

limitations of the standard SIMD model such as the ability to perform multiple operations in every instruction

and the ability to modify the operations occurring within individual processors based on processor specific

data.

Preliminary benchmarking efforts on some applications indicate that near peak performance can be sustained

on most applications, including some that were previously believed to be ill suited for SIMD machines.

Minimal restructuring of programs and algorithms is required for achieving this performance. The architecture

of GFll is summarized in this paper and the implementations of Finite Element analysis, LU decomposition,

Gaussian Elimination, and Fast Fourier Transform are discussed to illustrate GFll's ability to deliver good

performance with minor program restructuring.

Keywords. GFll multiprocessor computer, architecture; Programming model; FEM analysis; LU decomposi-

tion; Gaussian elimination; FFT, performance results

1. Introduction

GF11 is a parallel computer based on the Single Instruction Multiple Data (SIMD) model

of computing [10]. It uses 566 processors that receive an identical stream of instructions from

a central controller. The processors communicate with each other through a three-stage

Benes network [3], which operates synchronously with the processors. The synchronous

operation of the network with the processors, an architectural feature unique to GFll, is an

important factor in GFll's ability to sustain high performance on a broad range of applica-

tions. The network provides a unidirectional communication path from each processor to a

* Corresponding author. Email: mkumar@watson.ibm.com

0167-8191/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

1394 M. Kumar et al.

disjoint set of destination processors. The Benes network lets the processors configure

themselves logically as meshes of different dimensions and sizes, or as trees, hypercubes, etc.

The processors can change their configuration on every word transfer without sacrificing the

network bandwidth.

In comparison to the more popular MIMD (Multiple Instructions Multiple Data) machines

[7,10,12,13], SIMD machines have simpler designs and lower manufacturing costs because the

individual processors do not need the instruction memory and the instruction fetch and

decode logic, which is centralized in a single place. Furthermore, in SIMD machines, the

interprocessor communication can be synchronized with the execution of instructions in the

processors, and therefore, synchronization overheads can be avoided. The interprocessor

communication can also be scheduled a priori to avoid interference in the network, and

therefore higher interprocessor communication bandwidth can be sustained.

Because of these advantages, SIMD machines were the favorites during the early days of

parallel processing [1,2,18]. However, a widespread belief that SIMD machines are unsuitable

for a large number of problems, caused the SIMD machine to fall out of favor over the last

few years. This belief has been refuted by the recent work of Fox [11] and the users of CM-2

[17,20]. ICL's DAP [9] and CM-2 [20] are two commercially available SIMD machines.

GFll was designed at IBM's T.J. Watson Research Center and is described in detail in

[4,5,15]. The main application targeted for GFll was the numerical verification of the

predictions of Quantum Chromodynamics (QCD), a theory of particles that participate in

nuclear interactions [21]. However, the GFll design addressed the need of a wide variety of

applications and as a result good performance is sustained on many applications. Some of

these design features are the wide instruction word which specifies many concurrent opera-

tions per instruction (the super-scalar approach), the novel approach for interconnection

network that provides the flexibility and high-bandwidth for interprocessor communication,

the 256 word register file, and the handling of condition codes. These architectural enhance-

ments also eliminate or reduce the effort required to modify and restructure the application

program. Normally, programs are modified to circumvent the limitations of interprocessor

communication and memory bandwidth, but in GFll the problem does not arise for most

applications and is less serious for others because of the balanced design.

GFll is fully operational and benchmarking results show that while it can deliver sustained

performance close to its peak performance on applications which are believed to be well

suited for SIMD processing, it also delivers very high performance on applications which are

widely believed to be ill suited for SIMD and distributed memory machines. Applications in

the latter category include finite element methods on unstructured grids and molecular

dynamics. In this paper we discuss the implementation of applications from this latter

category on GF11. GFll implementation of applications from the former class is presented in

detail in [15], and only reviewed here. The architecture of GFll has been described in

considerable detail in [4,5,15], and is also only reviewed here for completeness.

In the next section we will briefly review the GFll machine organization and hardware,

and highlight the architectural elements we believe were essential for sustaining good

performance, even on applications not considered suitable for SIMD computers previously. In

Section 3 we use a simple 2-dimensional relaxation problem as an example to illustrate a

programming style which is quite easy and at the same time effective in exploiting parallelism

on GFll. The implementation of Finite Element analysis, LU decomposition, Gaussian

Elimination, and Fast Fourier Transform codes on GFll is discussed in Section 4, and the

performance sustained on these programs is reported. The new possibilities created for

making more powerful and versatile SIMD machines are discussed in Section 5. Finally, in

Section 6 we give some concluding comments on the suitability of GFll for a larger class of

problems.

The GFl l parallel computer 1395

2. Overview of GFll machine organization and hardware

The GFll hardware consists of 566 identical processors connected through a 576 x 576

Benes network, a central controller, and 10 disk drives also connected to the network. Each

processor has a peak performance of 20 MegaFlops, and therefore, the peak performance of

the whole system is 11.3 GigaFlops. A high level overview of GFll is shown in Fig. 1, and

details can found in [4,15]. Each processor has its own data memory, and there is no shared

data memory. A single copy of the program exists in the program memory in the central

controller, and instructions broadcasted from the program memory are executed by all active

processors as soon as they are received at the processors. The whole system operates on a 50

nanosecond machine cycle, and the network transports 1 Byte of data from every input in

each cycle. Of the 566 processors, 512 are intended to be in use by a user program at any

given time, and the remaining 54 function as hot spares.

The design of a GFll processor is shown in Fig. 2. Each processor performs 20 million

arithmetic operations per second The key component in a processor is a 256 32-bit word

register file. The register file performs four accesses every 50 nanosecs. Two accesses are for

reading operands for an arithmetic operation, one access is for storing back the result of an

arithmetic operation, and the fourth is for either transferring a word from the register file to

the SRAM or for receiving a word into the register file from either the switch, the SRAM, or

a delay pipe in the processor. The delay pipe provides an efficient way of handling boundary

conditions in many algorithms.

Two operands are read from the register file in each 50 nanosec cycle and are delivered to

either an integer ALU or to one of the four floating point ALUs. The floating point ALUs

are pipelined and operate on a 200 nanosec clock. Staggering four of them produces a floating

point result every 50 nanosec. (Faster components were not available during GFll's design

period.) Two floating point ALUs perform only multiplications, and the other two perform

the remaining floating point operations.

