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Abstract. An information-theoretic model for steganography with pas-
sive adversaries is proposed. The adversary’s task of distinguishing be-
tween an innocent cover message C and a modified message S containing
a secret part is interpreted as a hypothesis testing problem. The security
of a steganographic system is quantified in terms of the relative entropy
(or discrimination) between PC and PS . Several secure steganographic
schemes are presented in this model; one of them is a universal informa-
tion hiding scheme based on universal data compression techniques that
requires no knowledge of the covertext statistics.

1 Introduction

Steganography is the art and science of hiding information such that its pres-
ence cannot be detected. Motivated by growing concern about the protection of
intellectual property on the Internet and by the threat of a ban for encryption
technology, the interest in techniques for information hiding has been increasing
over the recent years [1]. Two general directions can be distinguished within in-
formation hiding scenarios: protection only against the detection of a message by
a passive adversary and hiding a message such that not even an active adversary
can remove it. A survey of current steganography can be found in [2].

Steganography with a passive adversary is perhaps best illustrated by Sim-
mons’ “Prisoners’ Problem” [19]. Alice and Bob are in jail and wish to devise an
escape plan. All their communication is observed by the adversary (the warden),
who will thwart their plan by transferring them to a high-security prison as soon
as he detects any sign of a hidden message. Alice and Bob succeed if Alice can
send information to Bob such that Eve does not become suspicious.

Hiding information from active adversaries is a different problem since the
existence of a hidden message is publicly known, such as in copyright protec-
tion schemes. Steganography with active adversaries can be divided into wa-
termarking and fingerprinting. Watermarking supplies digital objects with an
identification of origin; all objects are marked in the same way. Fingerprint-
ing, conversely, attempts to identify individual copies of an object by means of
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embedding a unique marker in every copy that is distributed. If later an illegal
copy is found, the copyright owner can identify the buyer by decoding the hidden
information (“traitor tracing”) [13,16,17].

Since most objects to be protected by watermarking or fingerprinting consist
of audio or image data, these data types have received most attention so far. A
number of generic hiding techniques have been developed whose effects are barely
perceptible for humans but can withstand tampering by data transformations
that essentially conserve its contents [4,8].

A common model and terminology for information hiding has been estab-
lished at the 1996 Information Hiding Workshop [15]. An original, unaltered
message is called covertext; the sender Alice tries to hide an embedded mes-
sage by transforming the covertext using a secret key. The resulting message is
called the stegotext and is sent to the receiver Bob. Similar to cryptography, it
is assumed that the adversary Eve has complete information about the system
except for a secret key shared by Alice and Bob that guarantees the security.
However, the model does not include a formal notion of security.

In this paper, we introduce an information-theoretic model for steganogra-
phy with a passive adversary. We propose a security notion that is based on
hypothesis testing: Upon observing a message sent by Alice, the adversary has
to decide whether it is an original covertext C or contains an embedded mes-
sage and is a stegotext S. This is the problem of distinguishing two different
explanations for the observed data that is investigated in statistics and in in-
formation theory as “hypothesis testing.” We follow the information-theoretic
(non-Bayesian) approach as presented by Blahut [6] using the relative entropy
function as the basic measure of the information contained in an observation.
Thus, we use the relative entropy D(PC‖PS) between PC and PS to quantify the
security of a steganographic system (or stegosystem for short) against passive at-
tacks. If the covertext and stegotext distributions are equal and D(PC‖PS) = 0,
the stegosystem is perfectly secure and the adversary can have no advantage
over merely guessing without even observing a message.

However, some caution has to be exerted using this model: On the one hand,
information-theoretic methods have been applied with great success to the prob-
lems of information encoding and transmission, starting with Shannon’s pioneer-
ing work [18]. Messages to be transmitted are modeled as random processes and
the systems developed in this model perform well in practice. For information
hiding on the other hand, the relation between the model and its validity is
more involved. A message encrypted under a one-time pad, for example, is in-
distinguishable from uniformly random bits and this method is perfectly secure
according to our notion of security. But no warden would allow the prisoners to
exchange random-looking messages! Thus, the crucial issue for the validity of a
formal treatment of steganography is the accuracy of the model for real data.

