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Abstract 
A novel disk architecture called Trail is proposed to optimize 
the disk write latency without sacrificing the disk read perfor- 
mance. This architecture features a track-based logging tech- 
nique, which essentially reduces a disk write latency to the 
transfer delay. In addition, this disk architecture allows con- 
current readlwrite, and implicit write scheduling without 
compromising data integrity. Through a synthetic-trace simu- 
lation study, we have shown that for transaction processing 
workloads, the write latency improvement of Trail over con- 
ventional disk devices is at least an order of magnitude. 
Trail’s read latency performance is also better in all cases, 
sometimes the improvement is also over an order of magni- 
tude. In terms of disk bandwidth utilization, the Trail archi- 
tecture has a close to 100% write bandwidth efficiency and a 
read bandwidth efficiency at least as good as a conventional 
disk. 

1. Introduction 
A disk U 0  request’s access delay consists of three 

parts: seek, rotational, and transfer latency. Only the transfer 
latency is proportional to the amount of data that is actually 
accessed. The other two components depend on the position 
of the disk readwrite head when the request arrives. Some 
researchers advocate the use of large main memory as a buffer 
cache to reduce the amount of physical disk VO’s, thus bridg- 
ing the speed gap between processors and YO devices. The 
effectiveness of this approach is demonstrated by various file 
systems caching studies [BAKE921 [WELC90]. A factor of 
three in disk data traffic reduction can be easily achieved. In 
addition, it has been found that the 110 read/write ratio has 
changed from 4 when there is no caching, to less than 2 when 
a reasonable caching system is in place. Although both read 
and write requests can be satisfied in the buffer cache, some 
applications require writes to be synchronous, i.e., only when 
data is written on the persistent storage can an I/O request be 
considered completed. For example, in commercial data pro- 
cessing environments, data integrity is usually a much more 
important criterion than performance. Lower disk readwrite 
ratios and the need for synchronous writes argue for a storage 
system that is optimized for disk writes without significantly 
sacrificing the disk read performance. 

The log-structured file system (LFS) [ROSE921 
developed in U.C. Berkeley is based exactly on this observa- 
tion. There are two central ideas in EFS. First, a set of tem- 
porally consecutive disk writes are clustered and performed in 
one batch. Second, data on the disk is organized as a log. Log- 
ically, disk‘writes are performed as appends to the log. As a 
result, the write access overhead is amortized among the write 
requests participating in a batch. Overwritten data segments 

are garbage-collected and resued by a background cleaner 
process. It has been shown [ROSE921 that LFS can effec- 
tively utilize a substantial percentage (> 60%) of the raw disk 
transfer bandwidth. This represents a significant improvement 
compared to the BSD fast file system implementation (FFS) 
[McKU84], whose bandwidth utilization is typically under 
10%. 

However, there are several problems associated with 
LFS. First, disk reads become more complicated because a 
data item is not placed on a fixed disk location. At least one 
more level of directory lookup is needed to locate a particular 
piece of data. The LFS designer claims that the meta-data is 
small enough to fit in the main memory and therefore this 
extra work won’t incur significant performance overheads. 
Despite this argument, the disk read performance still suffers 
because the spatial locality of data is not likely to be 
preserved by the log-structured storage organization. The only 
scenario in which LFS can preserve spatial locatity is when 
the temporal access patterns of disk reads and writes for a file 
are identical. It is not clear that this is a valid assumption in 
general. Even if it is the case, multiple disk write streams 
from different sources, such as in a network file server, can 
potentially destroy this locality characteristic. In addition, it 
has been reported [CARS921 that individual read operations 
may experience longer queuing delays because of the batched 
write policy. 

The second problem with LFS is that it doesn’t work 
for applications that require synchronous writes, e.g., com- 
mercial database systems. In these cases, LFS cannot cluster 
writes and therefore has to pay for the disk access overhead 
for each disk write. The third problem with EFS is that i t  
requires extra processing/disk bandwidth to reclaim overwrit- 
ten storage segments. Although it is claimed that this over- 
head is relatively small [ROSE92], the optimal reclamation 
policy to achieve an ideal bimodal segment utilization is 
rather subtle and seems to be workload-dependent. Moreover, 
a continuous segment cleaner will presumably interfere with 
normal disk accesses and thus degrades the latency of indivi- 
dual U 0  requests. 

