
Trail: A Track-based Logging Disk Architecture for Zero-Overhead Writes

Tzi-cker Chiueh

Computer Science Department
State University of New York at Stony Brook

chiueh @ cs.sunysb. edu

Abstract
A novel disk architecture called Trail is proposed to optimize
the disk write latency without sacrificing the disk read perfor-
mance. This architecture features a track-based logging tech-
nique, which essentially reduces a disk write latency to the
transfer delay. In addition, this disk architecture allows con-
current readlwrite, and implicit write scheduling without
compromising data integrity. Through a synthetic-trace simu-
lation study, we have shown that for transaction processing
workloads, the write latency improvement of Trail over con-
ventional disk devices is at least an order of magnitude.
Trail’s read latency performance is also better in all cases,
sometimes the improvement is also over an order of magni-
tude. In terms of disk bandwidth utilization, the Trail archi-
tecture has a close to 100% write bandwidth efficiency and a
read bandwidth efficiency at least as good as a conventional
disk.

1. Introduction
A disk U 0 request’s access delay consists of three

parts: seek, rotational, and transfer latency. Only the transfer
latency is proportional to the amount of data that is actually
accessed. The other two components depend on the position
of the disk readwrite head when the request arrives. Some
researchers advocate the use of large main memory as a buffer
cache to reduce the amount of physical disk VO’s, thus bridg-
ing the speed gap between processors and YO devices. The
effectiveness of this approach is demonstrated by various file
systems caching studies [BAKE921 [WELC90]. A factor of
three in disk data traffic reduction can be easily achieved. In
addition, it has been found that the 110 read/write ratio has
changed from 4 when there is no caching, to less than 2 when
a reasonable caching system is in place. Although both read
and write requests can be satisfied in the buffer cache, some
applications require writes to be synchronous, i.e., only when
data is written on the persistent storage can an I/O request be
considered completed. For example, in commercial data pro-
cessing environments, data integrity is usually a much more
important criterion than performance. Lower disk readwrite
ratios and the need for synchronous writes argue for a storage
system that is optimized for disk writes without significantly
sacrificing the disk read performance.

The log-structured file system (LFS) [ROSE921
developed in U.C. Berkeley is based exactly on this observa-
tion. There are two central ideas in EFS. First, a set of tem-
porally consecutive disk writes are clustered and performed in
one batch. Second, data on the disk is organized as a log. Log-
ically, disk‘writes are performed as appends to the log. As a
result, the write access overhead is amortized among the write
requests participating in a batch. Overwritten data segments

are garbage-collected and resued by a background cleaner
process. It has been shown [ROSE921 that LFS can effec-
tively utilize a substantial percentage (> 60%) of the raw disk
transfer bandwidth. This represents a significant improvement
compared to the BSD fast file system implementation (FFS)
[McKU84], whose bandwidth utilization is typically under
10%.

However, there are several problems associated with
LFS. First, disk reads become more complicated because a
data item is not placed on a fixed disk location. At least one
more level of directory lookup is needed to locate a particular
piece of data. The LFS designer claims that the meta-data is
small enough to fit in the main memory and therefore this
extra work won’t incur significant performance overheads.
Despite this argument, the disk read performance still suffers
because the spatial locality of data is not likely to be
preserved by the log-structured storage organization. The only
scenario in which LFS can preserve spatial locatity is when
the temporal access patterns of disk reads and writes for a file
are identical. It is not clear that this is a valid assumption in
general. Even if it is the case, multiple disk write streams
from different sources, such as in a network file server, can
potentially destroy this locality characteristic. In addition, it
has been reported [CARS921 that individual read operations
may experience longer queuing delays because of the batched
write policy.

The second problem with LFS is that it doesn’t work
for applications that require synchronous writes, e.g., com-
mercial database systems. In these cases, LFS cannot cluster
writes and therefore has to pay for the disk access overhead
for each disk write. The third problem with EFS is that i t
requires extra processing/disk bandwidth to reclaim overwrit-
ten storage segments. Although it is claimed that this over-
head is relatively small [ROSE92], the optimal reclamation
policy to achieve an ideal bimodal segment utilization is
rather subtle and seems to be workload-dependent. Moreover,
a continuous segment cleaner will presumably interfere with
normal disk accesses and thus degrades the latency of indivi-
dual U 0 requests.

In this paper, we propose a new disk architecture called
Trail that incurs almost no disk write overhead, i.e., no seek
and rotational latency. The basic idea is to log disk writes to a
separate small disk first and to commit the updates to the main
disk when i t is available. The novelty of our approach is to
use a track-based logging disk as a persistent cache and to
embed the low-level storage management intelligence inside
the disk controller. This disk architecture preserves the same
SCSI interface to device drivers so that existing systems can
reap the write performance advantage of LFS without modify-
ing the kernel. Moreover, the file system can adopt a read-

339
1063-64OU93 $03.00 0 1993 IEEE

optimized storage organization such as FFS and lets the
hardware optimize the disk write performance. With a little
extra cost, one can combine the advantages of FFS and EFS to
achieve high performance for both disk reads and writes.