Nevertheless, we believe that our model provides insight in steganography.
We hope that it can serve also as a starting point for further work to formalize
active adversaries or computational security. (A game-theoretic approach to in-
formation hiding with active adversaries is presented by Ettinger [10].) A first
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extension would be to model the covertext source as a stochastic process and
consider statistical estimation and decision techniques. Another idea would be to
value the possible decisions and use the methods of statistical decision theory [5].

Related to this work is a paper by Maurer [12] on unconditionally secure
authentication [11,21]. It shows how Simmons’ bound [20] and many other lower
bounds in authentication theory can be derived and generalized using the hy-
pothesis testing approach. Another information-theoretic approach to steganog-
raphy is [24].

The paper is organized as follows. Hypothesis testing is presented in section 2
from an information-theoretic viewpoint. section 3 contains the formal descrip-
tion of the model and the security definition. In section 4, we provide some
examples of unconditionally secure stegosystems and discuss the effects of data
compression. A universal information hiding scheme that requires no knowledge
of the covertext statistics is presented in section 5. It is based on a universal
data compression algorithm, which is similar to the well-known Lempel-Ziv al-
gorithms [3,23]. Some extensions and conclusions are given in section 6.

2 Review of Hypothesis Testing

We give a brief introduction to hypothesis testing and to information-theoretic
notions (see [6,7]). Logarithms are to the base 2. The cardinality of a set S is
denoted by |S|. The entropy of a random variable X with probability distribution
PX and alphabet X is defined as

H(X) = −
∑
x∈X

PX(x) log PX(x).

The conditional entropy of X conditioned on a random variable Y is

H(X |Y ) =
∑
y∈Y

PY (y)H(X |Y = y)

where H(X |Y = y) denotes the entropy of the conditional probability distribu-
tion PX|Y =y.

Hypothesis testing is the task of deciding which one of two hypotheses H0 or
H1 is the true explanation for an observed measurement Q [6]. In other words,
there are two possible probability distributions, denoted by PQ0 and PQ1 , over
the space Q of possible measurements. If H0 is true, then Q was generated
according to PQ0 , and if H1 is true, then Q was generated according to PQ1 . A
decision rule is a binary partition of Q that assigns one of the two hypotheses to
each possible measurement q ∈ Q. The two possible errors that can be made in a
decision are called a type I error for accepting hypothesis H1 when H0 is actually
true and a type II error for accepting H0 when H1 is true. The probability of a
type I error is denoted by α, the probability of a type II error by β.

A method for finding the optimum decision rule is given by the Neyman-
Pearson theorem. The decision rule is specified in terms of a threshold parameter



An Information-Theoretic Model for Steganography 309

T ; α and β are then functions of T . The theorem states that for any given
threshold T ∈ R and a given maximal tolerable probability β of type II error, α
can be minimized by assuming hypothesis H0 for an observation q ∈ Q if and
only if

log
PQ0(q)
PQ1(q)

≥ T. (1)

In general, many values of T must be examined to find the optimal decision rule.
The term on the left hand side in (1) is called the log-likelihood ratio.

The basic information measure of hypothesis testing is the relative entropy
or discrimination between two probability distributions PQ0 and PQ1 , defined
as

D(PQ0‖PQ1) =
∑
q∈Q

PQ0(q) log
PQ0 (q)
PQ1 (q)

. (2)

The relative entropy between two distributions is always nonnegative and is 0 if
and only if the distributions are equal. Although relative entropy is not a true
distance measure in the mathematical sense because it is not symmetric and does
not satisfy the triangle inequality, it can be useful to think of it as a distance.
The binary relative entropy d(α, β) is defined as

d(α, β) = α log
α

1− β
+ (1− α) log

1− α

β
.

The following relation connects entropy, relative entropy, and the size of the
alphabet for any random variable X ∈ X : If PU is the uniform distribution over
X , then

H(X) + D(PX‖PU ) = log |X |. (3)

Relative entropy and hypothesis testing are linked through the Neyman-
Pearson theorem above: The expected value of the log-likelihood ratio in (1) with
respect to PQ0 is equal to the relative entropy D(PQ0‖PQ1) between PQ0 and
PQ1 . The following standard result shows that deterministic processing cannot
increase the relative entropy between two distributions.

Lemma 1. Let PQ0 and PQ1 be probability distributions over Q. For any func-
tion f : Q → T , let T0 = f(Q0) and T1 = f(Q1). Then

D(PT0‖PT1) ≤ D(PQ0‖PQ1).