Each arithmetic operation generates a set of condition codes (<, >, ~ etc.), any one

of which can be selected and stored in a 7 entry condition code register. The condition code

To LAN

File Server

PC/AT

A

==

~rn

Controller
Host ~

~~ [-Ip.r°gr°m 1512 K

Control & Addresses

i
.....

/

~ 576 × 576 Network
nes Network)

Fig. 1. Overview of the GFll machine organization and hardware.

1396 M. Kumar et al.

ol

Fig. 2. Overview of a GF11 processor.

registers on each processor can be used to modify the operations being performed by that

processor. Five condition code registers are accessed in each instruction. Two of them are

used to abort the SRAM and the DRAM stores. The third converts a binary integer operation

A ol) B to either pass A or pass B, depending on a mode bit in the instruction. The fourth

condition code enables the processor to write back to the central controller, and the fifth one

instructs the register file to select the data coming from the delay pipe in place of the data

coming from the switch. Therefore, even though all boards in the system receive the same

instruction, different boards could be doing different things depending on their local condi-

tion codes.

The communication network in GFll is a three stage Benes network, constructed from

24 × 24 switches with 24 switches in each stage. This network has the following characteristics:

• Full Connectivity: Benes networks can provide connections from all the network inputs to

the network outputs simultaneously, according to any specified permutation. Furthermore,

the added capability of the GFll switches to connect an input to multiple outputs allows

the network to handle multiple broadcasts efficiently. Two passes are required over the

network to allow each of several network inputs to broadcast their data to multiple outputs,

provided each output is connected to a unique input [14].

• Fixed latency: In a SIMD parallel processing environment the non-blocking property

implies that if in a given cycle all processors send a word of data to each other, they will

receive their data simultaneously. The delay depends only on the hardware implementation

of the Benes network, and is independent of the pattern of communication. This allows for

efficient compile time overlap and synchronization of calculations and communication (just

in time delivery, no buffering) at the instruction level.

• Low Latency: This network design approach also allows the network latency to be kept as

low as the processor latency, eliminating the need to restructure the programs to mask the
communication latencies.

Organization of the GFll memory subsystem is also shown in Fig. 2. Each processor in

The GFl l parallel computer 1397

GFll has 2 Mb of memory, and therefore, a 512 processor system has 1 Gb of memory.

Memory on each processor is organized as 2 banks of 256K 32-bit words, and implemented in

DRAM technology. If there are no bank conflicts, a sequence of loads or stores can be

performed once every four cycles (an arithmetic operation is done once per cycle). Bank

conflicts and alternating between loads and stores further reduces the bandwidth to DRAM.

To prevent the DRAM bandwidth from affecting the performance of GFll, data from the

DRAM is staged into a 16K word buffer implemented in Static RAM (SRAM) technology,

and into a 256 word register file from there. The static RAM buffer can be accessed once

every cycle.
The memory subsystem contains hardware to support address calculations for data in

SRAM and DRAM. Each SRAM address can be modified by adding to it an offset from one

of the 256 relocation registers. The DRAM address can be modified similarly by adding the

offset from the DRAM relocation register to the DRAM address being broadcast in the

instruction. A single relocation register suffices for the DRAM because the DRAM is

accessed at most once every four cycles and the relocation values can be obtained from the

SRAM.

The address relocation hardware gives the processors the ability to generate different

SRAM or DRAM addresses based on processor specific data. This is useful in many

situations, some of which are:

• Table lookup: for calculating transcendental functions using series expansion, for determin-

ing material properties when simulating a physical medium, if the property has different

values for different ranges of some other variable being computed in the processors, and

many similar situations.

• Combinatorial algorithms: for traversing a tree or a graph according to some rule which

prescribes a different path in each processor.

• Indirect addressing: into arrays stored locally within the processors, and into large arrays

distributed across data memories of all processors.

The latter situation occurs very frequently in all unstructured grid applications, and an

efficient way to handle it on GFll is explained in the discussion of PAM-CRASH implemen-

tation in this paper. The capabilities of the GFll network are also crucial in handling indirect

addressing across large arrays.

Though the processors in GFll perform only one arithmetic operation in each instruction,

they concurrently perform many other operations to calculate the address for and move data

through the memory hierarchy. As mentioned earlier, interprocessor communication is

overlapped with the arithmetic and memory operations within the processor. This contributes

significantly to the ability of GFll in sustaining close to peak performance on most applica-

tions.

3. Programming GFII

Currently programs for GFll can be written in PL.8, a PL/1-1ike language. Extensions are

defined in PL.8 to express parallel computations for GFll. In this section we will briefly

discuss the programming model for GFll, the PL.8 programming environment used for

developing, compiling and executing GFll applications, and then we will use a simple

2-dimensional Jacobi relaxation problem to illustrate how programs are written for GFll in

extended PL.8.

3.1. The GFll programming model

A GFll program consists of a control program which runs on the RT/PC host, and a

collection of subroutines comprising the compute intensive parts of the application which

1398 M. Kurnar et al.

execute on GFll. The GF11 subroutines are straight line programs (branchless) because

GFll controller does not have branching capability. Looping is done by calling the branchless

subroutine repeatedly from the RT/PC.

When programming GFll, the user identifies the computation intensive sections of his

application which must be delegated to GFll. The user also partitions the computational

work delegated to GFll among the available processors, taking care that all processors get

identical computations which will be performed on different data. This partitioning of the

computation is done in conjunction with the allocation of data accessed in that computation

to the GFll processors so that the inter-processor communication patterns required during

the computation remain few and simple. To prevent the network from becoming a bottleneck,

the number of accesses to the SRAMs of remote processors has to be kept below one access

per four arithmetic operations.

The extensions in PL.8 allow the user to declare variables which reside on GFll proces-

sors. Placement of data into SRAM or DRAM is currently determined by the user. The

memory on each processor gets allocated in an identical manner. The permutation/broadcast

patterns, which must be used by the processors to access data from other processor's SRAMs,

are defined by setting the permutation tables declared in the code generator. Each permuta-

tion table defines one communication (permutation or broadcast) pattern. The ith entry in the

permutation table points to the processor from which the ith processor would receive the data

in the communication pattern being defined. Calculations delegated to GFll are also

expressed in PL.8 extensions. GFll operations (add, multiply, etc.) have the syntax of PL.8

procedure calls, and these procedures are defined in the code generator.