The rest of this paper is organized as follows The
hardware organization and the storage management algo-
rithms used in 'Trail are presented in Section Two. The perfor-
mance results and analysis of a simulation study for Trail is
reported in Section Three. Section Four concludes this paper
with a summary of major research results and a pointer for
future work.

L - - - - - - - - - - - - - - - - -
Figure 1 Hardware Organization of Trail

2. The Trail Disk Architecture

2.1. Principle of Operation
The design goals of Trail are: (I) To improve or at

least preserve the disk write performance of LFS without its
associated problems; (2) To maintain the same hardware
interface of conventional disk devices so that most of the sys-
tems software can be left intact. The hardware architecture of
Trail is shown in Figure 1. I t consists of a main disk, a log
disk, a DRAM buffer, and an intelligent disk controller. Typ-
ically the log disk is much smaller than the main disk. In fact
our design only needs the cheapest disk model available in the
market, e.g., a 40 MB drive. Therefore, the cost of Trail is
not twice as much as a main disk. Files are permanently
stored on the main disk with a data organization determined
by the file system. Because Trail is optimized for disk write
performance, the file-system disk data representation should
be oriented towards disk read performance. The log disk
serves as a persistent write buffer. The intelligent disk con-
troller interacts with the outside world through a standard
interface such as SCSI and coordinates the data transfers
between these two disks. A Trail disk behaves like a normal
disk except with very fast wnte performance.

A Trail disk operates as follows. The readwrite head
of the log disk is guaranteed to be on a cylinder that has at
least one free track. In response to a disk write request, the
disk controller simply starts the write to wherever the disk
head happens to be. Because there is always a free track under
the disk head, the write can be performed immediately. As a
result, there is no seek and rotational latency involved in the
write process! The only latency is due to data transfer As
soon as data is completely transferred to the log disk. the dev-

ice can retum a completion signal to the software. At this
point, there is still a copy of the data kept in the disk
controller's DRAM-based buffer. From the software stand-
point, a Trail disk completes a disk write without any addi-
tional delay. Ultimately the data will be put back to the main
disk, at a time determined by the intelligent controller. Only
when the data copy is safely moved to the main disk can its
occupied buffer space be reused. When a read request arrives,
the controller first looks up the buffer and returns the
requested data if it is there. Otherwise an access to the main
disk is scheduled to satisfy the request. Note that the log disk
never services disk reads. So it is not a cache. It serves as a
safety net to fall back on when the contents of the controller
buffer are corrupted.

Writing data out to a log before committing it to the
"official" data storage is not a new idea. Database systems use
this technique mostly for maintaining transactional con-
sistency rather than for performance. Moreover, in transac-
tion processing systems, the software actually has to perform
each write twice and is responsible for the management of log
space. Trail hides all management overheads behind the SCSI
interface. This simplifies and improves the performance of
application programs. The other difference is that Trail uses a
track-based logging technique. Conceptually each track only
holds one disk write's worth of data. Even if the current track
LS not full, the log disk's head will move to the next free track
in anticipation to service the next write. A track becomes free
when the data it contains is transferred to the main disk.
There are two cases in which this scheme will still cause addi-
tional overheads. First, if no track is free when a write
request arrives, the write request will have to wait until a free:
track becomes available. Second, when the size of a write
request is larger than a disk track, , an extra overhead equal to
a head switch time if the next free track is in the same
cylinder as the current track, or to a track-to-track seek time if
the next free track is not in the same cylinder. needs to be
paid. Track-based logging eliminates both the rotational and
seek latency at the expense of inefficient log disk space usage.

Compared to LFS, Trail achieves a better disk write
performance because of the reduction in the rotational
latency. Moreover, the file system is not required to perform
clustered writes in one batch. Consequently the performance
of synchronous writes is only limited by the disk's raw
transfer bandwidth. Because the main disk assumes a data
organization that is determined by the file system, disk read
performance is not penalized. Last but not least, there is no
need for garbage collection because the hardware assumes the
responsibility of managing the log disk. This simplifies the
implementation and improves the performance of the storage
management software.