Because deciding between H0 and H1 is a special form of processing, the
type I and type II error probabilities α and β satisfy

d(α, β) ≤ D(PQ0‖PQ1). (4)
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This bound is typically used as follows: Suppose that δ is an upper bound on
D(PQ0‖PQ1) and that there is a given upper bound on the type I error proba-
bility α. Then (4) yields a lower bound on the type II error probability β. For
example, α = 0 implies that β ≥ 2−δ.

A similar result holds for a generalized hypothesis testing scenario where the
distributions PQ0 and PQ1 depend on knowledge of an additional random variable
V . The probability distributions, the decision rule, and the error probabilities
are now parameterized by V . In other words, the probability distributions are
PQ0|V =v and PQ1|V =v for all v ∈ V , the decision rule may depend on the value v
of V , and the error probabilities are α(v) and β(v) for each v ∈ V . Let the average
type I and type II errors be α =

∑
v∈V PV (v)α(v) and β =

∑
v∈V PV (v)β(v).

The conditional relative entropy between PX and PY (over the same alphabet
X ) conditioned on a random variable Z is defined as

D(PX|Z‖PY |Z) =
∑
z∈Z

PZ(z)
∑
x∈X

PX|Z=z(x) log
PX|Z=z(x)
PY |Z=z(x)

. (5)

It follows from the Jensen inequality and from (4) that

d(α, β) ≤ D(PQ0|Z‖PQ1|Z). (6)

3 Model and Definition of Security

Fig. 1 shows our model of a stegosystem. Eve observes a message that is sent
from Alice to Bob. She does not know whether Alice sends legitimate covertext C
or stegotext S containing hidden information for Bob. We model this by letting
Alice operate strictly in one of two modes: either she is active (and her output
is S) or inactive (sending covertext C).

If Alice is active, she transforms C to contain an embedded message E using
a secret key K. (Alternatively, Alice could also generate C herself.) Alice may
use a private random source R for embedding. The output of the hiding process
is the stegotext S. Bob must be able to recover E from his knowledge of the
stegotext S and from the key K. Expressed in terms of entropy, the system
satisfies:

1. H(S|CEKR) = 0. The stegotext is determined uniquely by Alice’s inputs.
2. H(E) > 0. There is uncertainty about the embedded message.
3. H(E|SK) = 0. Bob must be able to decode the embedded message uniquely.

If Alice is inactive, she sends covertext C and no embedding takes place. The
embedding mechanism, E, K, and R can be thought of as absent.

Repetition is not considered in this model; it encompasses everything sent
from Alice to Bob. For example, if Alice sends multiple messages to Bob and at
least one of them contains hidden information, she is considered active and S
consists of the concatenation of all her messages.

The probability distributions are assumed to be known to all parties if not
stated otherwise. In addition, Bob knows whether Alice is active or not.
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Fig. 1. The model of a secret-key stegosystem with passive adversary. It shows
the embedded text E, the covertext C, the stegotext S, Alice’s private random
source R, and the secret key K shared by Alice and Bob. Alice is either sending
covertext C or stegotext S.

Eve, upon observing the message sent by Alice, has to decide whether it was
generated according to the distribution of the innocent covertext C or according
to the modified distribution of the stegotext S, i.e., whether Alice is active.
Since this task is a hypothesis testing problem, we quantify the security of a
stegosystem in terms of the relative entropy distance between PC and PS .

Definition 1. A stegosystem as defined above with covertext C and stegotext S
is called ε-secure against passive adversaries if

D(PC‖PS) ≤ ε.

If ε = 0, the stegosystem is called perfectly secure.

Consider Eve’s decision process for a particular decision rule, given by a
binary partition (C0, C1) of the set C of possible covertexts. She decides that
Alice is active if and only if the observed message c is contained in C1. Ideally,
she would always detect a hidden message. (But this occurs only if Alice chooses
an encoding such that valid covertexts and stegotexts are disjoint.) If Eve fails to
detect that she observed stegotext S, she makes a type II error. Its probability
is denoted by β.