3.2. Writing, compiling, and executing GFll programs

The process of generating executable code for GFll in the PL.8 programming environment

is illustrated in Fig. 3. Once the user has identified the compute intensive sections of the

application (Fig. 3(a)) he produces a program comprising of the control part which executes

on the host and the compute intensive tasks that will execute on GFll (Fig. 3(b)).

The GFll sections of a user program are usually enveloped in PL.8 control constructs.

These PL.8 constructs use the PL.8 (RT/PC resident) variables, and serve as the macro

language for writing the GFll part of the program. The control part of the program,

depending on the input value of a control variable, performs one of the following functions:

• GFll code generation mode

In this mode of execution, all the subroutines comprising the GFll tasks are invoked

exactly once. Execution of these routines on the RT/PC host in this mode causes the GFll

instructions (object code for GFll) to be generated and stored on the host. The PL.8

control constructs, used as macro definition language for expressing GFI 1 tasks succinctly,

are executed. As a result, the procedure calls defining GFll operations are invoked

repeatedly to generate long sequences of GFll code (Fig. 3(c)). For example, a PL.8 loop

around a set of GFll operations will cause the GFll code for this set of operations to be

generated repeatedly, which is the standard technique for unrolling GFll loops. This is

explained in some detail in Section 3.3.

• Execution mode

In this mode, the GFll object code generated by the earlier mode is loaded to the GFll

instruction memory, and the control program on the host now invokes the GFll tasks to

carry out the desired calculations.

• Simulation mode

This mode is used before the code generation and execution modes described earlier to

facilitate the development of GFll applications. When a GFll task is invoked in this

The GF11 parallel computer 1399

Partition |

problem L tructured compute

I ff)~ensive secti°ns RT Data

F~~
GF11 / 7Declarati°ns

tasks /////,/] GF11 Data
' / / / / / ~"~" Declarations

(b) F/-7-7-~ I ~-Control Network
Program , program ~~ ~ Configurations

['-------~] \ ~ GFI! Code
•

Host coil I

RT/PC I Data

Fig. 3. Process of writing, compilating, and executing GF11 programs.

(c)
Produce
GF11 Code

mode, it gets interpreted to simulate its execution, rather than being compiled to produce

GFll code. The facility to interpret/simulate GFll tasks is part of the code generator.

3.3. The Jacobi relaxation example

In the Jacobi relaxation example we compute a N x N matrix A, in which each element is

the average of the four neighbors of the corresponding element in another N X N matrix B

(Ai,j = l(Bi,j_ 1 -I- B i_ 1j -t- Bij + l + Bi + 1.j))" This step is executed repeatedly, interchanging the

roles of A and B. We will assume periodic boundary conditions and use N processors to

solve the problem.

In this example we have only one computation intensive section which represents the

entirety of the code. Real programs however, have several such sections in addition to the

control constructs and some sequential code which is executed on the host. We generate a

sequence of instructions which, when executed once on GFll, will carry out one iteration of

Jacobi relaxation. Each processor will contain one row of the A and B matrices and compute

the new values for the elements in those rows. When a processor i is computing the new value

for an element Bij (0 <j < N), two of the four neighbors of Aij, Ai_lj and Ai+lj , reside on

other processors, while Aij_ 1 and Ai.i+ l are available locally. Therefore, we require two

1400 M. Kumar et al.

(1) DeclareArrays : Proc;

(2) DclA(a._sr, scSR, rcReal, mic(LEN), ecFloat);

(3) DelA(b_sr, sc.SR, rePeal, mie(LEN), eeFloat);

(4) DclA(aZ_sr, scSR, reVirt, mie(LEN), ecFloat);

(5) DelA(bZ_sr, scSR, reVirt, mic(LEN), ecFloat);
End Proc DeelareArrays;

(6) DeclareRelocates : Proc;

(7) DclCR(craZ_sr, crSR); Anchor(aZ_sr, craZ_sr);

(8) DclCR(crbZ_sr, crSR); Anchor(bZ_sr, crbZ_sr);

End Proc DeclareRelocates;

(9) DclSwitch : Proc;

(10) Dcl Pr Integer;

(11) Do Pr = 0 To PrMax-1;

(12) SwPerms(0,Pr) = MOD(Pr-I,PrMax);

(13) SwPerms(1,Pr) = MOD(Pr+I,PrMax);

End Do Pr;

End Proc;

(14) gmc_SWEEP : Proc;

(15) DCL (j,jpjm,r(4,LEN)) Integer;

(16) Do j = 1 To LEN;

(17) jp = MOD(j ,LEN) + 1;

(18) jm = MOD(j-2+LEN,LEN) + 1;

(19)

(20)

(21)

SwLd(aZ_sr(j),r(l j),swa(0));

SwLd(aZ_sr(j),r(2,j),swa(1));

r(2j) = FIAdd(r(1,j),r(2,j));

(22) Ld(aZ sr(jp),r(3,j));

(23) Ld(aZ sr0m),r(4,j));

(24) r(4,j) = F1Add(r(3,j),r(4,j));

(25) r(2,j) = FIAdd(r(2,j),r(4j));

(26) r(2,j) = FlMul(RConst(0.25),r(2,j));

(27) St(r(2j),bZ st(j));

End Do j;

End Proc;

(28) Run_SWEEP : Proc(aZ_sr, bZ_sr);

(29) DCL (aZ_sr,bZ_sr) pgElt;

(30) Point(craZ_sr, aZ_sr);

(31) Point(crbZ_sr, bZ_sr);

(32) If rMode = rMode_Run Then Fire(MCode_SWEEP);
(33) Else gmc SWEEP;

End Proc;

/* COMPUTATION */

(34) Do iter = 1 To itermax;

(35) Run_SWEEP(a_sr(1),b_sr(1));

(36) Run_SWEEP(b_sr(1),a_sr(1));
End Dq iter;

Fig. 4. GF11 program for the Jacobi relaxation problem.

The G F11 parallel computer 1401

communication patterns; one to import the value of the top neighbor A i_ 1j and the other for

the bottom neighbor Ai+lj.