2.2. Log Disk Management
The most critical part of the Trail architecture is log

disk management. Because hardware controls the log disk
directly, the management algorithm must be simple. Two
issues need to be addressed. First, because the log disk is used
as a circular buffer, we need a mechanism to switch quickly tcf
the outermost cylinder when the disk head moves inwards and
hits the innermost track and vice versa. Two alternatives are
considered. The first one simply assumes that a full seek delay

340

needs to be paid when the disk head reaches the boundary
track. If no write request is arriving during the full seek
period, this delay is not visible to the applications. Consider-
ing a 40-MB drive with a 40-KB track size. This means that
such a full seek delay, roughly 20 ms, will potentially be visi-
ble every lo00 writes, assuming that the size of each disk
write is less than 40 KB. The other alternative is to interlace
the writes to every other cylinder. Assume cylinders in a disk
are numbered from 0 to 999 from the innermost to the outer-
most. When the disk head is moving outward, the cylinders
to be written are 0, 2,4, ... until it reaches the 998-th cylinder.
At this time, the disk head moves to the 999-th cylinder, turns
inward, and marches through the cylinders 997,995, ... until it
hits the 1-th cylinder. And then the cycle repeats. The advan-
tage of this scheme is that the full seek delay in the first
scheme is distributed over each disk head transition, and
therefore every head transition incurs roughly the same over-
head. The disadvantage is that the delay of each head transi-
tion is a two-track seek time. Since most commercial disks
have optimized for the track-to-track seek performance, this
technique may not be desirable because it trades the
common-case performance for the boundary case. In the
simulation study, we choose the first approach.

The other design issue is related to recovery. When a
Trail disk retums a completion signal to the software, the data
is assumed to be persistent although not necessarily in its
intended destination disk location. In the case of a power
failure, the contents of the controller’s DRAM-based buffer
are lost. During reconstruction, the controller’s buffer is
rebuilt from the log disk. To allow crash recovery, each disk
write to the log disk must be self-identifying. That is, each
disk write must include a special bit pattem, a timestamp, a
request size, the destination disk address, and the actual data.
The special bit pattem is used as a delimiter to designate the
beginning of a write request. The request size allows the
reconstruction software to handle disk writes that span multi-
ple tracks. To reconstruct the controller buffer, the system
must scan the entire log disk once to eliminate invalid writes
and to establish a timestamp order for valid writes. Three
rules are used:

[11 Within a track, only the disk write with the most recent
timestamp is considered; others are spurious.

[2] At the disk level, the disk writes from each track are
ordered according to their timestamps. Those writes
that are overwritten by later ones are considered
invalid.
Accumulate the request sizes of the valid writes from
the most to the least recent until such a write request
that when including it, the accumulated sum is greater
than the controller buffer size. All writes earlier than
this write, including itself, are considered invalid.

The reconstruction process requires a second pass across the
log disk, in which the valid writes determined in the first pass
via the above rules are brought into the controller buffer.
Because the scans involve only sequential access, the recon-
struction delay can be significantly reduced. In addition,
because the log disk’s contents are rebuilt in the controller
buffer rather than in the main disk, no random accesses to the
main disk are required.

[3]

TrackdCylinder 4 11 Tracksize 1 2f6yy ;)I
Full Rotation Delay

Maximum Seek Time 29.4 ms
Track-to-Track Seek Time

Head Switch Time
2 ms
1 ms

341

Note that the divisor doesn’t include the disk idle time. For a
Trail disk, the read bandwidth efficiency is derived from the
main disk while the write bandwidth eficiency is from the log
disk The controller buffer size measures the average space
that the controller’s buffer needs to provide a reasonable level
of performance. Due to space constraints, we didn’t include
simulation results that depend on workload characteristics,
and disk parameters.

3.2. Performance Analysis
We are mainly interested in two kinds of workloads.

The first type represents transaction processing workloads. In
this environment, the disk request size is small, the I/O rate is
high, and the reference locality is low. The second type
represents the other end of the spectrum, where the request
size is much larger, but the YO rate is comparatively lower.
Let’s call the latter the file systems workload. Unless stated
otherwise, subsequent performance results are based on the
following assumptions:

Minimum request size is fixed at one Kbyte.
ReauYwrire ratio is assumed to be four.
Locality characteristic value is one, i.e., no locality.
Figure 2 shows the write latency ratio of the conven-

tional disk architecture to the Trail architecture. The X axis
stands for the disk request’s inter-arrival time in msec. Three
different maximum request sizes, 1 Kbyte, 5 Kbyte, and 10
Kbyte, are used in this study. For high YO rates (e.g., 200
requestdsec), the improvement of the Trail architecture over
conventional disk devices is at least three orders of magni-
tude, a rather significant difference. Even for lower YO rates,
the improvement is still over an order of magnitude. The per-
formance curves of these three workloads exhibit similar
structures. In particular, the latency improvement drops
significantly when the YO rate reaches 50 requestdsec (or the
inter-arrival time is 20 ms). Except for the rapid transition
period, smaller maximum request sizes have better write
latency improvement. Figure 3 shows the read latency ratio
for the same workloads. Unlike the monotonicity structure in
Figure 2, there is a peak in each performance curve. More-
over, the workload conditions in which the peaks in Figure 3
occur roughly correspond to where rapid transitions in Figure
2 take place. Although the Trail architecture aims at disk
write perfomlance optimization, Figure 3 shows that the read
performance is also improved. In some cases, this improve-
ment can be as much as two orders of magnitude. This
demonstrates one of the design goals of Trail: improving
write performance without sacrificing read performance. Like
the write case, smaller maximum request sizes have better
read latency improvement.