The opposite error, which usually receives less attention, is the type I error:
Eve decides that Alice sent stegotext although it was a legitimate cover message
C; this probability is denoted by α. As a special case, one can assume that Eve
never makes a type I error and accuses Alice of sending hidden information when



312 Christian Cachin

she is inactive (α = 0). Such a restriction could be imposed on Eve by external
mechanisms.

Lemma 1 imposes a bound on the achievable error probabilities by Eve.
From (4) we obtain the following theorem.

Theorem 1. In a stegosystem that is ε-secure against passive adversaries, the
probability β that the adversary does not detect a hidden message and the prob-
ability α that the adversary falsely detects a hidden message satisfy

d(α, β) ≤ ε.

In particular, if α = 0, then

β ≥ 2−ε.

In a perfectly secure system we have D(PC‖PS) = 0 and therefore PC = PS ;
thus, Eve can obtain no information about whether Alice is active by observing
the message.

As an example, suppose Alice is given a digital image m that she is permit-
ted to send to Bob. Using a perceptional model, she has determined a set M
of equivalent images that are visually indistinguishable from m. Regardless of
whether Alice is active or not, she will send a randomly chosen element of M
and this defines the probability space underlying C. Note that in our model, the
adversary knows at leastM and possibly also m. Alice can use the techniques de-
scribed below for embedding information; however, to achieve robustness against
active adversaries who modify the image, more sophisticated coding methods are
necessary (see e.g. [8]).

It may be the case that external events influence the covertext distribution;
for example, news reports or the local weather if we think of the prisoners’
problem. This external information is denoted by Y and known all participants.
Our model and the security definition above can be modified accordingly. The
quantities involved will be conditioned on knowledge of Y and we consider the
average error probabilities α =

∑
y∈Y PY (y)α(y) for the type I error and β =∑

y∈Y PY (y)β(y) for the type II error, where α(y) and β(y) denote the type I
and type II error probabilities for Y = y, respectively.

The modified stegosystem with external information Y , covertext C, and
stegotext S is called ε-secure against passive adversaries if

D(PC|Y ‖PS|Y ) ≤ ε.

It follows from (6) that the average error probabilities satisfy d(α, β) ≤ ε, similar
to Theorem 1.

In the next section, we show that perfectly secure stegosystems exist for
particular sources of covertext. We start with especially simple (or unrealistic)
covertext distributions and then consider arbitrary covertext statistics and the
effects of data compression. A universal stegosystem that includes data compres-
sion and does not rely on knowledge of the covertext distribution is presented in
section 5.
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4 Unconditionally Secure Stegosystems

The above model tells us that we obtain a secure stegosystem whenever the
stegotext distribution is close to the covertext distribution without knowledge
of the key. The embedding function depends crucially on knowledge about the
covertext source. We assume first that the covertext distribution is known and
design corresponding embedding functions.

If the covertext consists of independent and uniformly random bits, then
the one-time pad provides a perfectly secure stegosystem. For completeness, we
briefly describe this system formally.

Assume the covertext C is a uniformly distributed n-bit string for some
positive n. The key generator chooses the n-bit key K with uniform distribution
and sends it to Alice and Bob. The embedding function (if Alice is active) consists
of the bitwise XOR of the particular n-bit message e and K, thus S = e ⊕ K,
and Bob can decode by computing e = S ⊕ K. The resulting stegotext S is
uniformly distributed in the set of n-bit strings and therefore D(PC‖PS) = 0.
Thus, the one-time pad provides perfect steganographic security if the covertext
is uniformly random.

As a side remark, we note that this one-time pad system is equivalent to the
basic scheme of visual cryptography [14]. This technique hides a monochrome
picture by splitting it into two random layers of dots. When these are superim-
posed, the picture appears. It is also possible to produce two innocent looking
pictures such that both of them together reveal an embedded message.

For general covertext distributions, we now describe a system that embeds
a one-bit message in the stegotext. The extension to larger message spaces is
straightforward. Let the covertext C with alphabet C have an arbitrary distri-
bution PC . Alice constructs the embedding function from a partition of C into
two parts such that both parts are assigned approximately the same probability
mass under C. In other words, let

C0 = min
C′⊆C

∣∣∣∣∑
c∈C′

PC(c)−
∑
c 6∈C′

PC(c)
∣∣∣∣ and C1 = C \ C0.