The actual program for the above problem is shown in Fig. 4. The first five lines declare

the data structures allocated in the GFll processors, a_sr and b_sr are one-dimensional

arrays of length 'LEN' allocated in SRAM. They are the rows of the matrices A and B, and

contain floating point numbers, aZ_sr and bZ_sr are virtual arrays that are not assigned any

storage. Addresses for elements of virtual arrays are computed in the central controller by

adding the offsets stored in the SRAM relocation registers of the central controller to the

SRAM address broadcast in the instruction. By relocation, virtual arrays can be mapped to

real arrays of the same size and shape. In lines 7 and 8 in Fig. 4 the DclCR function allocates

registers in the central controller for storing offsets, and the Anchor specifies that the

addresses for elements of aZ_sr are always relocated using the offset stored in craZ_sr.

crbZ_sr is used similarly to relocate bZ_sr.

The code for updating one row of the matrix is shown in lines 16 through 27. It uses the

virtual arrays aZ_sr and bZ_sr as input and output matrices, so that the same code can be

used to take the real matrices a_sr and b_sr as inputs in alternate iterations to produce b sr

and a_sr respectively as result matrices. The controller relocation registers are modified to

achieve this in lines 30 and 31. When statement 35 makes the call to Run_Sweep, craZ_sr is

adjusted to map virtual array aZ_sr to real array a_sr, and crbZ_sr is adjusted to map virtual

array bZ_sr to real array b_sr. However, when line 36 makes the Run_Sweep call, aZ_sr is

mapped on b_sr and bZ_sr is mapped on a_sr.

The GFll program written in PL.8 extensions to update one element within a row is in

lines 19 through 27. This code is enveloped in a PL.8 'Do' loop at line 16 whose index variable

j is an RT/PC variable. The loop also calculates two RT/PC variables jp and jm, which are

used in GFll calculations in lines 22 and 23. The entire program is run in one of the two

modes indicated by the system variable rMode in line 32. When the value of rMode is not

equal to rMode_run, the gmc_SWEEP subroutine is invoked, and the execution of the code

generator subroutines comprising the GFll program causes the GFll program to be com-

piled and GFll code is generated. In each iteration of the do loop in line 16, new GFll code

is generated for processing the next element of the row, and the loop required to index over

the elements of the row is completely unrolled. No calculations are performed on GF11 in

this mode. Once the GFll code has been compiled in the above manner, executing the entire

program with rMode equal to rMode_ Run causes the actual calculations to be performed on

GFll using the earlier generated code.

Lines 9 through 13 in Fig. 4 define the interprocessor communication patterns required.

Apt j is stored in processor Pr as a_sr r Its top neighbor Apr_lj and its bottom neighbor

Apr+l J are stored in processors Pr- 1 and Pr + 1 respectively in the same location a_srj.

Neighbors of B are stored similarly.

In extended PL.8, all variables which are not assigned storage in either the SRAM or the

DRAM (such as the r(.,.) variables in the Jacobi code), are automatically allocated by the

compiler into registers. The do loop in line 16 provides indices to process all elements of a

row. Statements 19 and 20 show the top and bottom neighbors of an element being loaded

using the network. Lines 21 through 27 show the remaining loads, the averaging of the

neighbors, and the storing back of the results.

4. Applications

Several algorithms have been implemented on GFll to understand its suitability for

Scientific/Engineering applications. In this section we have chosen some of these algorithms

1402 M. Kumar et al.

to discuss the implementation issues, the performance sustained, the architectural features of

GFll which allow good sustained performance where other machines with distributed

memory have difficulty, and the reasons for the sustained performance being less than the

peak performance. Structural analysis was chosen because it is widely believed to be ill suited

for SIMD machines because of the indirect addressing involved. The matrix applications and

FFT were chosen because they are simple, widely known, and bring out the capabilities/

weaknesses of the architecture.

4.1. Structural analysis application (Pam-Crash)

Pam-Crash is a structural analysis code developed by ESI France [24]. It is used for

analyzing dynamic response of structures. It is used primarily to study automobile crash

worthiness. This is a finite element code. Time integration is done by an explicit finite

difference scheme to compute the acceleration, velocity, and displacement of the discretized

points in the structure as a function of time.

We used the QFORCEI subroutine of the Pam-Crash code. This routine computes the

intermediate results needed for calculating the forces acting on each element. The QFORCEI

subroutine was chosen because the calculations in this routine are representative of the entire

computationally intensive part of the code. This routine has five types of computational loops,

and two distinct communication patterns. The communication patterns are analogous to the

gather step in vector processing. They arise frequently from the need to collect the variable

associated with the nodes of an element when the calculations are performed on the

elements, as illustrated in Fig. 5.

Because of the frequent indirect addressing associated with the gather/scatter steps, finite

element codes are considered to be ill suited for SIMD machines. Furthermore, since each

node is involved with multiple elements, the communication from nodes to elements is not a

permutation but a broadcast/multicast pattern instead. However, the indirection vector used

to access the nodes corresponding to each element does not change with time. Therefore the

movement of nodal values from the processors in which they are stored to the processors in

which they are required for calculations can be scheduled over the network at compile time

on GFll. Thus, remarkable efficiency can be achieved for the communication step.

To implement the code on GFll, we distributed the approximately 10,000 nodes and

elements in the problem equally among the 500 processors without worrying about the locality

of access. To generate the network permutation patterns needed to move the nodal values, a

virtual Benes network is implemented in software as shown in Fig. 6. Each network input and

output corresponds to a node and an element of the problem, and elements/nodes assigned

to any processor are assigned to the same network switch. This 10,000 × 10,000 virtual

Elements in edge node
nl physical domain tables table

, E

e2 n 2

n31 o o

o e

o o

o o

I/0. °
n6 discrete en nn

ns" node
locations Indirect

addressing

Fig. 5. Indirect memory access pattern in Pam-Crash.

The GF11 parallel computer 1403

f~ 499

Simulated by Simulated by Time multiplexed
processors on network processors

,o 7
..... Switch I

', "'/~ 3,'" ,

Fig. 6. 10,000 × 10,000 virtual network.

network can realize any broadcast/multicast pattern from the nodes to the elements in two

passes over the network [14]. It comprises of 500 20 x 20 switches in the first and the third

stages, and 20 500 x 500 switches in the middle stage. The switch settings for the virtual

network are determined by using the same algorithm which is used for the real Benes

network. 20 GFll communication cycles are used to implement one pass of the virtual

network. (Each communication cycle is equal to the four clock cycles required to transfer one

word over the network.) In these 20 cycles each processor simulates the function of some first

stage and the same third stage switch, by using the SRAM/DRAM relocation features, and

the GFll network simulates the function of the 20 middle stage switches. Thus, 2 passes of

the virtual network are implemented using 40 GFll communication cycles, or 2 communica-

tion cycles (8 processor cycles) for each value moved. 40 GFll network communication

patterns are used for the purpose.