Figure 4 shows the average amount of controller buffer
needed in Trail to provide the performance improvement
shown in Figure 2. The vertical a x i s stands for the buffer size
in Kbyte. The statistics are calculated by assuming an infinite
buffer and measuring the active buffer size when a new disk
request arrives. The accumulative sum of these measure-
ments is then divided by the number of disk requests. For
high YO rates, the buffer requirement ranges from 1 Mbyte to
5 Mbyte. The buffer requirement reduces dramatically as YO
rates decrease. It is less than 5 Kbyte in the lightest load case.

Maximum
Request

Conventional Trail
I I

Size I Read I Write I Read I Write
1 Kbvte I 3.70% I 3.71% I 3.76% I 93.78%
5 Kbyte

10 Kbyte
8.78% 8.65% 8.89% 95.94%

16.17% 15.84% 16.32% 96.73%

Maximum
Request

Size I Read I Write 1 Read 1 Write
200Kbvte I 80.45% I 80.03% I 80.44% I 99.90%

I I

Conventional

650 Kbyte
loo0 Kbyte

Table HI
Systems Workloads

4. Conclusion

Bandwidth Efliciency Comparison under File

In this paper, we propose a novel disk architecture
called Trail that optimizes the write performance without
sacrificing the read performance. Using the concept of track-
based logging, Trail achieves almost zero-overhead disk
writes. That is, aside from the queuing delay, a disk write
latency is only due to its data transfer delay. Consequently the
performance impact due to synchronous writes is minimized.
Since Trail manages logging completely inside a disk device,

93.08% 92.91% 93.09% 99.92%
95.39% 95.28% 95.42% 99.93%

342

the software system, either device drivers or file systems,
doesn't require any modifications. Because the main disk
data organization can be optimized for reads, Trail eliminates
the potential read performance problem of Log-structured File
Systems. In addition, there is no need for garbage collection.

We have shown through simulation that for transaction
processing workloads, the write latency improvement over
conventional disk devices is at least an order of magnitude.
Trail's read latency performance is also better, sometimes the
improvement is over an order of magnitude. In terms of disk
bandwidth utilization, a Trail device has a close to 100%
write bandwidth efficiency and a read bandwidth efficiency at
least as good as a conventional disk.

REFERENCE
[BAKE921 M. Baker, S . Asami, E. Deprit, J . Ousterhout, M.
Seltzer, "Non-Volatile Memory for Fast, Reliable File Sys-
tem," Proc. of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, pp 10-22, Boston, MA., October 1992.
[CARS921 S. Carson, S . Seita, "Optimal Write Batch Size in
Log-structured File Systems," Proc. of USENIX File Systems
Workshop, pp 79-91, Ann Arbor, Michigan, May 1992.
[McKu84] M. McKusick, W. Joy, S . Leffler, R. Fabry, "A
Fast File System for UNIX," ACM Transactions on Computer
Systems, 2(3): 181-197, August 1984.
[ROSE921 M. Rosenblum, The Design and Implementation
of a Log-structured File System, PhD Thesis, LJCBKSD
92/696, June 1992, Computer Science Division, University of
California, Berkeley.
[WELC90] B. Welch, "Naming, State Management, and
User-Level Extensions in the Sprite Distributed File System,"
PhD Thesis, 1990, University of California, Berkeley.

....................

umRequestSize: 10

le+Ol
10.00 20.00 30.00

Inter-Arrival Time (ms)

Figure 2 Write Latency Ratio Under Transaction
Processing Workloads

Latency Ratio

10:00 20:00 30:00

Inter-arrival Time (ms)

Figure 3 Read Latency Ratio Under Transaction
Processing Workloads

5 - *

Buffer Size (Kbyte)

..........

..........

..........

..........

10.00 20.00 30.00

Inter-arrival Time (ms)

Figure 4 Buffer Size Requirement Under Transac-
tion Processing Workloads

Latency Ratio MaxrmumRequestSize: 1000
2

le+03
5

2
,.......,......._I . 1e+02

5.i.J : ~m'm@tegues tS i ze : 650

2,....I_.........
..;

5 . ; +. ;

2 . ;- c ~
le+OO .:._.

I ,

, I I ~ MaxtmumRequesrStze:200
, \ , , I

: , : : ' I

0.20 0.40 0.60 0.80 1.00

, , ,

, >
c , ,

Inter-arrival Time (sec)

Figure 5 Write Latency Ratio Under File Systems
Workloads

343