Alice and Bob share a one-bit key K ∈ {0, 1}. Define C0 to be the random vari-
able with alphabet C0 and distribution PC0 equal to the conditional distribution
PC|C∈C0 and define C1 similarly over C1. Then Alice computes the stegotext to
embed a message e ∈ {0, 1} as

S = Ce⊕K .

Bob can decode the message because he knows that e = 0 if and only if S ∈ CK .

Theorem 2. The one-bit message stegosystem described above is

1
ln 2

(
P[C ∈ C0]− P[C ∈ C1]

)2

secure against passive adversaries.
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Proof. Let δ = P[C ∈ C0] − P[C ∈ C1]. We show only the case δ > 0. It is
straightforward to verify that

PS(c) =

{
PC(c)/(1 + δ) if c ∈ C0,
PC(c)/(1− δ) if c ∈ C1.

It follows that

D(PC‖PS) =
∑
c∈C

PC(c) log
PC(c)
PS(c)

=
∑
c∈C0

PC(c) log(1 + δ) +
∑
c∈C1

PC(c) log(1 − δ)

=
1 + δ

2
· log(1 + δ) +

1− δ

2
· log(1− δ)

≤ 1 + δ

2
· δ

ln 2
+

1− δ

2
· −δ

ln 2
= δ2/ ln 2

using the fact that log(1 + x) ≤ x/ ln 2.

A word on data compression techniques. Suppose the embedding as described
above takes place before compression is applied to S (or C). Data compression is
a deterministic process. Therefore, Lemma 1 applies and shows that if we start
with an ε-secure stegosystem, the security of the compressed system is also at
most ε. To put it another way, data compression can never hurt the security of
a stegosystem and make detection easier for the adversary.

5 Steganography with Universal Data Compression

The stegosystems described in section 4 assume that the covertext distribution
is known to all parties. This seems not realistic for many applications. However,
if we extend the model of a stegosystem to stochastic processes and consider the
covertext as an ergodic source, its distribution can be estimated by observing
the source output. This is precisely what universal data compression algorithms
do for the purpose of source coding. We now show how they can be modified for
information hiding.

Traditional data compression techniques, such as Huffman coding, require a
priori knowledge about the distribution of the data to be compressed. Universal
data compression algorithms treat the problem of source coding for applications
where the source statistics are unknown a priori or vary with time. A universal
data compression universal algorithm achieves asymptotically optimal perfor-
mance on every source in some large class of possible sources. Essentially, this is
accomplished by learning the statistics of the data during operation as more and
more data is observed. The best known examples of universal data compression
are the algorithms by Lempel and Ziv [3,23].
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We describe a universal data compression algorithm based on the concept of
repetition times due to Willems [22], which is related to Elias’ interval length
coding [9]. Then we modify the algorithm to illustrate that a stegosystem can be
constructed without knowledge of the covertext distribution. The performance
of Willems’ algorithm is inferior to the Lempel-Ziv algorithms for most practical
data but it is simpler to describe and to analyze. We assume that covertext and
stegotext in the model according to ection 3 are stationary stochastic processes.
This corresponds to the ergodicity assumptions that are made for many data
compression algorithms.

The Repetition Times Compression Algorithm: The algorithm is described for
binary sources but can easily be generalized to arbitrary alphabets. The pa-
rameters of the algorithm are the blocklength L and the delay D. Consider a
stationary binary source X producing {Xt} = X1, X2, . . . with values in {0, 1}.
The source output is divided into blocks Y1, Y2, . . . of length L bits each. En-
coding of a block Yt operates by considering its repetition time, the length of the
interval since its last occurrence. Formally, the repetition time ∆ty of the block
Yt = y satisfies Yj 6= Yt for 1 ≤ j < ∆ty and Yt−∆ty = Yt. If ∆ty < 2D, the
encoder outputs C(∆ty), using a particular variable-length encoding C of ∆ty
described below. If ∆ty ≥ 2D, however, the block y is retransmitted literally.
The distinction between repetition time encoding and literal data is marked by
a single bit in the output stream.

Repetition time is encoded using the following code for integers between 1
and 2D−1. Let Bl(k) denote binary representation of the integer k using l digits
and let d = dlog De. The encoding C is

C(t) = Bd(blog tc) ‖ Bblog tc
(
t− 2blog tc

)
,

where ‖ denotes the concatenation of the bit strings. Thus, C(t) contains first
the binary length of t encoded using fixed length d and then the remaining bits
of t except for the most significant bit. For initialization, a block y that occurs
for the first time is encoded as if it had occurred at time t = −y.