The computation loops in the problem execute at efficiencies varying from 60% to 80%.

The computation is completely overlapped with communication, and the communication step

is the performance limiting step in the current implementation. We did not run the code on

an actual data set, but by looking at the compiled output we infer that the computation

intensive part of Pam-Crash is expected to perform at about 55% efficiency on GFll (i.e. 5.5

Gigaflops).

It is important to note that no attempt was made for a sophisticated partitioning of the

problem that improves the locality of access. Such partitioning is a necessary headache for

parallel architectures which lack the high bandwidth and routing capabilities of the Benes

network. We still achieved good performance, which could be improved if we optimized the

data partitioning for the locality of access. Communication cost in our current implementation

can also be reduced by merging a few communication steps. Communication costs also

remained low on GFll because the network replicates the nodal values being communicated

when multiple elements require the same nodal value, a capability lacking in other parallel

machines.

4.2. Solving dense linear systems using LU decomposition

This algorithm, often used to solve dense system of linear equations, was implemented on

GFll in two different versions to processes small and large matrices in an optimal manner.

Small matrices can be completely contained in the fast SRAM memory of GFll (2500 x 2500

matrix for 500 processors). The LU decomposition included the forward and back substitution

steps required to solve a system of linear equations.

1404 M. Kumar et aL

4.2.1. The SRAM version

The SRAM version of the algorithm was restructured so that the inner most loop would

subtract the product of the pivot row and pivot column in the appropriate region of the

coefficient matrix. With this restructuring the algorithm has a control structure with a triple

nested loop. The outermost loop consists of two major steps, finding the pivot element within

a specified column followed by the update of the matrix using the pivot element, pivot

column, and the pivot row. The middle loop is used to index through the rows of the

coefficient matrix, and the inner loop to index through the columns.

Consecutive rows were assigned to the processors evenly. Therefore the middle loop is

parallelized. Though this partitioning of data simplifies the programming of the update step,

it creates two difficulties. Firstly, each column is now spread across all processors and

interprocessor communication is required to select a pivot. Secondly, now the pivot row has to

be broadcasted to all processors. The latter is not a problem in GFll because the network can

support broadcast communication. To find the pivot element, first the local maximum is

determined in each processor, and then binary reduction is used requiring log n communica-

tion steps. Because the ALU pipeline depth is 25 clock cycles and interprocessor communica-

tion latency is 20 cycles, this step takes almost 1000 clock cycles, which is almost a one

processor performance. However, the pivot finding step is much smaller than the update step,

and therefore the aggregate performance is not affected. The impact would diminish further

when larger matrices are used.

The static RAM bandwidth will degrade the performance of GFll by 9%, if we follow the

above approach strictly. For example, when processing a 2500 x 2500 matrix, using 500

processors, each processor updates five elements of a column using five subtracts and five

multiplies, requires five SRAM accesses for the coefficients to be updated, and five accesses

to store back the updated values. The processor containing the pivot row has to do the same

calculations, and in addition it has to access the pivot row element in that column from the

SRAM and broadcast it to all processors, using up 11 cycles for 10 arithmetic operations. To

avoid this penalty we process two columns of the matrix between the update steps, as

illustrated in Fig. 7. Essentially, we follow the first pivot step by an update of the next

column, find the second pivot for the second column, and subtract the suitable multiple of the

first pivot row from the second pivot row. To update the remaining matrix, the dot product of

two two-element vectors is subtracted from each element of the matrix. 20 operations are

performed on the five elements accessed and stored back per column in each processor,

leaving sufficient spare SRAM bandwidth to access the pivot rows. Another optimization

incorporated was to overlap this update step with the two pivoting steps of the next iteration.

The SRAM version of the LU decomposition algorithm achieves 5.6 GigaFlops on GFll

using 500 processors (including the forward and back substitution steps to solve the equations).

Load imbalance on processors is responsible for limiting the performance of this algorithm on

GF11 to 6.7 GigaFlops. In each iteration of the outer loop, the number of rows and columns

A(I,J)

Bosic Step

Do 1 K = 1, 1000, 2

Do1I=1,2

Do 1d = K+I, N

A() = A() - rl.cl

Fig. 7. Implementation of LU decomposition.

The G Fl l parallel computer 1405

~._o

==
o

._= ,,'7 o
O C

~1~0

%0 800 1200 1600 2000 2400

Matrix Size I=

o
~.o

~o~--

-i

o

o m

LI.

E

a_

5.586
.......................................

' ' ' 2'oo' ' ' 0'0 ' ' 400 800 1 1600 2 0 2400

Matrix Size >

Fig. 8. Performance of LU decomposition.

being processed in the coefficient matrix decreases by one. Since partial pivoting is employed,

the sequence in which the rows become inactive can not be predicted at compile time. In all

iterations (except the last four) some processor has the possibility of having five active rows.

The SIMD implementation of the algorithm has to accommodate this possibility, and five

rows are processed conditionally in each iteration of the outer loop. However, the columns

become inactive in a known order, and inactive columns are not processed. Thus, to perform
1 3 1 3 the 3N multiply-add operations required for the LU decomposition, we have to issue ~N

multiply-add operations. One third of the issued operations are wasted on inactive rows.

Thus, the maximum performance achievable in this situation is 6.7 GigaFlops. It should be

noted that this problem is generic to distributed memory machines and is not specific to

SIMD machines or GFll.

The 5.6 GigaFlops achieved falls short of the 6.7 GigaFlops possible because of the

inefficiencies in the pivoting step, the latency of ALU pipelines in the processors, and idling

of the ALUs. The innermost loop is unrolled a 100 times to reduce the impact of ALU

pipeline latency. The number of columns processed by the inner loops reduces by one in each

iteration of the outer loop. Whenever the number of columns to be processed is not an exact

multiple of 100, the ALUs have to idle to the next multiple of 100. Unrolling the inner loop

100 times proved optimal for us. The relatively inefficient forward and back substitution steps

also degrade the performance slightly.