In this paper, we propose a new disk architecture called 
Trail that incurs almost no disk write overhead, i.e., no seek 
and rotational latency. The basic idea is to log disk writes to a 
separate small disk first and to commit the updates to the main 
disk when i t  is available. The novelty of our approach is to 
use a track-based logging disk as a persistent cache and to 
embed the low-level storage management intelligence inside 
the disk controller. This disk architecture preserves the same 
SCSI interface to device drivers so that existing systems can 
reap the write performance advantage of LFS without modify- 
ing the kernel. Moreover, the file system can adopt a read- 
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optimized storage organization such as FFS and lets the 
hardware optimize the disk write performance. With a little 
extra cost, one can combine the advantages of FFS and EFS to 
achieve high performance for both disk reads and writes. 

The rest of this paper is organized as follows The 
hardware organization and the storage management algo- 
rithms used in 'Trail are presented in Section Two. The perfor- 
mance results and analysis of a simulation study for Trail is 
reported in Section Three. Section Four concludes this paper 
with a summary of major research results and a pointer for 
future work. 

L - - - - - - - - - - - - - - - - - 
Figure 1 Hardware Organization of Trail 

2. The Trail Disk Architecture 

2.1. Principle of Operation 
The design goals of Trail are: ( I )  To improve or at 

least preserve the disk write performance of LFS without its 
associated problems; (2) To maintain the same hardware 
interface of conventional disk devices so that most of the sys- 
tems software can be left intact. The hardware architecture of 
Trail is shown in Figure 1. I t  consists of a main disk, a log 
disk, a DRAM buffer, and an intelligent disk controller. Typ- 
ically the log disk is much smaller than the main disk. In fact 
our design only needs the cheapest disk model available in the 
market, e.g., a 40 MB drive. Therefore, the cost of Trail is 
not twice as much as a main disk. Files are permanently 
stored on the main disk with a data organization determined 
by the file system. Because Trail is optimized for disk write 
performance, the file-system disk data representation should 
be oriented towards disk read performance. The log disk 
serves as a persistent write buffer. The intelligent disk con- 
troller interacts with the outside world through a standard 
interface such as SCSI and coordinates the data transfers 
between these two disks. A Trail disk behaves like a normal 
disk except with very fast wnte performance. 

A Trail disk operates as follows. The readwrite head 
of the log disk is guaranteed to be on a cylinder that has at 
least one free track. In response to a disk write request, the 
disk controller simply starts the write to wherever the disk 
head happens to be. Because there is always a free track under 
the disk head, the write can be performed immediately. As a 
result, there is no seek and rotational latency involved in the 
write process! The only latency is due to data transfer As 
soon as data is  completely transferred to the log disk. the dev- 

ice can retum a completion signal to the software. At this 
point, there is still a copy of the data kept in the disk 
controller's DRAM-based buffer. From the software stand- 
point, a Trail disk completes a disk write without any addi- 
tional delay. Ultimately the data will be put back to the main 
disk, at a time determined by the intelligent controller. Only 
when the data copy is safely moved to the main disk can its 
occupied buffer space be reused. When a read request arrives, 
the controller first looks up the buffer and returns the 
requested data if it is there. Otherwise an access to the main 
disk is scheduled to satisfy the request. Note that the log disk 
never services disk reads. So it is not a cache. It serves as a 
safety net to fall back on when the contents of the controller 
buffer are corrupted. 

Writing data out to a log before committing it to the 
"official" data storage is not a new idea. Database systems use 
this technique mostly for maintaining transactional con- 
sistency rather than for performance. Moreover, in transac- 
tion processing systems, the software actually has to perform 
each write twice and is responsible for the management of log 
space. Trail hides all management overheads behind the SCSI 
interface. This simplifies and improves the performance of 
application programs. The other difference is that Trail uses a 
track-based logging technique. Conceptually each track only 
holds one disk write's worth of data. Even if the current track 
LS not full, the log disk's head will move to the next free track 
in anticipation to service the next write. A track becomes free 
when the data it contains is transferred to the main disk. 
There are two cases in which this scheme will still cause addi- 
tional overheads. First, if no track is free when a write 
request arrives, the write request will have to wait until a free: 
track becomes available. Second, when the size of a write 
request is larger than a disk track, , an extra overhead equal to 
a head switch time if the next free track is in the same 
cylinder as the current track, or to a track-to-track seek time if 
the next free track is not in the same cylinder. needs to be 
paid. Track-based logging eliminates both the rotational and 
seek latency at the expense of inefficient log disk space usage. 