The encoder and decoder maintain a buffer of the last 2D blocks of the
source. In addition, the encoder maintains an array indexed by L-bit blocks y
that contains the position ty (modulo 2D) where y last occurred (the time buffer).
Encoding and decoding therefore take only a constant number of operations per
block. The formal analysis of the scheme [22] using D = L shows that for L →∞,
the encoding rate (the average number of code bits per source word) converges
to the entropy rate of the source X .

The Modification for Information Hiding: The stegosystem based on Willems’
algorithm exploits the fact that the average repetition time of a block Yt = y
yields an estimate of its probability since it will converge to PY (y)−1. If the
block y is replaced with another block y′ close to y in average repetition time
(and therefore in probability), the source statistics are only slightly altered.
Information is only hidden in blocks with low probability, as determined by a
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stego rate parameter ρ > 2−D. Alice and Bob share an m-bit secret key K and
Alice wants to hide an m-bit message E.

Here, both the encoder and decoder maintain a time buffer indexed by blocks.
In addition to the index t of the last occurrence of block y, each entry contains
also its average repetition time ∆ty and the number of its occurrences so far,
ny. For each encoded block y with repetition time ∆ty, the average repetition
time ∆ty is replaced by (ny∆ty + ∆ty)/(ny + 1). In addition, ny is increased,
but never beyond 2D. Let r(y) denote the rank function of blocks that associates
with a block y the rank of ∆ty, considering the current values of the average
repetition times.

Information hiding takes place if the encoder or the decoder encounters a
block y such that ∆ty ≥ 1

ρ (before updating buffers). If this is the case, bit j of
the message m is embedded in y′ according to

y′ = r−1
(
r(y) + (mj ⊕Kj)

)
and encoding proceeds as before with y′ replacing y. In other words, y′ is either
equal to y or to the block immediately following y in the average repetition time
ranking, depending on the embedded bit. The decoder computes the average
repetition times in the same way and can thus detect the symbols containing
hidden information and decode E similarly.

Compared to data compression, the storage complexity of the encoding and
decoding algorithms is increased by a constant factor, but their computational
complexity grows by a factor of about L due to the maintenance of the ranking.

The resulting stegosystem achieves asymptotically perfect security since the
distance between the probabilities of the exchanged blocks vanishes. The formal
statement of this will be given in the full version of the paper.

6 Extensions

The presented information-theoretic model for steganography can be considered
as one particular example of a statistical model. We propose to consider also
other approaches from statistical decision theory. As noted before, an immediate
extension would be to model the covertext source as a stochastic process.

Simmons’ original scenario of the prisoners’ problem includes authentication,
that is, the secret key K shared by Alice and Bob can partially be used for
authenticating Alice’s messages. The reason for this is that Alice and Bob want
to protect themselves (and are allowed to do so) from a malicious warden that
tries to fool Bob into accepting fraudulent messages as originating from Alice.
This implies some changes to the model. Denote the part of the key used for
authentication by Z. Then, for every value z of Z, there is a different covertext
distribution PC|Z=z induced by the authentication scheme in use. However, since
the adversary Eve does not know Z, the covertext distribution to consider for
detection is PC , the marginal distribution of PCZ . We note that this model
differs from the general scenario with an active adversary; there, the adversary
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succeeds if she can destroy the embedded hidden information (as is the case
in copyright protection applications, for example). Here, the prisoners are only
concerned about hiding information in messages that may be authenticated to
detect tampering.

As already mentioned in the Introduction, the assumption of a fixed covertext
distribution seems to render our model somewhat unrealistic for the practical
purposes of steganography. But what are the alternatives? Should we rather
study the perception and detection capabilities of human cognition since most
cover data (text, sound, images) is ultimately intended for human receivers?
Viewed this way, steganography could fall entirely into the realms of image,
audio, and speech processing or artificial intelligence. However, it seems that
the information-theoretic model and other statistical approaches will ultimately
be more useful for deriving statements about the security of information hiding
schemes – and a formal security notion is one of the main reasons for introducing
a mathematical model of steganography.
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