The performance of the above algorithm as a function of the matrix size is shown in Fig. 8.
2 3 The number of useful operations is given by the formula gN + 2N 2, for N × N matrix. The

performance curve has the shape of a high frequency saw-tooth superimposed on a lower

frequency saw tooth. The low frequency saw-tooth appears because work load is distributed

unevenly among the processors unless the matrix size is a multiple of 500, and the degradation

1406 M. Kumar et al.

is proportional to the number of processors that have less work than the maximally loaded

processor. The high frequency saw-tooth curve exists because of the large number of columns

processed in a single iteration of the inner most loop. When the matrix size is not an exact

multiple of this loop unfolding count, the matrix has to be padded with zeros to the next exact

multiple, resulting in wasted calculations. To get optimal performance, the inner most loop

was unfolded 200 times for matrices of size less than 1000 x 1000, 150 times for matrices of

sizes between 1000 x 1000 and 1500 x 1500, and 100 times for larger matrices.

4. 2. 2. The DRAM version

The LU factorization of dense matrices with column pivoting, and the solution of the

resultant dense triangular system was also implemented for large matrices. DRAM must be

used for matrices larger than 2500 X 2500, which are referred to as large matrices in this

paper. Matrices of sizes up to 6000 x 6000 can be handled using this algorithm. We assume

that the size of the matrix N is multiple of P, the number of processors.

The algorithm is partitioned and parallelized as follows. Consecutive columns of the matrix

are assigned to processors in a round robin fashion as show in Fig. 9(a). Throughout Fig. 9,

the shaded region of the matrix shows the elements of the matrix being modified at the

corresponding step. Therefore, each processor has N/P columns of the matrix. The advan-

tage of this mapping is that it leads to good load balance throughout the factorization,

because as rows are eliminated, each processor still has to do the same amount of work on

each active column, and as each column is eliminated, the number of active columns in any

000

(a)

P columns

(c)
Fig. 9. LU decomposition in DRAM.

(b) (d)

The GFl l parallel computer 1407

two processors can differ by at most 1. However, the algorithm must be carefully restructured

to reuse the data transferred from DRAM to SRAM to avoid the DRAM bandwidth

bottleneck. The strategy adopted was to perform the following rank-P update N/P times.

The rank-P update proceeds as follows:

• We transpose a sub-matrix of P consecutive columns of the matrix (one column from each

processor) so that now each each processor has N/P rows of the submatrix, and P columns

as shown in Fig. 9(a).

• This sub-matrix fits entirely in SRAM and we factor this sub-matrix using the SRAM

decomposition algorithm described in the preceding section.

• Next we restore the rows of the submatrix to it original position, and permute the rows of

the entire matrix to place the pivot elements generated in the previous step on the main

diagonal. At this stage the P columns containing the pivot elements have the correct values

for the L matrix. The P x P upper triangular matrix above the main diagonal has the

correct values for the U matrix. (See Fig. 9b).

• Then we use the P columns of the L matrix identified in the SRAM decomposition step to

update the unprocessed columns of the P pivot rows, to generate the U matrix values for

the P pivot rows. (See Fig. 9(c)).

• Finally, we do a rank P update to the remaining unfactored piece of the matrix. This

update consists of a subtracting from each (i, j) element of the unfactored matrix, the

dot-product of the P newly formed columns in row i of the L matrix with the P newly

formed rows in column j of the U matrix. (See Fig. 9(d)).

To solve a 5400 x 5400 system of equations on GFll, using 450 processors (12 columns per

processors), this algorithm achieves 82% efficiency, yielding 7.4 GigaFlops.

4.3. Soh, ing dense linear systems using Gaussian elimination

The Gaussian Elimination algorithm solves a system of linear equations by eliminating the

variables, one at a time, from all but one equation. The sequence of transformations used in

the process, if applied to a identity matrix produces the inverse of the coefficient matrix. For

matrices smaller than 2500 x 2500, The algorithm used has a structure similar to the one used

for the LU decomposition where the matrix is partitioned among the processors by rows.

Column wise partial pivoting is performed in the outermost loop, and the middle and inner

loops index over the rows and columns respectively.

GF11 achieves 9.3 Gigaflops when performing Gaussian Elimination on a 2500 x 2500

matrix, using 500 processors. Unlike LU decomposition, all rows of the coefficient matrix

remain active throughout the algorithm, and thus load imbalance is not present. The

inefficiency in the pivoting step, the latency of ALU pipelines in the processors, and idling of

the ALUs (due to unrolling of the inner loop) account for the loss of performance.

Matrices larger then 2500 x 2500 are processed from the DRAM with better efficiency.

The efficiency improves for large matrices because the relative overhead of finding the pivot

decreases with matrix size (the overhead of accessing DRAM is negligible). To perform

Gaussian Elimination on a N x N matrix, N/P consecutive rows of the matrix are assigned to

each processor.

P consecutive columns of the matrix are handled at a time. These P columns are moved

into the SRAM, where they are processed as described in the preceding section. However,

during the processing, the multipliers used to update the rows and the row indices of the pivot

elements are saved in SRAM for future use in applying identical updates to the remaining

columns. The processed columns are returned to the DRAM. The pivot element values and

the row indices are now used to update the remaining columns by bringing them into SRAM,

P columns at a time. N/P iterations of this step yield the inverse of the coefficient matrix.

1408 M. Kumar et al.

Using 500 processors, GFll required 45.2 seconds to compute the inverse of a 6000 x 6000

matrix, sustaining an average execution rate of 9.5 GigaFlops.

4.4. FFT (Fast Fourier Transform)

A 2-dimensional N x N decimation in frequency FF-I" was implemented on GF11. The

2-dimensional FFT of Z(kl, k 2) is:

2jlj2 = ~ ~toJ'~+J2k2Zk1,2, where to = e i2~r/N, a N-th root of unity.

kl kz

This is accomplished by first performing a 1-dimensional FFT on the columns of z, and then a

1-dimensional FFT on the rows of the result. The algorithm is parallelized and partitioned as

follows. Each processor receives N/P complete columns of z. Each processor performs a

1-dimensional FFT on all the columns it contains, with bit-reversal. This occurs without any

inter-processor communication. After all the 1-dimensional FFT's have been performed, the

matrix of transformed values is transposed across the machine. No computation occurs at this

stage. Another complete set of FFT's are then performed and the matrix is again transposed

to complete the algorithm.