Compared to LFS, Trail achieves a better disk write 
performance because of the reduction in the rotational 
latency. Moreover, the file system is not required to perform 
clustered writes in one batch. Consequently the performance 
of synchronous writes is only limited by the disk's raw 
transfer bandwidth. Because the main disk assumes a data 
organization that is determined by the file system, disk read 
performance is not penalized. Last but not least, there is no 
need for garbage collection because the hardware assumes the 
responsibility of managing the log disk. This simplifies the 
implementation and improves the performance of the storage 
management software. 

2.2. Log Disk Management 
The most critical part of the Trail architecture is log 

disk management. Because hardware controls the log disk 
directly, the management algorithm must be simple. Two 
issues need to be addressed. First, because the log disk is used 
as a circular buffer, we need a mechanism to switch quickly tcf 
the outermost cylinder when the disk head moves inwards and 
hits the innermost track and vice versa. Two alternatives are 
considered. The first one simply assumes that a full seek delay 
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needs to be paid when the disk head reaches the boundary 
track. If no write request is arriving during the full seek 
period, this delay is not visible to the applications. Consider- 
ing a 40-MB drive with a 40-KB track size. This means that 
such a full seek delay, roughly 20 ms, will potentially be visi- 
ble every lo00 writes, assuming that the size of each disk 
write is less than 40 KB. The other alternative is to interlace 
the writes to every other cylinder. Assume cylinders in a disk 
are numbered from 0 to 999 from the innermost to the outer- 
most. When the disk head is moving outward, the cylinders 
to be written are 0, 2,4,  ... until it reaches the 998-th cylinder. 
At this time, the disk head moves to the 999-th cylinder, turns 
inward, and marches through the cylinders 997,995, ... until it 
hits the 1-th cylinder. And then the cycle repeats. The advan- 
tage of this scheme is that the full seek delay in the first 
scheme is distributed over each disk head transition, and 
therefore every head transition incurs roughly the same over- 
head. The disadvantage is that the delay of each head transi- 
tion is a two-track seek time. Since most commercial disks 
have optimized for the track-to-track seek performance, this 
technique may not be desirable because it trades the 
common-case performance for the boundary case. In the 
simulation study, we choose the first approach. 

The other design issue is related to recovery. When a 
Trail disk retums a completion signal to the software, the data 
is assumed to be persistent although not necessarily in its 
intended destination disk location. In the case of a power 
failure, the contents of the controller’s DRAM-based buffer 
are lost. During reconstruction, the controller’s buffer is 
rebuilt from the log disk. To allow crash recovery, each disk 
write to the log disk must be self-identifying. That is, each 
disk write must include a special bit pattem, a timestamp, a 
request size, the destination disk address, and the actual data. 
The special bit pattem is used as a delimiter to designate the 
beginning of a write request. The request size allows the 
reconstruction software to handle disk writes that span multi- 
ple tracks. To reconstruct the controller buffer, the system 
must scan the entire log disk once to eliminate invalid writes 
and to establish a timestamp order for valid writes. Three 
rules are used: 

[ 11 Within a track, only the disk write with the most recent 
timestamp is considered; others are spurious. 

[2] At the disk level, the disk writes from each track are 
ordered according to their timestamps. Those writes 
that are overwritten by later ones are considered 
invalid. 
Accumulate the request sizes of the valid writes from 
the most to the least recent until such a write request 
that when including it, the accumulated sum is greater 
than the controller buffer size. All writes earlier than 
this write, including itself, are considered invalid. 

The reconstruction process requires a second pass across the 
log disk, in which the valid writes determined in the first pass 
via the above rules are brought into the controller buffer. 
Because the scans involve only sequential access, the recon- 
struction delay can be significantly reduced. In addition, 
because the log disk’s contents are rebuilt in the controller 
buffer rather than in the main disk, no random accesses to the 
main disk are required. 

[3] 

TrackdCylinder 4 11 Tracksize 1 2f6yy ;  )I 
Full Rotation Delay 

Maximum Seek Time 29.4 ms 
Track-to-Track Seek Time 

Head Switch Time 
2 ms 
1 ms 
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Note that the divisor doesn’t include the disk idle time. For a 
Trail disk, the read bandwidth efficiency is derived from the 
main disk while the write bandwidth eficiency is from the log 
disk The controller buffer size measures the average space 
that the controller’s buffer needs to provide a reasonable level 
of performance. Due to space constraints, we didn’t include 
simulation results that depend on workload characteristics, 
and disk parameters. 