In order to hide the long ALU latencies, and to relieve the pressure on memory bandwidth,

the innermost loop of the 1 dimensional FFT algorithm processes only a section of the

column, but the processing on this data is done for several stages of the FFT. This minimizes

the amount of microcode generated. The roots of unity are precomputed and stored in

auxiliary arrays as are the various pointers needed for accessing these roots and for

implementing the transpose. The performance of the FFT algorithm on GFll can not exceed

8.3 GigaFlops due to the imbalance between the add and multiply operation (6 adds and 4

multiply operations in a basic butterfly). The 1-dimensional FFT's achieved 96% of this

number, or 80% of the GFll's peak performance. The bit-reversal and the transpose are not

overlapped with any computation and degrade performance to 70% of peak. A 1024 X 1024

FFT using 512 processors achieved 7.17 GigaFlops.

4.5. Other applications

As mentioned earlier, to obtain good performance on GFll, one must be able to partition

the calculation into as many identical pieces as the number of processors, and one must also

partition the data in a manner such that the intercommunication pattern induced by the data

partitioning does not become a performance bottleneck. In our survey of applications we

rarely come across programs where the calculation cannot be partitioned properly, but

partitioning of data usually requires some care.

It takes several hundred thousand steps to compute the switch setting for a given

communication pattern and to load it in the switch. In all the applications discussed earlier,

the communication patterns induced by data partitioning were known at compile time, so that

the switch setting required to carry them out could be precomputed and preloaded in the

network. If interprocessor communication patterns can be determined only at the time of

program's execution, and their use is not long enough to amortize the cost of setting the

switch, one has to find a more efficient way of carrying out such communication such as

allowing the processors to broadcast sequentially, or simulating a packet switched network on

top of the Benes network.

Molecular dynamics is one application area where the interprocessor communication is of

this type [23]. Molecular dynamics simulations involve evolving the spatial configuration of

atoms in molecules. To compute the new position of an atom, its interaction with all other

The GFl l parallel computer 1409

atoms must be computed. Since this is a N 2 process, only those pairs which are close enough

are actually considered. During the course of the simulation, the set of atoms which are close

to any given atom changes, changing the set of interacting atoms and hence the communica-

tion pattern. This change is data dependent and cannot be predicted in advance. In these

simulations, the atoms are assigned to the processors of a parallel computer. Information

about the interacting atoms must be available to processors during this computation.

In the message passing mechanism implemented on GF11, a packet is constructed for each

datum to be communicated, which contains the address of the target processor. The proces-

sors are configured as a ring, and the packets are circulated between the processors, with each

processor retaining a copy of all the packets addressed to it. If P is number of processors, this

algorithm takes 55 × P cycles (1400 microseconds for P = 512) to guarantee delivery of all

packets. The shuffle-exchange topology would be more efficient if the number of processors

exceeds 50. For 512 processors, using the shuffle-exchange topology and uniformly distributed

destination addresses, an average of 5.3 (standard deviation 0.48) passes through the network

are required before all packets are delivered, requiring 650 microseconds.

In addition to the applications already discussed, simulation of neural networks [22],

factoring large numbers, bi-conjugate gradient method with incomplete LU preconditioner

(the kernel of a large Finite Element program), Matrix Multiply, Shallow Water Equations

[17], and the simulation of galactic evolution [6,16], are some of the other applications that

have been implemented on GF11 and have sustained good performance. We briefly summa-

rize the last three below. Details on these applications can be found in [15].

To multiply two N ×N matrices A and B, on GFll with p2 processors, the matrix is

partitioned into NIP × NIP blocks on the P × P grid of processors. Each processor com-

putes a N/P x N/P block of the result matrix C. The blocks of A and B matrices are stored

on the processors in a staggered manner to allow each processor to compute one product

term of the result matrix block assigned to it. After computing the product term, each block of

the A matrix is cyclically shifted to the processor on its right in the same row. Each block of

B is similarly cyclically shifted to the processor above it in the same column. The evolving

block of the result matrix C does not move. After P iterations of block multiply/accumulates

and shifts, the result is available. To implement a 1024 × 1024 matrix multiply using 512

processors, a 32 × 32 grid of 1024 logical processors was used, each physical processor acted

as 2 horizontally adjacent logical processors. This algorithm achieved 10 GigaFlops on GFll

for the above problem size.

NCAR is a standard benchmark for structured, explicit fluid dynamics calculations. A

512 X 512 grid calculation was implemented on GFll. Each processor received 1 row of data.

Table 1

Performance sustained by GF11 on scientific/engineering applications

Application Number of pro- Performance Problem size

cessors used (GIgaFLOPS)

Pare-Crash (finite element method) 500

TPP (linear algebra, LU decomposition) 500

TPP (linear algebra, LU decomposition) 500

TPP (linear algebra, LU decomposition) 450

Gaussian elimination 500

Gaussian elimination 500

2-D FFT 512

Shallow Water equations (weather code) 512

Matrix multiplication 512

5.5 10,000 elements

4.3 1000 × 1000

5.6 2500 × 2500

7.4 6000 × 6000

9.3 2500 × 2500

9.5 5400 x 5400

7.2 1024 × 1024

7.5 256 × 256

10.0 1024 × 1024

1410 M. Kumar et al.

Though there are less communication intensive decompositions, this decomposition is easily

handled by the GFll switch and requires minimal program restructuring. The calculation

achieved 7.5 GigaFlops, which is 83% of the peak speed attainable by the algorithm on GFll,

in presence of the add/multiply imbalance.

The GALAXY code simulates the evolution of galactic structures. This code is also a

structured, explicit calculation on a 3-dimensional grid. However, it incorporates additional

physics and chemistry to model the interaction of stars and gas of a representative piece of

the galaxy for a significant length of time. Additionally, an adaptive time-stepping criterion

was used to maximize the time step, requiring a global communication step. This code

achieved 7 GigaFlops.

The results of the applications discussed in the previous section are summarized in Table 1.

5. Discussion and future directions

The hardware technology for implementing GF11 was selected in 1984. Then the floating

point ALU chips were capable of delivering 5 MegaFlops, the static RAM chips could store

16 Kb of data, and the dynamic RAM chips could hold 256 Kb of data. In todays technology

we have ALU chips which can deliver 100 MegaFlops, static RAM chips are twice as fast and

can hold 4 Mb of data, and the dynamic RAM chips can hold 16 Mb of data. With this latest

technology it it possible to make processor boards which are twenty times as powerful as the

GFll processor boards, and switch boards can be made which are proportionately faster. We

are investigating the use of this latest technology to build a SIMD machine architecturally

similar to GFll, which would be significantly-more powerful and compact.

The user interface in GFll is primitive and the compilation techniques are also quite

elementary. Nonetheless, the compiled code produced by the GFll compiler is near optimal,

as illustrated by the performance numbers. If the currently emerging/mature compiler

technologies were employed in the GF11 compiler, the user would be freed from the burden

of isolating the compute intensive sections of his program, and partitioning these calculations

among the GFll processors. Identifying which data is assigned to GFll and how it is

partitioned among the GFll processors, should be sufficient in most situations for a

Fortran-D type compiler to successfully partition the calculations among the processors.

Pragmas for specifying data layout are available in Fortran-D. The interprocessor communica-

tion patterns, currently specified by the user based on the partitioning of data and calcula-

tions, would also be automatically generated by the compiler when simple data layouts are

specified using the Fortran-D pragmas. Finally, currently each GFll arithmetic/loadstore/

communication operation has to be written as a separate procedure call. Certainly these

semantics would change to allow the GFll calculations to be expressed as Fortran expres-

sions.
For most of the 1980s, it was widely believed that SIMD machines in general are ill suited

for a large class of parallel applications. With our application studies on GFll we have

refuted this belief to a significant extent. We will continue to program new types of

applications on GFll to demonstrate the versatility of this architecture, and also to refine the

new design to accommodate the requirements of a wider class of applications.

6. Conclusion

GFll has been operational with 256 processors since October 1989. The full machine

became operational in October 1990. A broad range of applications have already been

The G F11 parallel computer 1411

programmed on GF11. The use of a non-blocking circuit switched network for interprocessor

communication, a large register file, a balanced bandwidth at all hierarchies of the memory,

and the ability to perform many operations concurrently in each instruction are some of the

GFll design features that allow it to sustain good performance on a variety of applications.

These architectural features also greatly reduce the effort required to restructure the

algorithms to avoid communication/memorybandwidth bottle-necks. GFll sustains good

performance on not only the applications that are believed to be well suited for SIMD

machines, but also on applications which are widely believed to be ill suited for SIMD

machines.

Acknowledgements

We would like to acknowledge the effort of Mike Cassera, Molly Elliot, Dave George, Ed

Nowicki, and Micky Tsao in making GFll operational. Early work on implementing LU

decomposition and FFT was done by Michael Witbrock and Banu Ozden, and is discussed in

detail elsewhere. We would also like to thank Piero Sguazzaro for helping us with the

Pam-Crash code.

References

[1] G.H. Barnes et al., The ILLIAC IV computer, IEEE Trans. Comput. C-17 (8) (Aug. 1968) 746-757.

[2] K.E. Batcher, Design of a massively parallel processor, IEEE Trans. Comput. C-29 (9) (Sept. 1980) 836-840.

[3] V.E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic Press, New York,

1935).

[4] J. Beetem, M. Denneau and D. Weingarten, The GFll parallel computer, Experimental Parallel Processing

Architectures, J.J. Dongarra, ed. (Elsevier Science, Amsterdam, 1987).

[5] J. Beetem, M. Denneau and D. Weingarten, The GFll supercomputer, in: Proc. 2th Internat. Symp. Computer

Architecture, IEEE Comp. Soc. (Jun. 1985) 108-115.

[6] W. Chiang and K. Prendergast, Numerical study of a two-fluid hydrodynamic model of the interstellar medium

and population I stars, Astrophysical J. 297 (Oct. 1985) 507-530.

[7] W. Crowther, J. Goodhue, E. Start, R. Thomas, W. Milliken and T. Blackadar, Performance measurements on a

128-node butterfly parallel processor, in: Proc. 1985 Internat. Conf. on Parallel Processing, IEEE Comp. Soc.

(Aug. 22-23, 1985) 531-540.

[8] D.M. Dias and J.R. Jump, Packet switching interconnection networks for modular systems, COMPUTER 14 (12)

(Dec. 1981) 43-54.

[9] P.M. Flanders et al., Efficient high speed computing with distributed array processor, in: High Speed Computer

and Algorithm Organization, Kuck, Lawrie, and Sameh, eds. (Acedemic Press, New York, 1977).

[10] M.J. Flynn, Very high speed computers, Proc. IEEE 54 (Dec. 1966) 1901-1909.

[11] G.C. Fox, What have we learnt from using real parallel machines to solve real problems?, Caltech. Report
C2P-522.

[12] J.P. Hayes et al., A micro processor-based hypercube supercomputer, 1EEE Micro 6 (5) (Oct. 1986) 6-17.

[13] T. Jones, Engineering design of the Convex C2, COMPUTER 22 (1) (Jan. 1989) 36-44.

[14] M. Kumar, Supporting broadcast connections in Benes networks, IBM Research Report RC-14063, 1988.

[15] M. Kumar and Y. Baransky, The GFll parallel computer: Programming and performance, Future Generation

Comput. Syst. 7 (2&3) April 1992) 169-179.

[16] R.H. Sanders and K. Prendergast, Astrophysical J. 188 (Mar. 1974) 489-500.

[17] R.K. Sato and P.N. Swarztrauber, Benchmarking the Connection Machine 2, Supercomputing'88 (1988) 304-309.

[18] D.L. Slotnick, W.C. Borck and R.C. McReynolds, The SOLOMON computer, AFIPS 1962 Fall Joint Computer

Conf. 22 (1962) 97-107.
[19] L.W. Tucker and G.G. Robertson, Architecture and application of the Connection Machine, COMPUTER 21 (8)

(Aug. 1988) 26-38.
[20] D.L. Waltz, Applications of the Connection Machine, COMPUTER 20 (1) (Jan. 1987) 85-97.

1412 M. Kumar et al.

[21] D. Weingarten and D. Petcher, Monte Carlo integration for lattice gauge theories with fermions, Phys. Letters

99B (4) (Feb. 1981) 333-338.
[22] M. Witbrock and M. Zagha, An implementation of back-propagation learning on GFll, a large SIMD parallel

computer, Parallel Comput. 14 (3) (1990) 329-346.

[23] V. Yip and R. Elber, Calculations of a list of neighbors in molecular dynamics simulations, J. Computat. Chem.

10 (7) (1989) 921-927.

[24] PAM-CRASH: User Manual, Engineering Systems International, Paris (1987).