3.2. Performance Analysis 
We are mainly interested in two kinds of workloads. 

The first type represents transaction processing workloads. In 
this environment, the disk request size is small, the I/O rate is 
high, and the reference locality is low. The second type 
represents the other end of the spectrum, where the request 
size is much larger, but the YO rate is comparatively lower. 
Let’s call the latter the file systems workload. Unless stated 
otherwise, subsequent performance results are based on the 
following assumptions: 

Minimum request size is fixed at one Kbyte. 
ReauYwrire ratio is assumed to be four. 
Locality characteristic value is one, i.e., no locality. 
Figure 2 shows the write latency ratio of the conven- 

tional disk architecture to the Trail architecture. The X axis 
stands for the disk request’s inter-arrival time in msec. Three 
different maximum request sizes, 1 Kbyte, 5 Kbyte, and 10 
Kbyte, are used in this study. For high YO rates (e.g., 200 
requestdsec), the improvement of the Trail architecture over 
conventional disk devices is at least three orders of magni- 
tude, a rather significant difference. Even for lower YO rates, 
the improvement is still over an order of magnitude. The per- 
formance curves of these three workloads exhibit similar 
structures. In particular, the latency improvement drops 
significantly when the YO rate reaches 50 requestdsec (or the 
inter-arrival time is 20 ms). Except for the rapid transition 
period, smaller maximum request sizes have better write 
latency improvement. Figure 3 shows the read latency ratio 
for the same workloads. Unlike the monotonicity structure in 
Figure 2, there is a peak in each performance curve. More- 
over, the workload conditions in which the peaks in Figure 3 
occur roughly correspond to where rapid transitions in Figure 
2 take place. Although the Trail architecture aims at disk 
write perfomlance optimization, Figure 3 shows that the read 
performance is also improved. In some cases, this improve- 
ment can be as much as two orders of magnitude. This 
demonstrates one of the design goals of Trail: improving 
write performance without sacrificing read performance. Like 
the write case, smaller maximum request sizes have better 
read latency improvement. 

Figure 4 shows the average amount of controller buffer 
needed in Trail to provide the performance improvement 
shown in Figure 2. The vertical a x i s  stands for the buffer size 
in Kbyte. The statistics are calculated by assuming an infinite 
buffer and measuring the active buffer size when a new disk 
request arrives. The accumulative sum of these measure- 
ments is then divided by the number of disk requests. For 
high YO rates, the buffer requirement ranges from 1 Mbyte to 
5 Mbyte. The buffer requirement reduces dramatically as YO 
rates decrease. It is less than 5 Kbyte in the lightest load case. 

Maximum 
Request 

Conventional Trail 
I I 

Size I Read I Write I Read I Write 
1 Kbvte I 3.70% I 3.71% I 3.76% I 93.78% 
5 Kbyte 

10 Kbyte 
8.78% 8.65% 8.89% 95.94% 

16.17% 15.84% 16.32% 96.73% 

Maximum 
Request 

Size I Read I Write 1 Read 1 Write 
200Kbvte I 80.45% I 80.03% I 80.44% I 99.90% 

I I 

Conventional 

650 Kbyte 
loo0 Kbyte 

Table HI 
Systems Workloads 

4. Conclusion 

Bandwidth Efliciency Comparison under File 

In this paper, we propose a novel disk architecture 
called Trail that optimizes the write performance without 
sacrificing the read performance. Using the concept of track- 
based logging, Trail achieves almost zero-overhead disk 
writes. That is, aside from the queuing delay, a disk write 
latency is only due to its data transfer delay. Consequently the 
performance impact due to synchronous writes is minimized. 
Since Trail manages logging completely inside a disk device, 

93.08% 92.91% 93.09% 99.92% 
95.39% 95.28% 95.42% 99.93% 
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the software system, either device drivers or file systems, 
doesn't require any modifications. Because the main disk 
data organization can be optimized for reads, Trail eliminates 
the potential read performance problem of Log-structured File 
Systems. In addition, there is no need for garbage collection. 

We have shown through simulation that for transaction 
processing workloads, the write latency improvement over 
conventional disk devices is at least an order of magnitude. 
Trail's read latency performance is also better, sometimes the 
improvement is over an order of magnitude. In terms of disk 
bandwidth utilization, a Trail device has a close to 100% 
write bandwidth efficiency and a read bandwidth efficiency at 
least as good as a conventional disk. 
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